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An Active Resource Orchestration Framework 
for PAN-scale Sensor-rich Environments

Youngki Lee, Chulhong Min, Younghyun Ju, Seungwoo Kang, Yunseok Rhee, Junehwa Song

Abstract—In this paper, we present Orchestrator, an active resource orchestration framework for a PAN-scale sensor-rich mobile 
computing platform. Incorporating diverse sensing devices connected to a mobile phone, the platform will serve as a common base 
to accommodate personal context-aware applications. A major challenge for the platform is to simultaneously support concurrent 
applications requiring continuous and complex context processing, with highly scarce and dynamic resources. To address the 
challenge, we build Orchestrator, which actively coordinates applications’ resource uses over the distributed mobile and sensor 
devices. As a key approach, it adopts an active resource use orchestration, which prepares multiple alternative plans for application 
requests and selectively applies them according to resource availability and demands at runtime. Through the selection, it resolves 
resource contention among applications and helps them efficiently share resources. With such system-level supports, applications 
become capable of providing long-running services under dynamic circumstances with scarce resources. Also, the platform can host a 
number of applications stably, exploiting its full resource capacity. We build a Orchestrator prototype on off-the-shelf mobile devices 
and sensor motes and show its effectiveness in terms of application supportability and resource use efficiency.

Index Terms— Context monitoring, Active resource orchestration, PAN-scale sensor-rich environments. 

——————————      —————————— 

1 INTRODUCTION

smart mobile device expands its role as a gateway 
for personal pervasive services. It will form a PAN-
scale sensor rich environment with diverse wearable or 

space-embedded sensors, e.g., e-watch, sensing garments, 
and textile electrodes in bed sheets [18], [23]. As a com-
mon platform, a mobile device will accommodate various 
personal context-aware applications, e.g., dietary monitor-
ing, life assistant [28], elderly support [29]. The applica-
tions monitor user contexts continuously [16], and pro-
vide highly proactive and situational services. The context 
monitoring often requires multi-step complex processing 
across the mobile and sensor devices (e.g., for a ‘running’ 
context, acceleration sensing on multiple body-worn sen-
sors, FFT-based feature extraction, and classifying the 
features through a decision tree [17]).  

This new environment raises an important challenge; 
the platform should run a number of concurrent applica-
tions with highly scarce and dynamic resources. Greedy 
resource use by an application would significantly aggra-
vate contentions among multiple applications and deepen 
skewed uses of specific devices. This can lead to substan-
tial reduction of overall system capacity. Specifically, we 
first note that many tiny sensor devices have strictly con-
strained resources. For example, a MicaZ mote has 8MHz 
CPU and 4KB RAM; it is even incapable of running a light 
FFT library, kiss_fft [25], often used to extract frequency-
domain features. More challenging, availability of sensor 
devices changes dynamically due to their wearable forms 
and mobility of users. For example, a user may take off a 
sensor-equipped watch, or enter a sensor-embedded of-
fice. Also, changes in applications and their requests con-
tinuously affect resource availability of sensor devices. 

It is almost impossible for individual applications to 
address these challenges and ensure applications’ steady 
running. Without system-level supports, an application 
has an extremely limited view on the resource uses of 
other applications, and hardly negotiates with them for 
coordinated resource use. Moreover, individual applica-
tions hardly adapt to the joins and leaves of heterogene-
ous sensors and the starts and stops of other applications. 
For example, consider an application monitoring a user 
activity using an accelerometer. It fails to run when the 
very accelerometer is unavailable, e.g., occupied by other 
concurrent applications or no longer reachable. Even suc-
ceeding, the application may redundantly compute the 
same tasks, wasting limited computational resources.  

In this paper, we propose Orchestrator, a novel active 
resource orchestration framework. Actively interplaying 
multiple context-aware applications and scarce, dynamic 
resources within a PAN, Orchestrator hosts concurrent 
applications stably, exploiting its full resource capacity. 
More specifically, it helps applications share in resources 
and processing with a holistic view on the applications 
and resources. Also, it resolves resource contention be-
tween applications. Moreover, it provides continuous 
context monitoring services, adapting to dynamic sensor 
membership and their resource availability. With such 
system supports, applications can provide mobile users 
with seamless and long-running services by delegating 
complex resource management details to the system.  

1.1 Active Resource Use Orchestration Approach
To enable effective resource orchestration, we take an active 
resource use orchestration approach. A key of this approach 
is to decouple actual resource selection and binding from 
applications’ logical resource demands. Once applications 
turn in high-level context specifications to the system, the 
system actively finds the best combination of resources to 
process the contexts on-the-fly under the current status of 
resources and applications.  
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This is substantially different from an existing approach, 
passive resource use management, adopted in many mobile 
and sensor systems [5], [6], [9]. Such systems are mostly 
designed based on application-driven decision in resource 
selection and binding. Applications explicitly specify the 
types and amounts of required resources, for instance, as a 
resource ticket [9], [5]. A system then takes a passive action, 
simply allocating the requested resources if available. If not, 
applications themselves reduce their resource use in differ-
ent ways, e.g., by trading off data fidelity or deactivating 
certain functionalities, and re-request reduced amount of 
resources. These approaches, however, impose huge bur-
den to application developers in our environment; it is 
hardly possible to predict complex resource dynamics and 
prepare alternative logics matching to individual cases.  

To address the problem, Orchestrator takes an active or-
chestration approach and realizes it as follows (see Fig. 1). 
First, it prepares alternative resource use plans to monitor a 
high-level context. Each plan utilizes different combination 
of sensor devices and their resources, providing opportuni-
ties to flexibly adjust applications’ resource use. Second, at 
runtime, Orchestrator selects and executes the best combi-
nation of plans for concurrent requests, holistically consid-
ering diverse system inputs; 1) the resource demands of 
applications and 2) resource availability of devices, and 3) 
system-wide policies. The plans are selected in a way to 
resolve contentions among concurrent applications and 
maximize sharing to save resources. Orchestrator flexibly 
changes executing plans to adapt to dynamic system 
events such as sensor join/leave. Such holistic coordination 
and flexible adaptation enable to support multiple context-
aware applications as long and balanced as possible.  

To generate alternative resource use plans, Orchestrator 
exploits the diversity of semantic translation. A context can 
be derived from different sensing modalities, feature sets, 
and classification methods. For instance, a ‘running’ con-
text is monitored with diverse methods, e.g., utilizing DC 
and energy features from acceleration data [17] or statisti-
cal features from GPS location data (See Section 4.2 for 
more details). Alternative plans utilize different combina-
tion of devices and their resources. They provide high flex-
ibility in resource coordination compared to the methods 
that simply under-utilize the designated devices by trading 
off fidelity or controlling execution period [7], [8], [15].  

There have been prior systems to facilitate the resource 
use adaptation, for instance, Level [7] and Eon [8] for a sen-
sor device and Odyssey [3], [4] for a mobile device. In these 
works in common, applications register alternative code 
blocks to the system. At runtime, the systems selectively 
apply one of them, to best adapt application behavior over 
changing resource availability. The use of alternatives is a 
common approach for adaptation, but the proposed active 
orchestration approach shows uniqueness in terms of pre-
paring and utilizing alternative plans. A key difference is 
that plans in Orchestrator are mapped to different combi-
nation of sensor devices (inter-device plans) while the alter-
natives of other systems are tied to a specific device (intra-
device plans), e.g., changing execution periods or data fideli-
ty only. Such relaxed association with devices is especially 
effective in a sensor-rich PAN, where sensors join or leave 

the platform dynamically and their capacity is easily over-
loaded due to its scarce resource capacity. Second, Orches-
trator utilizes its plans to handle resource conflicts on sen-
sor devices among concurrent applications. Most prior sys-
tems utilize the alternatives to quickly adapt to changing 
resource situations; e.g., reducing video quality upon 
bandwidth reduction [3], or turning off functionality when 
battery drains sooner than expected [7].  

The contribution of this paper is summarized as follows. 
First, it proposes a new resource coordination system for 
distributed personal sensor devices in a PAN. The system 
newly handles resource scarcity and dynamics problem 
while monitoring multiple contexts for concurrent applica-
tions. Second, we propose an active resource orchestration 
approach; it relaxes the association between applications 
and devices, and thus enables flexible coordination and 
adaptation. Third, to realize the approach, we provide a 
novel planning mechanism including the two-phase trans-
lation, plan selection and adaptation. Importantly, it pro-
vides the system primitives to acquire resource demands of 
alternative plans and resource availability of sensor devices. 
Finally, we implement Orchestrator prototype over off-
the-shelf mobile and sensor devices and extensively show 
its coordination and adaptation capabilities. 

In the rest of this paper, we first discuss related work in 
Section 2. Section 3 motivates our work. Section 4 describes 
the architecture and techniques of Orchestrator. In Section 
5, we present the implementation and show evaluation in 
Section 6. Finally, we conclude the paper in Section 7. 

2 RELATED WORK AND BACKGROUND

2.1 Context Monitoring Systems
As diverse context-aware applications emerge [1], [2], [24], 
a common underlying platform is increasingly required 
to coordinate resource use of applications. As early efforts, 
Titan has been proposed to enable context recognition in 
dynamic BAN environments [12], [13]. Titan dynamically 
reconfigures sensor nodes to adapt the execution of tasks 
for activity recognition. However, it considers only a sin-
gle application to run at a time, and does not address 
complicated issues arising with concurrent applications. 

 
Fig. 1. Active resource use orchestration.
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SeeMon [16] is our early attempt to build a context 
monitoring platform. Orchestrator significantly extends 
SeeMon with new essential functionalities. First, Orches-
trator supports generic sensor devices that have multiple 
sensing modules and processing capability while SeeMon 
considers sensors as mere data sources. Orchestrator thus 
incorporates distributed architecture to actively leverage 
generic sensor devices. With the architecture, diverse 
tasks constituting a processing pipeline can be flexibly 
offloaded to sensors, e.g., to reduce communication costs. 
With this design, a new important challenge arises; con-
current applications may easily conflict for the use of re-
source-scarce sensor devices. In SeeMon, sensors only 
determine whether to sense and send data. Orchestrator 
resolves such conflicts through inter-device planning, 
which is clearly distinguished from SeeMon that im-
proves energy efficiency by simply turning off sensors. 
Second, Orchestrator newly deals with resource dynamics 
problem when sensors join and leave. Such sensor dy-
namics would be common in daily lives due to user mo-
bility and wearable form factors of sensors. SeeMon, 
however, hardly supports such dynamics; it uses a single 
method for a context, mainly decision-tree based one, and 
optimizes resource use within the method. 

There have also been research efforts to improve ener-
gy efficiency for context monitoring [31], [32], [33]. They 
reduce energy consumption while maintaining a reason-
able accuracy by changing a set of used sensors [31], data 
sampling rates [45], or offloaded tasks [32]. Unlike Or-
chestrator, most works focus on reducing the energy us-
age only for a single context on a single device; they do 
not address the complicated resource problems occurring 
when diverse contexts should be monitored over multiple 
distributed devices. Recently, a technique is proposed to 
select the best set of sensors and their parameters consid-
ering multiple concurrent contexts [33]. While it shares 
the high level idea with Orchestrator, it focuses on prob-
lem modeling and algorithm design whereas Orchestrator 
focuses on system design issues including plan genera-
tion and selection, adaptation, and resource profiling. 

2.2 Resource Management Systems
Significant research efforts have been made to effectively 
manage the use of limited resources of mobile and sensor 
devices [3], [4], [5], [6], [7], [8], [9]. The potential ap-
proaches to design resource management systems can be 
classified into two different ones, i.e., an application-driven 
and system-driven management. While the former tries to 
give full control over the resource use to the applications, 
the latter actively involves in the resource use of applica-
tions and controls it in a system level.  

2.2.1 Systems with Application-Driven Approach
Several systems such as Pixie [9], ECOSystem [5], and 
Chameleon [6] have taken the application-driven ap-
proach. They expose APIs for resource allocation to appli-
cations. Applications determine the types and amounts of 
resources required to execute program codes, and explic-
itly request the resources through the APIs. For example, 
Pixie provides resource tickets, e.g., <Energy, 700mJ, 

10sec>, and Chameleon provides systems calls such as set-
speed() to control CPU speed directly. These systems play 
a passive role to bind and allocate the use of the request-
ed resources. In general, the application-driven approach 
provides applications with high flexibility to control their 
resource use while imposing much burden to applications.  

This approach, however, has limitations to be applied 
for PAN-scale sensor-rich environment. The complexity 
in context processing incurs high burden on program-
ming, compromising potential flexibility allowed to de-
velopers. Also, considerable efforts are required to identi-
fy and specify resource demands for intended context 
processing. Moreover, it is difficult that the developers 
should implement different adaptation and coordination 
strategies suitable to various resource situations. 

2.2.2 Systems with System-Driven Approach
We consider that a system-driven approach [7], [8], [5] is 
more suitable as the solution of our target environment. 
This approach hides applications from the details of com-
plex resource management. As such, they can focus on 
application-specific logics such as UI.  

However, many existing sensor systems with this ap-
proach are still application-aided, e.g., Eon [8], Levels [7]. 
Applications need to provide multiple code blocks, each 
of which corresponds to high level resource states; then 
the systems help applications adapt its energy use for 
changing battery status. Also, these systems are still lim-
ited in dealing with contention among concurrent appli-
cations or dynamic sensor availability; they focus on a 
single application under fixed sensor membership. 

Orchestrator shares a high-level design with Odyssey 
[3] in that both systems selectively use alternative logics 
for adaptation and conflicts resolution. However, Orches-
trator has several unique features. First, it targets emerg-
ing context-aware applications, while Odyssey targets 
conventional applications such as a web browser and a 
video player. To handle highly scarce sensor resources 
and dynamics, Orchestrator creates alternatives in a way 
to leverage different combinations of sensor devices. In 
Odyssey, on the other hand, applications mostly control 
data fidelity altering the resource use within a device. 
Second, in Odyssey, alternatives are mainly used for agile 
adaptation over sudden fluctuations in resource availabil-
ity such as sudden bandwidth drop. Instead, Orchestrator 
applies alternatives to coordinate sensor resource use of 
competing applications, in addition to the adaptation to 
dynamic sensor availability. Although Odyssey considers 
concurrent applications, its coordination is a lot simpler 
only considering proportional, static distribution of 
bandwidth on a single mobile device. 

In the literature of sensor network, coordinating ener-
gy use over multiple nodes has been importantly studied. 
Many works propose techniques to balance the commu-
nication loads of sensors for routing [10], [11]. This can be 
considered as a system-driven approach in that sensor 
systems apply alternative routing path to balance the use 
of energy resources. However, it is hard to take such a 
balancing approach in Orchestrator environment since 
multiple competing applications utilize heterogeneous 
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sensor nodes with different resource use characteristics. It 
is significantly different from traditional WSNs in which 
homogeneous sensor nodes work for a single application.  

Recently, a high-level service orchestration model [30] 
has been proposed to provide a service over MANET 
(Mobile Ad-hoc NETwork). It provides a model to deter-
mine mapping between high-level services and low-level 
resources, considering the dynamic construction of MA-
NET. However, it does not consider models for multiple 
concurrent applications and their coordination, while 
focusing more on mobility-awareness and adaptation to 
support a single application. Also, the main focus of the 
work is to build a mathematical model while ours try to 
build real system design and empirical experiments.  

3 MOTIVATING CASES
Souneil, a middle-aged man, wears a u-watch that incor-
porates an accelerometer, a BVP, and a GSR sensor. He 
uses a CalorieMonitor for his weight control every day. It 
continuously recognizes user activities such as running 
and walking by sensing acceleration data from the watch, 
extracting frequency-domain features with FFT and clas-
sifying the activities with a decision tree. When running 
CalorieMonitor only, Orchestrator plans to offload the 
feature extraction logic to the wrist sensor such that data 
communication and battery consumption is reduced. 

Scene 1: He goes to a fitness room to run on a tread-
mill. As he gets easily bored with treadmill running, he 
prefers to play an exer-game, SwanBoat [26]. SwanBoat lev-
erages his arm and hand gestures as gaming interaction, 
to make the running more fun and social. For gesture 
recognition, the u-watch needs to sense acceleration data 
at a high frequency and send 20 packets/sec. to the mo-
bile device for further processing. While CalorieMonitor 
is in operation, SwanBoat cannot send the additional data 
due to conflicts in bandwidth use. The situation is over-
come with Orchestrator at work. It identifies that the two 
applications can share the raw acceleration data although 
the data is processed afterwards through different infer-
ence logics (FFT and decision tree for CalorieMonitor, and 
heuristic wave form analysis for SwanBoat). Thus, by 
moving the FFT processing for CalorieMonitor from the 
u-watch to the mobile device, the u-watch is able to trans-
fer just a single stream of the raw acceleration data, throt-
tling the bandwidth consumption below the availability.  

Scene 2: After running and taking a shower, he wears 

a u-shirt, embedding a 3-axis accelerometer on the waist, 
and goes to his office, a space where sympathetic interac-
tions are enabled with smart objects (See Fig. 2). With 
SympaThings running on his mobile device, the lamp and 
the picture frame adapt their color and contents to his 
affective states which are recognized by processing sens-
ing data from GSR and BVP sensors in the u-watch.  

SympaThings consumes about 126 J/hour in the u-
watch to sense the data. (The u-watch has already been 
operating for CalorieMonitor, consuming battery at the 
rate of 41 J/hour.) Equipped with a small coin battery, the 
u-watch has remaining energy of 525 J at the moment, 
and can support the two applications just for 3.1 addi-
tional hours. Meanwhile, the calorie expenditure monitor 
can alternatively operate using another accelerometer in 
the u-shirt which has more available energy.  

As shown in Fig. 2, Orchestrator identifies the new u-
shirt sensor and resolves unnecessary battery contention 
on the u-watch. Identifying that the new sensor has 450 J 
of available battery, it hands over the acceleration sensing 
and feature extraction tasks to the sensor. The u-watch 
sensor, then, can run SympaThings tasks only. This bal-
anced energy use stretches the duration of SympaThings 
and CalorieMonitor to 4.2 and 10 hours, respectively.  

4. ARCHITECTURE DESIGN

4.1 Architecture Overview
We design the Orchestrator architecture to enable the ac-
tive orchestration approach. The architecture spans a mo-
bile device and multiple sensor devices (see Fig. 3).  

To use the platform, mobile applications register their 
requests via APIs (see Section 4.2). The application broker 
manages interactions with applications, including request 
registration/deregistration, delivery of processing result, 
and notification of processing failure. 

Given the registered requests, the processing planner 
decides how to process the requests with the available 
devices and resources. It plays a key role as a control cen-
ter for resource use orchestration and consists of two ma-
jor sub-components: the plan generator and the plan selector. 
The plan generator dynamically updates applicable plans 
based on available sensors and their capabilities (Section 
4.3). Among the generated plans, the plan selector decides 
a set of plans to execute, which supports maximal re-
quests with available resources and best meets an orches-
tration policy (Section 4.4). The selection changes adap-
tively, reflecting dynamic availability of devices and their 
resources (Section 4.5) 

For effective planning, the resource monitors keep track 
of the status of CPU, memory, energy, and bandwidth on 
sensors and a mobile device (Section 4.6). The status is 
periodically reported to the plan selector for runtime ad-
aptation. The monitors are designed to minimize monitor-
ing overhead while providing reasonable accuracy.  

Once plans are selected, the plan processors in the mo-
bile device and sensors cooperatively process the plans. 
The sensor-side processor performs the early-stage tasks 
of the context processing pipeline such as sensing and 
optionally feature extraction tasks. The processor in the 

Fig. 2. Motivating cases of Orchestrator (Scene 2)
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mobile device executes the rest, i.e., feature extraction and 
context recognition tasks or the latter only, and complet-
ing plan execution. Note that we develop the plan proces-
sor in the mobile device to dynamically compose and 
share diverse processing modules for plan execution. In 
our current implementation, the unit tasks comprising all 
the usable plans are statically stored in the plan proces-
sors of the mobile and sensor devices; at runtime, the plan 
selector simply triggers the associated sensors to execute 
the selected tasks. We can further extend the sensor sys-
tem to dynamically load new processing modules at 
runtime by adopting over-the-air programming (OTAP). 

4.2 Application Programming Interface
Orchestrator provides applications with programming 
interfaces that abstract complicated low-level resources, 
while providing rich semantics for a wide range of con-
text monitoring. Applications do not need to specify 
which sensors to use, what types of data to collect, how 
often to collect, which feature extraction and classification 
modules to apply, and where to execute modules. Fig. 4 
shows a set of APIs currently supported by Orchestrator. 

registerCMQ() is a key API. Using this API, applica-
tions easily specify a context of interest as a form of query 
statement, called Context Monitoring Query [16]. We add 
an ‘ACCURACY’ condition, which specifies the minimal 
accuracy requirement on the specified context value. For 

example, assume that an application wants to know if a 
user is running with more than 90% of accuracy. Then, 
the developer specifies the query as below.  

registerCMQ(“CONTEXT Activity == running, 
ACCURACY 90%, DURATION 7 days”,  
callback_for_result, callback_for_status).  

Once the query is registered, Orchestrator notifies the 
application of query results whenever the condition starts 
or ends to be satisfied by calling the callback_for_result 
function. Via the callback_for_status function, Orchestrator 
notifies query status, e.g., the query becomes no longer 
activated or the currently achievable accuracy is 92%. up-
dateCMQ() allows applications to change a registered 
query if necessary upon the update of query status. 

4.3 Plan Generation
As a first step to resource orchestration, the plan genera-
tor prepares alternative plans for resource uses. A plan is 
the basic abstraction that represents the resource use to 
handle a request over distributed devices. It is also asso-
ciated with the expected accuracy of context recognition. 
A key idea to obtain alternative plans is to exploit the 
diversity of context recognition methods. First, a context 
can be recognized by a variety of processing methods. For 
example, a ‘running’ activity can be inferred with fre-
quency-domain features of acceleration data and a deci-
sion tree [17] as well as with time-domain statistical fea-
tures and Naïve Bayes [18]. Second, the same context can 
be recognized by different sensing modalities. For in-
stance, affective states of individuals can be recognized 
by biomedical sensors such as BVP, GSR, and ECG [21]. It 
can be also done by using a microphone with voice-
related features such as pitch and formant [22]. Lastly, a 
context can be monitored with different combinations of 
sensor devices, e.g., the different position of accelerome-
ters for activity recognition [14], [15], [18].  

We develop a two-phase translation method to prepare a 
set of usable plans at runtime. The method first loads 
multiple logical plans (LPlans) for each context, prepared 
by system developers in advance. An LPlan represents a 
set of sensing and processing modules to derive the cor-
responding context. At runtime, the logical plans for the 
context of interests are translated into physical plans 
(PPlans); each LPlan then associated with available physi-
cal resources. The concept of translating context-level 
query is also proposed in SeeMon [16], but used different-
ly. SeeMon translates a context into a fixed plan, i.e., fea-
ture-level range query upon that shared processing is 
enabled. Orchestrator, however, translates a context into 
multiple alternative plans with which Orchestrator 
flexibly substitues the resource use to monitor the context. 

 
Fig. 4. Orchestrator APIs.

Context 

Monitoring 

APIs

CMQ_ID = registerCMQ (CMQ_statement, 
query_result_handler, query_status_handler)

deregisterCMQ (CMQ_ID)

updateCMQ (CMQ_ID, CMQ_statement)

Cf.  query_result_handler (CMQ_ID, query_result)
query_status_handler (CMQ_ID, query_status)

 
(a) architecture on mobile device

 
(b) architecture on sensor device

Fig. 3. Orchestrator architecture. 
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Fig. 5 shows three example LPlans in graph represen-
tation: two for ‘running context’ and one for ‘spine pos-
ture’ context. For the ‘running’, LPlan1 utilizes accelera-
tion data from a left wrist, extracts two frequency-domain 
features, DC and energy, and runs a decision tree classifi-
er. On the other hand, LPlan2 utilizes two time-domain 
statistical features, RMS and MAD, and a Naïve Bayes 
classifier. To incorporate diverse LPlans, Orchestrator 
provides plan developers with a simple description lan-
guage as well as a variety of processing modules com-
monly used for context monitoring.  

The plan generator translates such LPlans into PPlans 
by associating available sensor devices at runtime. To 
increase diversity of PPlans, it maximally leverages sensor 
mappings and distribution mappings. The former utilizes the 
multiple sensors for an LPlan that are eligible to serve the 
sensing and processing tasks in the LPlan. For the sensor 
mapping, Orchestrator facilitates plan developers to spec-
ify the requirements on sensors, e.g., sensor data type and 
sampling rate, sensor position, and processing capability. 
For example, in Fig. 5, the sensor of LPlan1 is described as 
‘accelerometer, left wrist, 50Hz’. At runtime, Orchestrator 
identifies the sensors satisfying the requirements. The 
latter exploits the distributions of processing modules 
into sensors and a mobile device. Fig. 6 shows four exam-
ple PPlans for an LPlan1 when the user has two available 
sensors, a watch-embedded accelerometer and a sleeve-
attached one on a left wrist.  

4.4 Plan Selection
The core of the effective orchestration is to properly select 
PPlans to execute. Through the plan selection, Orchestra-
tor supports application requests maximally even with 
highly limited resources. Also, it meets a system-wide 
policy and the accuracy requirements of applications. 

For clear description, we define the selection problem 
as follows. Given C={ci | ci is a context to monitor} and 
P={pi,j | pi,j is a jth PPlan for a context ci}, the plan selector 
determines Pe, a subset of P to execute. Among all possi-
ble subsets, Pe should support the maximal number of 
queries under given resource constraints while the cost of 
Pe, Cost(Pe) is minimized. Here, the cost function, Cost(), 
describes the system policy that should be satisfied to 
achieve desired system operations, e.g. minimizing ener-
gy consumption or maximizing recognition accuracy.  

For the selection, Orchestrator provides common sys-
tem primitives that abstract the resource demand of ap-
plications and the real-time resource availability. First, a 
function, GetRDMatrix(Ps), provides the resource demand 
to execute a set of PPlans, Ps, in the form of a matrix, i.e., 
RDMatrix. Second, GetRAMatrix() returns the list of avail-
able devices and their resource status such as CPU, 
memory and energy as a matrix, i.e., RAMatrix. Fig. 7 
shows examples of RDMatrix and RAMatrix.  

Fig. 8 illustrates the plan selection process. It consists 
of two major processing steps, i.e., (1) detection of maxi-
mal PPlan sets and (2) selection of the minimum cost set. 

Step1. The plan selector detects the maximal PPlan sets, 
each of which supports maximum number of queries 
with available sensors. Fig. 9 shows the pseudo code. To 
obtain the sets, the selector first computes the number of 
supportable queries for every possible PPlan set, Ps  2P. 
The computation involves three sub-steps, resource de-
mand calculation, resource constraint check, and query 
supportability check.  

First, GetRDMatrix(Ps) calculates the resource demand 
of Ps by aggregating the resource demand of each PPlan 
which belongs to Ps. If more than two PPlans in Ps execute 
the same processing modules in the same device, the re-
source demand for the module is taken into account only 
once. Second, with the RDMatrix, resource constraints are 

 
Fig. 7. Examples of RDMatrix and RAMatrix.

 
Fig. 8. Plan selection process.
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Fig. 6. Example PPlans for LPlan1.
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checked considering the resource availability exposed by 
GetRAMatrix(). This filters out the PPlan sets that violate 
resource constraints. The constraints are satisfied only if 
every device in RDMatrix exists in RAMatrix and every 
element in the RDMatrix is smaller than the correspond-
ing one in the RAMatrix. Since the supportability of each 
PPlan is highly dependent on that of other PPlans, we 
check the constraint of a PPlan set as a whole, not as an 
individual PPlan. Given the plan sets that passed the pre-
vious constraint check, the last step selects the ones that 
support the maximum number of queries. Here, the accu-
racy conditions for the queries are also checked.  

Step 2. In the second step, the plan selector determines 
the minimum cost set among candidate maximal PPlan 
sets. It is likely that there often exist multiple maximal 
PPlan sets since Orchestrator prepares diverse PPlans for 
contexts and utilizes various combinations of them. Fig. 
10  shows the pseudo code. This step calculates the cost 
corresponding to each maximal PPlan set and selects the 
one with the minimum cost. The cost is calculated with 
the RDMatrix of the plan set as well as RAMatrix. Diverse 
cost functions can be employed from the policy pool. 
4.4.1 Resource Use Policies
Orchestrator supports diverse resource use policies, ac-
cording to the operation goals of the system. Due to ener-
gy limitation of devices, policies are often specified with 
respect to energy use on devices or running time of appli-
cations. Orchestrator adopts several representative cost 
functions for effective energy utilization, e.g., minimizing 
the total energy consumption, maximizing the sum of 

query running time, minimizing the skewness of remain-
ing battery of devices. For high-quality services, it de-
ploys a policy to maximize context recognition accuracy.  

The policies are specified in the form of cost functions. 
The functions are easily specified by utilizing the system 
primitives, GetRDMatrix() and GetRAMatrix(). Consider 
the policy to maximize the sum of query running time as 
in Fig. 11. In the function, the RDMatrix is firstly retrieved 
for the given Ps to figure out the energy demand. For each 
PPlan, pi  Ps, the expected running times of queries are 
calculated with the RDMatrix and the remaining energy 
of devices from RAMatrix. The running times of pi are 
determined by the device which supports pi for the least 
time among all required devices to execute pi. Finally, the 
function calculates the total sum of the running times. 

4.5 Plan Adaptation
Continuous changes in resource availability and applica-
tion requests affect the operation of Orchestrator. For ex-
ample, an application may request new contexts, and a 
wearable watch or u-shirt may join Orchestrator. Due to 
such changes, the selected PPlans at a time do not guaran-
tee the optimal behavior at another time. To continuously 
adjust to the new resource demands and availability, the 
plans are adaptively re-selected at runtime. Through the 
plan adaptation, Orchestrator keeps supporting applica-
tion requests seamlessly, resolves newly occurring re-
source contentions, and continues to best meet the system 
policy. Note that the adaptation in PAN-scale sensor-rich 
environment is hardly addressed in previous context 
monitoring systems [1], [16]; they mainly work under the 
assumption that the sensor devices are always available. 

For effective adaptation, it is important to determine 
when to reselect the plans. It is clear that new plans 
should be applied when there are changes in the set of 
contexts to monitor, C, and the set of available PPlans, P. 
This is because C and P are the major inputs of the plan 
selection, and the changes in C and P may disqualify the 
previously selected PPlan set. Also, changes in resource 
status could trigger the plan selection. For example, the 
energy drain of devices periodically needs to trigger the 
adaptation since it could change the costs of PPlan sets. 

Five types of events trigger the adaptation process. 
When an event occurs, the plan selection is performed 
with new inputs, Cnew and Pnew, changed by the event. Pnew 
is obtained considering all LPlans, which enables flexible 
use of LPlans during the adaptation. Table 1 summarizes 

 
Fig. 11.  A cost function to maximize the query running time

Function: Cost(Ps)
Input: Ps, a candidate maximal plan set
Output: cost of Ps

1.RDMatrix GetRDMatrix(Ps)
2. totalEvaluationTime 0
3. for pi, where pi Ps,

planEvaluationTime ∞
for dj where dj is a device to execute pi

planEvaluationTime Min(planEvluationTime, 
(RAMatrix(dj, ENERGY) / RDMatrix(dj, ENERGY))

totalEvaluationTime totalEvaluationTime +
planEvalutaionTime

4. Return (1 / totalEvaluationTime)

 
Fig. 9. Pseudo code for the maximal PPlan set detection.

 
Fig. 10. Pseudo code for the minimum cost set selection.

Input: C = {c1, c2, …, cn}, P = {p1,1, …, pn,m}
Output: {PM}, a set of maximal PPlan sets

1. {PM} ø, {Pc} ø, maxQueries = 0
2. for Psi, where Psi 2P // 2P is the power set of P
3. // Calculate resource demand
4. RDMatrix = GetRDMatrix(Psi) 
5. // Check resource constraints with RDMatrix and RAMatrix
6. if resource demand < available resources
7. add Psi  to {Pc}
8. // Check query supportability
9. nSupportableQueries = NumSupportableQueries(Psi)
10. maxQueries = Max(maxQueries, nSupportableQueries)
11. for Psi, where Psi {Pc}
12. ifmaxQueries == NumSupportableQueries(Psi)
13. add Psi  into {PM}
14. return {PM}

Step 1. Maximal PPlan set detection

Input: {PM}, a set of maximal PPlan sets
Output: Pe, a set of PPlans that minimizes the cost 
function

1. Pe ø
2. cost ∞
3. for Psi, where Psi {PM}
4. if cost > Cost(Psi)
5. cost Cost(Psi)
6. Pe Psi
7. return Pe

Step 2. Minimum cost set selection
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the event types and corresponding changes in the inputs. 

4.5.1. Incremental Adaptation
For efficient adaptation, Orchestrator adopts an incre-
mental adaptation method. When there are a number of 
contexts to monitor and corresponding PPlans, it might 
be costly to reselect the new plan set by considering 
whole available PPlans upon every event and redeploy 
new processing modules. To address the issue, we devel-
op an effective heuristic solution. When the heuristic solu-
tion is used, Orchestrator periodically performs global 
selection to avoid errors that might be accumulated due 
to repeated incremental selection.  

The heuristics finds the subset of contexts and corre-
sponding PPlans that are directly affected by the trigger-
ing events. Then, it locally applies the selection process 
only for the subset upon each event. First, upon a query 
registration, Orchestrator performs the selection only 
with the requested context and corresponding PPlans. If 
the context has been already monitored, the executed 
PPlan is shared. Second, upon the query deregistration, 
Orchestrator simply stops executing the corresponding 
PPlans; it does not perform plan selection again. Third, 
upon the sensor join, Orchestrator first generates new 
PPlans utilizing the sensor. If some of queries are newly 
enabled by the new PPlans, Orchestrator executes the 
new PPlans. Also, if the new PPlans are more cost-
effective than the currently executed PPlans, the new 
PPlans replace the current one. Finally, when a sensor 
leaves, some of the running PPlans may be disabled. In 
this case, Orchestrator finds new PPlans for the affected 
queries and replaces the disabled plans with new ones. 

4.6 Resource Monitoring and Demand Profiling
Resource availability and demand information is essential 
for Orchestrator to select the best plans. To obtain up-to-
date and accurate information, Orchestrator develops 
Resource status monitor to obtain diverse resource status 
and Resource demand profiler to estimate resource con-
sumption for each PPlan. Using these, Orchestrator main-
tains resource information on RAMatrix and RDMatrix. 
Moreover, it adopts a sensor detection protocol to identify 
up-to-date sensor availability. The detection process is 
initiated by the heartbeat messages periodically generated 
by sensors. The mobile device listens to the messages and 
detects new and dead/out-of-scope sensors. 

4.6.1 Resource Status Monitoring
We design and implement resource monitors in sensors 

and mobile devices for energy, CPU, memory, and band-
width. For mobile devices, Orchestrator simply utilizes 
the information provided by resource monitoring tools of 
operating systems. For sensors, we develop our own 
light-weight monitors. We describe the sensor-side re-
source monitor below in detail. Currently, we target the 
MicaZ motes using ZigBee protocols and Tiny OS. 

Energy Monitor: For energy monitoring of sensors, Or-
chestrator adopts a voltage-based method [7]. This is 
practical since many of widely-used sensors such as Mi-
caZ provide real-time voltage readings. It estimates re-
maining energy from voltage readings based on pre-built 
voltage-energy translation maps. However, we find out 
that the method can cause estimation errors since the 
voltage reading provided by a sensor could be different 
from the real voltage up to 5%. The 5% error in voltage 
readings can cause 27.8% error in estimated energy since 
the voltage-energy conversion function is non-linear. We 
compensate the errors based on an additional map be-
tween the voltage readings and the real voltages. By ap-
plying the map, the energy monitor achieves a high level 
of accuracy, i.e., the errors under 0.85%.  

CPU Monitor: In Orchestrator, the CPU cycle of a sen-
sor device is occupied by two major operations: 1) execut-
ing assigned tasks and 2) handling timer interrupts for 
sensing, storing, transmission (see Fig. 13). Among them, 
the CPU monitor only considers the CPU cycle for task 
execution since the interrupt handling cost is relatively 
small, i.e., 4.5% in our measurements. More specifically, 
the monitor measures CPU utilization as ( tactive_i /Tp), 
where tactive_i is the execution time of a taski and Tp is a 
period to calculate CPU utilization; in our implementa-
tion, Tp is set to 1 second. We measure tactive_i by recording 
timestamps with a system call, system.getTime32(). 

Memory Monitor: The available memory size, Mav, is ob-
tained as Mmax - i Mused(taski), where Mmax is the maxi-
mum available memory and Mused(taski) is memory used 
for a taski. i Mused(taski) is computed as i (MF(taski)) + 
Max(MT(taski)), where MF(taski) and MT(taski) denote the 
size of Fixed and Temporary Space for a taski, respectively. 
Fixed Space is continuously occupied by a task to store 

TABLE 1 Adaptation events

 

Event Inputs (Cnew, Pnew) for plan reselection

Registration of a query 
(regarding a context cn)

Cnew = Cold {cn}
Pnew = Pold {pn,j | pn,j is a jth PPlan for cn}

Deregistration of a query 
(regarding a context, cd)

Cnew = Cold - {cd}
Pnew = Pold - {pd,j | pd,j is a jth PPlan for cd}

Join of a sensor (sn) Pnew = Pold {pi,j | pi,j is a new jth PPlan for a 
context, ci, enabled by the new sensor, sn}

Leave of a sensor (sd) Pnew = Pold - {pi,j | pi,j is jth PPlan for a context, 
ci, that utilizes the leaved sensor, sd}

Resource status changes, 
e.g., energy drain of devices

No changes in C and P

 
Fig. 12. Example of resource demand profiles

 
Fig. 13. Example of CPU utilization.
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sensor readings and some internal states until the task is 
deregistered. Temporary Space is allocated and used tem-
porarily only when the task is scheduled to run. 

Bandwidth Monitor: Wireless network bandwidth is a 
shared resource for all sensors and a mobile device. The 
available bandwidth for all devices is measured and 
managed in the mobile device. An available bandwidth, 
Bav is measured as Bmax  Bused, where Bmax is the maxi-
mum available bandwidth and Bused is the bandwidth 
being currently utilized. According to our experiments, 
Bmax is about 40 kbps for ZigBee (802.15.4).  

4.6.2 Resource Demand Profiling
As described in Section 4.4., Orchestrator calculates 
RDMatrix, a matrix representation of resource demand 
with respect to a set of PPlans. Calculating the RDMatrix 
is twofold: 1) profiling resource demands of processing 
modules used for PPlans and 2) computing the total re-
source demand based on the profiles. 

First, Orchestrator collects the resource demand pro-
files for diverse context processing tasks in pre-runtime. 
The offline profiling works well in our environment 
where the energy consumption of sensors is stable over 
time, although other methods can be also applied as dis-
cussed in [37]. Tasks for context monitoring usually per-
form periodic operations such as sensing and transmit-
ting data at the fixed time interval. Accordingly, the ener-
gy consumption to execute such tasks is unlikely to fluc-
tuate over time. PowerTutor [37] proposes online moni-
toring of power consumption on smartphones; it continu-
ously monitors the hardware status on representative 
components such as CPU and network interface and es-
timates the result by aggregating the power consumption 
of each component. However, it does not provide the 
measurement on sensor devices, and also imposes high 
overheads to trace hardware status. Fig. 12 shows a part 
of profiles for several tasks. For profiling, we used a clone 
of MicaZ, and a SONY Ultra Mobile PC with 1.33 GHz 
CPU. We scaled down the CPU frequency to 600MHz and 
the energy consumption is profiled with a multi-meter. 

From the profiles, Orchestrator calculates the total re-
source demand of PPlans at run time. For the purpose, it 
first identifies processing modules needed to execute the 
PPlans. Then, it computes the total demand of PPlans by 
adding up the resource demands of all the modules to the 
baseline resource demand. In our experiments, this meth-
od provides reasonable accuracy; it achieves 98% accura-
cy on the estimation of resource demand for the sensors 
we used. Resource demand estimation is a well-studied 
problem in the literature [4], [7], [6], [8]. It is beyond the 
scope of this paper to fully compare to other approaches. 

4.7 Limitation and Discussion
We discuss potential limitations of our planning methods.  

Burden for LPlan preparation. A potential burden to 
realize our planning method is to explore and implement 
usable LPlans for diverse contexts. It could be costly for 
individual developers to prepare such a variety of LPlans 
separately; however, the cost is bearable to adopt in a 
common platform like Orchestrator. Such efforts are re-

quired by system developers only once a priori and most 
application developers can simply use developed plans 
afterwards. Moreover, frequently used context types are 
not highly diverse and applicable inference algorithms 
are also limited to a few; thus, with reasonable efforts, 
system developers can identify and build multiple pro-
cessing plans for commonly interested contexts. 

We currently use heuristic methods to acquire diverse 
plans, and show several representative examples. In the 
near future, however, we believe that a context processing 
ontology can be built and diverse plans can be systemati-
cally managed for various context types. Such processing 
ontology may be more easily built extending existing con-
text models [34]. Through the ontology, multi-party de-
velopers can easily share new processing plans. Also, 
necessary modules can be downloaded from clouds on 
demands and loaded to the platform dynamically. 

Planning optimization. Our planning method can be 
further improved by adopting diverse optimization tech-
niques. A first potential optimization is to enable sharing 
while processing concurrent requests. Sharing can be per-
formed at different levels; when multiple queries monitor 
the same context, a plan is executed only once and the 
inferred contexts are de-multiplexed to all relevant appli-
cations. When plans for different queries share a common 
operator or a part of plans, the overlapping part can be 
executed once and the intermediate results can be shared.  

To enable effective sharing, we first need to organize 
the context processor to flexibly share intermediate or 
final results in any level. A possible way to develop such 
sharable context processor is to leverage our recent work, 
SymPhoney [35]; it organizes context processing pipelines 
as dataflow graphs of unit operators and executes the 
operators in an event-driven manner. With such event-
driven execution engine, sharing of operators or partial 
sub-plans can be implemented easily. Another important 
consideration to enable sharing is that the cost reduction 
by sharing should be taken into account during the plan 
selection such that sharable plans can be selected prefera-
bly. For proper cost evaluation, we may adopt a new 
technique to estimate resource demands in an operator-
level; the system should be able to estimate resource con-
sumption of diverse combinations of operators that can 
be shared among multiple queries. 

Another interesting optimization technique can be de-
vised to support composite queries such as conjunction or 
disjunction of contexts, as in SeeMon [16] or Deamon [36]. 
For example, if a query asks for user activities when he is 
at a company, the system does not need to monitor the 
user activity when he is outside of company. Leveraging 
composite query structure as in the example, Orchestrator 
can deactivate monitoring of some contexts that do not 
influence the result generation. Similar idea has been 
proposed in SeeMon to turn off unnecessary sensors, and 
we can generalize the idea for the resource use planning 
in Orchestrator. It is also possible to apply other common 
intra-device techniques such as duty cycling or sensor 
data sampling; we could potentially adopt the technique 
proposed in SymPhoney to intelligently adjust execution 
periods of highly complex processing pipelines. 
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Quality of services. In terms of applications, the quali-
ty of services (QoS), e.g., recognition accuracy, provided 
by Orchestrator might vary from time to time. We believe 
that the slight QoS difference caused by different plans 
does not cause severe problem for many non-critical daily 
applications; current Android sensing APIs do not also 
guarantee fine-granule QoS for GPS and accelerometer 
sensing services. For the hard QoS requirements, Orches-
trator may conservatively initiate plan adaptation or 
check QoS condition further during plan selection process. 

5 IMPLEMENTATION
We implemented the Orchestrator architecture as a proto-
type system. First, we implemented the architecture of a 
mobile device in two platforms: (1) standard C/C++ over 
Linux, (2) Open C/C++ over S60 SDK and Symbian OS. 
Their total lines are about 13,000. Second, the sensor ar-
chitecture is implemented in NesC on top of TinyOS 
1.1.11. The total lines are about 2,300.  

We deployed the prototype system on various types of 
mobile devices and sensors. Fig. 14 shows a snapshot of 
currently used hardware. First, we mainly deployed the 
prototype on two mobile devices, (1) a SONY UMPC, 
with Intel U1500 1.33 GHz CPU and 1GB RAM, and (2) a 
smartphone, Nokia N96 with Dual ARM9 264MHz pro-
cessor and 128MB RAM. Second, we incorporate various 
sensors widely adopted for context-aware applications. 
As presented in Fig. 15, we use eight USS-2400 sensor 
nodes (MicaZ clones), i.e., four 2-axis accelerometers, two 
light, and two temperature/humidity sensors. They are 
equipped with Atmega 128L MCU, CC2420 RF transceiv-
er supporting ZigBee, and TinyOS. For communication 
between the mobile device and sensors, we attach one 
base sensor node to the mobile device. The node receives 
sensor data from other sensor nodes and forwards the 
data to a mobile device. Also, it transmits control messag-
es to the sensor nodes on behalf of the mobile device. 

Currently, the plan processor in the mobile-side archi-
tecture includes eight feature extraction modules (see Fig. 
15). We used kiss_fft [25], a FFT library, to derive frequen-
cy-domain features. It also provides a recognition module 

implementing a decision tree algorithm. To generate mul-
tiple plans to monitor activity, we combine diverse fea-
ture and sensor sets. As feature sets, we use frequency-
domain features (e.g., DC, Energy) and time-domain sta-
tistical features (e.g., RMS, MAD). For sensor sets, we use 
all combinations of sensors on the left/right wrist, right 
thigh, and waist. We trained the activity contexts via an-
notation-based learning [17]. The learning was done with 
C4.5 decision tree by Weka, a Java-based open source 
machine learning tool [19]. We implemented feature ex-
tractors on sensor nodes to offload feature extraction 
tasks. We used a highly optimized avr-fft library written 
in an assembly language for FFT computation on sensors.  

6 EVALUATION

6.1 Experimental Setup
We demonstrate the effectiveness of Orchestrator under 
dynamic changes in sensor devices and requests. For the 
experiments, we used the devices described in Section 5.  

Sensor availability: For experiments, we first vary the 
number of available sensors as shown in Fig. 16. For the 
total 80 minute period, we randomly add or remove a 
sensor every 2.5 minute among 8 sensors. To examine the 
effect of number of available sensors, we divide the total 
time into four 20 minute phases such that each phase 
predefines different MIN/MAX sensor numbers. Note 
that sensor composition is diverse even with the same 
number of sensors. 

Query workloads: We also generate a dynamic query 
workload as shown in Fig. 17. We add or delete a query 
every 1.5 minute. Also, we set the MIN/MAX numbers of 
queries for each phase. Table 2 summarizes the parame-
ters and default values used for the query generation.  

Baseline: As a baseline to evaluate Orchestrator, we 
develop the system lacking of resource coordination ca-
pability. The system supports a query with a single fixed 
plan that provides the best recognition accuracy. We de-
note it as Conventional Context Recognizer (CCR), since 
conventional context-aware systems mostly adopt a sin-

 
Fig. 14. Hardware setup.

Fig. 15. Sensor, feature, context profile used in the prototype.

Sensor
Sensor location 

(sensor ID)
Sampling 

rate Feature
Feature 

generation 
rate

Context type 
(# of possible 

values)

Context 
value 

examples

Four 2-axis 
accelerometer

Right(3) wrist, 
Right thigh(4), Left 
wrist(5), Waist (6)

50Hz x 8
DC, Energy, 
RMS, MAD, 
Percentile

0.78Hz x 8 Activity (4) Run, Sit, 
Walk, Stand

Two light 
Sensors

Body(2), 
Space(102) 0.78Hz x 2 Illumination 0.78Hz x 2 Light (7) Dark, Bright

Two temperature 
Sensors

Body(1), 
Space(101) 0.78Hz x 2 Temperature 0.78Hz x 2 Temperature(8) Cool, Hot

Two humidity 
sensors

Body(1), 
Space(101) 0.78Hz x 2 Humidity 0.78Hz x 2 Humidity (6) Dry, Humid

 
Fig. 16. Dynamic sensor availability.

 
Fig. 17. Dynamic query workload.

TABLE 2. Query model
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Parameter Default value
# of queries 20

# of context types per query 1

Distribution of context type Activity (50%), Other Contexts (50%)

Distribution of context value Uniform distribution

Distribution of accuracy  
requirement (only for activity)

Uniform distribution
(min and max from training data)
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gle recognition method to handle a context [20]. In CCR, 
all employed sensors are always on and send raw data. A 
mobile device extracts features from the sensor data and 
runs recognition modules. Note that CCR does not utilize 
newly joined sensors and nor deals with sensor leaves. 
For Orchestrator, we use the policy that minimizes the 
total energy consumption of available sensors by default.  

Metrics: We measure the effectiveness of Orchestrator 
in terms of application supportability and resource utili-
zation. First, for the application supportability, we meas-
ure query activation and quality of context. To quantify the 
former, we use the number of activated queries (NAQ) 
and the query activation ratio (QAR). We regard that a 
query is activated if a PPlan exists for the query and is 
executed with available resources. QAR is formally de-
fined as follows. 

 
To quantify the quality of context, we measure the instant 
accuracy and the overall accuracy. The instant accuracy 
denotes the average accuracy of activated queries at a 
moment. The overall accuracy (OA) is the time-averaged 
instant accuracies for the whole period of experiment.  

, 

 
As the metrics for resource utilization, we use the number 
of activated sensors (NAS) and the energy consumption 
(EC) of sensors in Joule (J). We regard that a sensor is acti-
vated if the sensor executes certain tasks comprising any 
selected PPlans. In CCR, all available sensors are consid-
ered to be activated since it does not control the sensors.  

6.2 Query Supportability
We first evaluate the query supportability under the vari-
ation of sensor availability. Fig. 18 shows the average 
QAR with a standard deviation range as the number of 
sensors increases. For a number of sensors in the X axis, 
we measure QAR of every possible combination of sen-
sors and plot average QAR values. For example, a result 
for two sensors is obtained by averaging QARs for all 
combinations of two sensors out of 8, i.e., (s1, s2), (s1, s3), 

…, (s7, s8). As shown in the figure, Orchestrator shows 
higher QAR than CCR for all ranges of sensor availability. 
This is because Orchestrator actively identifies executable 
PPlans even within limited available sensors and selects 
the best set of plans that resolves the resource conflicts 
among concurrent requests.  On the other hand, CCR uti-
lizes a fixed plan for each query such that it hardly re-
solves resource conflicts or adapts to dynamic sensor 
availability. In particular, the QAR gap between Orches-
trator and CCR is large when sensor availability is limited. 
When sensor resources are plenty, every query can be 
well supported without careful coordination. However, 
as sensor availability becomes limited, the advantage of 
resource orchestration gets more significant.  

We also evaluate QAR variation under different distri-
butions of context types in the query workload. We 
measure the average QAR for three different distributions, 
each of which has different portion of ‘activity’ contexts, 
i.e., from 30% to 70%. Note that an activity context is 
more likely to be supported by diverse combinations of 
sensors on different body positions while other contexts 
such as temperature have fewer plans to exploit. Fig. 19 
and Fig. 20 show the results for Orchestrator and CCR, 
respectively. As shown in Fig. 20, CCR shows a large var-
iation of QAR over the distributions. To recognize the 
activity with the best accuracy, CCR adopts a fixed plan 
that uses three accelerometers on different body positions. 
It cannot support activity queries if any one out of the 
three becomes unavailable. As a result, the QAR with 
more activity queries considerably decreases in CCR. In 
contrast, the variation of Orchestrator is much smaller 
than that of CCR, as shown in Fig. 19. Orchestrator shows 
the high and stable QAR regardless of the context distri-
bution. It prepares alternative plans for the activity con-
text, and substitutes them when certain sensors are not 
available and corresponding plans cannot be used.  

6.3 Orchestration under Dynamic Environments

6.3.1 Dynamic Sensor Availability
In this section, we evaluate Orchestrator under dynamic 
sensor availability. The number of queries is fixed at 20.  

Fig. 21 (a) shows QAR and EC per phase; more sensors 
are available as the phase changes from A to D. Under 
phase A and B where available sensors are scarce, Orches-
trator activates more queries than CCR, while consuming 
almost the same amount of energy. The result shows that 
Orchestrator well supports multiple applications with 
limited sensor availability. In contrast, under phase C and 
D where available sensors are plentiful, Orchestrator con-
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Fig. 18. Effect of sensor availability on QAR.       Fig. 19. Effect of request types (Orchestrator).        Fig. 20. Effect of request types (CCR). 
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centrates on energy optimization since the QAR of Or-
chestrator is already saturated to the maximum, i.e., 1.  

Fig. 21 (b) shows EC, QAR, and OA for the total exper-
iment time. To sum up, Orchestrator achieves the two 
times more QAR with 10.7% reduced energy consump-
tion comparing to CCR. However, CCR shows 4.6% in-
creased OA than Orchestrator. Fig. 21 (c), (d) and (e) 
show NAQ, NAS and the instant accuracy over time, re-
spectively. Most important, NAQ of Orchestrator is al-
ways higher than that of CCR, resulting in higher QAR. 
This is because Orchestrator utilizes diverse PPlans such 
that it flexibly supports requests with diverse combina-
tions of sensors. For example, a ‘temperature’ query is acti-
vated on Orchestrator if any of temperature sensors is 
available, whereas it is so on CCR only if the designated 
temperature sensor is available. Also, NAS of Orchestra-
tor is lower than that of CCR. Orchestrator selects PPlans 
that minimize the number of activated sensors applying 
the energy optimization policy. In addition, Orchestrator 
selects PPlans that run feature extraction tasks in sensors 
rather than the ones that send raw data from sensors. 
Such sensor-side feature extraction significantly reduces 
the communication cost, which in turn reduces energy 
consumption. Interestingly, the accuracy of CCR is higher 
than that of Orchestrator. By its default policy to mini-
mize the total energy consumption, Orchestrator selects 
energy-efficient PPlans rather than more accurate ones.  

6.3.2 Dynamic Query Workload
We examine the effectiveness of Orchestrator under the 
dynamic query workload. The number of sensors is fixed 
at 6 excluding the space-embedded ones, S101 and S102.  

Fig. 22 (a) shows EC and QAR per phase. Since the 
sensor devices are abundant in all phases, the QAR of 

Orchestrator reaches to the maximum while that of CCR 
is almost close to the maximum as well. Meanwhile, the 
ECs of Orchestrator and CCR are kept high, i.e., about 
200J. We look into EC per sensor, and discover that a sen-
sor 4 consumes more energy than other sensors. In our 
experimental setting, a sensor 3, 4, 5, and 6 as described in 
Fig. 18 are accelerometers for activity recognition. Based 
on the energy minimization policy, Orchestrator uses sen-
sor 4 rather than using all sensors together since the accu-
racy requirements of most activity queries are satisfied 
only with sensor 4; sensor 4 is placed on the right thigh 
that is known as the most suitable position for recogniz-
ing activities such as running, walking, and standing [17].  

Fig. 22 (b) shows EC, QAR, and OA for the total exper-
iment time. Orchestrator achieves better EC (15% reduc-
tion) along with slightly better QAR (8.5% improvement) 
than CCR, whereas CCR shows marginally higher OA (1% 
increase). Also, Fig. 22 (c), (d), and (e) show NAQ, NAS, 
and the instant accuracy over time, respectively. The 
NAQ of CCR is slightly lower than that of Orchestrator in 
most of time. Although the number of sensors is sufficient 
to activate all registered queries, some queries are deac-
tivated in CCR. This is because it utilizes only a single 
recognition method for ‘activity’ queries. Although CCR 
adopts the method to provide the best accuracy, it does 
not guarantee the best accuracy for every activity instanc-
es: sitting, standing, walking, and running. Thus, it could 
not meet the accuracy requirements of some queries. 
More important, the NAS of Orchestrator is always lower 
than that of CCR. All available sensors are activated in 
CCR, whereas Orchestrator selectively utilizes only some 
of the sensors to reduce battery consumption. Instead, 
CCR mostly shows higher accuracy than Orchestrator.  

 
(a) EC and QAR per phase              (b) Overall EC, QAR and OA

(c) NAQ over time

(d) NAS over time

(e) Instant accuracy over time

Fig. 22. Orchestration under dynamic query availability.
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(c) NAQ over time

(d) NAS over time

 (e) Instant accuracy over time

Fig. 21. Orchestration under dynamic sensor availability.
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6.3.3 Effects of resource orchestration policies
We further examine if Orchestrator properly applies di-
verse orchestration policies. We consider two policies: (1) 
minimizing the total energy consumption of available 
sensors and (2) maximizing the average accuracy of regis-
tered queries. For the experiments, we use the dynamic 
query workload and fix the number of sensors to 6. Then, 
we measure the NAS and the instant accuracy over time 
with the two policies. We only consider the queries con-
taining activity contexts for accuracy measurement.   

Fig. 23 (a) and (b) show NAS and the instant accuracy, 
respectively. In Fig. 23 (a), the NAS of policy 1 is much 
lower than that of policy 2 during the whole experiment 
time. Accordingly, the energy consumption is lower with 
policy 1, which shows the desired operation of Orchestra-
tor. On the other hand, the higher accuracy is guaranteed 
when policy 2 is used, i.e., 88.8% overall accuracy with 
policy 1 and 92% with policy 2. In conclusion, Orchestra-
tor well supports diverse orchestration polices that can be 
easily specified using its system primitives.  

6.3.4 Resource Orchestration Costs
We look into the orchestration cost in terms of (1) re-
source overhead (communication, memory, and energy), 
(2) reconfiguration time taken for the plan adaptation. 

Resource overheads. we first investigate the number 
of messages exchanged during the total experiment time. 
Fig. 24 shows the number of messages per message type. 
In Orchestrator, the control and heartbeat messages are 
exchanged for coordination, incurring slight communica-
tion overheads, e.g., 1.5 kbps under the dynamic query 
workloads. Orchestrator, however, significantly reduces 
the number of data messages at the cost of those messag-
es. Compared to CCR, it decreases the number of data 
messages up to 10 times by transmitting feature values 
instead of raw data and also selectively utilizing sensors.  

Second, we measure the memory usage at runtime. 
The average memory usage in the mobile device is 57.9KB, 
which is negligible considering its memory capacity. Each 
sensor consumes 276B of memory to maintain core data 
structures for task execution.  It additionally consumes 4B 
to 512B of memory depending on sensor type for data 
buffering. Note that those values vary depending on exe-
cuted tasks and runtime parameters such as window size. 
Considering the memory capacity of MicaZ, i.e., 4KB, 
Orchestrator can still offload multiple tasks onto sensors.  

Last, we measure the energy consumption of the sen-
sor devices using a multi-meter. Orchestrator continuous-
ly performs following operations on a sensor device: re-
source status monitoring, resource status transmission, 
and heartbeat message transmission. As shown in TABLE 
3, the periodic execution of primitive operations is not 
much attributed to energy overhead (only 2.5mJ/s in-
crease). All operations utilize CPU of the sensor under 1%. 

Reconfiguration time. we measure the reconfiguration 
time for the adaptation under the dynamic query work-
loads and the dynamic sensor workloads, respectively. As 
shown in Fig. 25, the reconfiguration time includes the 
times for re-planning, executing new PPlans, and receiv-
ing initial data upon the occurrence of the system events, 
e.g., sensor join/leave events. A small reconfiguration 
time is preferable for seamless support for applications. 

Table 3 shows the results on reconfiguration time. The 
average times are 258 and 2,922 milliseconds for dynamic 
query workloads and sensor workloads, respectively. 
They are reasonably short in that many daily applications 
are not sensitive to several-seconds delays and many per-
sonal contexts such as activities do not change quickly. 
Specifically, we classified reconfigurations into two types. 
The type 1 performs the plan generation and selection 
only, without plan execution and initial data reception; 
this case occurs when already running PPlans are reusa-
ble for a new query or no better PPlans are identified 
even with a new sensor. In type 2, all reconfiguration 

 
(a) NAS over time

 
(b) Accuracy over time

Fig. 23. Effects of resource orchestration policies.
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Fig. 24. Communication costs.
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Fig. 25. Reconfiguration states and types.
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steps are performed; this case occurs when a new sensor 
provides better PPlans for existing queries or a new query 
should be processed with a currently inactivated PPlan. 
Under the dynamic query workloads, the type 1 occurs 
more often than the type 2 since PPlans can be shared by 
many queries; thus the reconfiguration time is very short. 

7 CONCLUSION

In this paper, we described Orchestrator, a novel resource 
orchestration framework to support mobile context moni-
toring in a PAN-scale sensor-rich mobile platform. Orches-
trator enables the platform to host multiple applications 
stably, exploiting its full resource capacity in a holistic 
manner. Thus, applications can provide users with seam-
less, long-running high-quality service under dynamic cir-
cumstances with limited resources. We present the design 
and implementation of Orchestrator running on off-the-
shelf mobile devices and sensor motes, and also show its 
effectiveness in various system environments. 
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