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Abstract

In this article, we propose using fiducial predictive density (FPD) as a density estimate, which

leads naturally to estimators of survivor and hazard functions and provides a simple way of con-

structing shortest prediction intervals. This approach is studied in detail in the context of two flexible

duration models proposed in this paper, namely the trans-normal and trans-exponential families, by

presenting the FPDs, their basic properties, their Bayesian correspondence and their applications

in econometric duration analysis. Empirical evidences show that the FPD method provides better

estimates of survivor and hazard functions, particularly the latter, than does the usual maximum

likelihood method. It provides shortest prediction intervals for a future duration, which can be much

shorter than the regular equitailed prediction intervals. The trans-normal model has an easy exten-

sion to include exogenous variables, whereas the trans-exponential model allows for the analysis of

censored data. Finally, when the transformation function is indexed by unknown parameter(s), the

FPD method still provides asymptotically correct inference when the transformation parameter is

replaced by its estimator.

Keywords: Bayesian correspondence, Censored data, Fiducial prediction, Hazard estimate, Shortest

prediction interval, Survivor function, Trans-exponential, Trans-normal.
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1 INTRODUCTION

Prediction is an important task for the analysis of economic duration data1, such as

the strike duration, lengths of spells of unemployment, duration of marriage, lifetimes of

firms, lifetimes of products, etc. Typical prediction problems include prediction of a future

duration, prediction of the median or a general percentile duration, density prediction2,

survivor function prediction, hazard function prediction, etc. Parametric methods for pre-

diction can be generally classified as non-Bayesian and Bayesian. Non-Bayesian methods

include the classical method based on a predictive pivot, method based on the maximum

likelihood predictive density (Lejeune and Faulkenberry, 1982), method based on the pre-

dictive likelihood (Butler, 1986, 1989), and the method based on the fiducial argument

(Fisher, 1973), etc. Bayesian method for prediction is through a Bayesian predictive den-

sity (Geisser, 1993). It seems that the fiducial approach to prediction has not received

much attention, especially in econometric applications, and it is the purpose of this article

to explore the applicability of fiducial approach to econometric duration analysis.

In this article, we propose using the fiducial predictive density (FPD) to estimate a

probability density function (pdf) which leads naturally to estimators of density function,

survivor function (sf) and hazard function (hf). It also provides a simple way to con-

struct the prediction or shortest prediction intervals for a future duration. This approach

is explored in detail in the context of two flexible duration models proposed in this paper,

namely the trans-normal and the trans-exponential families, by presenting the FPDs, their

basic properties, their Bayesian correspondence and their various applications in economet-

ric duration analysis. The results obtained in this paper indicate that the FPD method

is very attractive: it is rather simple; it not only provides the same prediction interval as

the classical approach, but also gives a shorter or the shortest possible prediction intervals;

and it gives rise to density, survivor and hazard rate estimators that are less biased and

1Analysis of economic duration data may be one of the rapidly growing area of econometric research

(Greene, 2000, p. 937). Representative works include Heckman and Singer (1984a, b), Kennan (1985),

Kiefer (1988), Sider (1985), Lancaster (1972, 1979, 1985, 1990), Ryu (1993), Torelli and Trivellato (1993),

Koop and Ruhm (1993), Saha and Hilton (1997), Baker and Melino (2000), and Zhang, et al. (2001).
2Density forecast may be another fast growing area of econometric research. See Tay and Wallis (2000)

for a survey.
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less variable than the usual maximum likelihood estimators (MLEs). The generality and

extendibility of the FPD method can be seen from the facts that the trans-normal model

is easily extendable to include exogenous variables, and the trans-exponential model allows

for the analysis of censored data. Moreover, when the transformation function is indexed

by unknown parameter(s), the FPD method still provides asymptotically correct inference

when the transformation parameter is replaced by its estimator. This greatly expands the

applicability of the FPD method.

The paper is organized as follows. Section 2 gives a brief introduction to the fiducial

approach to prediction. Section 3 is a detailed exploration of the FPD method based on the

trans-normal family. Section 4 studies the trans-exponential family, where more attention

is given to the analysis of censored duration data. Section 5 extends the results of the

trans-normal model to include the effect of exogenous variables. Section 6 studies the

case of an unknown transformation and shows that all the results remain asymptotically

valid when the transformation function is estimated. Section 7 presents some Monte Carlo

simulation results to show the finite sample properties of the estimates. Section 8 presents

some numerical examples to illustrate the methods. Section 9 concludes the paper.

2 FIDUCIAL PREDICTION

Let Y = {Y1, Y2, ..., Yn} be a sample of past observations and Y0 be a future obser-
vation both from a population with pdf f(· | θ). We are interested in predicting Y0 based
on Y. The classical method for prediction is to first find a predictive pivot, denoted by

q(Y0,Y), which is a function of Y and Y0 with the quantity itself and its distribution free

of the unknown parameters, set up an probability inequality for the predictive pivot and

then invert to give a prediction interval for Y0.

Fiducial approach to prediction starts from a predictive pivot. This approach is

best understood by taking a simple example where Y and Y0 are from an exponential

population with mean θ. It is well known that Y0/θ ∼ χ22 and
�n
i=1 Yi/θ ∼ χ22n. Thus,

q(Y0,Y) = nY0/
�
Yi ∼ F2,2n with pdf (1 + q)−(n+1). Fiducial argument then changes the

gear to view only Y0 in q(Y0,Y) as random and use a change of variable technique to have

a fiducial distribution of Y0 as n(
�
yi)
−1(1 + ny0/

�
yi)
−(n+1).
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In general, if the predictive pivot q(Y0,Y) is a one-to-one function of Y0 and has a

pdf g, then a fiducial predictive density (FPD) of Y0 given Y = y is defined as

pF(y0 | y) = g[q(y0,y)]qy(y0,y), (1)

where qy(y0,y) is the derivative of q with respect to y0 (Fisher, 1973, p117). Among

many greatest contributions of R. A. Fisher to statistical foundations, fiducial argument

has received the least attention. Zabell (1992) gave an excellent account on the history of

the Fiducial argument3.

Paralleled with the classical frequentist approach and the fiducial approach to predic-

tion is the Bayesian approach based on the so-called the Bayesian predictive density (BPD)

of Y0 that is defined as

pB(y0 | y) =
8
θ
p(θ | y)f(y0 | θ)dθ (2)

where p(θ | y) is the posterior distribution of θ given Y = y (Geisser, 1993, p49).

From the definitions, it is easy to see the connection between the frequentist and the

FPD approaches for the prediction problems, but it is rather difficult to see any possible

linkage between the FPD and BPD. This paper shows that a close correspondence exists

between the two in the framework of a trans-normal family, a trans-exponential family, and

a general trans-normal regression model. It is conjectured that such a correspondence exists

in general as long as a predictive pivot with the desired property can be found.

3 FPD FOR TRANS-NORMAL FAMILY

3.1 The Trans-Normal Family

Definition 1. A family of distributions is called the trans-normal family if the

random variable Y is such that h(Y ) ∼ N(µ,σ2) for some h : B → R, a monotonic

increasing and differentiable function with range R, the whole real line, and domain B, a

subset of R.

Clearly, the pdf of the trans-normal distribution has the form:

3More on the Fiducial arguments can be found in Lindley (1958), Seidenfeld (1979, 1992), Dawid and

Stone (1982), Dawid and Wang (1993) and Barnard (1995).

4

https://www.researchgate.net/publication/247173753_Philosophical_problems_of_statistical_inference_Learning_from_R_A_Fisher?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==
https://www.researchgate.net/publication/38358893_The_Functional-Model_Basis_of_Fiducial_Inference?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==
https://www.researchgate.net/publication/38358893_The_Functional-Model_Basis_of_Fiducial_Inference?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==


f(y;µ,σ) =
1√
2πσ

exp

F
− 1

2σ2
[h(y)− µ]2

k
hI(y), (3)

where hI(y) = dh(y)/dy. The domain B could be the positive half real line as in the case

of duration data and a bounded interval as in the case of percentage or proportions. The

trans-normal family is seen to be a very rich family. It contains popular distributions such

as normal with h(y) = y, and lognormal with h(y) = log y. It also covers several sub families

such as the ξ-normal family (Saunders, 1974) where h(y) satisfies h(y) = −h(y−1), y > 0

and α−1h(y/β) ∼ N(0, 1), and the Box and Cox (1964) power family:

h(y) =

⎧⎨⎩ (yλ − 1)/λ, λ W= 0,
log y, λ = 0,

y > 0. (4)

When λ W= 0, the Box-Cox power transformation is bounded either below or above depends
on whether λ is positive or negative. Thus, exact normality for h(Y ) is not possible. In

practice, one often takes the normality as an approximation. To overcome this difficulty,

Yang (2002) proposed a modified power transformation:

h(y) =

⎧⎨⎩ (yλ − y−λ)/2λ, λ > 0,

log y, λ = 0,
y > 0. (5)

For nonnegative y, this function is one-to-one with its inverse y = [λh+ (1 + λ2h2)1/2]1/λ.

Note that the distributional family generated by modified power transformation generalizes

the ξ-normal family of Saunders (1974). We now give some general theoretical properties

of the trans-normal family.

Theorem 1. Let f(y) = f(y;µ,σ) be the pdf of a trans-normal random variable Y

defined in (3). Assume h(y) is monotonically increasing with the first two derivatives hI(y)

and hII(y) exist. Then f(y)

i) is a monotonic function of y if m(y) = 0 does not have a real root;

ii) is a unimodal pdf if m(y) = 0 has a unique real root in the interior of B;

iii) has two stationary points if m(y) = 0 has two real roots;

iv) is bimodal if m(y) = 0 has three real roots, etc.,

where m(y) = hII(y)/hI2(y)− σ−2(h(y)− µ).

Proof. Let k(y) = exp{−[h(y) − µ]2/(2σ2)}. Then, f(y) ∝ k(y)hI(y) and f I(y) =
k(y)hI2(y)[hII(y)/hI2(y)−σ−2(h(y)−µ)] = k(y)hI2(y)m(y). Since the function k(y)hI2(y) is

5
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a positive function of y, how many times that f I(y) changes its sign as y changes depends

on how many real roots that m(y) = 0 has, which determines the behavior of f(y). The

results of the theorem thus follows.

Note that the case (i) in Theorem 1 rarely happens, case (ii) is the most typical case

and it happens as long as f(y) vanishes at both ends and hII(y)/hI2(y) is monotonic. The

cases (iii) is also not common and (iv) can happen for certain special functions at certain

parameter settings.

To illustrate the versatility and usefulness of the trans-normal distribution, we pick

a special modified power transformation, h(y) = y.5 − y−.5, and plot the pdf, the survivor
function (sf) and the hazard function (hf) for serval parameter configurations. From the

plots summarized in Figure 1, we see that the pdf of this trans-normal distribution has all

kinds of shapes: it can be nearly symmetric, bimodal, or very skewed depending whether σ

is small, medium, or large relative to the mean of Y . When σ is small relative to the mean,

the pdf has one bump at the center part; as σ increases, another bump shows up at the left

of the center and as σ further increases, the first bump disappeared and the distribution

becomes unimodal again. Figure 1 also exhibits serval shapes of hazard function, including

the interesting ‘bath-tub’ shape, which has a popular engineering interpretation: first bump

represents the ‘burn-in’ period, the center flat part represents the ‘stable period’ and the

second bump represents the ‘wear-out’ period. Econometricians call this the U-shaped

hazard (Kiefer, 1988) and some evidence for its existence is provided by Kennan (1985)

from the analysis of the strike duration data. It is interesting to note that when σ is large,

the hf has a sharp increase at the very beginning and then quickly becomes flat for a long

period of ’time’. This exactly reflects the failure mechanisms of certain engineering systems

and electronic components which are very fragile at the very beginning, but once stabilized,

can last for a very long period of time.

Figure 1 near here

3.2 Fiducial Predictive Densities

Consider the case where h is completely specified. Let µ̂ = 1
n

�n
i=1 h(Yi) and σ̂2 =

1
n

�n
i=1[h(Yi) − µ̂]2. Clearly, µ̂ and σ̂ are the unrestricted MLEs of µ and σ, respectively.
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When both parameters are unknown, we have the predictive pivot

q(Y0,Y) =
h(Y0)− µ̂

σ̂
0
(n+ 1)/(n− 1) (6)

that is t-distributed with n − 1 degrees of freedom, and the fiducial prediction density for
Y0 based on this pivot is

p
F(y0 | y) =

Γ(n/2)0
(n+ 1)πΓ[(n− 1)/2]

^
1 +

[h(y0)− µ̂]2
(n+ 1)σ̂2

�−n
2 hI(y0)

σ̂
. (7)

When only σ is assumed unknown, putting σ̂2(µ) = 1
n

�n
i=1[h(Yi)−µ]2, we have a predictive

pivot, [h(Y0)− µ]/σ̂(µ) ∼ tn, and the fiducial predictive density

p
F(y0 | y, µ) =

Γ[(n+ 1)/2]√
nπΓ(n/2)

^
1 +

[h(y0)− µ]2
nσ̂2(µ)

�−n+1
2 hI(y0)

σ̂(µ)
. (8)

Finally, when only µ is assumed unknown, letting γ = σ
√
1 + n−1, we have a predictive

pivot, (h(Y0)− h̄)/γ ∼ N(0, 1), and the fiducial predictive density

pF(y0 | y,σ) =
1√
2πγ

exp

}
− 1

2γ2
[h(y0)− h̄]2

]
hI(y0). (9)

The FPD given by (9) is a trans-normal. The FPDs given in (7) and (8) have an

identical structure, which is termed the trans-t distribution defined below.

Definition 2. A family of distributions is called the trans-t family with ν degrees of

freedom and with parameters ξ and τ if the random variable T is such that [h(T ) − ξ]/τ

follows a t-distribution with ν degrees of freedom.

This definition is a generalization of the log-t distribution given in Dahiya and Guttman

(1982), where they showed that a log-t pdf is either a purely decreasing function or a func-

tion with two stationary points. It can be further shown that the log-t pdf is essentially

unimodal if the degrees of freedom ν is large relative to τ , which is often the case in practical

applications. We give some general properties of the trans-t in the following theorem.

Theorem 2. Let f(t; ξ, τ) be the pdf of a trans-t random variable given by

f(t; ξ, τ) =
Γ[(ν + 1)/2]√
νπτΓ(ν/2)

^
1 +

[h(t)− ξ]2
ντ2

�− ν+1
2

hI(t). (10)

Assume that the h function satisfies the conditions of Theorem 1. Definem(t) = hII(t)/hI2(t)−
{(ν − 1)[h(t)− ξ]}/{ντ2 + [h(t)− ξ]2}. Then:
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(i) f(t; ξ, τ) is a decreasing function of t if m(t) = 0 has no real root; is unimodal if

m(t) = 0 has a unique real root; has two stationary points if m(t) = 0 has two real roots;

bimodal if m(t) = 0 has three real roots, etc.

(ii) The trans-t pdf converges to a trans-normal pdf as ν →∞.

Proof. Define k(t) = {1+ [h(t)− ξ]2/(ντ2)}−(ν+1)/2. Then, we have f(t) = k(t)hI(t),
which goes to zero as t→∞. Also,

f I(t) = k(t)hI2(t)
}
hII(t)
hI2(t)

− (ν − 1)[h(t)− ξ]
ντ2 + [h(t)− ξ]2

]
= k(t)hI2(t)m(t).

As both k(t) and hI2(t) are positive functions, how many times that f I(t) changes its sign

depends on the number of real roots of the equation m(t) = 0. Hence the part (i) of the

theorem follows. The proof of part (ii) is straightforward.

From the expression of m(t), it is easy to see that when hII(t)/hI2(t) = 0, m(t) has

only one root, and when hII(t)/hI2(t) = const, m(t) has two roots. The former corresponds

to the linear transformation that gives a unimodal pdf and the latter the log transformation

that gives a pdf with two stationary points. With the results of Theorems 1 and 2, the basic

properties of the FPDs (7)-(9) are clear as they are either a trans-normal or a trans-t. The

following theorem shows that they are consistent for estimating the true pdf of a future

observation.

Theorem 3. The FPDs given by (7)-(9) are all consistent estimators of the true pdf

of Y in the sense that as n → ∞, each of the FPDs converges in probability to f(y;µ,σ)
for each y.

Proof. First, for the case of both parameters unknown, it is easy to see that µ̂ and σ̂

are root-n consistent estimators of µ and σ. Write pF(y0 | y) = pF(y0 | µ̂, σ̂). A first-order
Taylor expansion around µ and σ gives:

pF(y0 | µ̂, σ̂) = pF(y0 | µ,σ) + (∂pF/∂µ)(µ̂− µ) + (∂pF/∂σ)(σ̂ − σ) +Op(n−1)

As n→∞, pF(y0 | µ,σ)→ f(y0;µ,σ), and the two partial derivatives are bounded. Hence

the results follows. The proofs for the other two cases are similar.
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3.3 The Bayesian Correspondence

It is of interest to see how the FPD relate to the Bayesian predictive density. The

results given in the following theorem shows that the FPDs for the trans-normal family

corresponds to the Bayesian predictive density with flat priors.

Theorem 4. The FPD given in (7) coincides with the BPD with a flat prior p(µ,σ) ∝
1/σ; the FPD given in (8) coincides with the BPD with a flat prior p(σ) ∝ 1/σ and the
FPD given in (9) coincides with the BPD with a flat prior p(µ) ∝ const..

Proof. To show that (7) is a Bayesian predictive density with a flat prior p(µ,σ) ∝
1/σ, we first show it is true for the normal case, i.e., h(y) = y and then generalize the result

to the general trans-normal distribution by a change of variable technique. Let Y0 = Yn+1,

and µ̂∗ and σ̂2∗ be the MLEs based on all the n+ 1 observations. We have,

(n+ 1)µ̂∗ = µ̂+ Y0, and (n+ 1)σ̂2∗ = nσ̂
2 + n(Y0 − µ̂)2/(n+ 1),

and Bayesian predictive density is

p
B(y0 | y) =

8 ∞
0

8 ∞
−∞

p(µ,σ | y)f(y0 | µ,σ)dµdσ

∝
8 ∞
0

8 ∞
−∞

1

σn+2
exp

^
− 1

2σ2

l
n3
i=1

(yi − µ)2 + (y0 − µ)2
M�
dµdσ

∝
8 ∞
0

8 ∞
−∞

1

σn+2
exp

^
− 1

2σ2

l
(n+ 1)µ2 − 2µ

n+13
i=1

yi +
n+13
i=1

y2i

M�
dµdσ

∝
8 ∞
0

1

σn+2

}8 ∞
−∞

exp

F
−n+ 1
2σ2

(µ− µ̂∗)2
k
dµ

]
exp

F
−n+ 1
2σ2

σ̂2∗
k
dσ

∝
8 ∞
0

1

σn+1
exp

F
−n+ 1
2σ2

σ̂2∗
k
dσ

=
1

2

8 ∞
0

τn/2−1 exp
F
−n+ 1

2
σ̂2∗τ
k
dτ, where τ = 1/σ2

∝ (σ̂2∗)
−n/2 ∝

^
1 +

(y0 − µ̂)2
(n+ 1)σ̂2

�−n
2

.

Integrating the last expression with respect to y0 through a t density gives the normalizing

constant and hence the BPD for Y0 in the normal case. For a general h, the BPD for h(Y0)

can be easily obtained by applying the change of variable technique, completing the proof.

With the definition of FPD and the conclusion of Theorem 4, it seems that the

fiducial argument for prediction serves as a bridge between the classical (frequentist) and

9



the Bayesian approaches to the prediction problems.

3.4 The Applications

We now discuss some interesting applications of the FPDs in econometric duration

analysis, including the density estimation, survivor probability estimation, hazard rate es-

timation, constructing prediction intervals, etc. We will concentrate on the most realistic

situation where both parameters are unknown. In each application, the simple maximum

likelihood method is applicable, thus the FPD method is compared with the ML method.

Density estimation. Density estimation is one of the important topics in economic

duration analysis. In the parametric setting, the simplest method may be the maximum

likelihood where the unknown parameters in the pdf are replace by their MLEs. We now

consider the FPD pF(y0 | y) as an estimator of the true pdf f(y;µ,σ), and to see it per-
formance relative to the MLE of the true pdf. The MLE method completely ignores the

effect of parameter estimation, whereas the FPD method takes the parameter estimation

into account through the pivotal quantity and its distribution. In this sense, one would

expect that FPD method performs better than the MLE method. Our simulation results

given next show that it is indeed true.

Survivor probability. The survivor function of the trans-normal is:

S(t;µ,σ) = 1− Φ
}
h(t)− µ

σ

]
where Φ denotes the CDF of the standard normal distribution. The MLE of S(t;µ,σ)

is Ŝ(t) = S(t; µ̂, σ̂), where µ̂ and σ̂ are the MLEs of µ and σ. Naturally, the survivor

probability estimator based on the FPD should be

S̃(t) = 1−Ψn−1
^

h(t)− µ̂
σ̂
0
(n+ 1)/(n− 1)

�

where the last part is the CDF of pF(y0 | y) with Ψν denoting the CDF of a t-distribution

with ν degrees of freedom.

Hazard rate estimation. The hazard rate function of the trans-normal is

r(t;µ,σ) =
f(t;µ,σ)

1− Φ[(h(t)− µ)/σ]

10



The MLE of r(t;µ,σ) is r̂(t) = r(t; µ̂, σ̂), and the corresponding FPD estimator is

r̃(t) =
p
F(t | y)

1−Ψn−1[(h(t)− µ̂)/(σ̂
0
(n+ 1)/(n− 1))]

Prediction and shortest prediction intervals. Prediction interval (PI) construc-

tion is also a important topic in life-testing and reliability studies, such as predicting the

time required to perform a life-test and constructing a warranty limit, etc. As h(Y0) is

normally distributed, an application of the standard method gives a prediction interval for

h(Y0) and a inverse transformation gives the prediction interval for Y0. Thus, a 100(1−α)%
PI for Y0 has the form:

h−1
F
µ̂± tn−1(α/2)σ̂

�
(n+ 1)/(n− 1)

k
(11)

Using the FPD, it is also fairly easy to construct prediction intervals for Y0. A 100(1−α)%
equitailed PI for Y0 is defined as {L(Y),U(Y)} such that

Ψn−1

^
h[L(Y)]− µ̂

σ̂
0
(n+ 1)/(n− 1)

�
=
α

2
and Ψn−1

^
h[U(Y)]− µ̂

σ̂
0
(n+ 1)/(n− 1)

�
= 1− α

2
,

which, not surprisingly, gives a PI that is identical to (11). This means that the fiducial

arguments gives inferences that have exact classical interpretations. An important feature

of using FPD is that it allows to construct the shortest PI that is defined as follows.

Definition 3. Let Y0 be a future observation and Y a sample of past observations

both from a population with pdf f(y). Let f̂(y) be in general a predictive density of the

unknown f(y). Then a 100(1−α)% shortest prediction interval for Y0 based Y is defined as

{Ls(Y), Us(Y)} such that (a)
$ Us(Y)
Ls(Y)

f̂(t)dt = 1− α; and (b) for any y1 ∈ {Ls(Y), Us(Y)}
and y2 z {Ls(Y), Us(Y)}, f̂(y2) ≤ f̂(y1).

This definition is adapted from a definition in Dahiya and Guttman (1982). Based

on the Definition 3, it is easy to see that if the predictive density is unimodal, then the

condition (b) reduces to f̂(Ls(Y)) = f̂(Us(Y)).

4 FPD FOR TRANS-EXPONENTIAL FAMILY

Censoring is common in duration analysis. This issue is addressed in the context of

the trans-exponential family defined below.
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Definition 4. A family of distributions is called the trans-exponential family if the

random variable Y is such that h(Y ) ∼ Exp(θ) for some h : B → R, a monotonic increasing

and differentiable function with range R+, the positive half real line, and domain B, a

subset of R.

With this definition, the pdf of the trans-exponential distribution has the form

f(y; θ) =
1

θ
exp

F
−1
θ
h(y)

k
hI(y), (12)

where hI denotes the derivative of h. This family contains the known distributions such

as exponential (h(y) = y, y > 0), the log-exponential (h(y) = log(y), y > 1), the Weibull

(h(y) = yβ , y > 0,β > 0), etc.. Similar results as in Theorem 1 can be obtained for the

trans-exponential distribution with m(y) = hII(y)/hI2(y) − 1/θ. That is, f(y; θ) is strictly
decreasing if m(y) = 0 has no real root such as the exponential case, unimodal if it has a

unique real root such as the Weibull case, etc..

Suppose now only the first r observations Y1 < Y2 < · · · < Yr are available in a total
sample of size n. Let again Y0 be a future duration or lifetime. From Lawless (1982, Ch.

3), we have when h is completely specified the MLE of θ,

θ̂ =
1

r

^
r3
i=1

h(Yi) + (n− r)h(Yr)
�
,

2h(Y0)/θ ∼ χ22, and 2rθ̂/θ ∼ χ22r. Hence, a predictive pivot is given as follow

q(Y0,Y) =
h(Y0)

θ̂
∼ F2,2r

where F2,2r denotes an F-distribution with 2 degrees of freedom in numerator and 2r degrees

of freedom in the denominator. The FPD in this case has the form

pF (y0|y) = 1

θ̂

}
1 +

h(y0)

rθ̂

]−(r+1)
hI(y0) (13)

It is easy to see that the FPD given in (13) is a BPD with prior θ ∼ 1
θ , and that it converges

to the true pdf as n as well as r become large.

The survivor and hazard functions of the trans-exponential are, respectively, exp[−1θh(y0)]
and 1

θh
I(y0); their MLEs are exp[−1θ̂h(y0)] and

1
θ̂
hI(y0); and their FPD estimators are

[1 + 1
rθ̂
h(y0)]

−r and 1
θ̂
hI(y0)[1 + 1

rθ̂
h(y0)]

−1. The equitailed PI for Y0 is {h−1[θ̂F (1−α/2)2,2r ],
h−1[θ̂Fα/22,2r ]}, and the shortest PI is also readily obtainable based on Definition 3.
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The above results can be extended to the case of predicting the minimum Y∗ of a

future sample of size m as mh(Y∗)/θ ∼ χ22. The fiducial prediction based on progressive

Type II censored data can also be handled in a similar way. See Balakrishnan and Basu

(1995, p25) for the distributional results of the progressive Type II censored data.

5 FPD FOR TRANS-NORMAL REGRESSIONS

The FPD method for trans-normal model can easily be extended to incorporate the

effect of exogenous variables. Let h again be a known generic monotonic increasing and

differentiable function. The trans-normal regression model has the form

h(Y) = Xβ + ε (14)

where h(Y) is an n× 1 vector of the transformed responses, X is an n× p design matrix of
full column rank, β is a p× 1 vector of regression coefficients, and ε is the error vector that
is assumed to be N(0n,σ

2In) with In being an n× n identity matrix.
The model (14) is essentially the Box-Cox transformation model (Box and Cox, 1964).

It can be equivalent written as h[yp(xi)] = x
I
iβ + Φ(p)σ, i = 1, 2, ..., n where x

I
i is the ith

row of the design matrix X, yp(xi) is the pth quantile of Y at xi and Φ(p) is the pth quantile

of the standard normal distribution. This type of models has a nature generalization to a

general location-scale family and is termed as failure-time regression models by Meeker and

Escobar (1998), among others.

Consider the problem of predicting Y0 at the predictor value x0, with h completely

specified. It is well known that the following pivotal quantity

q(Y0,Y) =
h(Y0)− xI0β̂

σ̂
�
1 + xI0(XIX)−1x0

·
5
n− p
n

is t-distributed with n− p degrees of freedom, where β̂ = (XIX)−1XIh(Y) and σ̂2 = n−1 ,
Dh(Y) ,2 are the MLEs of µ and σ, with D = In − X(XIX)−1XI and , · , being the
Euclidean norm. Using Definition 2, it is easy to see that the fiducial predictive density for

Y0 at the point x0 is

pF(y0 | y,X,x0) =
Γ[(n− p+ 1)/2]√
nπΓ[(n− p)/2]

^
1 +

[h(y0)− xI0β̂]2
nσ̂2c20

�−n−p+1
2 hI(y0)

σ̂c0
(15)

13

https://www.researchgate.net/publication/257934428_Statistical_Methods_of_Reliability_Data?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==
https://www.researchgate.net/publication/257934428_Statistical_Methods_of_Reliability_Data?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==
https://www.researchgate.net/publication/224839719_An_Analysis_of_Transformations_with_Discussion?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==


where c20 = 1 + x
I
0(X

IX)−1x0.

The FPD given above has the trans-t form, hence its properties are given in Theorems

2 and 3. Its Bayesian correspondence can be easily established in the similar manner as in

Theorem 4, hence is not considered here in detail. Several applications of this FPD can be

considered. The most interesting one may be the prediction of survivors probability under

the existence of concomitant variables. Constructing prediction intervals may also be very

interesting as the FPD does not only lead to the classical prediction interval, but also gives

a shortest possible prediction interval based on the given pivotal quantity. We now explore

these applications.

Density Forecasting. Under the model assumptions, the pdf of Y0 at x0 is a trans-

normal with parameters xI0β and σ. Hence its MLE is f(y0;xI0β̂, σ̂) and its FPD estimator

is pF(y0 | y,X,x0) given in Equation (15). It is again of interest to see which method gives
a better density forecast based on a finite sample.

Predicting Survivor Probability. The true survivor function has the form

S(t;β,σ) = 1− Φ
}
h(t)− xI0β

σ

]
The MLE of S(t;β,σ) is Ŝ(t) = S(t; β̂, σ̂). This estimator should perform poorer than the

case of a single sample as more parameters are involved in the estimation. The FPD accounts

for the parameter estimation, hence its estimator/predictor to the survivor function should

have a better performance. The FPD estimator of S(t;β,σ) has the form:

S̃(t) = 1−Ψn−p
^

h(t)− xI0β̂
σ̂c0
0
n/(n− p)

�

It is easy to see that both Ŝ(t) and S̃(t) are consistent estimators of S(t;β,σ). This means

that when n is large, the two estimators have a similar performance.

Estimating the Hazard Function. The hazard function under this regression

framework is r(t;β,σ) = f(t;β,σ)/S(t;β,σ). Its MLE is r̂(t) = r(t; β̂, σ̂) and its FPD

estimator is r̃(t) = p
F(t | y,X,x0)/S̃(t). Again, it is easy to see that the two estimators of

hf are asymptotically equivalent.

Prediction and Shortest Prediction Intervals. The prediction interval construc-

tion can proceed in a similar way as in the one sample case. The classical and the equitailed

14



FPD prediction intervals have the form:

h−1
F
xI0β̂ ± tn−p(α/2)σ̂c0

�
n/(n− p)

k
. (16)

The shortest prediction interval can be easily obtained based on the Definition 3. It should

be pointed out that the issue of having the shortest PI is much more important in trans-

normal regression than in trans-normal model as the regressor value can have substantial

effect on the interval length (See Section 8 for numerical examples).

6 APPROXIMATE FPD WITH UNKNOWN TRANSFORMATION

The FPDs presented in Sections 3 to 5 all depend on a known transformation function.

This seems restrictive as often in practice the normalizing or exponentializing transformation

is unknown. We now present some results to show that use of an estimated transformation

leads to fiducial inferences that are asymptotically correct.

Consider a simpler case where the transformation function is known up to an in-

dexing parameter, i.e., h(y) = h(y,λ). For trans-normal, it could be the Box-Cox power

transformation or the modified version of it; whereas for the trans-exponential, it could be

the simple power transformation that corresponds to the Weibull distribution. The former

leads to a flexible three parameter duration model and the latter a two parameter one. Thus,

leaving the transformation function unspecified (at least partially) is of interest in at least

two aspects: it enlarges the family of duration models and ii) it extends the applicability of

fiducial prediction method.

Theorem 5. Suppose that Y0 and Y = {Y1, · · · , Yn} are from a trans-normal with

h(y) = h(y,λ), λ unknown. Let λ̂ be the MLE of λ. Let (µ̂(λ), σ̂(λ)) and (µ̂(λ̂), σ̂(λ̂)) be,

respectively, the restricted (given λ) and unrestricted MLEs of (µ,σ). Assume E[hλ(Yi,λ)]

exists, where hλ(Yi,λ) = ∂h(Yi,λ)/∂λ. Then,

h(Y0, λ̂)− µ̂(λ̂)
σ̂(λ̂)

∼ h(Y0,λ)− µ̂(λ)
σ̂(λ)

(17)

Proof. Since λ̂ is the MLE of λ, it can be shown to be consistent. The result follows

by straightforward applications of Taylor expansions on h(Y0, λ̂), µ̂(λ̂), and 1/σ̂(λ̂) at λ̂ = λ,

followed by an application of the law of large numbers.
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Theorem 5 says that q(Y0,Y,λ), the pivotal quantity defined in (6) with h(y) =

h(y,λ), and q(Y0,Y, λ̂), the pivotal quantity obtained by replacing λ in q(Y0,Y,λ) by λ̂,

are asymptotically equivalent. This result implies that when transformation is estimated

all the FPDs in Section 3 and the fiducial inferences based on them remain asymptotically

correct. It should be noted that the result of Theorem 5 can be easily extended to the case

of trans-normal regression model discussed in Section 5. A similar result can be obtained

for the trans-exponential family.

Theorem 6. Suppose that Y0 and Y = {Y1, · · · , Yn} are from a trans-exponential

with h(y) = h(y,λ), λ unknown. Let λ̂ be the MLE of λ. Let θ̂(λ) and θ̂(λ̂) be, respectively,

the restricted (given λ) and unrestricted MLEs of θ. Assume E[hλ(Yi,λ)] exists, where

hλ(Yi,λ) = ∂h(Yi,λ)/∂λ. Then

h(Y0, λ̂)

θ̂(λ̂)
∼ h(Y0,λ)

θ̂(λ)
.

Proof. Direct applications of Taylor expansion on h(Y0, λ̂)/θ̂(λ̂) at λ̂ = λ, and the

law of large numbers.

With the Theorem 6, the results of Section 4 are extended to the case of an unknown

transformation. The result of Theorem 6 is extendable to the cases of Type II and progres-

sive Type-II censored data. However, the proofs are much more complicated, and hence are

not discussed here.

7 MONTE CARLO SIMULATION

From the previous sections, we see that the FPD has rather easy applications in

econometric duration studies. However, the properties of these applications, except for the

case of prediction intervals, are not clear. For example, it is not clear whether the FPD

estimator of the hazard rate performs better than the usual MLE. No doubt, it is rather

difficult to compare the FPD and ML methods analytically and generally. We thus turn to

Monte Carlo simulations.

The simulation process, e.g., for hf estimation, can be described as follows. For each

sample generated from a given model, the MLE and FPD estimates of the hazard rate at

16



a duration point t are calculated. Repeat this process 10,000 times to give 10,000 pairs of

MLE and FPD estimates. The means and variances of these 10,000 pairs of estimates give

Monte Carlo estimates of the true means and variances of the MLE and FPD estimators,

which lead to estimates of bias and relative efficiency.

Extensive simulations are performed for various quantities and under various models.

Almost all the results favor the FPD approach. For brevity we only report the results

corresponding to the most interesting quantity, the hazard function, under two models: i)

a trans-normal model of the form h(Y,λ) ∼ N(µ,σ2) with h being the Box-Cox power

transformation and the transformation parameter λ assumed known or unknown; and ii)

a trans-exponential model of the form Y β ∼ Exp(θ) with the transformation parameter β
assumed known or unknown and the data generated are either complete or Type II censored.

The trans-normal model. Table 1 contains a part of simulation results for hf

estimation based on a special trans-normal model, the lognormal. The simulation involves

seven hf values at pth quantile duration tp, p = .05, .10, .25, .50, .75, .90, .95, two sample

sizes, and four σ values, to contrast the ML and FPD estimators under different function

values, sample sizes, and degrees of population skewness. We see from Table 1 that the

FPD estimator is always more efficient than the ML estimator. The relative efficiency of

the FPDE to the MLE increases with the duration. This means that the FPD method

gives much better estimate of hf at far tail area of a duration distribution. The ML method

over-estimates the hf for medium to large durations, whereas the FPD method slightly

under-estimates the hf. Increasing the sample size reduces significantly the discrepancy

between the two estimators. Increasing the skewness of the population (i.e., increasing the

value of σ) does not seem to change much on the relative performance of the two estimators,

but changes the variabilities of the estimators.

Simulation is also carried out using an ML estimate of the true transformation (λ = 0).

The simulation results (the right part of Table 1) show that, when λ is assumed unknown

and its MLE is used, the FPD estimator preserves its excellent performance except when

population is not so skewed, but the ML estimator deteriorates significantly. The over-

estimation problem for MLE is worsen off and the variability of it gets larger relative to that

of FPD estimator. As a result, the relative efficiency gets larger than the case of a known λ.
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When σ is small (the population is not so skewed), both methods can give unsatisfactory

estimates of hf at medium and large duration points. This is because when data is not so

skewed, it is difficult to estimate the transformation parameter (Yang, 1999). Simulation is

also carried out based a trans-normal model with covariates. Similar conclusions are drawn.

Table 1 near here

The trans-exponential model. The model considered is in fact a Weibull model

with a shape parameter β and a scale parameter θ1/β. From the results in Table 2, we see

that similar to the case of trans-normal model, the FPD estimator is more efficient than

the ML estimator. The relative efficiency increases as duration increases. Estimation of

the transformation parameter enhances the relative performance of the FPD estimator over

the MLE. In addition, the effect of censoring on the hf estimation is investigated using

the trans-exponential model. We found that censoring has a much greater effect on the

performance of the MLE than on the performance of the FPD estimator, especially when

the transformation parameter is estimated.

Table 2 near here

In summary, Monte Carlo experiments have revealed a good performance of the FPD

estimator and its robustness with respect to the transformation estimation. These together

with its simplicity and the flexibility of the two duration models introduced in this paper

show a great tractability and applicability of the FPD method in the analysis of economic

duration of event-time data.

8 EMPIRICAL EXAMPLES

We now provide some empirical examples to illustrate the various applications of the

FPD method discussed above.

Example 1. A Set of Trans-normal Data. A sample of 68 observations are

drawn from the model h(Y, 0.25) ∼ N(5, 1.52) with h being the power transformation: 39.00
25.38 17.08 79.04 13.65 4.80 19.22 40.55 68.56 18.16 21.53 23.08 8.80 21.05 28.34 29.09 34.49 23.67

12.15 12.02 33.83 15.43 56.59 14.93 21.50 12.69 2.01 42.66 46.74 42.42 8.23 16.51 29.75 21.54 31.69

26.25 26.28 9.74 57.97 25.68 98.70 13.71 11.50 33.82 41.69 33.97 38.65 20.34 12.70 16.52 14.03 24.64

18

https://www.researchgate.net/publication/24065361_Estimating_a_transformation_and_its_effect_on_Box-CoxT-ratio?el=1_x_8&enrichId=rgreq-77926d55f0d49b6508fea3ec83ef8e68-XXX&enrichSource=Y292ZXJQYWdlOzMwMTY4MzQ0MztBUzozNTU3ODA4OTgzNzc3MjlAMTQ2MTgzNjE4NDMyMQ==


10.15 40.15 6.05 42.09 34.45 42.93 57.06 14.01 19.00 26.11 19.69 33.25 29.12 19.26 41.83 24.06.

The MLEs of µ and σ with known λ = 0.25 are 4.8790 and 1.4079, respectively. The

MLE of λ when it is assumed unknown is λ̂ = 0.2863, which gives the MLEs of µ and σ

5.2302 and 1.5772, respectively. Figure 2 gives plots of the estimated pdfs, sfs and hfs for

the cases of λ known or unknown. The ML and FPD methods give similar estimates of the

pdf and sf, but give substantially different estimates of hf. The FPD estimate of hf is much

closer to the true function than the ML estimate, especially at medium and large durations.

This is consistent with the simulation results given in the last section. From the plots, we

do not see a clear effect of estimating transformation.

Figure 2 near here

Table 3 summarizes the prediction and shortest prediction intervals (PI) for a future

duration. With n = 68, the shortest PIs are still 10% to 12% shorter than the regular

equitailed PIs. It is interesting to note that the PIs with a known transformation and the

PIs with an estimated transformation are rather similar, indicating the effect of estimating

transformation is small with respect to the PI construction.

Table 3: A Summary of FPD PIs based on the Trans-normal Data

λ known λ known
δ Equitailed Shortest R Equitailed Shortest R

.90 6.96 62.84 3.11 53.00 1.12 6.83 62.14 2.98 52.78 1.11

.95 5.15 73.97 1.95 63.65 1.12 4.97 72.74 1.76 62.97 1.11

.99 2.62 100.57 0.57 89.23 1.10 2.38 97.66 0.36 87.06 1.10

Example 2. A Set of Weibull Data. A sample of 80 observations are drawn from

the model Y β ∼ Exp(θ) with β = 1.5 and θ1/β = 10. The first 60 observations are: 0.48

0.90 1.14 1.18 1.49 1.52 1.55 1.79 1.86 2.53 2.55 2.70 2.76 2.80 3.07 3.34 3.74 3.83 3.97 4.06 4.23 4.46

4.87 5.02 5.32 5.32 5.47 5.85 6.05 6.36 6.58 6.58 6.66 6.97 7.05 7.12 7.18 7.52 7.71 7.76 7.79 7.81 7.98

8.06 8.19 8.37 8.72 9.15 9.24 9.34 9.69 9.75 9.85 10.47 10.83 11.00 11.16 11.25 11.28 11.42.

Based on the first 60 observations, the MLE of α when β is assumed known is found

to be 9.5055 and that when β is assumed unknown is 9.4896. The MLE of β is 1.5868.

Figure 3 presents plots of the estimated pdfs, sfs and hfs using the ML and FPD methods

assuming β known or unknown. Again the two methods give similar estimates of the pdf
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and sf, but give different estimates of the hf with the FPD estimate being closer to the true

hf at the medium and large duration points. Table 4 summarizes the PIs and shortest PIs

with β assumed known or unknown. We note that the shortest PIs are about 10% shorter

than the corresponding equitailed PIs. The PIs with estimated β are shorter than the PIs

using the known value of β.

Figure 3 near here

Table 4: A Summary of FPD PIs based on the Weibull Data

β known β unknown
δ Equitailed Shortest R Equitailed Shortest R

.90 1.31 20.09 0.15 16.89 1.12 1.46 19.25 0.29 16.43 1.10

.95 0.82 23.17 0.05 20.12 1.11 0.94 22.03 0.11 19.31 1.10

.99 0.28 29.76 0.00 27.00 1.09 0.34 27.91 0.01 25.46 1.10

Example 3. Computer Program Execution Time Data. The data given in

Table 5 is taken from Meeker and Escobar (1998, p638). It represents the amount of time

it took to execute a particular computer program, on a multiuser computer system, as

a function of system load (obtained with the Unix uptime command) at the time when

execution was beginning. The data was analyzed by Meeker and Escobar using a simple

log-linear regression model.

Table 5: Computer Program Execution Time Versus Load

Seconds load Seconds load Seconds load
123 2.74 78 0.51 317 5.86
704 5.47 98 0.29 142 1.18
184 2.13 240 0.96 127 0.57
113 1.00 110 0.60 96 1.10
94 0.32 213 2.10 111 1.89
76 0.31 284 3.10

We consider fitting a trans-normal regression model to the data by first assuming the

true transformation is known to be the log transformation as did by Meeker and Escobar

(1998), and then using an estimated Box-Cox power transformation. The MLEs of β0,

β1 and σ under a log transformation of the response are, respectively, 4.4936, 0.2907 and

0.3125. The MLE of λ is −0.4340, under which, the MLEs of β0, β1 and σ are, respectively,
1.9831, 0.0291 and 0.0338.
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Figures 4-6 give plots of the estimated pdfs, sfs and hfs with a chosen transformation

(λ = 0) and an ML estimated transformation (λ̂ = −0.434) at various loading levels. We see
from the plots that the ML and FPD methods give substantially different estimates of the

pdf, sf and hf, in particular the hf, under both a chosen transformation and an estimated

transformation. A greater discrepancy is observed at a large loading level. Thus, based on

the results presented earlier it may be safer to use the FPD method than the ML method

to do prediction in such a situation.

We also notice from the plots that the estimates of pdf, sf and hf based on λ̂ = −0.434
are quite different from the corresponding estimates based on λ = 0, especially for the pdf

and hf estimation at large durations. This reflects the importance of choosing a right

scale for analyzing the duration or event-time data. The equitailed and shortest PIs can

also be easily calculated. For example, at load 5 with λ = 0, the two sets of 95% PIs

are, respectively, {171.33, 854.59} and {133.10, 763.93}; where at the same load but with
λ = −0.434, the two sets of PIs become {149.23, 1820.17} and {88.57, 1269.73}. Hence,
using log transformation and an ML estimated transformation also result in substantially

different PIs. The shortest PI is much shorter than the equitailed PI, showing the usefulness

of the FPD method.

Figures 4-6 near here

9 CONCLUSION

The applicability of the fiducial predictive density approach in the econometric du-

ration analysis is studied. Two flexible families of duration distributions, the trans-normal

and the trans-exponential, are proposed, for detailed examinations of this approach. The

former has an easy extention to the trans-normal regression and the latter allows for the

analysis of censored data. It is found that the FPD approach gives simple and reliable

estimates of the density, survivor, and hazard functions, and that it provides a simple way

to constructing the shortest prediction intervals. The results are further extended to the

case that the transformation functional form is known, but the function is indexed by an

unknown parameter. The latter extension of the results greatly expands the applicability

of the FPD method in the econometric duration analysis.
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Table 1: Simulation results for hazard rate estimation based on lognormal data: 1 = ML estimator,

2 = FPD estimator, rb = relative bias in percentage, mse = mean squared error, ref2,1 = relative

efficiency of FPDE over MLE.

µ = 1.0 log transformation estimated transformation
n σ p hf rb1 rb2 mse1 ref2,1 rb1 rb2 mse1 ref2,1
30 2.0 .05 .536 -3.54 3.45 .04634 1.10 -6.28 0.88 .04880 1.11

.10 .465 -2.51 -0.32 .02066 1.13 -3.83 -1.48 .02236 1.13

.25 .300 1.24 -0.68 .00457 1.12 2.21 0.29 .00625 1.11

.50 .147 4.87 0.43 .00113 1.20 8.36 3.68 .00210 1.21

.75 .061 7.56 -0.34 .00026 1.42 11.76 3.18 .00051 1.47

.90 .025 8.78 -4.01 .00005 1.71 14.09 -0.18 .00010 1.93

.95 .014 9.36 -7.19 .00002 1.89 14.44 -3.97 .00003 2.27
1.5 .05 .314 -3.39 3.62 .01573 1.10 -6.63 0.52 .01649 1.12

.10 .327 -2.69 -0.48 .00951 1.13 -3.87 -1.50 .01098 1.13

.25 .286 1.03 -0.89 .00399 1.11 2.74 0.80 .00630 1.11

.50 .196 4.75 0.31 .00194 1.20 8.90 4.16 .00454 1.21

.75 .113 7.63 -0.28 .00090 1.43 12.69 3.88 .00236 1.47

.90 .063 8.46 -4.24 .00031 1.69 15.19 0.38 .00086 1.97

.95 .043 9.16 -7.33 .00015 1.85 15.47 -3.59 .00041 2.36
1.0 .05 .207 -3.32 3.67 .00672 1.10 -7.23 -0.14 .00730 1.12

.10 .258 -2.15 0.02 .00608 1.13 -4.50 -2.08 .00743 1.12

.25 .306 1.41 -0.53 .00466 1.12 3.52 1.57 .01005 1.10

.50 .294 5.17 0.70 .00455 1.21 12.48 7.41 .01882 1.21

.75 .238 7.40 -0.47 .00386 1.42 17.20 7.34 .01893 1.51

.90 .179 8.40 -4.29 .00246 1.69 20.75 3.63 .01377 2.22

.95 .146 9.35 -7.17 .00187 1.89 — — — —
0.5 .05 .182 -2.45 4.49 .00510 1.09 -8.86 -1.42 .00634 1.09

.10 .272 -2.35 -0.15 .00673 1.13 1.34 3.86 .01654 1.03

.25 .437 1.38 -0.55 .00949 1.12 26.26 23.00 .24132 1.15

.50 .587 4.94 0.49 .01775 1.21 42.63 31.89 .86173 1.61

.75 .668 7.30 -0.55 .02969 1.42 — — — —

.90 .680 8.86 -3.93 .03793 1.72 — — — —

.95 .667 8.70 -7.68 .03729 1.81 — — — —
60 2.0 .05 .536 -2.03 1.63 .02289 1.05 -3.54 0.18 .02414 1.07

.10 .465 -1.37 -0.26 .00983 1.07 -1.97 -0.82 .01063 1.07

.25 .300 0.85 -0.13 .00202 1.06 1.20 0.24 .00286 1.05

.50 .147 2.54 0.38 .00048 1.10 3.70 1.50 .00080 1.10

.75 .061 3.16 -0.56 .00010 1.17 5.41 1.53 .00018 1.20

.90 .025 4.25 -1.85 .00002 1.30 5.96 -0.39 .00003 1.35

.95 .014 4.62 -3.37 .00001 1.37 6.72 -1.68 .00001 1.48
1.5 .05 .314 -1.80 1.85 .00782 1.05 -3.57 0.14 .00840 1.07

.10 .327 -1.02 0.07 .00476 1.07 -2.17 -1.00 .00527 1.07

.25 .286 0.43 -0.53 .00186 1.05 0.99 0.03 .00276 1.05

.50 .196 2.49 0.33 .00085 1.10 4.16 1.95 .00172 1.10

.75 .113 3.65 -0.10 .00036 1.19 5.38 1.47 .00076 1.19

.90 .063 3.74 -2.30 .00012 1.28 6.61 0.13 .00028 1.36

.95 .043 4.14 -3.79 .00006 1.34 6.76 -1.71 .00013 1.48
1.0 .05 .207 -1.94 1.70 .00347 1.05 -4.76 -1.02 .00367 1.08

.10 .258 -0.90 0.20 .00297 1.07 -2.21 -1.04 .00332 1.06

.25 .306 0.58 -0.38 .00211 1.06 1.85 0.87 .00432 1.05

.50 .294 2.64 0.48 .00192 1.10 5.92 3.64 .00675 1.10

.75 .238 3.53 -0.21 .00153 1.19 7.59 3.46 .00595 1.20

.90 .179 4.10 -1.98 .00103 1.29 8.55 1.65 .00395 1.38

.95 .146 4.61 -3.38 .00073 1.37 8.11 -0.82 .00262 1.51
0.5 .05 .182 -2.01 1.64 .00265 1.05 -3.67 0.10 .00304 1.05

.10 .272 -1.10 0.00 .00331 1.07 0.13 1.32 .00691 1.02

.25 .437 0.58 -0.39 .00427 1.06 10.19 9.00 .05374 1.05

.50 .587 2.40 0.25 .00765 1.10 17.36 14.33 .17077 1.14

.75 .668 3.73 -0.02 .01248 1.19 19.51 13.52 .24324 1.30

.90 .680 4.04 -2.05 .01481 1.29 — 10.25 — —

.95 .667 4.36 -3.59 .01507 1.36 — — — —

25



Table 2: Simulation results for hazard rate estimation based on complete or censored Weibull data:

1 = ML estimator, 2 = FPD estimator, rb = relative bias in percentage, mse = mean squared error,

ref2,1 = relative efficiency of FPDE over MLE.

n = 60, θ1/β = 10 known transformation estimated transformation
r β p hf rb1 rb2 mse1 ref2,1 rb1 rb2 mse1 ref2,1
20 0.5 .05 0.97 5.52 5.22 .06182 1.02 -3.40 -3.66 0.09731 1.01

.10 0.47 5.59 4.97 .01474 1.03 0.54 0.27 0.01688 1.02

.25 0.17 5.25 3.60 .00194 1.09 2.37 2.05 0.00570 1.09

.50 0.07 5.44 1.54 .00033 1.22 2.47 2.02 0.00455 1.30

.75 0.04 5.24 -2.25 .00008 1.41 2.07 1.42 0.00330 1.93

.90 0.02 5.22 -6.63 .00003 1.53 2.02 1.02 0.00506 5.51

.95 0.02 4.86 -9.92 .00002 1.48 1.79 0.70 0.00558 11.48
2.0 .05 0.05 4.94 4.64 .00013 1.02 -0.15 -0.16 0.00021 1.01

.10 0.06 4.95 4.34 .00026 1.03 0.05 0.01 0.00031 1.02

.25 0.11 5.33 3.67 .00073 1.09 1.44 1.24 0.00211 1.08

.50 0.17 5.58 1.66 .00183 1.23 5.84 4.78 0.02382 1.27

.75 0.24 5.74 -1.83 .00371 1.43 13.76 9.40 0.15687 2.08

.90 0.30 5.24 -6.62 .00592 1.55 27.63 13.88 0.90760 5.14

.95 0.35 5.36 -9.58 .00779 1.55 38.86 15.02 3.55742 16.48
30 0.5 .05 0.97 3.74 3.55 .03755 1.01 -2.91 -3.09 0.08619 1.01

.10 0.47 3.84 3.45 .00893 1.02 -0.53 -0.70 0.01183 1.01

.25 0.17 3.05 2.01 .00113 1.06 0.82 0.64 0.00163 1.05

.50 0.07 3.51 1.01 .00021 1.14 0.99 0.79 0.00079 1.14

.75 0.04 3.59 -1.30 .00005 1.26 0.84 0.59 0.00052 1.32

.90 0.02 3.37 -4.45 .00002 1.33 0.72 0.42 0.00041 1.73

.95 0.02 3.51 -6.46 .00001 1.34 0.64 0.33 0.00030 2.03
2.0 .05 0.05 3.65 3.46 .00008 1.01 -0.14 -0.15 0.00019 1.01

.10 0.06 3.64 3.25 .00016 1.02 -0.08 -0.10 0.00023 1.01

.25 0.11 3.41 2.36 .00045 1.06 0.50 0.39 0.00062 1.05

.50 0.17 3.61 1.10 .00111 1.14 2.30 1.82 0.00445 1.14

.75 0.24 3.31 -1.54 .00211 1.25 5.43 3.82 0.02401 1.34

.90 0.30 3.68 -4.19 .00359 1.35 10.37 6.30 0.07396 1.66

.95 0.35 3.76 -6.26 .00477 1.37 14.00 7.40 0.13944 2.07
40 0.5 .05 0.97 2.34 2.20 .02606 1.01 -2.19 -2.32 0.08288 1.01

.10 0.47 2.23 1.95 .00634 1.02 -0.60 -0.73 0.01124 1.01

.25 0.17 2.79 2.01 .00088 1.04 0.29 0.16 0.00092 1.04

.50 0.07 2.73 0.89 .00015 1.10 0.46 0.33 0.00031 1.10

.75 0.04 2.19 -1.39 .00004 1.17 0.43 0.28 0.00017 1.21

.90 0.02 2.61 -3.25 .00001 1.24 0.38 0.21 0.00012 1.38

.95 0.02 2.71 -4.79 .00001 1.26 0.33 0.16 0.00009 1.54
2.0 .05 0.05 2.45 2.32 .00006 1.01 -0.11 -0.12 0.00018 1.01

.10 0.06 2.37 2.08 .00012 1.02 -0.11 -0.13 0.00021 1.01

.25 0.11 2.53 1.76 .00032 1.04 0.18 0.10 0.00036 1.04

.50 0.17 2.48 0.65 .00078 1.10 1.08 0.77 0.00164 1.10

.75 0.24 2.79 -0.83 .00158 1.19 2.93 1.94 0.00751 1.21

.90 0.30 2.72 -3.15 .00265 1.25 5.18 2.89 0.02350 1.41

.95 0.35 2.46 -5.01 .00341 1.24 7.00 3.46 0.03871 1.53
60 0.5 .05 0.97 1.50 1.41 .01696 1.01 -0.97 -1.06 0.07048 1.00

.10 0.47 1.68 1.49 .00407 1.01 -0.43 -0.52 0.01035 1.01

.25 0.17 1.94 1.43 .00055 1.03 0.01 -0.07 0.00068 1.02

.50 0.07 1.64 0.44 .00009 1.06 0.14 0.06 0.00010 1.06

.75 0.04 1.78 -0.60 .00002 1.12 0.16 0.07 0.00005 1.13

.90 0.02 1.54 -2.33 .00001 1.15 0.14 0.05 0.00003 1.22

.95 0.02 1.57 -3.41 .00000 1.15 0.12 0.03 0.00002 1.29
2.0 .05 0.05 2.06 1.97 .00004 1.01 -0.04 -0.05 0.00015 1.00

.10 0.06 1.61 1.43 .00008 1.01 -0.08 -0.09 0.00019 1.01

.25 0.11 1.30 0.80 .00021 1.03 0.02 -0.03 0.00026 1.02

.50 0.17 1.66 0.46 .00051 1.06 0.34 0.15 0.00056 1.06

.75 0.24 1.63 -0.74 .00097 1.11 0.98 0.41 0.00187 1.13

.90 0.30 1.81 -2.08 .00170 1.16 1.95 0.68 0.00497 1.22

.95 0.35 1.89 -3.12 .00221 1.17 2.74 0.83 0.00866 1.30
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Figure 1. Plots of the trans-normal pdfs (a)-(d), sfs (e)-(f), and hfs (g)-(j), h(y) = y.5−y−.5,
µ = 5 except (e).
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Figure 2. Plots of the estimated pdfs, sfs and hfs for the trans-normal data
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Figure 3. Plots of the estimated pdfs, sfs and hfs for the Weibull data
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Figure 4. Plots of the estimated pdfs for the Computer Execution Time Example
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Figure 5. Plots of the estimated sfs for the Computer Execution Time Example
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Figure 6. Plots of the estimated hfs for the Computer Execution Time Example
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