
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2014

An Active Resource Orchestration Framework for PAN-scale An Active Resource Orchestration Framework for PAN-scale

Sensor-rich Environments Sensor-rich Environments

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Chulhong Min
KAIST

Younghyun Ju
KAIST

Seungwoo Kang
KAIST

Yunseok Rhee
Hankoon University of Foreign Language

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LEE, Youngki; Min, Chulhong; Ju, Younghyun; Kang, Seungwoo; Rhee, Yunseok; and SONG, Junehwa. An
Active Resource Orchestration Framework for PAN-scale Sensor-rich Environments. (2014). IEEE
Transactions on Mobile Computing. 13, (3), 596-610.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2065

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Youngki LEE, Chulhong Min, Younghyun Ju, Seungwoo Kang, Yunseok Rhee, and Junehwa SONG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/2065

https://ink.library.smu.edu.sg/sis_research/2065

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

An Active Resource Orchestration Framework
for PAN-scale Sensor-rich Environments

Youngki Lee, Chulhong Min, Younghyun Ju, Seungwoo Kang, Yunseok Rhee, Junehwa Song

Abstract—In this paper, we present Orchestrator, an active resource orchestration framework for a PAN-scale sensor-rich mobile
computing platform. Incorporating diverse sensing devices connected to a mobile phone, the platform will serve as a common base
to accommodate personal context-aware applications. A major challenge for the platform is to simultaneously support concurrent
applications requiring continuous and complex context processing, with highly scarce and dynamic resources. To address the
challenge, we build Orchestrator, which actively coordinates applications’ resource uses over the distributed mobile and sensor
devices. As a key approach, it adopts an active resource use orchestration, which prepares multiple alternative plans for application
requests and selectively applies them according to resource availability and demands at runtime. Through the selection, it resolves
resource contention among applications and helps them efficiently share resources. With such system-level supports, applications
become capable of providing long-running services under dynamic circumstances with scarce resources. Also, the platform can host a
number of applications stably, exploiting its full resource capacity. We build a Orchestrator prototype on off-the-shelf mobile devices
and sensor motes and show its effectiveness in terms of application supportability and resource use efficiency.

Index Terms— Context monitoring, Active resource orchestration, PAN-scale sensor-rich environments.

—————————— ——————————

1 INTRODUCTION

smart mobile device expands its role as a gateway
for personal pervasive services. It will form a PAN-
scale sensor rich environment with diverse wearable or

space-embedded sensors, e.g., e-watch, sensing garments,
and textile electrodes in bed sheets [18], [23]. As a com-
mon platform, a mobile device will accommodate various
personal context-aware applications, e.g., dietary monitor-
ing, life assistant [28], elderly support [29]. The applica-
tions monitor user contexts continuously [16], and pro-
vide highly proactive and situational services. The context
monitoring often requires multi-step complex processing
across the mobile and sensor devices (e.g., for a ‘running’
context, acceleration sensing on multiple body-worn sen-
sors, FFT-based feature extraction, and classifying the
features through a decision tree [17]).

This new environment raises an important challenge;
the platform should run a number of concurrent applica-
tions with highly scarce and dynamic resources. Greedy
resource use by an application would significantly aggra-
vate contentions among multiple applications and deepen
skewed uses of specific devices. This can lead to substan-
tial reduction of overall system capacity. Specifically, we
first note that many tiny sensor devices have strictly con-
strained resources. For example, a MicaZ mote has 8MHz
CPU and 4KB RAM; it is even incapable of running a light
FFT library, kiss_fft [25], often used to extract frequency-
domain features. More challenging, availability of sensor
devices changes dynamically due to their wearable forms
and mobility of users. For example, a user may take off a
sensor-equipped watch, or enter a sensor-embedded of-
fice. Also, changes in applications and their requests con-
tinuously affect resource availability of sensor devices.

It is almost impossible for individual applications to
address these challenges and ensure applications’ steady
running. Without system-level supports, an application
has an extremely limited view on the resource uses of
other applications, and hardly negotiates with them for
coordinated resource use. Moreover, individual applica-
tions hardly adapt to the joins and leaves of heterogene-
ous sensors and the starts and stops of other applications.
For example, consider an application monitoring a user
activity using an accelerometer. It fails to run when the
very accelerometer is unavailable, e.g., occupied by other
concurrent applications or no longer reachable. Even suc-
ceeding, the application may redundantly compute the
same tasks, wasting limited computational resources.

In this paper, we propose Orchestrator, a novel active
resource orchestration framework. Actively interplaying
multiple context-aware applications and scarce, dynamic
resources within a PAN, Orchestrator hosts concurrent
applications stably, exploiting its full resource capacity.
More specifically, it helps applications share in resources
and processing with a holistic view on the applications
and resources. Also, it resolves resource contention be-
tween applications. Moreover, it provides continuous
context monitoring services, adapting to dynamic sensor
membership and their resource availability. With such
system supports, applications can provide mobile users
with seamless and long-running services by delegating
complex resource management details to the system.

1.1 Active Resource Use Orchestration Approach
To enable effective resource orchestration, we take an active
resource use orchestration approach. A key of this approach
is to decouple actual resource selection and binding from
applications’ logical resource demands. Once applications
turn in high-level context specifications to the system, the
system actively finds the best combination of resources to
process the contexts on-the-fly under the current status of
resources and applications.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

A

————————————————
Y. Lee, C. Min, Y. Ju, S. Kang, and J. Song are with the Department of
Computer Science, KAIST, 335 Gwahangno, Daejeon 305-701 Republic of
Korea. (Telephone: +82-42-350-3546, e-mail: { youngki, chulhong, yhju,
swkang, junesong} @nclab.kaist.ac.kr).
Y. Rhee is with the School of Electronics and Information Engineering,
HUFS, 89 Wangsan-ri Mohyeon Yongin-si Gyeonggi-do 449-791 Repub-
lic of Korea. (Telephone: +82-31-330-4259, e-mail: rheeys@hufs.ac.kr).

Digital Object Indentifier 10.1109/TMC.2013.68 1536-1233/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

This is substantially different from an existing approach,
passive resource use management, adopted in many mobile
and sensor systems [5], [6], [9]. Such systems are mostly
designed based on application-driven decision in resource
selection and binding. Applications explicitly specify the
types and amounts of required resources, for instance, as a
resource ticket [9], [5]. A system then takes a passive action,
simply allocating the requested resources if available. If not,
applications themselves reduce their resource use in differ-
ent ways, e.g., by trading off data fidelity or deactivating
certain functionalities, and re-request reduced amount of
resources. These approaches, however, impose huge bur-
den to application developers in our environment; it is
hardly possible to predict complex resource dynamics and
prepare alternative logics matching to individual cases.

To address the problem, Orchestrator takes an active or-
chestration approach and realizes it as follows (see Fig. 1).
First, it prepares alternative resource use plans to monitor a
high-level context. Each plan utilizes different combination
of sensor devices and their resources, providing opportuni-
ties to flexibly adjust applications’ resource use. Second, at
runtime, Orchestrator selects and executes the best combi-
nation of plans for concurrent requests, holistically consid-
ering diverse system inputs; 1) the resource demands of
applications and 2) resource availability of devices, and 3)
system-wide policies. The plans are selected in a way to
resolve contentions among concurrent applications and
maximize sharing to save resources. Orchestrator flexibly
changes executing plans to adapt to dynamic system
events such as sensor join/leave. Such holistic coordination
and flexible adaptation enable to support multiple context-
aware applications as long and balanced as possible.

To generate alternative resource use plans, Orchestrator
exploits the diversity of semantic translation. A context can
be derived from different sensing modalities, feature sets,
and classification methods. For instance, a ‘running’ con-
text is monitored with diverse methods, e.g., utilizing DC
and energy features from acceleration data [17] or statisti-
cal features from GPS location data (See Section 4.2 for
more details). Alternative plans utilize different combina-
tion of devices and their resources. They provide high flex-
ibility in resource coordination compared to the methods
that simply under-utilize the designated devices by trading
off fidelity or controlling execution period [7], [8], [15].

There have been prior systems to facilitate the resource
use adaptation, for instance, Level [7] and Eon [8] for a sen-
sor device and Odyssey [3], [4] for a mobile device. In these
works in common, applications register alternative code
blocks to the system. At runtime, the systems selectively
apply one of them, to best adapt application behavior over
changing resource availability. The use of alternatives is a
common approach for adaptation, but the proposed active
orchestration approach shows uniqueness in terms of pre-
paring and utilizing alternative plans. A key difference is
that plans in Orchestrator are mapped to different combi-
nation of sensor devices (inter-device plans) while the alter-
natives of other systems are tied to a specific device (intra-
device plans), e.g., changing execution periods or data fideli-
ty only. Such relaxed association with devices is especially
effective in a sensor-rich PAN, where sensors join or leave

the platform dynamically and their capacity is easily over-
loaded due to its scarce resource capacity. Second, Orches-
trator utilizes its plans to handle resource conflicts on sen-
sor devices among concurrent applications. Most prior sys-
tems utilize the alternatives to quickly adapt to changing
resource situations; e.g., reducing video quality upon
bandwidth reduction [3], or turning off functionality when
battery drains sooner than expected [7].

The contribution of this paper is summarized as follows.
First, it proposes a new resource coordination system for
distributed personal sensor devices in a PAN. The system
newly handles resource scarcity and dynamics problem
while monitoring multiple contexts for concurrent applica-
tions. Second, we propose an active resource orchestration
approach; it relaxes the association between applications
and devices, and thus enables flexible coordination and
adaptation. Third, to realize the approach, we provide a
novel planning mechanism including the two-phase trans-
lation, plan selection and adaptation. Importantly, it pro-
vides the system primitives to acquire resource demands of
alternative plans and resource availability of sensor devices.
Finally, we implement Orchestrator prototype over off-
the-shelf mobile and sensor devices and extensively show
its coordination and adaptation capabilities.

In the rest of this paper, we first discuss related work in
Section 2. Section 3 motivates our work. Section 4 describes
the architecture and techniques of Orchestrator. In Section
5, we present the implementation and show evaluation in
Section 6. Finally, we conclude the paper in Section 7.

2 RELATED WORK AND BACKGROUND

2.1 Context Monitoring Systems
As diverse context-aware applications emerge [1], [2], [24],
a common underlying platform is increasingly required
to coordinate resource use of applications. As early efforts,
Titan has been proposed to enable context recognition in
dynamic BAN environments [12], [13]. Titan dynamically
reconfigures sensor nodes to adapt the execution of tasks
for activity recognition. However, it considers only a sin-
gle application to run at a time, and does not address
complicated issues arising with concurrent applications.

Fig. 1. Active resource use orchestration.

Selected
Plans

Changes in
Available
Resources

Requests
(through APIs)

Resource Use
Plans

Applications

Resources

Requested
Contexts

ContextA

ContextB
Plan B-1
Plan B-2

Plan A-1
Plan A-2

ContextC
(e.g. running)

Plan C-1
Plan C-2
Plan C-3

Plan B-1

Plan A-2

Plan C-1

Resource
Availability/

Status

Orchestration
policy

Requirements
(e.g. accuracy)

A

B

C

Translation Selection

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 3

SeeMon [16] is our early attempt to build a context
monitoring platform. Orchestrator significantly extends
SeeMon with new essential functionalities. First, Orches-
trator supports generic sensor devices that have multiple
sensing modules and processing capability while SeeMon
considers sensors as mere data sources. Orchestrator thus
incorporates distributed architecture to actively leverage
generic sensor devices. With the architecture, diverse
tasks constituting a processing pipeline can be flexibly
offloaded to sensors, e.g., to reduce communication costs.
With this design, a new important challenge arises; con-
current applications may easily conflict for the use of re-
source-scarce sensor devices. In SeeMon, sensors only
determine whether to sense and send data. Orchestrator
resolves such conflicts through inter-device planning,
which is clearly distinguished from SeeMon that im-
proves energy efficiency by simply turning off sensors.
Second, Orchestrator newly deals with resource dynamics
problem when sensors join and leave. Such sensor dy-
namics would be common in daily lives due to user mo-
bility and wearable form factors of sensors. SeeMon,
however, hardly supports such dynamics; it uses a single
method for a context, mainly decision-tree based one, and
optimizes resource use within the method.

There have also been research efforts to improve ener-
gy efficiency for context monitoring [31], [32], [33]. They
reduce energy consumption while maintaining a reason-
able accuracy by changing a set of used sensors [31], data
sampling rates [45], or offloaded tasks [32]. Unlike Or-
chestrator, most works focus on reducing the energy us-
age only for a single context on a single device; they do
not address the complicated resource problems occurring
when diverse contexts should be monitored over multiple
distributed devices. Recently, a technique is proposed to
select the best set of sensors and their parameters consid-
ering multiple concurrent contexts [33]. While it shares
the high level idea with Orchestrator, it focuses on prob-
lem modeling and algorithm design whereas Orchestrator
focuses on system design issues including plan genera-
tion and selection, adaptation, and resource profiling.

2.2 Resource Management Systems
Significant research efforts have been made to effectively
manage the use of limited resources of mobile and sensor
devices [3], [4], [5], [6], [7], [8], [9]. The potential ap-
proaches to design resource management systems can be
classified into two different ones, i.e., an application-driven
and system-driven management. While the former tries to
give full control over the resource use to the applications,
the latter actively involves in the resource use of applica-
tions and controls it in a system level.

2.2.1 Systems with Application-Driven Approach
Several systems such as Pixie [9], ECOSystem [5], and
Chameleon [6] have taken the application-driven ap-
proach. They expose APIs for resource allocation to appli-
cations. Applications determine the types and amounts of
resources required to execute program codes, and explic-
itly request the resources through the APIs. For example,
Pixie provides resource tickets, e.g., <Energy, 700mJ,

10sec>, and Chameleon provides systems calls such as set-
speed() to control CPU speed directly. These systems play
a passive role to bind and allocate the use of the request-
ed resources. In general, the application-driven approach
provides applications with high flexibility to control their
resource use while imposing much burden to applications.

This approach, however, has limitations to be applied
for PAN-scale sensor-rich environment. The complexity
in context processing incurs high burden on program-
ming, compromising potential flexibility allowed to de-
velopers. Also, considerable efforts are required to identi-
fy and specify resource demands for intended context
processing. Moreover, it is difficult that the developers
should implement different adaptation and coordination
strategies suitable to various resource situations.

2.2.2 Systems with System-Driven Approach
We consider that a system-driven approach [7], [8], [5] is
more suitable as the solution of our target environment.
This approach hides applications from the details of com-
plex resource management. As such, they can focus on
application-specific logics such as UI.

However, many existing sensor systems with this ap-
proach are still application-aided, e.g., Eon [8], Levels [7].
Applications need to provide multiple code blocks, each
of which corresponds to high level resource states; then
the systems help applications adapt its energy use for
changing battery status. Also, these systems are still lim-
ited in dealing with contention among concurrent appli-
cations or dynamic sensor availability; they focus on a
single application under fixed sensor membership.

Orchestrator shares a high-level design with Odyssey
[3] in that both systems selectively use alternative logics
for adaptation and conflicts resolution. However, Orches-
trator has several unique features. First, it targets emerg-
ing context-aware applications, while Odyssey targets
conventional applications such as a web browser and a
video player. To handle highly scarce sensor resources
and dynamics, Orchestrator creates alternatives in a way
to leverage different combinations of sensor devices. In
Odyssey, on the other hand, applications mostly control
data fidelity altering the resource use within a device.
Second, in Odyssey, alternatives are mainly used for agile
adaptation over sudden fluctuations in resource availabil-
ity such as sudden bandwidth drop. Instead, Orchestrator
applies alternatives to coordinate sensor resource use of
competing applications, in addition to the adaptation to
dynamic sensor availability. Although Odyssey considers
concurrent applications, its coordination is a lot simpler
only considering proportional, static distribution of
bandwidth on a single mobile device.

In the literature of sensor network, coordinating ener-
gy use over multiple nodes has been importantly studied.
Many works propose techniques to balance the commu-
nication loads of sensors for routing [10], [11]. This can be
considered as a system-driven approach in that sensor
systems apply alternative routing path to balance the use
of energy resources. However, it is hard to take such a
balancing approach in Orchestrator environment since
multiple competing applications utilize heterogeneous

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

sensor nodes with different resource use characteristics. It
is significantly different from traditional WSNs in which
homogeneous sensor nodes work for a single application.

Recently, a high-level service orchestration model [30]
has been proposed to provide a service over MANET
(Mobile Ad-hoc NETwork). It provides a model to deter-
mine mapping between high-level services and low-level
resources, considering the dynamic construction of MA-
NET. However, it does not consider models for multiple
concurrent applications and their coordination, while
focusing more on mobility-awareness and adaptation to
support a single application. Also, the main focus of the
work is to build a mathematical model while ours try to
build real system design and empirical experiments.

3 MOTIVATING CASES
Souneil, a middle-aged man, wears a u-watch that incor-
porates an accelerometer, a BVP, and a GSR sensor. He
uses a CalorieMonitor for his weight control every day. It
continuously recognizes user activities such as running
and walking by sensing acceleration data from the watch,
extracting frequency-domain features with FFT and clas-
sifying the activities with a decision tree. When running
CalorieMonitor only, Orchestrator plans to offload the
feature extraction logic to the wrist sensor such that data
communication and battery consumption is reduced.

Scene 1: He goes to a fitness room to run on a tread-
mill. As he gets easily bored with treadmill running, he
prefers to play an exer-game, SwanBoat [26]. SwanBoat lev-
erages his arm and hand gestures as gaming interaction,
to make the running more fun and social. For gesture
recognition, the u-watch needs to sense acceleration data
at a high frequency and send 20 packets/sec. to the mo-
bile device for further processing. While CalorieMonitor
is in operation, SwanBoat cannot send the additional data
due to conflicts in bandwidth use. The situation is over-
come with Orchestrator at work. It identifies that the two
applications can share the raw acceleration data although
the data is processed afterwards through different infer-
ence logics (FFT and decision tree for CalorieMonitor, and
heuristic wave form analysis for SwanBoat). Thus, by
moving the FFT processing for CalorieMonitor from the
u-watch to the mobile device, the u-watch is able to trans-
fer just a single stream of the raw acceleration data, throt-
tling the bandwidth consumption below the availability.

Scene 2: After running and taking a shower, he wears

a u-shirt, embedding a 3-axis accelerometer on the waist,
and goes to his office, a space where sympathetic interac-
tions are enabled with smart objects (See Fig. 2). With
SympaThings running on his mobile device, the lamp and
the picture frame adapt their color and contents to his
affective states which are recognized by processing sens-
ing data from GSR and BVP sensors in the u-watch.

SympaThings consumes about 126 J/hour in the u-
watch to sense the data. (The u-watch has already been
operating for CalorieMonitor, consuming battery at the
rate of 41 J/hour.) Equipped with a small coin battery, the
u-watch has remaining energy of 525 J at the moment,
and can support the two applications just for 3.1 addi-
tional hours. Meanwhile, the calorie expenditure monitor
can alternatively operate using another accelerometer in
the u-shirt which has more available energy.

As shown in Fig. 2, Orchestrator identifies the new u-
shirt sensor and resolves unnecessary battery contention
on the u-watch. Identifying that the new sensor has 450 J
of available battery, it hands over the acceleration sensing
and feature extraction tasks to the sensor. The u-watch
sensor, then, can run SympaThings tasks only. This bal-
anced energy use stretches the duration of SympaThings
and CalorieMonitor to 4.2 and 10 hours, respectively.

4. ARCHITECTURE DESIGN

4.1 Architecture Overview
We design the Orchestrator architecture to enable the ac-
tive orchestration approach. The architecture spans a mo-
bile device and multiple sensor devices (see Fig. 3).

To use the platform, mobile applications register their
requests via APIs (see Section 4.2). The application broker
manages interactions with applications, including request
registration/deregistration, delivery of processing result,
and notification of processing failure.

Given the registered requests, the processing planner
decides how to process the requests with the available
devices and resources. It plays a key role as a control cen-
ter for resource use orchestration and consists of two ma-
jor sub-components: the plan generator and the plan selector.
The plan generator dynamically updates applicable plans
based on available sensors and their capabilities (Section
4.3). Among the generated plans, the plan selector decides
a set of plans to execute, which supports maximal re-
quests with available resources and best meets an orches-
tration policy (Section 4.4). The selection changes adap-
tively, reflecting dynamic availability of devices and their
resources (Section 4.5)

For effective planning, the resource monitors keep track
of the status of CPU, memory, energy, and bandwidth on
sensors and a mobile device (Section 4.6). The status is
periodically reported to the plan selector for runtime ad-
aptation. The monitors are designed to minimize monitor-
ing overhead while providing reasonable accuracy.

Once plans are selected, the plan processors in the mo-
bile device and sensors cooperatively process the plans.
The sensor-side processor performs the early-stage tasks
of the context processing pipeline such as sensing and
optionally feature extraction tasks. The processor in the

Fig. 2. Motivating cases of Orchestrator (Scene 2)

3-axis
Accel.

126 J/h

OFF ON ON ON

u-Watchu-Shirt

Decision Tree kNN

Remaining E: 525J

Calorie Monitor 3.1 hr
SympaThings 3.1 hr

Calorie monitor 10 hr
SympaThings 4.2 hr

M
ob

ile
 P

ho
ne

Se
ns

or
s

SympaThings

OFF ON ON

u-Watchu-Shirt

Decision Tree kNNM
ob

ile
 P

ho
ne

Se
ns

or
s

CalorieMonitor SympaThings

Remaining Duration Remaining Duration

BVPGSR

41 J/h 126 J/h

3-axis
Accel.

3-axis
Accel.

Remaining E:
450J

BVPGSR

Remaining E:
450J

ON

3-axis
Accel.

41 J/h

Remaining E: 525J

FFT FFTFFT FFT

CalorieMonitor

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 5

mobile device executes the rest, i.e., feature extraction and
context recognition tasks or the latter only, and complet-
ing plan execution. Note that we develop the plan proces-
sor in the mobile device to dynamically compose and
share diverse processing modules for plan execution. In
our current implementation, the unit tasks comprising all
the usable plans are statically stored in the plan proces-
sors of the mobile and sensor devices; at runtime, the plan
selector simply triggers the associated sensors to execute
the selected tasks. We can further extend the sensor sys-
tem to dynamically load new processing modules at
runtime by adopting over-the-air programming (OTAP).

4.2 Application Programming Interface
Orchestrator provides applications with programming
interfaces that abstract complicated low-level resources,
while providing rich semantics for a wide range of con-
text monitoring. Applications do not need to specify
which sensors to use, what types of data to collect, how
often to collect, which feature extraction and classification
modules to apply, and where to execute modules. Fig. 4
shows a set of APIs currently supported by Orchestrator.

registerCMQ() is a key API. Using this API, applica-
tions easily specify a context of interest as a form of query
statement, called Context Monitoring Query [16]. We add
an ‘ACCURACY’ condition, which specifies the minimal
accuracy requirement on the specified context value. For

example, assume that an application wants to know if a
user is running with more than 90% of accuracy. Then,
the developer specifies the query as below.

registerCMQ(“CONTEXT Activity == running,
ACCURACY 90%, DURATION 7 days”,
callback_for_result, callback_for_status).

Once the query is registered, Orchestrator notifies the
application of query results whenever the condition starts
or ends to be satisfied by calling the callback_for_result
function. Via the callback_for_status function, Orchestrator
notifies query status, e.g., the query becomes no longer
activated or the currently achievable accuracy is 92%. up-
dateCMQ() allows applications to change a registered
query if necessary upon the update of query status.

4.3 Plan Generation
As a first step to resource orchestration, the plan genera-
tor prepares alternative plans for resource uses. A plan is
the basic abstraction that represents the resource use to
handle a request over distributed devices. It is also asso-
ciated with the expected accuracy of context recognition.
A key idea to obtain alternative plans is to exploit the
diversity of context recognition methods. First, a context
can be recognized by a variety of processing methods. For
example, a ‘running’ activity can be inferred with fre-
quency-domain features of acceleration data and a deci-
sion tree [17] as well as with time-domain statistical fea-
tures and Naïve Bayes [18]. Second, the same context can
be recognized by different sensing modalities. For in-
stance, affective states of individuals can be recognized
by biomedical sensors such as BVP, GSR, and ECG [21]. It
can be also done by using a microphone with voice-
related features such as pitch and formant [22]. Lastly, a
context can be monitored with different combinations of
sensor devices, e.g., the different position of accelerome-
ters for activity recognition [14], [15], [18].

We develop a two-phase translation method to prepare a
set of usable plans at runtime. The method first loads
multiple logical plans (LPlans) for each context, prepared
by system developers in advance. An LPlan represents a
set of sensing and processing modules to derive the cor-
responding context. At runtime, the logical plans for the
context of interests are translated into physical plans
(PPlans); each LPlan then associated with available physi-
cal resources. The concept of translating context-level
query is also proposed in SeeMon [16], but used different-
ly. SeeMon translates a context into a fixed plan, i.e., fea-
ture-level range query upon that shared processing is
enabled. Orchestrator, however, translates a context into
multiple alternative plans with which Orchestrator
flexibly substitues the resource use to monitor the context.

Fig. 4. Orchestrator APIs.

Context

Monitoring

APIs

CMQ_ID = registerCMQ (CMQ_statement,
query_result_handler, query_status_handler)

deregisterCMQ (CMQ_ID)

updateCMQ (CMQ_ID, CMQ_statement)

Cf. query_result_handler (CMQ_ID, query_result)
query_status_handler (CMQ_ID, query_status)

(a) architecture on mobile device

(b) architecture on sensor device

Fig. 3. Orchestrator architecture.

Application Broker
Application

Interface
Result Manager Message Parser

Processing Planner

Policy
Manager

Plan
Generator

Plan
Selector

Sensor Broker

Sensor DetectorCommunication
Manager

U-TrainerU-Secretary Diet diary

Applications

U Traineetary Diet diaryet diary

API

Message Interpreter

Plan Processor

Resource
Monitor

Network protocols (e.g., ZigBee, BT)

Feature Extractor

Context RecognizerContext Recognizer

Raw data/Feature datataa

ssin

n

Requests

or

Resource availability/status

r B

Selected
Plans

Processing results

Sensor detection/control, Data/status report

Sensors in BAN/PAN
GPSBVP/GSR Accelerometers

n

Generated
plans

Resou

d System
policy

Resource Monitor

Voltage

CC2420R
adio

TinyOSADC

Plan Processor

ce M

Clock

Mobile
Device
Broker

Plan Instance
Plan Table

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 5 shows three example LPlans in graph represen-
tation: two for ‘running context’ and one for ‘spine pos-
ture’ context. For the ‘running’, LPlan1 utilizes accelera-
tion data from a left wrist, extracts two frequency-domain
features, DC and energy, and runs a decision tree classifi-
er. On the other hand, LPlan2 utilizes two time-domain
statistical features, RMS and MAD, and a Naïve Bayes
classifier. To incorporate diverse LPlans, Orchestrator
provides plan developers with a simple description lan-
guage as well as a variety of processing modules com-
monly used for context monitoring.

The plan generator translates such LPlans into PPlans
by associating available sensor devices at runtime. To
increase diversity of PPlans, it maximally leverages sensor
mappings and distribution mappings. The former utilizes the
multiple sensors for an LPlan that are eligible to serve the
sensing and processing tasks in the LPlan. For the sensor
mapping, Orchestrator facilitates plan developers to spec-
ify the requirements on sensors, e.g., sensor data type and
sampling rate, sensor position, and processing capability.
For example, in Fig. 5, the sensor of LPlan1 is described as
‘accelerometer, left wrist, 50Hz’. At runtime, Orchestrator
identifies the sensors satisfying the requirements. The
latter exploits the distributions of processing modules
into sensors and a mobile device. Fig. 6 shows four exam-
ple PPlans for an LPlan1 when the user has two available
sensors, a watch-embedded accelerometer and a sleeve-
attached one on a left wrist.

4.4 Plan Selection
The core of the effective orchestration is to properly select
PPlans to execute. Through the plan selection, Orchestra-
tor supports application requests maximally even with
highly limited resources. Also, it meets a system-wide
policy and the accuracy requirements of applications.

For clear description, we define the selection problem
as follows. Given C={ci | ci is a context to monitor} and
P={pi,j | pi,j is a jth PPlan for a context ci}, the plan selector
determines Pe, a subset of P to execute. Among all possi-
ble subsets, Pe should support the maximal number of
queries under given resource constraints while the cost of
Pe, Cost(Pe) is minimized. Here, the cost function, Cost(),
describes the system policy that should be satisfied to
achieve desired system operations, e.g. minimizing ener-
gy consumption or maximizing recognition accuracy.

For the selection, Orchestrator provides common sys-
tem primitives that abstract the resource demand of ap-
plications and the real-time resource availability. First, a
function, GetRDMatrix(Ps), provides the resource demand
to execute a set of PPlans, Ps, in the form of a matrix, i.e.,
RDMatrix. Second, GetRAMatrix() returns the list of avail-
able devices and their resource status such as CPU,
memory and energy as a matrix, i.e., RAMatrix. Fig. 7
shows examples of RDMatrix and RAMatrix.

Fig. 8 illustrates the plan selection process. It consists
of two major processing steps, i.e., (1) detection of maxi-
mal PPlan sets and (2) selection of the minimum cost set.

Step1. The plan selector detects the maximal PPlan sets,
each of which supports maximum number of queries
with available sensors. Fig. 9 shows the pseudo code. To
obtain the sets, the selector first computes the number of
supportable queries for every possible PPlan set, Ps 2P.
The computation involves three sub-steps, resource de-
mand calculation, resource constraint check, and query
supportability check.

First, GetRDMatrix(Ps) calculates the resource demand
of Ps by aggregating the resource demand of each PPlan
which belongs to Ps. If more than two PPlans in Ps execute
the same processing modules in the same device, the re-
source demand for the module is taken into account only
once. Second, with the RDMatrix, resource constraints are

Fig. 7. Examples of RDMatrix and RAMatrix.

Fig. 8. Plan selection process.

CPU(%) Mem(B) BW(pkt/s) Energy(mJ/s)

Mobile 3.32 4571K 24.125 6621
Accel.
on LWrist

11.71 20 20 29.28

Accel.
on Rthigh

3.43 768 4.125 25.64

CPU(%) Mem(KB) BW(pkt/s) Energy(J)

Mobile 63.22 56285 25.5 9256

Accel.
on watch 97.83 1.064 25.5 8253

Accel.
on waist 85.25 1.925 25.5 10258

RAMatrix for available devices
RDMatrix

Select the
maximum

sets

Resolving contention

Step2. Minimum cost set selection

Cost calculation
Cost calculation

for each maximal
PPlan set

Select
the best set

Cost
Minimizing
skewness

Policy pool

Minimizing
energy

Maximizing
App. running time

Maximizing
accuracy

…

Imposing system policy

Consideration of sharing

Step1. Maximal PPlan set detection

P, C
Resource
constraint

check

Query
supportability

check

RDMatrix

Resource
demand

calculation

No. of supportable
queries

Maximum supportable query calculation for a Ps

RAMatrix, RDMatrix

RAMatrix

Maximal
PPlan Sets

PPlan set to
execute, Pe

Fig. 5. Example LPlans.

Fig. 6. Example PPlans for LPlan1.

DC, Energy
Window
128/64

Decision tree
for activity

RMS
Window
128/64

Naïve Bayes
for activity

MAD
Window
128/64

Accel_waist
Sensing 10Hz

Decision tree
for spine
posture

LPlan1
(running: 95% accuracy, …)

LPlan2
(running: 91% accuracy, …)

LPlan3
(normal: 90% accuracy, …)

DC
Window
128/64

Accel_left_wrist
Sensing 50Hz

Accel_left_thigh
Sensing 50Hz

DC, Energy
Window
128/64

Accel_left_wrist
Sensing 50Hz

Decision tree
for running

activity

DC, Energy
Window
128/64

Accel_left_wrist
Sensing 50Hz

Decision tree
for running

activity

Wearable watch
(accelerometer)

Accelerometer
attached to sleeve

DC, Energy
Window
128/64

Accel_left_wrist
Sensing 50Hz

Decision tree
for running

activity

Wearable watch
(accelerometer)

DC, Energy
Window
128/64

Accel_left_wrist
Sensing 50Hz

Decision tree
for running

activity

Accelerometer
attached to sleeve

PPlan1 PPlan2 PPlan3 PPlan4

Mobile-side Mobile-side Mobile-side Mobile-side

Sensor-side

Sensor-side

Sensor-side

Sensor-side

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 7

checked considering the resource availability exposed by
GetRAMatrix(). This filters out the PPlan sets that violate
resource constraints. The constraints are satisfied only if
every device in RDMatrix exists in RAMatrix and every
element in the RDMatrix is smaller than the correspond-
ing one in the RAMatrix. Since the supportability of each
PPlan is highly dependent on that of other PPlans, we
check the constraint of a PPlan set as a whole, not as an
individual PPlan. Given the plan sets that passed the pre-
vious constraint check, the last step selects the ones that
support the maximum number of queries. Here, the accu-
racy conditions for the queries are also checked.

Step 2. In the second step, the plan selector determines
the minimum cost set among candidate maximal PPlan
sets. It is likely that there often exist multiple maximal
PPlan sets since Orchestrator prepares diverse PPlans for
contexts and utilizes various combinations of them. Fig.
10 shows the pseudo code. This step calculates the cost
corresponding to each maximal PPlan set and selects the
one with the minimum cost. The cost is calculated with
the RDMatrix of the plan set as well as RAMatrix. Diverse
cost functions can be employed from the policy pool.
4.4.1 Resource Use Policies
Orchestrator supports diverse resource use policies, ac-
cording to the operation goals of the system. Due to ener-
gy limitation of devices, policies are often specified with
respect to energy use on devices or running time of appli-
cations. Orchestrator adopts several representative cost
functions for effective energy utilization, e.g., minimizing
the total energy consumption, maximizing the sum of

query running time, minimizing the skewness of remain-
ing battery of devices. For high-quality services, it de-
ploys a policy to maximize context recognition accuracy.

The policies are specified in the form of cost functions.
The functions are easily specified by utilizing the system
primitives, GetRDMatrix() and GetRAMatrix(). Consider
the policy to maximize the sum of query running time as
in Fig. 11. In the function, the RDMatrix is firstly retrieved
for the given Ps to figure out the energy demand. For each
PPlan, pi Ps, the expected running times of queries are
calculated with the RDMatrix and the remaining energy
of devices from RAMatrix. The running times of pi are
determined by the device which supports pi for the least
time among all required devices to execute pi. Finally, the
function calculates the total sum of the running times.

4.5 Plan Adaptation
Continuous changes in resource availability and applica-
tion requests affect the operation of Orchestrator. For ex-
ample, an application may request new contexts, and a
wearable watch or u-shirt may join Orchestrator. Due to
such changes, the selected PPlans at a time do not guaran-
tee the optimal behavior at another time. To continuously
adjust to the new resource demands and availability, the
plans are adaptively re-selected at runtime. Through the
plan adaptation, Orchestrator keeps supporting applica-
tion requests seamlessly, resolves newly occurring re-
source contentions, and continues to best meet the system
policy. Note that the adaptation in PAN-scale sensor-rich
environment is hardly addressed in previous context
monitoring systems [1], [16]; they mainly work under the
assumption that the sensor devices are always available.

For effective adaptation, it is important to determine
when to reselect the plans. It is clear that new plans
should be applied when there are changes in the set of
contexts to monitor, C, and the set of available PPlans, P.
This is because C and P are the major inputs of the plan
selection, and the changes in C and P may disqualify the
previously selected PPlan set. Also, changes in resource
status could trigger the plan selection. For example, the
energy drain of devices periodically needs to trigger the
adaptation since it could change the costs of PPlan sets.

Five types of events trigger the adaptation process.
When an event occurs, the plan selection is performed
with new inputs, Cnew and Pnew, changed by the event. Pnew
is obtained considering all LPlans, which enables flexible
use of LPlans during the adaptation. Table 1 summarizes

Fig. 11. A cost function to maximize the query running time

Function: Cost(Ps)
Input: Ps, a candidate maximal plan set
Output: cost of Ps

1.RDMatrix GetRDMatrix(Ps)
2. totalEvaluationTime 0
3. for pi, where pi Ps,

planEvaluationTime ∞
for dj where dj is a device to execute pi

planEvaluationTime Min(planEvluationTime,
(RAMatrix(dj, ENERGY) / RDMatrix(dj, ENERGY))

totalEvaluationTime totalEvaluationTime +
planEvalutaionTime

4. Return (1 / totalEvaluationTime)

Fig. 9. Pseudo code for the maximal PPlan set detection.

Fig. 10. Pseudo code for the minimum cost set selection.

Input: C = {c1, c2, …, cn}, P = {p1,1, …, pn,m}
Output: {PM}, a set of maximal PPlan sets

1. {PM} ø, {Pc} ø, maxQueries = 0
2. for Psi, where Psi 2P // 2P is the power set of P
3. // Calculate resource demand
4. RDMatrix = GetRDMatrix(Psi)
5. // Check resource constraints with RDMatrix and RAMatrix
6. if resource demand < available resources
7. add Psi to {Pc}
8. // Check query supportability
9. nSupportableQueries = NumSupportableQueries(Psi)
10. maxQueries = Max(maxQueries, nSupportableQueries)
11. for Psi, where Psi {Pc}
12. ifmaxQueries == NumSupportableQueries(Psi)
13. add Psi into {PM}
14. return {PM}

Step 1. Maximal PPlan set detection

Input: {PM}, a set of maximal PPlan sets
Output: Pe, a set of PPlans that minimizes the cost
function

1. Pe ø
2. cost ∞
3. for Psi, where Psi {PM}
4. if cost > Cost(Psi)
5. cost Cost(Psi)
6. Pe Psi
7. return Pe

Step 2. Minimum cost set selection

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the event types and corresponding changes in the inputs.

4.5.1. Incremental Adaptation
For efficient adaptation, Orchestrator adopts an incre-
mental adaptation method. When there are a number of
contexts to monitor and corresponding PPlans, it might
be costly to reselect the new plan set by considering
whole available PPlans upon every event and redeploy
new processing modules. To address the issue, we devel-
op an effective heuristic solution. When the heuristic solu-
tion is used, Orchestrator periodically performs global
selection to avoid errors that might be accumulated due
to repeated incremental selection.

The heuristics finds the subset of contexts and corre-
sponding PPlans that are directly affected by the trigger-
ing events. Then, it locally applies the selection process
only for the subset upon each event. First, upon a query
registration, Orchestrator performs the selection only
with the requested context and corresponding PPlans. If
the context has been already monitored, the executed
PPlan is shared. Second, upon the query deregistration,
Orchestrator simply stops executing the corresponding
PPlans; it does not perform plan selection again. Third,
upon the sensor join, Orchestrator first generates new
PPlans utilizing the sensor. If some of queries are newly
enabled by the new PPlans, Orchestrator executes the
new PPlans. Also, if the new PPlans are more cost-
effective than the currently executed PPlans, the new
PPlans replace the current one. Finally, when a sensor
leaves, some of the running PPlans may be disabled. In
this case, Orchestrator finds new PPlans for the affected
queries and replaces the disabled plans with new ones.

4.6 Resource Monitoring and Demand Profiling
Resource availability and demand information is essential
for Orchestrator to select the best plans. To obtain up-to-
date and accurate information, Orchestrator develops
Resource status monitor to obtain diverse resource status
and Resource demand profiler to estimate resource con-
sumption for each PPlan. Using these, Orchestrator main-
tains resource information on RAMatrix and RDMatrix.
Moreover, it adopts a sensor detection protocol to identify
up-to-date sensor availability. The detection process is
initiated by the heartbeat messages periodically generated
by sensors. The mobile device listens to the messages and
detects new and dead/out-of-scope sensors.

4.6.1 Resource Status Monitoring
We design and implement resource monitors in sensors

and mobile devices for energy, CPU, memory, and band-
width. For mobile devices, Orchestrator simply utilizes
the information provided by resource monitoring tools of
operating systems. For sensors, we develop our own
light-weight monitors. We describe the sensor-side re-
source monitor below in detail. Currently, we target the
MicaZ motes using ZigBee protocols and Tiny OS.

Energy Monitor: For energy monitoring of sensors, Or-
chestrator adopts a voltage-based method [7]. This is
practical since many of widely-used sensors such as Mi-
caZ provide real-time voltage readings. It estimates re-
maining energy from voltage readings based on pre-built
voltage-energy translation maps. However, we find out
that the method can cause estimation errors since the
voltage reading provided by a sensor could be different
from the real voltage up to 5%. The 5% error in voltage
readings can cause 27.8% error in estimated energy since
the voltage-energy conversion function is non-linear. We
compensate the errors based on an additional map be-
tween the voltage readings and the real voltages. By ap-
plying the map, the energy monitor achieves a high level
of accuracy, i.e., the errors under 0.85%.

CPU Monitor: In Orchestrator, the CPU cycle of a sen-
sor device is occupied by two major operations: 1) execut-
ing assigned tasks and 2) handling timer interrupts for
sensing, storing, transmission (see Fig. 13). Among them,
the CPU monitor only considers the CPU cycle for task
execution since the interrupt handling cost is relatively
small, i.e., 4.5% in our measurements. More specifically,
the monitor measures CPU utilization as (tactive_i /Tp),
where tactive_i is the execution time of a taski and Tp is a
period to calculate CPU utilization; in our implementa-
tion, Tp is set to 1 second. We measure tactive_i by recording
timestamps with a system call, system.getTime32().

Memory Monitor: The available memory size, Mav, is ob-
tained as Mmax - i Mused(taski), where Mmax is the maxi-
mum available memory and Mused(taski) is memory used
for a taski. i Mused(taski) is computed as i (MF(taski)) +
Max(MT(taski)), where MF(taski) and MT(taski) denote the
size of Fixed and Temporary Space for a taski, respectively.
Fixed Space is continuously occupied by a task to store

TABLE 1 Adaptation events

Event Inputs (Cnew, Pnew) for plan reselection

Registration of a query
(regarding a context cn)

Cnew = Cold {cn}
Pnew = Pold {pn,j | pn,j is a jth PPlan for cn}

Deregistration of a query
(regarding a context, cd)

Cnew = Cold - {cd}
Pnew = Pold - {pd,j | pd,j is a jth PPlan for cd}

Join of a sensor (sn) Pnew = Pold {pi,j | pi,j is a new jth PPlan for a
context, ci, enabled by the new sensor, sn}

Leave of a sensor (sd) Pnew = Pold - {pi,j | pi,j is jth PPlan for a context,
ci, that utilizes the leaved sensor, sd}

Resource status changes,
e.g., energy drain of devices

No changes in C and P

Fig. 12. Example of resource demand profiles

Fig. 13. Example of CPU utilization.

Feature
Type

Window
/Slide

Feature
Processing

Device
Type

CPU
(%)

Memory
(bytes)

Energy
(J/s)

Bandwidth
(pkts/s)

Sensor 4.47 576 11.984
MD 0.28 160K 27305

Sensor 11.13 20 17.019
MD 2.00 184K 158923

Sensor 3.62 1152 10.786
MD 0.13 160K 4829

Sensor 11.13 20 17.019
MD 1.94 242K 126528

Sensor 2.17 384 13.265
MD 0.17 213K 11047

Sensor 11.13 20 17.019
MD 2.12 221K 98031

Sensor 2.85 768 13.376
MD 0.24 217K 16107

Sensor 11.13 20 17.019
MD 1.12 225K 105110 20

Statistical
features

(7 features)

64/32
On Sensor 6.25

On MD 20

128/64
On Sensor 3.125

On MD

128/64
On Sensor 1.5625

On MD 20

Frequency
domain
features

(4 features)

3.125On Sensor

On MD 20
64/32

tactive_7tactive_1
(Task execution time)

Tp (Period to calculate CPU utilization, e.g. 1 second)

tactive_2

t

Interrupt handling time

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 9

sensor readings and some internal states until the task is
deregistered. Temporary Space is allocated and used tem-
porarily only when the task is scheduled to run.

Bandwidth Monitor: Wireless network bandwidth is a
shared resource for all sensors and a mobile device. The
available bandwidth for all devices is measured and
managed in the mobile device. An available bandwidth,
Bav is measured as Bmax Bused, where Bmax is the maxi-
mum available bandwidth and Bused is the bandwidth
being currently utilized. According to our experiments,
Bmax is about 40 kbps for ZigBee (802.15.4).

4.6.2 Resource Demand Profiling
As described in Section 4.4., Orchestrator calculates
RDMatrix, a matrix representation of resource demand
with respect to a set of PPlans. Calculating the RDMatrix
is twofold: 1) profiling resource demands of processing
modules used for PPlans and 2) computing the total re-
source demand based on the profiles.

First, Orchestrator collects the resource demand pro-
files for diverse context processing tasks in pre-runtime.
The offline profiling works well in our environment
where the energy consumption of sensors is stable over
time, although other methods can be also applied as dis-
cussed in [37]. Tasks for context monitoring usually per-
form periodic operations such as sensing and transmit-
ting data at the fixed time interval. Accordingly, the ener-
gy consumption to execute such tasks is unlikely to fluc-
tuate over time. PowerTutor [37] proposes online moni-
toring of power consumption on smartphones; it continu-
ously monitors the hardware status on representative
components such as CPU and network interface and es-
timates the result by aggregating the power consumption
of each component. However, it does not provide the
measurement on sensor devices, and also imposes high
overheads to trace hardware status. Fig. 12 shows a part
of profiles for several tasks. For profiling, we used a clone
of MicaZ, and a SONY Ultra Mobile PC with 1.33 GHz
CPU. We scaled down the CPU frequency to 600MHz and
the energy consumption is profiled with a multi-meter.

From the profiles, Orchestrator calculates the total re-
source demand of PPlans at run time. For the purpose, it
first identifies processing modules needed to execute the
PPlans. Then, it computes the total demand of PPlans by
adding up the resource demands of all the modules to the
baseline resource demand. In our experiments, this meth-
od provides reasonable accuracy; it achieves 98% accura-
cy on the estimation of resource demand for the sensors
we used. Resource demand estimation is a well-studied
problem in the literature [4], [7], [6], [8]. It is beyond the
scope of this paper to fully compare to other approaches.

4.7 Limitation and Discussion
We discuss potential limitations of our planning methods.

Burden for LPlan preparation. A potential burden to
realize our planning method is to explore and implement
usable LPlans for diverse contexts. It could be costly for
individual developers to prepare such a variety of LPlans
separately; however, the cost is bearable to adopt in a
common platform like Orchestrator. Such efforts are re-

quired by system developers only once a priori and most
application developers can simply use developed plans
afterwards. Moreover, frequently used context types are
not highly diverse and applicable inference algorithms
are also limited to a few; thus, with reasonable efforts,
system developers can identify and build multiple pro-
cessing plans for commonly interested contexts.

We currently use heuristic methods to acquire diverse
plans, and show several representative examples. In the
near future, however, we believe that a context processing
ontology can be built and diverse plans can be systemati-
cally managed for various context types. Such processing
ontology may be more easily built extending existing con-
text models [34]. Through the ontology, multi-party de-
velopers can easily share new processing plans. Also,
necessary modules can be downloaded from clouds on
demands and loaded to the platform dynamically.

Planning optimization. Our planning method can be
further improved by adopting diverse optimization tech-
niques. A first potential optimization is to enable sharing
while processing concurrent requests. Sharing can be per-
formed at different levels; when multiple queries monitor
the same context, a plan is executed only once and the
inferred contexts are de-multiplexed to all relevant appli-
cations. When plans for different queries share a common
operator or a part of plans, the overlapping part can be
executed once and the intermediate results can be shared.

To enable effective sharing, we first need to organize
the context processor to flexibly share intermediate or
final results in any level. A possible way to develop such
sharable context processor is to leverage our recent work,
SymPhoney [35]; it organizes context processing pipelines
as dataflow graphs of unit operators and executes the
operators in an event-driven manner. With such event-
driven execution engine, sharing of operators or partial
sub-plans can be implemented easily. Another important
consideration to enable sharing is that the cost reduction
by sharing should be taken into account during the plan
selection such that sharable plans can be selected prefera-
bly. For proper cost evaluation, we may adopt a new
technique to estimate resource demands in an operator-
level; the system should be able to estimate resource con-
sumption of diverse combinations of operators that can
be shared among multiple queries.

Another interesting optimization technique can be de-
vised to support composite queries such as conjunction or
disjunction of contexts, as in SeeMon [16] or Deamon [36].
For example, if a query asks for user activities when he is
at a company, the system does not need to monitor the
user activity when he is outside of company. Leveraging
composite query structure as in the example, Orchestrator
can deactivate monitoring of some contexts that do not
influence the result generation. Similar idea has been
proposed in SeeMon to turn off unnecessary sensors, and
we can generalize the idea for the resource use planning
in Orchestrator. It is also possible to apply other common
intra-device techniques such as duty cycling or sensor
data sampling; we could potentially adopt the technique
proposed in SymPhoney to intelligently adjust execution
periods of highly complex processing pipelines.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Quality of services. In terms of applications, the quali-
ty of services (QoS), e.g., recognition accuracy, provided
by Orchestrator might vary from time to time. We believe
that the slight QoS difference caused by different plans
does not cause severe problem for many non-critical daily
applications; current Android sensing APIs do not also
guarantee fine-granule QoS for GPS and accelerometer
sensing services. For the hard QoS requirements, Orches-
trator may conservatively initiate plan adaptation or
check QoS condition further during plan selection process.

5 IMPLEMENTATION
We implemented the Orchestrator architecture as a proto-
type system. First, we implemented the architecture of a
mobile device in two platforms: (1) standard C/C++ over
Linux, (2) Open C/C++ over S60 SDK and Symbian OS.
Their total lines are about 13,000. Second, the sensor ar-
chitecture is implemented in NesC on top of TinyOS
1.1.11. The total lines are about 2,300.

We deployed the prototype system on various types of
mobile devices and sensors. Fig. 14 shows a snapshot of
currently used hardware. First, we mainly deployed the
prototype on two mobile devices, (1) a SONY UMPC,
with Intel U1500 1.33 GHz CPU and 1GB RAM, and (2) a
smartphone, Nokia N96 with Dual ARM9 264MHz pro-
cessor and 128MB RAM. Second, we incorporate various
sensors widely adopted for context-aware applications.
As presented in Fig. 15, we use eight USS-2400 sensor
nodes (MicaZ clones), i.e., four 2-axis accelerometers, two
light, and two temperature/humidity sensors. They are
equipped with Atmega 128L MCU, CC2420 RF transceiv-
er supporting ZigBee, and TinyOS. For communication
between the mobile device and sensors, we attach one
base sensor node to the mobile device. The node receives
sensor data from other sensor nodes and forwards the
data to a mobile device. Also, it transmits control messag-
es to the sensor nodes on behalf of the mobile device.

Currently, the plan processor in the mobile-side archi-
tecture includes eight feature extraction modules (see Fig.
15). We used kiss_fft [25], a FFT library, to derive frequen-
cy-domain features. It also provides a recognition module

implementing a decision tree algorithm. To generate mul-
tiple plans to monitor activity, we combine diverse fea-
ture and sensor sets. As feature sets, we use frequency-
domain features (e.g., DC, Energy) and time-domain sta-
tistical features (e.g., RMS, MAD). For sensor sets, we use
all combinations of sensors on the left/right wrist, right
thigh, and waist. We trained the activity contexts via an-
notation-based learning [17]. The learning was done with
C4.5 decision tree by Weka, a Java-based open source
machine learning tool [19]. We implemented feature ex-
tractors on sensor nodes to offload feature extraction
tasks. We used a highly optimized avr-fft library written
in an assembly language for FFT computation on sensors.

6 EVALUATION

6.1 Experimental Setup
We demonstrate the effectiveness of Orchestrator under
dynamic changes in sensor devices and requests. For the
experiments, we used the devices described in Section 5.

Sensor availability: For experiments, we first vary the
number of available sensors as shown in Fig. 16. For the
total 80 minute period, we randomly add or remove a
sensor every 2.5 minute among 8 sensors. To examine the
effect of number of available sensors, we divide the total
time into four 20 minute phases such that each phase
predefines different MIN/MAX sensor numbers. Note
that sensor composition is diverse even with the same
number of sensors.

Query workloads: We also generate a dynamic query
workload as shown in Fig. 17. We add or delete a query
every 1.5 minute. Also, we set the MIN/MAX numbers of
queries for each phase. Table 2 summarizes the parame-
ters and default values used for the query generation.

Baseline: As a baseline to evaluate Orchestrator, we
develop the system lacking of resource coordination ca-
pability. The system supports a query with a single fixed
plan that provides the best recognition accuracy. We de-
note it as Conventional Context Recognizer (CCR), since
conventional context-aware systems mostly adopt a sin-

Fig. 14. Hardware setup.

Fig. 15. Sensor, feature, context profile used in the prototype.

Sensor
Sensor location

(sensor ID)
Sampling

rate Feature
Feature

generation
rate

Context type
(# of possible

values)

Context
value

examples

Four 2-axis
accelerometer

Right(3) wrist,
Right thigh(4), Left
wrist(5), Waist (6)

50Hz x 8
DC, Energy,
RMS, MAD,
Percentile

0.78Hz x 8 Activity (4) Run, Sit,
Walk, Stand

Two light
Sensors

Body(2),
Space(102) 0.78Hz x 2 Illumination 0.78Hz x 2 Light (7) Dark, Bright

Two temperature
Sensors

Body(1),
Space(101) 0.78Hz x 2 Temperature 0.78Hz x 2 Temperature(8) Cool, Hot

Two humidity
sensors

Body(1),
Space(101) 0.78Hz x 2 Humidity 0.78Hz x 2 Humidity (6) Dry, Humid

Fig. 16. Dynamic sensor availability.

Fig. 17. Dynamic query workload.

TABLE 2. Query model

0
2
4
6
8

0 20 40 60 80

of

 s
en

so
rs

Time (min)

A phase
(MIN=0, MAX=2)

B phase
(MIN=2, MAX=4)

C phase
(MIN=4, MAX=6)

D phase
(MIN=6, MAX=8)

0
5

10
15
20

0 20 40 60 80

of

 q
ue

ri
es

Time (min)

A phase
(MIN=0, MAX=5)

B phase
(MIN=5, MAX=10)

C phase
(MIN=10, MAX=15)

D phase
(MIN=15, MAX=20)

Parameter Default value
of queries 20

of context types per query 1

Distribution of context type Activity (50%), Other Contexts (50%)

Distribution of context value Uniform distribution

Distribution of accuracy
requirement (only for activity)

Uniform distribution
(min and max from training data)

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 11

gle recognition method to handle a context [20]. In CCR,
all employed sensors are always on and send raw data. A
mobile device extracts features from the sensor data and
runs recognition modules. Note that CCR does not utilize
newly joined sensors and nor deals with sensor leaves.
For Orchestrator, we use the policy that minimizes the
total energy consumption of available sensors by default.

Metrics: We measure the effectiveness of Orchestrator
in terms of application supportability and resource utili-
zation. First, for the application supportability, we meas-
ure query activation and quality of context. To quantify the
former, we use the number of activated queries (NAQ)
and the query activation ratio (QAR). We regard that a
query is activated if a PPlan exists for the query and is
executed with available resources. QAR is formally de-
fined as follows.

To quantify the quality of context, we measure the instant
accuracy and the overall accuracy. The instant accuracy
denotes the average accuracy of activated queries at a
moment. The overall accuracy (OA) is the time-averaged
instant accuracies for the whole period of experiment.

,

As the metrics for resource utilization, we use the number
of activated sensors (NAS) and the energy consumption
(EC) of sensors in Joule (J). We regard that a sensor is acti-
vated if the sensor executes certain tasks comprising any
selected PPlans. In CCR, all available sensors are consid-
ered to be activated since it does not control the sensors.

6.2 Query Supportability
We first evaluate the query supportability under the vari-
ation of sensor availability. Fig. 18 shows the average
QAR with a standard deviation range as the number of
sensors increases. For a number of sensors in the X axis,
we measure QAR of every possible combination of sen-
sors and plot average QAR values. For example, a result
for two sensors is obtained by averaging QARs for all
combinations of two sensors out of 8, i.e., (s1, s2), (s1, s3),

…, (s7, s8). As shown in the figure, Orchestrator shows
higher QAR than CCR for all ranges of sensor availability.
This is because Orchestrator actively identifies executable
PPlans even within limited available sensors and selects
the best set of plans that resolves the resource conflicts
among concurrent requests. On the other hand, CCR uti-
lizes a fixed plan for each query such that it hardly re-
solves resource conflicts or adapts to dynamic sensor
availability. In particular, the QAR gap between Orches-
trator and CCR is large when sensor availability is limited.
When sensor resources are plenty, every query can be
well supported without careful coordination. However,
as sensor availability becomes limited, the advantage of
resource orchestration gets more significant.

We also evaluate QAR variation under different distri-
butions of context types in the query workload. We
measure the average QAR for three different distributions,
each of which has different portion of ‘activity’ contexts,
i.e., from 30% to 70%. Note that an activity context is
more likely to be supported by diverse combinations of
sensors on different body positions while other contexts
such as temperature have fewer plans to exploit. Fig. 19
and Fig. 20 show the results for Orchestrator and CCR,
respectively. As shown in Fig. 20, CCR shows a large var-
iation of QAR over the distributions. To recognize the
activity with the best accuracy, CCR adopts a fixed plan
that uses three accelerometers on different body positions.
It cannot support activity queries if any one out of the
three becomes unavailable. As a result, the QAR with
more activity queries considerably decreases in CCR. In
contrast, the variation of Orchestrator is much smaller
than that of CCR, as shown in Fig. 19. Orchestrator shows
the high and stable QAR regardless of the context distri-
bution. It prepares alternative plans for the activity con-
text, and substitutes them when certain sensors are not
available and corresponding plans cannot be used.

6.3 Orchestration under Dynamic Environments

6.3.1 Dynamic Sensor Availability
In this section, we evaluate Orchestrator under dynamic
sensor availability. The number of queries is fixed at 20.

Fig. 21 (a) shows QAR and EC per phase; more sensors
are available as the phase changes from A to D. Under
phase A and B where available sensors are scarce, Orches-
trator activates more queries than CCR, while consuming
almost the same amount of energy. The result shows that
Orchestrator well supports multiple applications with
limited sensor availability. In contrast, under phase C and
D where available sensors are plentiful, Orchestrator con-

iiR

iiA

th
i

iR

iA

qoftimeonregistratitotalqT

qoftimeactivationtotalqT

Qsetqueryregisteredainqueryianisq
qT

qT
QAR

:)(
:)(

,,
)(
)(

O

Fig. 18. Effect of sensor availability on QAR. Fig. 19. Effect of request types (Orchestrator). Fig. 20. Effect of request types (CCR).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Av
er

ag
e

Q
A

R

of sensors

Orchestrator
CCR

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Av
er

ag
e

Q
A

R

of sensors

Activity(70%),Others(30%)
Activity(50%),Others(50%)
Activity(30%),Others(70%)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Av
er

ag
e

Q
A

R

of sensors

Activity(70%),Others(30%)
Activity(50%),Others(50%)
Activity(30%),Others(70%)

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

centrates on energy optimization since the QAR of Or-
chestrator is already saturated to the maximum, i.e., 1.

Fig. 21 (b) shows EC, QAR, and OA for the total exper-
iment time. To sum up, Orchestrator achieves the two
times more QAR with 10.7% reduced energy consump-
tion comparing to CCR. However, CCR shows 4.6% in-
creased OA than Orchestrator. Fig. 21 (c), (d) and (e)
show NAQ, NAS and the instant accuracy over time, re-
spectively. Most important, NAQ of Orchestrator is al-
ways higher than that of CCR, resulting in higher QAR.
This is because Orchestrator utilizes diverse PPlans such
that it flexibly supports requests with diverse combina-
tions of sensors. For example, a ‘temperature’ query is acti-
vated on Orchestrator if any of temperature sensors is
available, whereas it is so on CCR only if the designated
temperature sensor is available. Also, NAS of Orchestra-
tor is lower than that of CCR. Orchestrator selects PPlans
that minimize the number of activated sensors applying
the energy optimization policy. In addition, Orchestrator
selects PPlans that run feature extraction tasks in sensors
rather than the ones that send raw data from sensors.
Such sensor-side feature extraction significantly reduces
the communication cost, which in turn reduces energy
consumption. Interestingly, the accuracy of CCR is higher
than that of Orchestrator. By its default policy to mini-
mize the total energy consumption, Orchestrator selects
energy-efficient PPlans rather than more accurate ones.

6.3.2 Dynamic Query Workload
We examine the effectiveness of Orchestrator under the
dynamic query workload. The number of sensors is fixed
at 6 excluding the space-embedded ones, S101 and S102.

Fig. 22 (a) shows EC and QAR per phase. Since the
sensor devices are abundant in all phases, the QAR of

Orchestrator reaches to the maximum while that of CCR
is almost close to the maximum as well. Meanwhile, the
ECs of Orchestrator and CCR are kept high, i.e., about
200J. We look into EC per sensor, and discover that a sen-
sor 4 consumes more energy than other sensors. In our
experimental setting, a sensor 3, 4, 5, and 6 as described in
Fig. 18 are accelerometers for activity recognition. Based
on the energy minimization policy, Orchestrator uses sen-
sor 4 rather than using all sensors together since the accu-
racy requirements of most activity queries are satisfied
only with sensor 4; sensor 4 is placed on the right thigh
that is known as the most suitable position for recogniz-
ing activities such as running, walking, and standing [17].

Fig. 22 (b) shows EC, QAR, and OA for the total exper-
iment time. Orchestrator achieves better EC (15% reduc-
tion) along with slightly better QAR (8.5% improvement)
than CCR, whereas CCR shows marginally higher OA (1%
increase). Also, Fig. 22 (c), (d), and (e) show NAQ, NAS,
and the instant accuracy over time, respectively. The
NAQ of CCR is slightly lower than that of Orchestrator in
most of time. Although the number of sensors is sufficient
to activate all registered queries, some queries are deac-
tivated in CCR. This is because it utilizes only a single
recognition method for ‘activity’ queries. Although CCR
adopts the method to provide the best accuracy, it does
not guarantee the best accuracy for every activity instanc-
es: sitting, standing, walking, and running. Thus, it could
not meet the accuracy requirements of some queries.
More important, the NAS of Orchestrator is always lower
than that of CCR. All available sensors are activated in
CCR, whereas Orchestrator selectively utilizes only some
of the sensors to reduce battery consumption. Instead,
CCR mostly shows higher accuracy than Orchestrator.

(a) EC and QAR per phase (b) Overall EC, QAR and OA

(c) NAQ over time

(d) NAS over time

(e) Instant accuracy over time

Fig. 22. Orchestration under dynamic query availability.

0.2
0.4
0.6
0.8
1

50
100
150
200
250

phase Aphase Bphase Cphase D

EC
 (J

)

Q
A

R

CCR (EC)
Orchestrator (EC)
CCR (QAR)
Orchestrator (QAR) 0.2

0.4
0.6
0.8
1

0
200
400
600
800

EC QAR OA

EC
 (J

)

CCR
Orchestrator

Q
A

R/
O

A

0

10

20

0 10 20 30 40 50 60 70 80

N
AQ

Time (min)

CCR
Orchestrator

0
2
4
6
8

0 10 20 30 40 50 60 70 80

N
A

S

Time (min)

CCR
Orchestrator

75
80
85
90
95

100

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y(
%

)

Time (min)

CCR
Orchestrator

(a) EC and QAR per phase (b) Overall EC, QAR and OA

(c) NAQ over time

(d) NAS over time

 (e) Instant accuracy over time

Fig. 21. Orchestration under dynamic sensor availability.

0

0.25

0.5

0.75

1

0

50

100

150

200

phase A phase B phase C phase D

EC
 (J

)

Q
A

R

CCR (EC)
Orchestrator (EC)
CCR (QAR)
Orchestrator (QAR) 0

0.2
0.4
0.6
0.8
1

0

200

400

600

800

EC QAR OA

EC
 (J

)

CCR
Orchestrator

Q
A

R/
O

A

0
5

10
15
20

0 10 20 30 40 50 60 70 80

N
A

Q

Time (min)

CCR
Orchestrator

0
2
4
6
8

0 10 20 30 40 50 60 70 80

N
A

S

Time (min)

CCR
Orchestrator

75
80
85
90
95

100

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y(
%

)

Time (min)

CCR
Orchestrator

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 13

6.3.3 Effects of resource orchestration policies
We further examine if Orchestrator properly applies di-
verse orchestration policies. We consider two policies: (1)
minimizing the total energy consumption of available
sensors and (2) maximizing the average accuracy of regis-
tered queries. For the experiments, we use the dynamic
query workload and fix the number of sensors to 6. Then,
we measure the NAS and the instant accuracy over time
with the two policies. We only consider the queries con-
taining activity contexts for accuracy measurement.

Fig. 23 (a) and (b) show NAS and the instant accuracy,
respectively. In Fig. 23 (a), the NAS of policy 1 is much
lower than that of policy 2 during the whole experiment
time. Accordingly, the energy consumption is lower with
policy 1, which shows the desired operation of Orchestra-
tor. On the other hand, the higher accuracy is guaranteed
when policy 2 is used, i.e., 88.8% overall accuracy with
policy 1 and 92% with policy 2. In conclusion, Orchestra-
tor well supports diverse orchestration polices that can be
easily specified using its system primitives.

6.3.4 Resource Orchestration Costs
We look into the orchestration cost in terms of (1) re-
source overhead (communication, memory, and energy),
(2) reconfiguration time taken for the plan adaptation.

Resource overheads. we first investigate the number
of messages exchanged during the total experiment time.
Fig. 24 shows the number of messages per message type.
In Orchestrator, the control and heartbeat messages are
exchanged for coordination, incurring slight communica-
tion overheads, e.g., 1.5 kbps under the dynamic query
workloads. Orchestrator, however, significantly reduces
the number of data messages at the cost of those messag-
es. Compared to CCR, it decreases the number of data
messages up to 10 times by transmitting feature values
instead of raw data and also selectively utilizing sensors.

Second, we measure the memory usage at runtime.
The average memory usage in the mobile device is 57.9KB,
which is negligible considering its memory capacity. Each
sensor consumes 276B of memory to maintain core data
structures for task execution. It additionally consumes 4B
to 512B of memory depending on sensor type for data
buffering. Note that those values vary depending on exe-
cuted tasks and runtime parameters such as window size.
Considering the memory capacity of MicaZ, i.e., 4KB,
Orchestrator can still offload multiple tasks onto sensors.

Last, we measure the energy consumption of the sen-
sor devices using a multi-meter. Orchestrator continuous-
ly performs following operations on a sensor device: re-
source status monitoring, resource status transmission,
and heartbeat message transmission. As shown in TABLE
3, the periodic execution of primitive operations is not
much attributed to energy overhead (only 2.5mJ/s in-
crease). All operations utilize CPU of the sensor under 1%.

Reconfiguration time. we measure the reconfiguration
time for the adaptation under the dynamic query work-
loads and the dynamic sensor workloads, respectively. As
shown in Fig. 25, the reconfiguration time includes the
times for re-planning, executing new PPlans, and receiv-
ing initial data upon the occurrence of the system events,
e.g., sensor join/leave events. A small reconfiguration
time is preferable for seamless support for applications.

Table 3 shows the results on reconfiguration time. The
average times are 258 and 2,922 milliseconds for dynamic
query workloads and sensor workloads, respectively.
They are reasonably short in that many daily applications
are not sensitive to several-seconds delays and many per-
sonal contexts such as activities do not change quickly.
Specifically, we classified reconfigurations into two types.
The type 1 performs the plan generation and selection
only, without plan execution and initial data reception;
this case occurs when already running PPlans are reusa-
ble for a new query or no better PPlans are identified
even with a new sensor. In type 2, all reconfiguration

(a) NAS over time

(b) Accuracy over time

Fig. 23. Effects of resource orchestration policies.

0

2

4

6

8

0 10 20 30 40 50 60 70 80

N
A

S

Time (min)

Policy 1 (MinimizeEnergy)
Policy 2 (MaximizeAccuracy)

75
80
85
90
95

100

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y
(%

)

Time (min)

Policy 1 (MinimizeEnergy)
Policy 2 (MaximizeAccuracy)

Fig. 24. Communication costs.

TABLE 3. Energy Consumption

Fig. 25. Reconfiguration states and types.

TABLE 4. Reconfiguration time

0
50

100
150
200
250
300

Dynamic Query
Workload

(Orchestrator)

Dynamic Query
Workload

(CCR)

Dynamic Sensor
Availability

(Orchestrator)

Dynamic Sensor
Availability

(CCR)

of

 m
es

sa
ge

s (
10

00
)

2.916 kbps

16.477 kbps

2.511 kbps

12.334 kbps
Control
message
Heartbeat
message
Data
message

Control
message
Heartbeat
message
Data
message

Task Energy consumption (mJ/s)

Idle 15.47
Resource status reading 15.68
Resource status reading

/transmission(0.5Hz) 16.42

Heartbeat+ACK exchange(0.5Hz) 17.51
All primitive operations 18.02

t0 t1 t2 t3

Plan
generation/
selection

Plan execution
message Tx.

Initial data reception
System
event

Type1
Type2

Context monitoring
restart for Type 1 Context monitoring

restart for Type 2

Metrics
Setting

Average
(ms)

Type1 /
Type2

(t1-t0) / (t2-t1) / (t3-t2)
(ms)

Dynamic
query

workload
258 71% / 29% 9 / 697 / 1600

Dynamic
sensor

availability
2922 45% / 55% 1329 / 1039 / 2381

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

steps are performed; this case occurs when a new sensor
provides better PPlans for existing queries or a new query
should be processed with a currently inactivated PPlan.
Under the dynamic query workloads, the type 1 occurs
more often than the type 2 since PPlans can be shared by
many queries; thus the reconfiguration time is very short.

7 CONCLUSION

In this paper, we described Orchestrator, a novel resource
orchestration framework to support mobile context moni-
toring in a PAN-scale sensor-rich mobile platform. Orches-
trator enables the platform to host multiple applications
stably, exploiting its full resource capacity in a holistic
manner. Thus, applications can provide users with seam-
less, long-running high-quality service under dynamic cir-
cumstances with limited resources. We present the design
and implementation of Orchestrator running on off-the-
shelf mobile devices and sensor motes, and also show its
effectiveness in various system environments.

REFERENCES
[1] E. Miluzzo, et al., “Sensing Meets Mobile Social Networks: The De-

sign Implementation and Evaluation of the CenceMe Application,”
Proc. SenSys, 2007.

[2] S. B. Eisenman, et al., “The BikeNet Mobile Sensing System for
Cyclist Experience Mapping,” Proc. SenSys, 2007.

[3] B. D. Noble, et al., “Agile Application-Aware Adaptation for Mobili-
ty,” Proc. SOSP, 1997.

[4] J. Flinn and M. Satyanarayanan, “Energy-aware Adaptation for Mo-
bile Applications,” Proc. SOSP, 1999.

[5] H. Zeng, X. Fan, and et al., “ECOSystem: Managing Energy as a First
Class Operating System Resource,” Proc. ASPLOS, 2002.

[6] X. Liu et al, “Chameleon: Application-Level Power Management,”
IEEE Trans. on Mobile Computing, vol. 7, no. 8, Aug. 2008.

[7] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel, “Meet-
ing Lifetime Goals with Energy Levels,” Proc. SenSys, 2007.

[8] J. Sorber, et al., “Eon: A Language and Runtime System for Perpetual
Systems,” Proc. SenSys, 2007.

[9] K. Lorincz, B. Chen, J. Waterman, G. W. Allen, and M. Welsh, “Re-
source Aware Programming in the Pixie OS,” Proc. SenSys, 2007.

[10] K. Seada, et al., “Energy-Efficient Forwarding Strategies for Geo-
graphic Routing in Lossy Wireless Sensor Networks,” SenSys, 2004.

[11] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy
Efficient Communication Protocol for Wireless Microsensor Net-
works,” Proc. HICSS, 2000.

[12] C. Lombriser, D. Roggen, et al., “Titan: A Tiny Task Network for
Dynamically Reconfigurable Heterogeneous Sensor Networks,” Proc.
15. Fachtagung Kommunikation in Verteilten Systemen (KiVS),
2007.

[13] C. Lombriser, et al., “Modeling Service-Oriented Context Processing
in Dynamic Body Area Networks,” IEEE JSAC, Jan. 2009.

[14] P. Zappi, et al., “Activity Recognition from On-Body Sensors: Accu-
racy-Power Trade-Off by Dynamic Sensor Selection,” EWSN, 2008.

[15] K. Murao, T. Terada, Y. Takegawa, and S. Nishio, “A Context-Aware
System that Changes Sensor Combinations Considering Energy Con-
sumption,” Proc. Pervasive, 2008.

[16] S. Kang, et al., “SeeMon: Scalable and Energy-efficient Context Mon-
itoring Framework for Sensor-rich Mobile Environments,” Proc. Mo-
biSys, 2008.

[17] L. Bao and S.S. Intille, “Activity recognition from user-annotated
acceleration data,” Proc. Pervasive, 2004.

[18] U. Maurer, et al., “Activity Recognition and Monitoring Using Multi-
ple Sensors on Different Body Positions,” Proc. BSN, 2006.

[19] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/~ml/weka/

[20] P. Korpipää, et al., “Managing Context Information in Mobile Devic-
es,” IEEE Pervasive Computing, 2003.

[21] H. Andreas, et al. “Emotion Recognition Using Bio-sensors: First Step
towards an Automatic Systems,” LNCS 3068, 2004.

[22] V. Kostov and S. Fukuda, “Emotion in User Interface, Voice Interac-
tion System,” Proc. IEEE International Conference on Systems, Man,
and Cybernetics, 2000.

[23] M.T. Jones, T.L. Martin, B. Sawyer, “An Architecture for Electronic
Textiles,” Proc. BodyNets, 2008.

[24] H. Lu, et al., “SoundSense: scalable sound sensing for people-centric
applications on mobile phones,” Proc. MobiSys, 2009.

[25] Kiss FFT. http://kissfft.sourceforge.net/
[26] M. Ahn, et al., “Swan Boat: Pervasive Social Game to Enhance

Treadmill Running,” Proc. ACM Multimedia (Demo), 2009.
[27] S. Kang, et al., “Orchestrator: An Active Resource Orchestration Frame-

work for Mobile Context Monitoring in Sensor-rich Mobile Environments,”
Proc. PerCom, 2010.

[28] T. Sohn et al., “Place-Its: A Study of Location-Based Reminders on Mo-
bile Phones,” Proc. Conf. Ubiquitous Computing (UbiComp), 2005.

[29] Q. Li et al., “Accurate, Fast Fall Detection Using Gyroscopes and Accel-
erometer-Derived Posture Information,” Proc. BSN, 2009.

[30] U. Yildiz et al., “On Service Orchestration in Mobile Computing Envi-
ronments”, Proc. SCC, 2008.

[31] Y. Wang et al., “A Framework of Energy Efficient Mobile Sensing for
Automatic User State Recognition

[32] K. K. Rachuri et al., “SociableSense: exploring the trade-offs of adaptive
sampling and computation offloading for social sensing”, Proc. MobiCom,
2011.

[33] N. Roy et al., “Dynamic selection of sensors based on multiple concurrent
demands”, Proc. PerCom, 2011.

[34] T. Gu, et al., “A service-oriented middleware for building context-aware
services”, Journal of Network and Computer Applications, Vol. 28, Issue 1,
Mar. 2004.

[35] Y. Ju, et al., “SymPhoney: A Coordinated Sensing Flow Execution Engine
for Concurrent Mobile Sensing Applications”, Proc. SenSys, 2012.

[36] M. Shin et al., “DEAMON: Energy-efficient sensor monitoring”, Proc.
SECON., 2009

[37] PowerTutor. http://powertutor.org.
Youngki Lee is currently working toward the PhD de-
gree in KAIST. His research interests include mobile and
sensor systems, systems for city-scale services, and
large-scale distributed systems and networking.
Chulhong Min is a PhD student at KAIST. His research
interests include mobile and pervasive computing sys-
tems, ubiquitous services, mobile and sensor systems,
and social and culture computing.
 Younghyun Ju is a Ph.D. student at KAIST. His re-
search interests include mobile and ubiquitous compu-
ting, system support for context-awareness and large-
scale distributed systems.

Seungwoo Kang received the PhD degree in computer
science department at KAIST. His research interests
include mobile and ubiquitous computing.
Yunseok Rhee is a professor, at School of Electronics
and Information Engineering, Hankuk University of For-
eign Studies, Korea. His research interests include dis-
tributed computing, embedded systems.

Junehwa Song received the PhD degree in computer
science from the University of Maryland at College Park.
He is a professor in the Computer Science Department at
KAIST. His research interests include mobile and ubiqui-
tous systems, Internet technologies, and multimedia

systems.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

	An Active Resource Orchestration Framework for PAN-scale Sensor-rich Environments
	Citation
	Author

	Transaction / Regular Paper Title

