
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

1-2002 

Monitoring process variability with symmetric control limits Monitoring process variability with symmetric control limits 

Zhenlin YANG 
Singapore Management University, zlyang@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Econometrics Commons 

Citation Citation 
YANG, Zhenlin. Monitoring process variability with symmetric control limits. (2002). 1-22. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/2064 

This Working Paper is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/301683311

Monitoring	process	variability	with	symmetric
control	limits

Article	·	January	2002

CITATIONS

0

READS

11

1	author:

Zhenlin	Yang

Singapore	Management	University

94	PUBLICATIONS			660	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Zhenlin	Yang	on	28	April	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/301683311_Monitoring_process_variability_with_symmetric_control_limits?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/301683311_Monitoring_process_variability_with_symmetric_control_limits?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenlin_Yang?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenlin_Yang?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singapore_Management_University?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenlin_Yang?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenlin_Yang?enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Monitoring Process Variability with

Symmetric Control Limits

ZHENLIN YANG1∗and MIN XIE2
1School of Economics and Social Sciences, Singapore Management University, and

2Department of Industrial and Systems Engineering, National University of Singapore

Abstract

Control charts for monitoring process variability, such as the R-chart and S-

chart, do not have symmetric probability limits as the distribution of the sample

variability is not normal. Hence, the usual zone rules can not be applied although

it is still desirable to be able to use the information from more than one point in

decision making. In this paper, a modified S-chart based on an optimal normalizing

transformation of the sample variance is first introduced. The new chart is shown

to have approximate symmetric probability limits and hence can be interpreted in

the same way as that of a X̄ chart. This modified chart is shown to be compa-

rable with the probability S-chart and have a much better performance than the

usual Shewhart S-chart for the cases of known and estimated limits. The effect of

parameter estimation is investigated. The optimal normalizing transformation is a

simple power transformation. The power parameter depends only on the sample

size and approaches 1/3 as the sample size increases. Hence, the transformation

S-chart can be easily implemented and integrated into any SPC system.
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S-chart 2

1 Introduction

Statistical process control techniques, especially the X̄ and R-charts, are widely

used in manufacturing industry today (Elsayed, 2000). The process is deemed to be

out-of-control when a point falls outside the control limits. However, as the control chart

is a display of the information in sequence, any non-normal pattern can also be very

informative. The so-called zone rules have been developed to make use of more than a

single point in the decision making (Western Electric, 1956, Nelson, 1984, Parkhideh and

Parkhideh, 1996, etc.).

Usually the zone rules are considered to be applicable only for the X̄ chart under

the normality assumption. It is not considered to be useful for the traditional R-chart or

S-chart when monitoring process variability although the idea of using the information

from more than one point should be applicable as well. A reason for that is that R-chart

or S-chart is a plot of quantities that are highly non-normal. Hence, the interpretation

based on zone rules would not be the same as for the X̄ chart.

Data non-normality is a common problem in statistical process control. For non-

normal quantities, a simple method is to transform the data to normal. Such studies have

been reported for direct observations (Nelson, 1994, Kittlitz, 1999, and Xie et al. 2000).

However, the chart for monitoring the mean is based on the average from a sample of

fixed size. The effect of non-normality is less serious for sample average than individual

measurement. For chart for variability, on the other hand, only single value is available,

and non-normality is a problem.

In this article, we consider a transformation approach to develop a nearly normal-

based control chart for monitoring process variability. It is well known that the variance

of a normal sample is related to a chi-squared random variable that is transformable

to near normality by a simple power transformation (Hernandze and Johnson, 1981,

Hawkins and Wixley, 1986). Thus, a control chart for the transformed sample variance

can be constructed in the traditional way. When necessary, the control limits can be

back-transformed to give a control chart for the sample standard deviation or the sample

Singapore Management University Working Papers, 2002.

https://www.researchgate.net/publication/289300179_Transforming_the_exponential_for_SPC_applications?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
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variance itself. In this paper, we will focus on the S-chart as it is a better measure of

process variability and it is especially useful when the sample size is of moderate size.

The S-chart is also relatively simple compared with other more cusum or ewma based

charts (Acosta-mejia et al., 1999).

The optimal transformation proposed here is obtained based on the measure of

Kullback-Leibler information number (Kullback, 1968). It is shown that the power of

the transformation depends only on the sample size and that if the sample size is large

enough (≥ 5, say), the power can simply be taken as 1/3, a very convenient number that
can simply be handled by a pocket calculator. A table of optimal transformation values

as well as the mean and standard deviation of the transformed chi-squared variable is

provided to assist the construction of the transformation S-chart.

The performance of the transformation S-chart is studied and compared with both

the classical Shewhart S-chart and the S-chart with probability limits. It is found that

the transformation S-chart is comparable with the probability S-chart and has a better

performance than the Shewhart S-chart. Section 2 outlines the Shewhart and Probability

S-charts. Section 3 introduces the transformation S-chart. Section 4 presents an illus-

trative example. The alarm probabilities and the run length distributions of the three

charts are studied and compared in Section 5 and 6. Both the cases of known limits and

estimated limits are considered.

2 The Shewhart and Probability S-Charts

Traditional ways of monitoring the process variability are through S-, S2- or R-

chart, which could be either the Shewhart type or charts with probability limits. De-

tailed accounts for these charts can be found in, for examples, Montgomery (1997) and

Quesenberry (1997). Let X1, X2, · · · , Xn be a random sample from N(µ, σ2). Let S2

be the sample variance and S the sample standard deviation. The control limits for

a classical Shewhart S-chart for monitoring the process standard deviation σ are given
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by: UCLC = σ0 c+ k
√
1− c2 , CLC = σ0c and LCLC = σ0 c− k

√
1− c2 . and the

assumption is that the distribution of S can be approximated by normal, where

c =
Γ(n/2)

Γ[(n− 1)/2]
2

n− 1 ,

When the true process standard deviation σ0 is unknown, a common practice is

to estimate it based on the past data and treat the estimate as if it is the true value.

Suppose we have m samples of in-control data of size n each. Let Si be the standard

deviation of the ith sample, i = 1, 2, · · · ,m. The usual estimators of σ0 are either S̄, the
average of the sample standard deviations, or the pooled estimator

Sp =
n− 1
nm−m

m

i=1

S2i .

The latter is specifically recommended for the case of unequal sample sizes (Quesenberry,

1997, p180). We adopt the Sp estimator as the square of it is related to a chi-square

distribution. Replacing σ0 by Sp gives the Shewhart S-chart with estimated control

limits:

UCLC = Sp(c+ k
√
1− c2),

CLC = Spc (1)

LCLC = Sp(c− k
√
1− c2).

It should be noted that the properties of the chart (1) has not been studied. In

particular, how large the m has to be so that the chart performs as if σ is given. This

issue will be addressed in the latter section together with the newly introduced chart.

Now, based on the distributional result for the variance of a normal sample, one can

easily construct an S-chart with exact probability limits: UCLP = σ0 χ2n−1(αl)/(n− 1),
CLP = σ0 χ2n−1(0.5)/(n− 1), and LCLP = σ0 χ2n−1(αu)/(n− 1), where χ2ν(α) is the
upper αth percentile of a chi-squared random variable with ν degrees of freedom. When

σ0 is unknown and is replaced by Sp, we have the probability S-chart with estimated

control limits:

UCLP = Sp χ2n−1(αl)/(n− 1)

Singapore Management University Working Papers, 2002.
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CLP = Sp χ2n−1(0.5)/n− 1) (2)

LCLP = Sp χ2n−1(αu)/(n− 1).

Chen (1998) has studied the properties of (2) and concluded that when compared

to the charts with known σ, the charts with estimated σ signal more often when the

process is stable and do not signal as quickly when the process variability has changed.

3 The Transformation S-Chart

It is well known that the basic requirement for the application of the zone rules

is that the quantity to be plotted on the chart is normally distributed, so that the

probabilities for a point to fall into respective zones when the process is stable are 0.00135,

0.02145, 0.13590, 0.34130, 0.13580, 0.02145 and 0.00135. The cutoff points for the zones

are defined as µ∗ ± kσ∗, k = 1, 2, 3,, where µ∗ and σ∗ are, respectively, the expectation
and standard deviation of the plotted quantity. These rule are certainly not applicable

to the usual S-charts as the distribution of the sample standard deviation is not normal.

Although the zone tests are normally not recommended for the charts for monitoring

the process variability, in many cases the chart users still interpret it in such a way. In

fact, the primary reason why the zone rules should not be used is the non-normality of

S-chart. It would be useful to have a chart that provides symmetry control limits, so

that the chart can be interpreted as others. For example, when many points fall on one

side of the control chart, the chart user can be alarmed and assignable causes can be

found. We now introduce the so called transformation S-chart. The idea is that if a

quality measure is not normal, it may be transformable to near normality by a simple

power transformation. A Shewhart chart can be constructed for the normalized quality

and the zone rule can be applied.

Since (n − 1)S2/σ ∼ χ2n−1, which is a special gamma with scale parameter 2 and

shape parameter τ = (n − 1)/2, the normalizing transformation results for the gamma
distribution outlined in the Appendix are thus applicable. Let Y = [(n − 1)S2/σ2]λ0 ,

Singapore Management University Working Papers, 2002.
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where λ0 is the optimal transformation parameter, then Y is approximate normal with

mean and standard deviation:

µ(λ0) = 2
λ0
Γ(τ + λ0)

Γ(τ)
and σ(λ0) = 2

λ0
Γ(τ + 2λ0)

Γ(τ)
− Γ

2(τ + λ0)

Γ2(τ)
,

All three quantities, λ0, µ(λ0) and σ(λ0), depend purely on n or the shape parameter of

the gamma distribution. Table 1 summarizes these values.

Table 1: A Summary of Transformation Values

n λ0 µ(λ0) σ(λ0) n λ0 µ(λ0) σ(λ0)
2 0.20831 0.83766 0.30540 22 0.32764 2.68310 0.27418
3 0.26543 1.08583 0.32156 23 0.32791 2.72786 0.27244
4 0.28843 1.27938 0.32424 24 0.32815 2.77124 0.27077
5 0.30027 1.43689 0.32239 25 0.32838 2.81332 0.26916
6 0.30733 1.57021 0.31900 26 0.32858 2.85421 0.26763
7 0.31197 1.68640 0.31515 27 0.32877 2.89399 0.26615
8 0.31523 1.78983 0.31127 28 0.32894 2.93272 0.26472
9 0.31764 1.88340 0.30752 29 0.32910 2.97047 0.26335
10 0.31950 1.96908 0.30396 30 0.32925 3.00731 0.26203
11 0.32096 2.04832 0.30060 31 0.32939 3.04328 0.26075
12 0.32215 2.12217 0.29745 32 0.32952 3.07844 0.25951
13 0.32313 2.19145 0.29448 33 0.32964 3.11282 0.25832
14 0.32395 2.25679 0.29169 34 0.32976 3.14647 0.25716
15 0.32466 2.31870 0.28907 35 0.32987 3.17943 0.25604
16 0.32526 2.37759 0.28659 36 0.32997 3.21173 0.25495
17 0.32579 2.43380 0.28425 37 0.33006 3.24341 0.25389
18 0.32625 2.48761 0.28203 40 0.33032 3.33494 0.25089
19 0.32666 2.53925 0.27992 60 0.33135 3.84720 0.23559
20 0.32702 2.58894 0.27791 100 0.33214 4.59053 0.21720
21 0.32735 2.63684 0.27600 200 0.33274 5.81358 0.19415
Note: λ0 → 1/3 as n→∞.

Now, based on the above arguments, an approximate k-sigma control chart for Y

can be readily constructed with control limits: UCL = µ(λ0) + kσ(λ0), CL = µ(λ0), and

LCL = µ(λ0)− kσ(λ0), which can easily be converted to a control chart for S2λ0:

UCLT = ν0[µ(λ0) + kσ(λ0)],

CLT = ν0µ(λ0), (3)

LCLT = ν0[µ(λ0)− kσ(λ0)],

where ν0 = [σ
2
0/(n− 1)]λ0.

Singapore Management University Working Papers, 2002.



S-chart 7

The control chart given by (3) is termed in this article the transformation S-

chart. As the distribution of the plotted quality, S2λ0, is approximate normal, the usual

zones rules can be applied. When σ0 is unknown and is estimated by Sp, the resulted

transformation S-chart with estimated control limits has the form:

UCLT = ν̂0[µ(λ0) + kσ(λ0)]

CLT = ν̂0µ(λ0) (4)

LCLT = ν̂0[µ(λ0)− kσ(λ0)]

where ν̂0 = [S
2
p/(n− 1)]λ0

Notice that the implementation of the transformation S-chart remains very simple:

the constants λ0, µ(λ0),and σ(λ0) are available from Table 1 and the quantity to be plotted

S2λ0 can be easily calculated by a pocket calculator once the S2 value is available. Notice

also that when it is necessary, the transformation S-chart can easily be back transformed

to give an S-chart or S2 chart.

There are two major issues needed to be addressed concerning the transformation

S-chart: i) the performance of this chart relative to the usual Shewhart and probability

S-chart and ii) the effect of estimating control limits on the performance of the trans-

formation S-chart. We will address these two issues jointly latter after presenting an

illustrative example.

4 An Example

The Wrist Pin Diameter data given by Quesenberry (1997, p 186) is considered here

for illustrating the application of the transformation S-chart. There appear to be two

misprints in the original data: the third observations for samples 20 and 37. It appears

to be that the correct values should be 0.9987 and 0.9998 instead of 0.0998 and 0.0998.

We follow the stage 2 analysis of Quesenberry, i.e., the sample 28 is deleted. The pooled

estimator for σ based on 49 samples of size 5 each is Sp = 0.00122. Since n = 5, we

Singapore Management University Working Papers, 2002.
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have τ = (n − 1)/2 = 2 and from Table 3, we obtain λ0 = 0.30027, µ(λ0) = 1.43689,

and σ(λ0) = 0.32239. Thus,ν̂0 = [S
2
p/(n − 1)]λ0 = 0.01173 and the control limits for the

transformation S-chart are:

UCLT = ν̂0[µ(λ0) + kσ(λ0)] = 0.02820

CLT = ν̂0µ(λ0) = 0.01685

LCLT = ν̂0[µ(λ0)− kσ(λ0)] = 0.00551

for k = 3. For k = 2, the upper and lower control limits are, respectively, 0.02442 and

0.00929. The transformation S-charts are plotted in Figure 1. The control limits for

the transformation S-chart can easily be back-transformed to give control limits of a

retransformed S-chart.

The estimated control limits for Shewhart S-chart are: UCLC = 0.002399, CLC =

0.001112 and LCLC = 0.0 for k = 3, and UCLC = 0.001982 and LCLC = 0.000315 for

k = 2. The estimated control limits for the probability S-chart where σ is replaced by

Sp are also calculated, which are: UCLP = 0.002577, CLP = 0.001119 and LCLP =

0.000195 for k = 3, and UCLP = 0.002057 and LCLP = 0.000411 for k = 2.

Note that the 3-sigma classical S-chart has a lower limit 0 and an upper limit that

is significantly lower than that of the retransformed UCL of the transformation chart.

This explains why the S-chart can give a high FAR and why it is insensitive to a decrease

in process variability. Note also that the retransformed S-chart and the probability S-

chart have almost identical control limits for k = 2. They are also very similar for the

3-sigma charts. For this reason, only the retransformed S-chart and Shewhart S-chart

are constructed together in Figure 2.

It is interesting to see how the zone rules apply to S-chart and transformation S-

chart. The estimated mean and standard deviation of S2λ0 are: ν̂0µ(λ0) = 0.01685 and

ν̂0σ(λ0) = 0.00378. The estimated mean and standard deviation of S are: cSp = 0.00115

and
√
1− c2Sp = 0.00042. The zone charts are given in Figure 3. It is clear that, if the

process is stable, the transformation S-chart is more suitable when zone rules are used.

Singapore Management University Working Papers, 2002.
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Figure 1: Transformation S-chart for the Wrist Pin Diameter Data
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Figure 2: Retransformed (solid line) and Shewhart S-Charts for the Wrist Pin Diameter

Data
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Figure 3: Zone Charts for S2λ0 and S, the Wrist Pin Diameter Data
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5 An Investigation of the Alarm Probability

The transformation S-chart is based on a simple power transformation with the

power parameter depending only on the sample size. Hence it is easy to apply and the

control limits are very close to the exact probability limits with an added advantage of

having symmetric control limits. However, the chart properties have to be studied, for

the case of a known model parameter and the case when the parameter is estimated. In

this section, the traditional alarm probabilities are investigated and compared with the

Shewhart S-chart and probability S-chart.

Let σ0 be the target (nominal) parameter value and σ = δσ0, δ > 0, be the shifted

parameter value. When the control limits are known, it is easy to see that the alarm

probability (rate) for the transformation S-chart is:

α0
T
(δ) = 1−Gn−1(UT/δ2) +Gn−1(LT/δ2), (5)

where UT = [µ(λ0) + kσ(λ0)]
1/λ0 , LT = [µ(λ0) − kσ(λ0)]1/λ0, and Gν(·) denotes the

cumulative distribution function (CDF) of a χ2ν random variable. When the control

limits are estimated, the alarm rate becomes:

α
T
(δ) = 1−4n−1N−m[UT/(δ

2(n− 1))] + 4n−1N−m[LT/(δ
2(n− 1))]. (6)

where 4n−1N−m(·) denotes the CDF of an Fn−1,N−m random variable and N = nm. When

δ = 1, i.e., the process is in control, the above alarm rates become, respectively, the false

alarm rates (FARs) for the S-chart with known or estimated control limits.

By comparing (6) with (5), it is not difficult to see that αT (δ) is larger than α
0
T (δ)

as the Fn−1,N−m random variable involved in calculating αT (δ) is stochastically larger

than the χ2n−1/(n − 1) random variable involved in calculating α0T (δ). This says that

estimating the control limits inflates the alarm rate. Similar conclusion holds for the

probability S-chart (Chen, 1998) and the Shewhart S-chart.

Replacing UT and LT in (5) and (6) by χ
2
n−1(αu) and χ

2
n−1(1− αl) gives the alarm

rates for the probability S-chart, and by (n− 1)[c+ k√1− c2] and (n− 1)[c− k√1− c2]
gives the alarm rate for the Shewhart S-chart.

Singapore Management University Working Papers, 2002.
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To compare the AR of the transformation S-chart with the ARs of the other two S-

charts, we plot the operating characteristic (OC) functions of the three charts in Figures

4 and 5, where the OC function is defined as 1 − α(δ). From the plots we see that

the transformation S-chart is comparable with the probability S-chart and has a better

overall performance than the Shewhart S-chart, no matter whether the control limits are

known or estimated. A careful comparison of Figure 5 with Figure 4 shows that estimating

control limits indeed increases the FAR and decreases the AR when the process is shifted.

This agrees with the qualitative conclusion reached above.

6 The Run Length Distribution

The run length (RL) is the number of samples required until an out-of-control signal

is observed. Let R0T be the run length of the transformation S-chart when control limits

are known and RT be that when control limits are estimated. It is well known that the

distribution of R0T is geometric with the probability of
IsuccessI (an out-of-control signal)

α0T (δ). Hence, the corresponding average run length (ARL) and standard deviation of

run length (SDRL) are, respectively,

ARL0T (δ) = 1/α
0
T (δ) and SDRL

0
T (δ) = 1− α0T (δ)/α

0
T (δ).

The RL distribution for the S-chart with estimated control limits can be obtained through

some conditional arguments. Let S0 be a future sample standard deviation with the

process standard deviation σ (or σ0 if the process standard deviation is not shifted).

Define W = (N −m)S2p/σ20. Thus, W is a χ2N−m random variable and conditioning on

S2p is equivalent to conditioning on W . It is easy to see that the conditional distribution

of RT , given W , is geometric with the conditional probability of an out-of-control signal:

α
T
(W ) = 1−Gn−1 WUT

δ2(N −m) +Gn−1
WLT

δ2(N −m) . (7)

The unconditional distribution of R
T
is thus,

fRT (r) = E [1− α
T
(W )]r−1α

T
(W ) , r = 1, 2, · · · (8)
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Figure 4: Plots of OC Functions: n = 5,m =∞
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Figure 5: Plots of OC Functions: n = 5,m = 20
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with the ARL and SDRL given respectively as follows:

ARL
T
(δ) = E[1/α

T
(W )] and

SDRL
T
(δ) = V ar[1/α

T
(W )] + E[(1− α

T
(W ))/α2

T
(W )]

Again, replacing UT and LT in (7) and (8) by χ
2
n−1(αu) and χ

2
n−1(1− αl) gives the

RL distribution for the probability S-chart with estimated limits, and by (n − 1)[c +
k
√
1− c2] and (n− 1)[c− k√1− c2] gives the RL distribution for the Shewhart S-chart

with estimated limits.

The three ARL functions are first plotted and compared in Figures 6 and 7. As the

performance of the transformation S-chart is very close to the probability S-chart, the

probability S-chart is not shown on the plots.

To illustrate the effect of estimating control limits on the performance of the trans-

formation S-chart, the RL distribution of the transformation S-chart is plotted in Figure

8 for several different δ values.

7 Discussions

It seems that there is an increasing trend in applying normalizing transformations to

non-normal quality characteristics in SPC applications. See, for example, Nelson (1994),

Chow, Polansky and Mason (1998), Kittlitz (1999), Yang and Xie (2000). and Shore

(2000a, b). Measures of process variability, such as the sample variance, are non-normal,

hence an application of a normalizing transformation can improve the validity of the

control charts. The transformation approach for S-chart construction is attractive as the

optimal transformation depends only the sample size. The gain of applying transforma-

tion is significant, especially when compared with the classical S-chart where the chart

is constructed on the original sample standard deviation that is clearly far from normal.
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Figure 6: Plots of ARL Functions: m =∞
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With the help of Table 1, the construction of the transformation S-chart remains fairly

simple, as compared with the classical S-chart. Woodall and Montgomery (1999) review

the research issues and ideas in statistical process control and Elsayed (2000) summarizes

the recent advances in the quality and reliability engineering methodologies.

It should be pointed out that a critique against using transformation is that the

transformed data may not have any physical meaning as they are not direct measure-

ment. However, such a problem is less serious for S-chart as S values are not physical

measurement to begin with. On the other hand, when the transformation technique is

used, we can easily transform the limits back to original scale although such approach

will not lead to asymmetric limits. Such an approach is suitable when symmetric limits

are not required and exact probability limits are not available.

Appendix: A Normalizing Transformation for

Gamma Distribution

We now give a brief description of the method for transforming the gamma variable

to near normality. Let X be a gamma random variable with probability density function

(pdf) f(x; τ, θ) = Γ−1(τ)θ−τxτ−1 exp(−x/θ). Let Y = Xλ and g(y; τ, θ,λ) be its pdf. Let

φ(y;µ, σ) be the pdf of a normal random variable with mean µ and standard deviation σ.

Our aim is to find a λ value such that g(y; τ, θ,λ) and φ(y;µ,σ) are closest in the sense

that the Kullback-Leibler (KL) information number (Kullback, 1968):

I(g,φ) =
∞

0
g(y; τ, θ,λ) log

g(y; τ, θ,λ)

φ(y;µ,σ)
dy (9)

is minimized with respect to µ,σ and λ. For a given λ, I is minimized at

µ(λ) = E(Y ) = θλ
Γ(τ + λ)

Γ(τ)
and σ2(λ)V ar(Y ) = θ2λ

Γ(τ + 2λ)

Γ(τ)
− Γ

2(τ + λ)

Γ2(τ)
.

Substituting µ(λ) and σ(λ) back into (15) gives the partially minimized KL number

I(λ) =
1

2
[log(2π) + 1] + 2 logΓ(τ)− τ [Ψ(τ)− 1]− λΨ(τ)

+
1

2
log Γ(τ)Γ(τ + 2λ)− Γ2(τ + λ) − log(λ) (10)
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where Γ(·) is the gamma function and Ψ(·) = d logΓ(x)/dx is the digamma function

(Hernandze and Johnson, 1981). The optimal transformation parameter is obtained by

minimizing (10) with respect to λ which is equivalent to solving the following equation:

G(λ) =
Γ(τ)Γ(τ + 2λ)Ψ(τ + 2λ)− Γ2(τ + λ)Ψ(τ + λ)

Γ(τ)Γ(τ + 2λ)− Γ2(τ + λ)
− 1
λ
−Ψ(τ) = 0. (11)

The optimal transformation parameter depends only on the shape parameter τ , and can

be easily found using Mathematica with the following commands:

τ = 2;

g[λ−] :=
Gamma[τ ]PolyGamma[τ + 2λ]−Gamma[τ + λ]2PolyGamma[τ + λ]

Gamma[τ ]Gamma[τ + 2λ]−Gamma[τ + λ]2
+
1

λ
− PolyGamma[τ ]

FindRoot[g[λ] == 0, {λ, 0.3}]

Changing the input value for τ gives a different optimal transformation value λ0. The

corresponding µ(λ0) and σ(λ0) can be easily calculated by Mathematica.

References

ACOSTA-MEJIA, C. A., PIGNATIELLO, J.J. JR. and RAO, B. V. (1999). A Comparison of

Control Charting Procedures for Monitoring Process Dispersion, IIE Transactions,

31, pp. 569-579.

CHAKRABORTI, S. (2000). Run Length, Average Run Length and False Alarm Rate

of Shewhart X-bar Chart: Exact Derivation by Conditioning, Communications in

Statistics−Simulation and Computation, 29, pp. 61-68.
CHEN, G. (1998). The Run Length Distributions of the R, s and s2 Control Charts

when σ is Estimated, The Canadian Journal of Statistics, 26, pp. 311-322.

CHOW, Y.-M., POLANSKY, A. M. and MASON, R. L (1998). Transforming Non-Normal

Data to Normality in Statistical Process Control, Journal of Quality Technology,

30, pp. 133-141.

ELSAYED, E. A. (2000). Perspectives and Challenges for Research in Quality and Re-

liability Engineering, International Journal of Production Research, 38, pp. 1953-

1976.

Singapore Management University Working Papers, 2002.

https://www.researchgate.net/publication/279236486_Transforming_non-normal_data_to_normality_in_statistical_process_control?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/279236486_Transforming_non-normal_data_to_normality_in_statistical_process_control?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/279236486_Transforming_non-normal_data_to_normality_in_statistical_process_control?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/225776867_A_Comparison_of_Control_Charting_Procedures_for_Monitoring_Process_Dispersion?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/225776867_A_Comparison_of_Control_Charting_Procedures_for_Monitoring_Process_Dispersion?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/225776867_A_Comparison_of_Control_Charting_Procedures_for_Monitoring_Process_Dispersion?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==


S-chart 22

HAWKINS, D. M. and WIXLEY, R. A. J. (1986). A Note on the Transformation of

Chi-Squared Variables to Normality, The American Statistician, 40, pp. 296-298.

HERNANDEZ, F. and JOHNSON, R. A. (1981). The Large Sample Behavior of Trans-

formations to Normality, Journal of the American Statistical Association, 75, pp.

855-861.

KITTLITZ, R. G. JR. (1999). Transforming the Exponential for SPC Applications, Jour-

nal of Quality Technology, 31, pp. 301-308.

KULLBACK, S. (1968). Information Theory and Statistics, New York: Dover Publica-

tions.

LOWRY, C. A., CHAMP, C. W. and WOODALL, W. H. (1995). The Performance of

Control Charts for Monitoring Process Variation, Communications in Statistics-

Simulation and Computation, 24, pp. 409-437.

MONTGOMERY, D. C. (1997). Introduction to Statistical Quality Control, 3rd ed. John

Wiley & Sons, New York, NY.

NELSON, L. S. (1984). The Shewhart Control Chart-Tests for Special Causes, Journal

of Quality Technology, 16, pp. 237-239.

NELSON, L. S. (1994). A Control Chart for Parts-Per-Million Nonconforming Items,

Journal of Quality Technology, 26, pp. 239-240.

PPARKHIDEH, S. and PPARKHIDEH, B. (1996). Economic Design of a Flexible Zone

X̄-Chart with AT&T Rules, IIE Transactions, 28, pp. 261-266.

QUESENBERRY, C. P. (1997). SPC Methods for Quality Improvement, John Wiley &

Sons, New York, NY.

SHORE, H. (2000a). General Control Charts for Variables, International Journal of

Production Research, 30, pp. 1875-1897.

SHORE, H. (2000b). General Control Charts for Attributes, IIE Transactions, 30, pp.

1875-1897.

Singapore Management University Working Papers, 2002.

https://www.researchgate.net/publication/289300179_Transforming_the_exponential_for_SPC_applications?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/289300179_Transforming_the_exponential_for_SPC_applications?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/233918405_General_control_charts_for_attributes?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/233918405_General_control_charts_for_attributes?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/233918401_General_control_charts_for_variables?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==
https://www.researchgate.net/publication/233918401_General_control_charts_for_variables?el=1_x_8&enrichId=rgreq-c5f34e58cbc51de95eca479ecdb9b461-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzMxMTtBUzozNTU3ODEzNjgxMzk3NzhAMTQ2MTgzNjI5NjM1Nw==


S-chart 23

WESTERN ELECTRIC (1956). Statistical Quality Control Handbook, Western Electric

Corporation, Indianapolis, Indiana, USA.

WOODALL, W. H. and MONTGOMERY, D. C. (1999). Research Issues and Ideas in

Statistical Process Control, Journal of Quality Technology. 31, pp. 376-386.

XIE M., GOH T.N., TANG, X.Y. (2000). Data Transformation for Geometrically Dis-

tributed Quality Characteristics, Quality and Reliability Engineering International.

16, pp 9-15.

YANG Z. and XIE X. (2000). Process monitoring of exponentially distributed character-

istics through an optimal normalizing transformation, Journal of Applied Statistics,

27, 1051-1063.

Singapore Management University Working Papers, 2002.

View publication statsView publication stats

https://www.researchgate.net/publication/301683311

	Monitoring process variability with symmetric control limits
	Citation

	schartv4a.DVI

