
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

4-2023 

Informational content of factor structures in simultaneous Informational content of factor structures in simultaneous 

discrete response models discrete response models 

Shakeeb KHAN 

Arnaud MAUREL 

Yichong ZHANG 
Singapore Management University, yczhang@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Information Security Commons, and the Management Information Systems Commons 

Citation Citation 
KHAN, Shakeeb; MAUREL, Arnaud; and ZHANG, Yichong. Informational content of factor structures in 
simultaneous discrete response models. (2023). Advances in Econometrics. 45B, 385-410. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/2057 

This Journal Article is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2057&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Informational Content of
Factor Structures in Simultaneous

Discrete Response Models

S. Khan

Duke University

A. Maurel

Duke University and NBER

Y. Zhang

Duke University

September 19, 2015

Preliminary and Incomplete Version

Abstract

We study the informational content of factor structures in discrete triangular sys-
tems. Factor structures have been employed in a variety of settings in cross sectional
and panel data models, and in this paper we attempt to formally quantify their informa-
tional content in a bivariate system often employed in the treatment effects literature.
Our main findings are that under the factor structures often imposed in the literature,
point identification of parameters of interest, such as both the treatment effect and the
factor load, is attainable under weaker assumptions than usually required in these sys-
tems. For example, we show is that an exclusion restriction, requiring an explanatory
variable in the outcome equation not present in the treatment equation is no longer
necessary for identification. Furthermore, we show support conditions of included in-
struments in the outcome equation can be substantially weakened, resulting in settings
where the identification results become regular. Under such settings we propose a esti-
mators for the treatment effect parameter, the factor load, and the average structural
function that are root-n consistent and asymptotically normal. The estimators’ finite
sample properties are demonstrated through a simulation study and in an empirical
application, where we implement our method to the estimation of the civic returns to
college, revisiting the work by Dee (2004).

Keywords: Factor Structures, Discrete Choice, Treatment Effects.
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1 Introduction

Factor models and factor structures continue to see widespread and increasing using in vari-

ous areas of econometrics. This type of structure has been employed in a variety of settings in

cross sectional, panel and time series models, and have proven to be a flexible way to model

the behavior of and relationship between unobserved components of complicated models.

Furthermore, they have shown to facilitate the identification of structural parameters with-

out the need for stringent parametric specifications, allow for a data driven way reduce the

dimensionality of a given semiparametric or nonparametric model, and reduce the reliance

on exclusion restrictions in nonlinear simultaneous equation models.

The general idea behind factor models is to assume that the dependence across the unob-

servables is generated by a low-dimensional set of mutually independent random variables (or

factors). The applied and theoretical research in econometrics employing factor structures

is extensive. These models are typically used in the treatment effect literature as a way to

identity the joint distribution of potential outcomes from the marginals, and then recover

the distribution of treatment effects from this joint distribution.

Factor models have become increasingly popular in recent years. Recent papers using

these models in the context of treatment effect estimation includes, among many others,

Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2005), Cunha,

Heckman, and Navarro (2005), Cunha and Heckman (2007), Heckman and Navarro (2007),

Cooley, Navarro, and Takahashi (2015). See also Abbring and Heckman (2007) for a more

extensive list of references.

Factor models have been used in a number of other contexts in economics. Notably,

factor models have also been used in the context of earnings dynamics (see, e.g., Abowd

and Card (1989), Horowitz and Markatou (1996), Bonhomme and Robin (2010)) as well as

cognitive and non-cognitive skill production technology (Cunha, Heckman, and Schennach

(2010)). All of these papers, with the notable exception of Cunha, Heckman, and Schennach

(2010), rely on linear factor models where the unobservables are assumed to be given by the

sum of a linear combination of mutually independent factors and an idiosyncratic shock.

Factor structures are also used in financial econometrics. In these settings it is shown

that factor structures can allow for new models for the dependence structure, or copula, of

economic variables based on a latent factor structure. This can be particularly attractive for
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relatively high dimensional applications, involving dozens or more variables- see for example,

Oh and Patton (2013),Oh and Patton (2015), Hull and White (2004). In panel data models

factor models have also been useful too allow for more general forms of nonstationarity and

dynamics- see, e.g. Bai and Ng (2002),Khan, Ponomareva, and Tamer (2015). In time series

models with factor structures, see, e.g. Stock and Watson (2011).

In this paper we explore the informational content of factor structures often employed,

in a particular class of models. This class can best be described as a system of simultane-

ous discrete equations. Focusing on this class of models can be well motivated from both

an applied/empirical and theoretical perspective. From the former, many treatment effect

models and parameters of interest fit into this framework as treatment is often a binary

and endogenous variable in the system, whose effect on outcomes is often a parameter the

econometrician wishes to conduct inference on. This is of empirical interest in in many fields

such as labor, industrial organization and development. Furthermore, inference this type of

system can be very complicated, if not impossible without strong parametric assumptions,

which may not be reflected in the observed data. As we will discuss in detail, a semi para-

metric approach to these models, while desirable from a theoretical point of view because

of its generality, often fail to achieve identification of parameter, or at best best only do so

in sparse regions of the data, thus making inference impractical in practice. Given these

two extremes- the non robustness of a parametric approach and the impracticality or even

impossibility of conducting inference with semiparametric approaches in this setting, the

factor structure condition may be a useful “in between” setting, and at the very least, can

be used to gauge the sensitivity of the parametric approach to their stringent assumptions.

We will first illustrate our main idea within the context of a specific simultaneous model-

the binary outcome with a binary endogenous explanatory variable which is modeled in a

separate equation. We impose a factor structure to the two unobservables in this system

and explore informational content of this assumption by comparing the identification results

we attain to the extreme settings of fully parametric and fully semi parametric models. Our

main findings in this case is that we no longer require the additional exclusion restriction

nor the strong support conditions often assumed that was needed for identification in this

model without the factor structure.

The rest of the paper is organized as follows. In the next section we formally describe the

triangular system with factor structure, stating the conditions (e.g. regularity and support)
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we impose on observed and unobserved variables. This is then followed by our main identifi-

cation results for the parameters of interest in this model, notably the regression coefficients

and the Average Structural Function(ASF). Many of these identification results translate

directly into analogy based estimators of the parameters.

Section 3 explores the asymptotic properties of these estimators which fall into three cate-

gories. When the support conditions for point identification are not satisfied we establish set

consistency of the estimator. When the support conditions result in irregular identification

(identification at the boundary of support of observed variables) we show point consistency

of the estimator. Finally, when the support conditions are such that regular identification is

achieved, we show that the estimator is root-n consistent and asymptotically normal.

Section 4 explores the finite sample properties of the estimator in two ways. One is

through simulation studies, and the other is an empirical illustration, where, following Dee

(2004), we estimate the causal effect of civic returns to college.

Section 5 concludes with a summary and discussion for potential extensions of the base

model, which involve the study of more complicated (non-triangular) systems, as well more

complicated (nonparametric) factor structures. An appendix collects the proofs of the main

theorems.

2 Triangular Model with Factor Structure

In this section we will consider the identification of the following factor structure model:

Y1 = 1{Z ′1λ0 + Z ′3β0 + α0Y2 − U > 0}. (2.1)

Turning to the model for the endogenous regressor, the binary endogenous variable Y2 is

assumed to be determined by the following reduced-form model:

Y2 = 1{Z ′δ0 − V > 0}, (2.2)

where Z ≡ (Z1, Z2) is the vector of “instruments” and (U, V ) is a pair of random shocks.

The subcomponent Z2, Z3 provides the exclusion restrictions in the model and is required

to be nondegenerate conditional on Z ′1λ0 + Z ′3β0. We assume that the error terms U and V

4



are jointly independent of Z. The endogeneity of Y2 in (2.1) arises when U and V are not

independent.

The above system, or minor variations of it, have considered widely in the recent lit-

erature. See for example, Vytlacil and Yildiz (2007), Abrevaya, Hausman, and Khan

(2010),Klein, Shan, and Vella (2011), Khan and Nekipelov (2010) and references therein.

An important parameter of interest is α0, which relates to a treatment effect parameter.

But as discussed in the aforementioned papers, this parameter is difficult, if not impossible to

identify and estimate without imposing parametric restrictions on the unobserved variables

in the model, (U, V ). Such parametric restrictions, such as the often assumed bivariate

normality assumption, are not robust to misspecification in the sense that any estimator of α0

based on these conditions will be inconsistent if (U, V ) have a different bivariate distribution.

The established difficulty of identifying α0 in semi parametric, i.e., “distribution free”

models, and the sensitivity of its identification to misspecification in parametric models is

precisely what motivates the factor structure we add to the above model in this paper.

Specifically, to allow for enodogeneity in the form of possible correlation between U, V , we

augment the model add the following equation:

U = γ0V + Π (2.3)

where Π is an unobserved random variable,, assumed to be distributed independently of

(V, Z1, Z2, Z3), and γ0 is an additional unknown scalar parameter. This linear, one factor

structure has been imposed in the literature many times- see for example Heckman (1991).

Our goal will be to first establish identification for the parameters (α0, δ0, γ0, β0, λ0) under

standard nonparametric regularity conditions on (U, V ). 1 Later in the paper we will gener-

alize the factor structure imposed here to consider nonlinear or nonparametric relationships

between U, V . Our first results are based on the following conditions on both the observed

variables (Y1, Y2, Z1, Z2, Z3) and unobserved variables (U, V,Π):, as well as parameter values

α0, δ0, λ0, β0, γ0.

So basically our approach is to add more structure to the fully semiparametric triangular

binary system so quantify the identifying power of the added structure. Interestingly this is

1Actually, we will focus later in this paper on the parameters (α0, γ0). That is because the other parameter

are not as difficult to identify, and work on them already exists in the literature.
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the opposite approach of generalizing the fully parametric model. Such an approach has been

taken recently in Han and Vytlacil (2013), who begin with a bivariate Probit model, and

generalize it with the introduction of a class of one parameter Copulas, providing conditions

such that identification can still be obtained. As we explain here, neither approach generalizes

the other, as the two models are non nested.

The linear factor structure and the one-parameter copula model considered in Han and

Vytlacil (2013) are not nested by each other. Based on the factor structure, we can recover

FΠ, the distribution of Π, as a function of (FU , FV , λ) by deconvolution. Then we can write

the copula of (U, V ) as

FU,V (F−1
U (u), F−1

V (v)) =

∫ F−1
V (v)

−∞
FΠ(F−1

U (u)− λw;FU , FV , λ)fV (w)dw = C(u, v;FU , FV , λ).

If the marginals of (U, V ) are known, then our linear factor structure implies the copula

between (U, V ) can be characterized by one parameter λ. However, comparing to Han and

Vytlacil (2013), we do not require the copula to be stochastically increasing to achieve

identification. If the marginals of (U, V ) are unknown, then the copula depends not only on

λ but only on two infinite dimensional parameter (FU , FV ). Thus the factor structure cannot

be characterized by a one-parameter copula. In addition, in order to achieve identification,

Han and Vytlacil (2013) first nonparametrically identify the two marginals by assuming the

existence of a full support common regressor. In contrast, under the factor structure, we

bypass the nonparametric identification of the marginals as a whole and directly consider

the identification of structure parameters. Therefore, in both cases, our model cannot be

nested by the one-parameter copula model. On the other hand, there exists one-parameter

copula models that cannot be decomposed into factor structures. This implies our model

does not nest Han and Vytlacil (2013) either.

Our main identification results are based on the following conditions:

A1 The parameter θ0 ≡ (δ0, γ0, β0, λ0) is an element of a compact subset of R4.

A2 The vector of unobserved variables, (U, V,Π) is continuously distributed with support

on R3 and independently distributed of the vector (Z1, Z2, Z3). Furthermore, thaw

random variable Π is distributed independently of V .

A3 The matrix E[ZZ ′] is invertible, as is the matrix E[Z̃Z̃ ′] where Z̃ ≡ (Z1, Z3).
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A4 The random variable Z2 is continuously sitributed on an interval which is a subset of R,

conditional on all values of Z̃.

A5 |α0| < `(Z ′1γ0 + Z ′3β0) + `(Z2), where `(·) denotes the length operator.

Under this set of conditions, we have the following identification result.

Theorem 2.1 Under assumptions A1-A5, θ0 is point identified.

Proof : See appendix.

Thus the theorem concludes that under our stated conditions and our factor structure

we can attain point identification. But what best demonstrates the identifying power of

the factor structure is the comparison of our other assumptions compared to those typically

imposed in the literature for this model. As explained in the remarks below the factor

structure enables the relaxation of strong exclusion and support conditions typically assumed

for inference in these types of models.

Remark 2.1 Assumption A2 is standard in this literature in both the unobservables U, V as

well as the independence between Π and V . References for the former (instruments indepen-

dent of unobservables), can be found in Abrevaya, Hausman, and Khan (2010),Vytlacil and

Yildiz (2007),Klein, Shan, and Vella (2011),Khan and Nekipelov (2010). For the latter, (Π

independent of V ), see, e.g. Chen, Khan, and Tang (2013),Chen and Khan (2008), Bai and

Ng (2002).

Remark 2.2 Assumption A3 is the standard full rank condition found in these and other

nonlinear models.

Remark 2.3 Assumption A4 requires the instrumental variable to be continuously distributed,

which is often required in models with discrete outcomes. Recent papers - e.g. D’Haultfoeuille

and Fevrier (2014), Torgovitsky (2014) establish identification with discrete instruments, but

crucially require the endogenous variable in the outcome equation to be continuously dis-

tributed. This does not apply to our model nor many other treatment effect models.
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Remark 2.4 Assumption A5 is in one sense a parameter space constraint. It is analo-

gous to that imposed in Vytlacil and Yildiz (2007), but crucially distinct in important ways.

Specifically, the length of the support of the instrument Z2 now helps in the identification of

α0. This is natural, as a purpose of the instrument Z2 should benefit in the identification of

the parameters of the outcome equation as it sleds in standard IV approaches for the linear

model. This is not the case, for example in Vytlacil and Yildiz (2007). Another crucial

aspect of Assumption A5 is imposes no constraints on β0. Specifically it can be 0, yet we still

can attain identification. This is important to point out as without it, the econometrician

would require the second exclusion restriction for identification, something difficult enough

to attain in many empirical settings.

Thus we immediately see informational content of the factor structure we impose. It

enables point identification under weaker support condition when compared to the existing

literature, and does not require the second exclusion restriction either. Later in the paper we

will extend these arguments to the case where we do not attain point identification. Specif-

ically, we will show that the factor structure enables sharper bounds for α0 than bivariate

models without factor structures, when point identification is not attainable in either model.

3 Estimation and Asymptotic Properties

The previous section established a point identification result, whose proof is given in the

appendix. The identification result is constructive in the sense that it results directly in an

analogy estimator for the parameters of interest which we describe in detail here. To simplify

the exposition of our procedure, we will focus exclusively on the parameters α0, γ0. Thus

we will treat the other parameters as known, and denote the resulting indexes, by X1, X.

Treating the other parameters as known can be justified by established results (see, e.g.

Abrevaya, Hausman, and Khan (2010),Klein, Shan, and Vella (2011), Khan and Nekipelov

(2010)) which show that these estimators are easier to identify and can be estimated at faster

rates than α0.

Denote P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x). These choice probabilities

are unknown, but can be estimated as we describe below. Recall one of our identifying

8



assumptions was that the instrument in the treatment equation was continuously distributed.

This assumption and our smoothness conditions on the choice probabilities implied that

the choice probability functions were differentiable with respect to this instrument. Let

∂2P
ij(x1, x) denote the derivative of the ij choice probability with respect to the second

argument, in this case the instrument in the treatment equation. This derivative is unknown,

but is also estimable from the data.

Another function needed for our identification result was the density function of the

unobserved term V , denoted by fV (·). This is also unknown, but from the structure of our

model can be recovered as the derivative (with respect to the instrument of E[Y1|X], and

hence is estimable from the data. Our identification result depended on the sign of the index

evaluated at two different regressor values:

X1 + α− γX − (X̃1 − γX̃)

where (X̃1, X̃) denotes the second realization values.

As shown in the proof of identification, our main identification result

∂2P
11(X1, X)/fV (X) +∂2P

10(X̃1, X̃)/fV (X̃) = 0 ⇐⇒ X1 +α− γX− (X̃1− γX̃) = 0

Note the left handed equality are functions of the data alone and not the unknown

parameters. Furthermore, as said, while these functions, choice probability, density functions

are unknown they can be consistently estimated from the data in a preliminary stage.

The right hand side equality involves the unknown parameters we wish to estimate and

conduct inference on. As we will see, it will prove useful to rearrange the right handed

equality as

X̃1 −X1 = α + γ(X̃ −X)

and note the above equator has a regression type form as if we were regression a ”dependent”

variable X̃1 −X1 on the ”regressor” (X̃ −X), with ”intercept” α and ”slope coefficient” γ.

This expression motivates a weighted least squares estimator of the unknown parameters

α, γ, by only assigning positive weight to observations which satisfy the equality :

∂2P
11(x1, x)/fV (x) + ∂2P

10(x̃1, x̃)/fV (x̃) = 0
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and for those observations regress X̃1 −X1 on (X̃ −X), with intercept.

Implementation requires further details to pay attention to, The unknown choice prob-

abilities, their derivatives, and the density of V have to be estimated using nonparametric

methods, and for this we adopt linear methods as they are particularly well suited for esti-

mating derivatives of functions.

An additional implementation issue to deal with is that the equality above involving

the choice probability derivatives will never occur exactly as they involve the instrumental

variable which was assumed to be continuously distributed in our identification result. To

address this problem, we sign ”kernel” weights which depend on both how far the argument

is from 0 (the further, the less weight) and the sample size, so in the limit we only use

observations where the argument is arbitrarily close to 0. Such weights have been used in

the literature in many settings - see e.g. Ahn and Powell (1993), Chen, Khan, and Tang

(2013), for just a couple of many examples.

A last implementation issue we comment on here is the choice of X, X̃. Here we choose to

use all pairs in the sample, which we denote by Xi, Xj. Thus from a sample of N observations

our proposed estimator is to minimize the pairwise weighted least squares objective function:

1

n(n− 1)

∑
i 6=j

ŵij((X1i −X1j)− α− γ(Xi −Xj)
2) (3.4)

where ŵij denotes the kernel weighting scheme.

We denote our estimator, which the minimizer of the the above objective function by

α̂, γ̂. In the next section we will discuss the asymptotic properties of this estimator under

stated regularity conditions.

Before doing so, we discuss here both advantages and disadvantages of this estimation

procedure:

Remark 3.1 The proposed estimation procedure is computational friendly in that the sense

that although it involves two stages, each stage is “closed form” in the sense that optimization

routined are not required. One can simply do local linear estimation in the first stage to

require derivatives of choice probabilities in the first stage, and weighted least squares in the

second stage.
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Remark 3.2 One disadvantage of the proposed procedure is the number of smoothing param-

eters required. Specifically, smoothing parameters are required in the first stage to estimate

the derivatives of choice probabilities, and then again in the second stage to construct the

kernel weights. The conditions on each of these tuning parameters, and how they relate to

each other, are discussed in the next section, when we establish the asymptotic theory for

this estimator.

These advantages and disadvantages are worth further discussing when compared to a

second procedure we introduce now. The first stage is identical and involves non paramet-

rically estimating choice probability derivatives with respect to the continuous instrument.

But the second stage involves a different objective function, which is more of the flavor of a

least absolute deviations, as opposed to a least squares, approach: Letting θ̂ denote (α̂, γ̂),

our estimator is of the form:

The proposed estimator takes the following form:

θ̂ = arg max
θ
Qn,2(θ) ≡

∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j, Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j, Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) < 0}],

with

φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃)

This estimator has advantages and disadvantages when compared the first estimator. A

main advantage is that only one smoothing parameter is required, in this case to estimate

the derivative of the choice probability. However, a potential disadvantage is computational,

as the second stage objective function is not smooth resulting in the estimator not being

closed form. Optimization routines, such as Nelder- Meade for example, will be required for

implementation.

The relative performance of each of the two estimators will be further explored later in

the paper in the simulation studies section. As we will also see, under stated conditions, each

of the two estimators is root-n consistent and asymptotically normal, so relative efficiency

can be explored by comparing their asymptotic variances.
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3.1 Average Structural Function

In the context of a single model such as the model with binary outcome and a binary

endogenous regressor, there could be other parameters that are of interest. Thus far we

have proposed a consistent estimator for the regression coefficient of a dummy endogenous

variable in a triangular system with a binary outcome variable and showed how our factor

structure could be useful in doing so. While the parameter α0 is of interest, it is not the only

parameter of interest from, say a policy perspective. For instance, a parameter of interest

considered in Blundell and Powell (2004) is the average structural function (ASF). Generally

speaking, the ASF is the predicted expected value of the outcome variable (Y ) given the

value of the explanatory variable (Y1). For the binary model that we are considering in

our example, identification of θ0 and the uniform consistency of the estimator does not

necessarily imply either of these properties for the ASF. The ASF can be expressed in terms

of the marginal c.d.f. of the unobserved variable U (provided that Y2 = 1{θ0Y1 + U > 0})
as G(y1) = 1− FU(θ0y1) (for y1 ∈ {0, 1}).

where here FU(·) denotes the cdf of U . So an estimator of FU(·) as well as our estimator

of α0 would be required for inference on the ASF. (Blundell and Powell 2004) propose an

estimator for the ASF in a binary outcome triangular system but require the endogenous

variable to be continuously distributed which rules out the treatment effect model we wish

to consider.

For the ASF here with a dummy endogenous variable, we propose the following multistep

estimator:

1. Nonparametrically estimate (using, say, kernel methods) E[D|Z] where recall D is the

treatment variable and Z is the instrumental variable.

2. Construct ”residuals”, V̂ = Y1 − E[Y1|Z].

3. With our estimator of α0, denote by α̂, and our constructed residuals, V̂ , nonparamet-

rically estimate, using, say, kernel methods, E[Y2|Y1θ̂, V̂ ].

4. To estimate the ASF at, say Y1 = 1, integrate out with respect to V̂ :

Ĝ(1) =
∫
Ê[Y1 · θ̂, V̂ ]dV̂

It remains to formally establish the asymptotic properties of this estimator, which will
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be determined by our asymptotic properties developed for α̂. While in Blundell and Powell

(2004) it was shown that the ASF is identified and can be consistently estimated when the

endogenous variable Y1 is continuous, such a result has not been established for the case

where Y1 is binary such as in our example. Moreover, since the distribution theory for α̂ is

now standard, due to the regular identification enabled by the factor structure, we expect

that the same will be true for the estimator of the ASF. Consequently, standard inference

procedures will apply.

4 More General Factor Structures (Preliminary)

Up until now we have proposed identification and estimation results for a triangular system

with a particular factor structure. As stated this particular factor structure was motivated y

similar specifications previously imposed in the literature for different models. An advantage

of our model specification was that it enabled stronger identification results for parameters

of interest.

However a disadvantage of this structure was that it was restrictive in two ways. One is

that it was a ”one factor” model. The other is the linear in parameter relationship between

the two unobserved components, which although often imposed in the literature, leaves open

the possibility of misspecification. We leave the exploration to multi factor models to future

research and focus in this section on a single, but nonlinear, nonparametric factor structure.

As we can show here, the approach taken in the previous sections can readily extend to the

more general model.

Specifically, we consider the following relationship between unobserved components:

U = g0(V ) + Π̃ (4.1)

where Π̃ is an unobserved random variable assumed to be distributed independently of

V and all instruments. g0(·) is an unknown function assumed to satisfy standard regularity

conditions such as smoothness. Again, the parameter of interest is α, but now the unknown

nuisance parameter in the factor equation is infinite dimensional. Now our approach is to

replace the vector X with a series of basis functions of X, such as, for example orthonor-

mal polynomials, in X. Those “basis” functions are meant to serve as an approximation of
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g0(·). With that replacement, we carry inexactly as before, except now instead of estimating

a kernel weighted linear regression model it will be a kernel weighted semi linear, or par-

tially linear regression model Robinson (1988). See the appendix for more details of how to

construct such an estimator.

The asymptotic theory of this estimator for the generalized factor structure model will

be based on the the number of basis functions increasing with the samples size, as is usually

the case with series or sieve estimation, Ai and Chen (2003). Asymptotic properties of the

estimator of the parameter α0 can also be simultaneously recovered, as shown in Ai and

Chen (2003).

5 Finite Sample Properties

In this section we explore the finite sample properties of the proposed estimation procedures

via a simulation study. In both designs,

Y1 = 1{X1 + α0Y2 − U ≥ 0}, Y2 = 1{X − V > 0}

such that (X1, X) have marginals uniform (0.0.5) and N (0, 1) respectively, are mutually

independent and (X1, X) ⊥ (V,Π). U = γ0V + Π such that (V,Π) are bivariate normal with

zero mean and unit variance. For design 1, (α0, γ0) = (0.25, 0.5) such that both our and

Vytlacil and Yildiz (2007)’s identification condition hold. For design 2, (α0, λ0) = (0.75, 0.5)

such that our identification still holds while Vytlacil and Yildiz (2007)’s does not.

For each choice of sample size n = 100, 200, 400 , we simulation 400 samples and re-

port the bias, median bias, RMSE, MAD(median absolute deviation) of both Vytlacil and

Yildiz (2007)’s estimator (WLS) and ours (WLS-F). For simplicity in implementation, we

use second-order Gaussian kernels for matching the pairs and estimate the C.D.F. of (V,Π)

and ∂2P
11(x1, x)/fV (x) + ∂2P

10(x̃1, x̃) using local linear estimator, with bandwidth rates

choses to minimize AMSE. Recent work by Henderson, Li, Parmeter, and Yao (2015) discuss

bandwidth selection methods for estimating derivatives of regression functions which could

prove useful for our estimator at hand, though we have yet to experiment with this.

We use bandwidth h1 = 0.7σ̂1n
−1/5 in the matching kernel in our estimator in which σ̂1

is the sample standard deviation of

∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j, Xj)/fV (Xj).
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To compute Vytlacil and Yildiz (2007)’s estimator, we not only match ∂2P
11(X1,i, Xi)/fV (Xi)+

∂2P
10(X1,j, Xj) with zero but also Xi with Xj. We use bandwidth h2 = 0.7σ̂2n

−1/5 and

hx = 0.7σ̂xn
−1/5 for the two match kernels respectively in which σ̂2 is the sample standard

deviation of

∂2P
11(X1,i, Xi) + ∂2P

10(X1,j, Xj)

and σx is
√

2 times the sample standard deviation ofX. As results from the table indicate, the

fiite sample performance generally agrees with the asymptotic theory. The estimator which

foes not exploit the factor structure is clearly inconsistent for certain parameter values,

as indicated by the bias not shrinking with the sample size. However, the RMSE for all

estimators, including those that do impose the factor structure, do not appear to decline at

the parametric rate. We attribute this to the rates chosen for the bandwidths, so clearly

more work has to be done in this area.

α = 0.25 Bias Med. Bias RMSE MAD

N WLS-F WLS WLS-F WLS WLS-F WLS WLS-F WLS

100 -0.007 -0.018 0.100 0.220 0.339 0.316 0.250 0.260

200 0.005 -0.055 0.120 0.240 0.331 0.289 0.240 0.260

400 0.119 -0.088 0.120 0.260 0.330 0.256 0.240 0.280

α = 0.75 Bias Med. Bias RMSE MAD

N WLS-F WLS WLS-F WLS WLS-F WLS WLS-F WLS

100 -0.261 -0.277 0.360 0.240 0.361 0.288 0.400 0.260

200 -0.178 -0.254 0.340 0.240 0.351 0.259 0.380 0.240

400 -0.138 -0.245 0.340 0.240 0.341 0.248 0.360 0.240

Table 1: Finite sample performance
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6 Application to the estimation of the civic returns to

college (in progress)

We apply our method to the estimation of the civic returns to college, revisiting the influential

work by Dee (2004) on this question. Specifically, we are interested in estimating the effect

of attending college on several binary outcomes related to civic engagements and attitudes,

including participation to votes and support for free speech. Our analysis is primarily based

on data from the High School and Beyond longitudinal study, which follows over time a cohort

of individuals who were high school sophomores in 1980. Follow-up interviews were conducted

in 1984 and 1992. College attendance is reported in the 1984 interview, while the measures

related to civic engagements and attitudes are obtained from the 1992 interview. Key to our

empirical strategy is the availability of a continuous instrument for college attendance (our

binary treatment here). We use the same instruments as Dee (2004), namely i) the distance

from the respondent’s high school to the nearest two-year college, and ii) the number of

two-year colleges in the respondent’s county in 1983. We refer the reader to Dee (2004) for

a thorough discussion of the validity of these instruments in this context. Table 2 below

reports the variables used in the analysis, along with their means. The total sample size

is N = 11, 489. From the Monte Carlo simulation results discussed above, we expect our

estimator to perform well with this sample size, both in terms of bias and variance.

Unlike Dee (2004) who estimates the civic returns to college using a bivariate probit

model, a key advantage of our method is that it is distribution-free.2 It is worth noting that

our framework is strictly more general than bivariate probit since our factor assumption is

always satisfied when the joint distribution of the unobservables from the treatment and

outcome equation is normal.

2See Altonji, Elder, and Taber (2005) who provide evidence on the role played by functional forms versus

exclusion restrictions when using a bivariate probit to estimate the effect of catholic schooling on academic

achievement.
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Variables Mean 
Currently registered to vote (1992) 0.669
Voted in past 12 months (1992) 0.355
Vote in 1988 Presidential election (1992) 0.553
Any volunteer work in last 12 months (1992) 0.371
High school graduate (1984) 0.844
College entrant (1984) 0.543
Importance of correcting inequality (1980) 1.8
Civics standardized test score (1980) 50.8
Female 0.521
Black 0.124
Hispanic 0.209
Other Race 0.051
Born Before 1964 0.284
Protestant 0.332
Catholic 0.382
Other Christian 0.047
Jewish 0.011
Other Religion 0.037
Religious background: none/missing 0.133
Family income missing 0.214
Family income <$8,000 0.06
Family income $8,000 to $14,999 0.117
Family income $15,000 to $19,999 0.105
Family income $20,000 to $24,999 0.109
Family income $25,000 to $29,999 0.106
Family income $30,000 to $39,999 0.127
Family income $40,000 to $49,999 0.071
Family income $50,000 or higher 0.092
Parent education missing 0.162
Parent high school dropout 0.282
Parent high school graduate 0.197
Parent some college 0.212
Parent college graduate 0.148
Single mother 0.136
Single father 0.027
Natural mother/stepfather 0.057
Natural father/stepmother 0.015
Other family structure 0.099
Both parents 0.666
School-level variables 
Urban school 0.227
Suburban school 0.503
Rural school 0.27
Miles to a 4-year college 16.7
Miles to a two-year college 16.7
State/county-level variables 
Number of two-year colleges in county 2.43
1980 county-level votes for President ÷ 18+ population 0.529
1980 county-level population aged 18 to 24 0.529
1980 county-level percent high school graduates among 25+ population 0.66
1992 state-level active mail-in voter registration 0.474
1992 state-level years with “motor-voter” regulations 1.4
Sample size 11,489

Table 2: Variables from the High School and Beyond (Sophomore Cohort) data used in the Analysis 



7 Conclusions

In this paper we explored the identifying power of factor structures in discrete simultaneous

systems. We found that for a binary-binary system the factor structure we considered

did indeed add informational content. Specifically, it enabled the relaxation of both the

exclusion and support conditions typically employes in the identification of these models. As

we then demonstrated factor structures then enabled the regular identification of parameters

of interest, and we proposed new estimation procedures that converged at the parametric

rate with a limiting normal distribution. Finite sample properties of the estimators were

demonstrated thru simulation studies and an empirical illustration.

The work here opens ares for future research. For example, the factor structure we

assume, while common in the existing literature, could be vernalized in different ways. For

example, the structure could be more nonlinear an nonparametric. Although he outline a

procedure for estimation in the latter case, a formal, more rigorous proof of the asymptotic

theory for this procedure instill remains to be completed. Furthermore, models with multiple

factors, and other nonlinear models are worth exploring. We leave these for future work.
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A Identification Results for models with and without

Factor Structrures

A.1 Without Factor Structure

Model: In tis section we will focus exclusively on the identification and estimation of the

sub parameter vector θ̃0 ≡ (α0, λ0). We do so because the other parameters have already be

shown to relatively easy to identify even without the factor structure- see, e.g. Abrevaya,

Hausman, and Khan (2010). Without a factor structure, α0 has been proven difficult to

identify, see, e.g. Khan and Nekipelov (2010), and the identifiability λ0 has remind an pen

question in this literature. Thus we will focus on the “condensed” model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.

This section tries to derive the necessary and sufficient conditions for identification of α0.

What is the informational content of the model in the sense of Manski (1988). What is the

semiparametric information bound in the sense of Newey (1990). When the identification

assumption does not hold, what is the sharp identified set of α0. Propose a so called adaptive

estimation such that when identification is achieved, the object function is uniquely maxi-

mized at α0 and when point-identification is not achieved, the object function is maximized

at the identified set.

A.1.1 Conditions for identification

Assumption 1

1. (X1, X) ⊥ (U, V ).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure. The support of (X1, X) is [a, b] × Supp(X), in which Supp(X), the support of X,

is compact.

3. V is continuously distributed over <. And its density w.r.t. Lebesgue measure exist.

Theorem A.1 Assumption 1 holds. Then |α0| ≤ b− a is necessary and sufficient for α0 to

be identified.
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Proof : Denote P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x). Then

P 11(x1, x) =

∫ x

−∞
FU(x1 + α0|V = v)f(v)dv

P 10(x̃1, x) =

∫ +∞

x

FU(x̃1|V = v)f(v)dv.

(A.1)

Taking derivatives w.r.t. the second argument of the the LHS function, we have

∂2P
11(x1, x) = FU(x1 + α0|V = x)f(x)

∂2P
10(x̃1, x) = −FU(x̃1|V = x)f(x).

If |α0| ≤ b − a, then there exists pair (x1, x̃1) such that x1 + α0 = x̃1. This pair can be

identified by checking the equation below:

∂2P
11(x1, x)/f(x) + ∂2P

10(x̃1, x)/f(x) = 0.

This concludes the sufficient part.

When α0 < a− b, for any α < α0, we can define

Ũ = U + α− α0 if U ≤ b+ α0

Ũ = U if U > b+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α, U ≤ b+ α0) + P (Ũ ≤ x1 + α, U > b+ α0|V = v)

= P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ b+ α0|V = v) + P (Ũ ≤ x1, U > b+ α0|V = v)

= P (U ≤ b+ α0, U ≤ x1 + α0 − α|V = v) + P (b+ α0 < U ≤ x1, |V = v)

= P (U ≤ b+ α0|V = v) + P (b+ α0 < U ≤ x1, |V = v)

= P (U ≤ x1|V = v).

Let GU,V and GŨ ,V be the joint distribution of (U, V ) and (Ũ , V ) respectively. Then the above

calculation with (A.1) imply that (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.

When α0 > b− a, for any α > α0, we can define

Ũ = U + α− α0 if U > a+ α0

Ũ = U if U ≤ a+ α0
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Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α, U ≤ a+ α0) + P (Ũ ≤ x1 + α, U > a+ α0|V = v)

= P (U ≤ a+ α0|V = v) + P (a+ α0 < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α0|V = v) + P (Ũ ≤ x1, U > a+ α0|V = v)

= P (U ≤ x1|V = v).

So again, (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.

Theorem A.2 Assumption 1 holds. When |α0| > b− a, the sharp identified set for α0 is

A∗ = {α : α > b− a if α0 > 0 and α < a− b if α0 < 0}.

Proof : First, when |α0| > b − a, the sign of α0 is identified by the data. We take

α0 > b − a as an example. By the proof of Theorem A.1, we have already shown that all

α > α0 is in the identified set. Now we consider b−a+α0

2
≤ α < α0.

Ũ = U + α− α0 if U > a+ α

Ũ = U if U ≤ a+ α

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α, U ≤ a+ α) + P (Ũ ≤ x1 + α, U > a+ α|V = v)

= P (U ≤ a+ α|V = v) + P (a+ α < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α|V = v) + P (Ũ ≤ x1, U > a+ α|V = v)

= P (U ≤ x1|V = v) + P (U ≤ x1 + α0 − α, U > a+ α|V = v).

= P (U ≤ x1|V = v).

Here note that the last equality is because x1 + α0 − α ≤ b+ α0 − α ≤ a+ α if α ≥ b−a+α0

2
.

Denote α(1) = b−a+α0

2
. Then we have shown that there exists U (1)(α) which only depends on

α such that for any x1 ∈ [a, b], any v and any α0 > α ≥ α(1)

P (U (1)(α) ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α) ≤ x1|V = v) = P (U ≤ x1|V = v).
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In particular, there exists U (1)(α(1)) such that

P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

Now repeating the above construction but replacing U with U (1) and α0 with α(1), we have

for any α(1) > α ≥ α(2) ≡ b−a+α(1)

2
, there exists U (2)(α) such that for any x1 ∈ [a, b], any v

and any α(1) > α ≥ α(2),

P (U (2)(α) ≤ x1 + α(2)|V = v) = P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (2)(α) ≤ x1|V = v) = P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

This concludes that any α such that α0 > α ≥ α(2) is in the identified set. In general, by

repeating the procedure k times, we have that any α such that

α0 > α ≥ α(k) = (1− 1

2k
)(b− a) +

α0

2k

is in the identified set. For any α > b − a, there exists some finite k such that α >

(1− 1
2k

)(b− a) + α0

2k
. This concludes the result that α > b− a is in the identified set.

Finally, since if α > b−a, ∂2P
11(x1, x)+∂2P

10(x̃1, x) > 0 for all pairs of (x1, x) and (x̃1, x)

while, if α ≤ b− a, at least there exists one pair (x1, x) and (x̃1, x) such that ∂2P
11(x1, x) +

∂2P
10(x̃1, x) ≤ 0. This implies α ≤ b − a is not in the identified set. Therefore, the sharp

identified set when α0 > b− a is α > b− a.

When α0 < a− b, symmetric argument implies that the identified set is α < a− b.

A.1.2 Adaptive Estimator

Now we propose an estimator of α0. Based on the proof of theorem A.1, if α0 ≤ b− a,

{∂2P
11(X1, X) + ∂2P

10(X̃1, X̃) ≥ 0}1{X = X̃} ⇐⇒ {X1 + α0 ≥ X̃1}1{X = X̃}.

We can nonparametrically estimate the LHS, so the sample object function is

α̂ = arg max
∑
i 6=j

f̂i,j(α)

in which

f̂i,j(α) =k(
Xi −Xj

h
)[1{∂2P̂

11(X1,i, Xi) + ∂2P̂
10(X1,j, Xj) ≥ 0}1{X1,i + α ≥ X1,j}

+ 1{∂2P̂
11(X1,i, Xi) + ∂2P̂

10(X1,j, Xj) < 0}1{X1,i + α < X1,j}].
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It is easy to see that the infeasible object function take the form of Q(α) = E(fi,j(α)|Xi =

Xj) in which

fi,j(α) =[1{∂2P
11(X1,i, Xi) + ∂2P

10(X1,j, Xi) ≥ 0}1{X1,i + α ≥ X1,j}

+ 1{∂2P
11(X1,i, Xi) + ∂2P

10(X1,j, Xi) < 0}1{X1,i + α < X1,j}].

Theorem A.3 Assumption 1 holds. If (X1, X̃1)|X = X̃, |α0| < b− a, then α0 is the unique

maximizer of Q(α).

Proof : For any α 6= α0,

Q(α0)−Q(α) =E((1{∂2P
11(X1,i, Xi) + ∂2P

10(X1,j, Xi) ≥ 0} − 1{∂2P
11(X1,i, Xi) + ∂2P

10(X1,j, Xi) < 0})

× [1{X1,i + α0 ≥ X1,j > X1,i + α} − 1{X1,i + α0 < X1,j ≤ X1,i + α}]|Xi = Xj)

(A.2)

So if α > α0,

Q(α0)−Q(α) = P (X1,i + α0 ≤ X1,j < X1,i + α).

Note that the support of (X1,i, X1,j)|Xi = Xj is [a, b] × [a, b]. The area x1,i + α0 ≤ x1,j <

x1,i + α, (x1,i, x1,j) ∈ [a, b] × [a, b] has a positive Lebesgue measure as shown in the Figure

below. Then since (X1, X̃1)|X = X̃ is absolute continuous, P (X1,i + α0 ≤ X1,j < X1,i +

α|Xi = Xj) > 0.

a b

a+ α0

b+ α0

a

b

X1,j

X1,i

X1,j = X1,i + α0

X1,j = X1,i + α

Figure 1: Positive Probability when 0 < α0 < b− a and α > α0
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Similarly, when α < α0,

Q(α0)−Q(α) = P (X1,i + α0 ≥ X1,j > X1,i + α|Xi = Xj) > 0.

A.1.3 Manski’s information content

A1(α) ={(X1, X̃1), φ(X1, X̃1;α0) ≥ 0 > φ(X1, X̃1;α) or φ(X1, X̃1;α0) ≤ 0 < φ(X1, X̃1;α)},

in which

φ(x1, x̃1;α) = x1 + α− x̃1.

In Theorem A.3, we have shown that when |α0| < b− a, P (A(α)) > 0 for any α 6= α0. Next

we consider the case when |α0| ≥ b− a. Denote A1 = {α : P (A1(α)|X = X̃) = 0}. Then we

call A1 that we cannot distinguish from the true parameter α0.

Theorem A.4 Assumption 1 holds. (X1, X̃1)|X = X̃. Then if |α0| > b− a,

A1 = {α : α ≥ b− a if α0 > 0 and α ≤ a− b if α0 < 0}.

Proof : First, as in the proof of Theorem A.2, we note that when |α0| > b − a, the

sign of α0 is identified. For α0 > 0, it is easy to see that if α0 > b − a, x1 + α0 > x̃1

for any (x1, x̃1) ∈ Supp(X1) × Supp(X1). For any α ≥ b − a, P (A1(α)|X = X̃) = 0

and for any α < b − a, λ(A1(α)) > 0. Since (X1, X̃1)|X = X̃ is absolutely continuous,

P (A1(α)|X = X̃) > 0. The case for α0 < 0 can be proved symmetrically. This concludes

the proof.

Comparing Manski’s information content A1 with the sharp identified set A∗ in Theorem

A.2, we notice that the only different is the boundary scenario that |α0| = b − a. In this

case, only two boundary points x1 = a, x̃1 = b are useful for identifying α0. Since X1 has

an absolute continuous distribution on its support [a, b], identification is achieved at a zero-

probability set. By Khan and Tamer (2010), we call this identification irregular. Theorem

A.4 shows that the adaptive estimation cannot distinguish irregular identification from non-

identification. In fact, next section shows that when |α0| < b − a, the semiparametric

efficiency bound for α0 is positive, while when |α0| = b − a, the semiparametric efficiency

bound becomes zero.
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Theorem A.5 Assumption 1 holds. If |α0| = b − a, then the semiparametric efficiency

bound for α0 is zero.

Proof: Recall that P ij(x1, x) = P (Y1 = i, Y2 = j|X1 = x1, X = x). We also denote

F (t1, t2) = Prob(U ≤ t1, V ≤ t2). Then we have

P 11(x1, x) = F (x1 + α0, x),

P 10(x1, x) = F (x1,∞)− F (x1, x),

P 01(x1, x) = F (∞, x)− F (x1 + α0, x),

P 00(x1, x) = 1− F (x1,∞)− F (∞, x) + F (x1, x).

Because F is the only infinite dimensional parameter. We now consider a one parameter

submodel of F which is written as λ(t1, t2) = δh(t1, t2) + F (t1, t2). For a model for some

fixed δ, we denote P ij
δ (x1, x) = Pδ(Y1 = i, Y2 = j|X1 = x1, X = x), such that

P 11
δ (x1, x) = λ(x1 + α0, x),

P 10
δ (x1, x) = λ(x1,∞)− λ(x1, x),

P 01
δ (x1, x) = λ(∞, x)− F (x1 + α0, x),

P 00
δ (x1, x) = 1− λ(x1,∞)− λ(∞, x) + λ(x1, x).

Let G(t1, t2) = ∂F (t1,t2)
∂t1

. Then the score of α0 is

Ψα(x1, x) =
1

2
[

y1y2

F 1/2(x1 + α0, x)
− (1− y1)y2

(F (∞, x)− F (x1 + α0, x))1/2
]G(x1 + α0, x).

Similarly, the score for F is

Ψδ(x1, x) =
1

2
[
y1y2h(x1 + α0, x)

F 1/2(x1 + α0, x)
+

(1− y1)y2(h(∞, x)− h(x1 + α0, x))

(F (∞, x)− F (x1 + α0, x))1/2

+
y1(1− y2)(h(x1,∞)− h(x1, x))

(F (x1,∞)− F (x1, x))1/2

+
(1− y1)(1− y2)(h(x1, x)− h(x1,∞)− h(∞, x))

(1− F (x1,∞)− F (∞, x) + F (x1, x))1/2
].

The information for the one-parameter family is∫
4(Ψα −Ψδ)

2dµ

=

∫
(
(G(x1 + α0, x)− h(x1 + α0, x))2

P 11(x1, x)
+

(h(x1,∞)− h(x1, x))2

P 10(x1, x)

+
(G(x1 + α0, x) + h(∞, x)− h(x1 + α0, x))2

P 01(x1, x)
+

(h(x1,∞) + h(∞, x)− h(x1, x))2

P 00(x1, x)
)dF (x1, x)
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We now consider the case in which α0 > 0 and α0 = b−a. Since Supp(X) is compact, we can

let h(x1,∞) = h(∞, x) = 0. The we can choose h(t1, t2) = G(t1, t2) for (t1, t2) ∈ [b, b+α0]×
Supp(X) and h(t1, t2) = 0 for (t1, t2) ∈ [a, b−η]×Supp(X). On (t1, t2) ∈ [b−η, b]×Supp(X),

h(t1, t2) = t1−b+η
η

G(b, x). Then we have∫
4(Ψα −Ψδ)

2dµ

=

∫
(
x1 − b+ η

δ
)21{b− η ≤ x1 ≤ b}[ G

2(b, x)

P 10(x1, x)
+

G2(b, x)

P 00(x1, x)
]dF (x1, x).

By letting ηw = b− x1, we have∫
4(Ψα −Ψδ)

2dµ

=

∫
(
x1 − b+ η

η
)21{b− η ≤ x1 ≤ b}[ G

2(b, x)

P 10(x1, x)
+

G2(b, x)

P 00(x1, x)
]dF (x1, x)

.
∫ 1

0

(1− w)2ηf(b− wη, x)dwdx→ 0

as η → 0. The case in which α0 = a− b can be proved by the same manner.

A.2 With Factor Structure

Model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0},

where U = γ0V + Π and V⊥Π. In this section, we want to propose another adaptive esti-

mation procedure and consider the information content explored by that. We then compare

the two information contents and argue that the one with factor structure is strictly large

than the one without. This implies two scenarios. (1) Factor structure helps identifying α0

when it is not without it. (2) In both case, α0 is not identified. But the adaptive estimation

produce narrower identified set when imposing factor structure. Note here we are not sure

the new adaptive estimation explore all the information content, i.e. the new identified set

when imposing factor structure is not necessarily sharp.
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A.2.1 Conditions for identification

Assumption 2

1. (X1, X) ⊥ (U, V ).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure with compact support. The density is bounded and bounded away from zero on

the support.

3. V is continuously distributed over <. And its density w.r.t. Lebesgue measure exist.

The identification relies on overlap support and a rank condition. The overlap support

condition is similar to the one for model without factor structure. But it also takes into

account of the variation of X. The rank condition is new because here we have two unknown

parameters. Rank condition helps to identify them separately from a system of equations.

Assumption 3

1. Supp(X1 + α0 − γ0X) ∩ Supp(X1 − γ0X) 6= ∅.

2. For any constant c, P (X − X̃ = c|X1 + α0 − γ0X = X̃1 − γ0X̃) < 1.

Theorem A.6 Assumption 2 and 3 hold. Then θ0 ≡ (α0, γ0) is identified.

Proof:

P 11(x1, x) =

∫ x

−∞
FΠ(x1 + α0 − γ0v)fV (v)dv

P 10(x̃1, x̃) =

∫ +∞

x̃

FΠ(x̃1 − γ0v)fV (v)dv.

Taking derivatives w.r.t. the second argument of the LHS function, we obtain

∂2P
11(x1, x)/fV (x) = FΠ(x1 + α0 − γ0x)

−∂2P
10(x̃1, x̃)/fV (x̃) = FΠ(x̃1 − γ0x̃).
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By Assumption 3-1, we know that there exists pairs (x
(1)
1 , x(1)) and (x̃

(1)
1 , x̃(1)) in Supp(X1, X)

such that

x
(1)
1 + α0 − γ0x

(1) = x̃
(1)
1 − γ0x̃

(1).

These pairs can be identified from data by the fact that

∂2P
11(x

(1)
1 , x(1))/fV (x(1)) + ∂2P

10(x̃
(1)
1 , x̃(1))/fV (x̃(1)) = 0.

By Assumption 3-2, there exists at least another pair (x
(2)
1 , x(2)) and (x̃

(2)
1 , x̃(2)) in Supp(X1, X)

such that

x
(2)
1 + α0 − γ0x

(2) = x̃
(2)
1 − γ0x̃

(2), and x(2) − x̃(2) 6= x(1) − x̃(1).

So we have a two equation system

α0 − γ0(x(1) − x̃(1)) = x̃
(1)
1 − x

(1)
1

α0 − γ0(x(2) − x̃(2)) = x̃
(2)
1 − x

(2)
1 .

Since x(2)− x̃(2) 6= x(1)− x̃(1), the system of equations has a unique solution. This concludes

the proof.

A.2.2 Adaptive Estimator

Recall that we have

∂2P
11(x1, x)/fV (x) = FΠ(x1 + α0 − γ0x)

−∂2P
10(x̃1, x̃)/fV (x̃) = FΠ(x̃1 − γ0x̃).

The proposed estimator takes the following form:

θ̂ = arg max
θ

Qn,2(θ) ≡
∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) =[1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j, Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j, Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) < 0}],

and

φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).
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The infeasible kernel for the U-statistic is

gi,j(θ) =1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j, Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) ≥ 0}

+ 1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j, Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j, Xj; θ) < 0}.

Denote Q2(θ) = Egi,j(θ).

Assumption 4 There exists a open set S ⊂ Supp(X1, X) × Supp(X1, X) ⊂ <4 such that

S ∩ {(x1, x, x̃1, x̃) : φ(x1, x, x̃1, x̃; θ0) = 0} 6= ∅.

Theorem A.7 Assumption 2, 4 hold, then Q2(θ) to have a unique maximizer.

Proof: Denote Gi,j = ∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j, Xj)/fV (Xj) and for simplicity,

φi,j(θ) = φ(X1,i, Xi, X1,j, Xj; θ), then

Q2(θ0)−Q2(θ)

=E(1{Gi,j ≥ 0} − 1{Gi,j < 0})[1{φi,j(θ0) ≥ 0 > φi,j(θ)} − 1{φi,j(θ) ≥ 0 > φi,j(θ0)}]

=P (φi,j(θ0) ≥ 0 > φi,j(θ)) + P (φi,j(θ) ≥ 0 > φi,j(θ0)).

Hence, θ0 is the unique solution if and only if for any θ 6= θ0,

P (φi,j(θ0) ≥ 0 > φi,j(θ)) + P (φi,j(θ) ≥ 0 > φi,j(θ0)) > 0.

Since S ∩ {(x1, x, x̃1, x̃) : φ(x1, x, x̃1, x̃; θ − 0) = 0} 6= ∅, S is open and (X1, X) is abso-

lutely continuous w.r.t. Lebesgue measure, P (φi,j(θ0) ≥ 0, (X1,i, Xi, X1,j, Xj) ∈ S) > 0

and P (φi,j(θ0) < 0, (X1,i, Xi, X1,j, Xj) ∈ S) > 0. Since θ 6= θ0, at least one of {φi,j(θ0) ≥
0 > φi,j(θ), (X1,i, Xi, X1,j, Xj) ∈ S} or {φi,j(θ0) < 0 ≤ φi,j(θ), (X1,i, Xi, X1,j, Xj) ∈ S} is

nonempty. This implies

P (φi,j(θ0) ≥ 0 > φi,j(θ)) + P (φi,j(θ) ≥ 0 > φi,j(θ0))

≥P (φi,j(θ0) ≥ 0 > φi,j(θ), (X1,i, Xi, X1,j, Xj) ∈ S) + P (φi,j(θ) ≥ 0 > φi,j(θ0), (X1,i, Xi, X1,j, Xj) ∈ S) > 0.

A.2.3 Manski’s Information Content

The information content explored in the above adaptive estimation can be summarized as

follows:

A2(θ) = {(X1, X̃1, X, X̃),φ(X1, X, X̃1, X̃; θ0) ≥ 0 > φ(X1, x, X̃1, X̃; θ)

or φ(X1, x, X̃1, X̃; θ0) < 0 ≤ φ(X1, X, X̃1, X̃; θ)}.
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Then we cannot distinguish, from the true parameter θ0, all impostors in

A2 = {θ : P (A2(θ)) = 0}.

In a simple example, if Supp(X1, X) = [a, b] × [c, d], then θ0 is identified if |α0| < b −
a + |γ0|(d − c). Recall Theorem A.1, without imposing factor structure, the necessary and

sufficient condition for achieving identification is |α0| ≤ b − a. Therefore, the blue area in

the Figure below is the additional parts of parameter values that is identified with factor

structure but not otherwise.

α0

γ0

|α0| = b− a+ |γ0|(d− c)

|α0| = b− a

Figure 2: Identifying Power of Factor Structure

When with the factor structure, the parameter is still not identified if |α0| > b − a +

|γ0|(d − c). In this case, if we do not impose factor structure, by Theorem A.2, the sharp

identified set is {α : α > b − a} while with the factor structure, the identified set (not

necessarily sharp) is |α| > b− a + |γ|(d− c). This implies, when identification fails in both

cases, the blue area is also the extra “bite” on the identified set given by the factor structure.

B Asymptotic Theory For Two Step Estimator

In this section we establish the asymptotic theory for the two step estimator under the

conditions when the parameters are regularly identified. Many of the basic arguments follow

those used in Chen and Khan (2008) and Chen, Khan, and Tang (2013). Recall what the
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key identification condition that motivated the weighted least squares estimator: For pairs

of observations (x
(1)
1 , x(1)) and (x̃

(1)
1 , x̃(1)) in Supp(X1, X),

x
(1)
1 + α0 − γ0x

(1) = x̃
(1)
1 − γ0x̃

(1).

if and only if

∂2P
11(x

(1)
1 , x(1))/fV (x(1)) + ∂2P

10(x̃
(1)
1 , x̃(1))/fV (x̃(1)) = 0.

Note that even though the random variable V is unobserved, the the density function

fV (·) above can be recovered from the data from the partial derivative of the choice proba-

bility in the selection equation with respect to the regressor in the selection equation. Thus

the above equation involves the sum of two ratios of derivatives of choice probabilities.

Recall we denoted the parameter of interest by θ0 ≡ (α0, γ0).

Our estimator is based on pair of observations from the data set.We will denote the

random variables of interest with capital letters, for example Xi, X1i, and realizations of

them with lower letters, for example xi, x1i. To denote disc tint random variables in the

sample when form pairs, we will use the subscripts i, j.

Note from above, we can express the equation where the pairs receive positive weights

(those whose derivatives of choice probabilities summed up to 0) as

X1i −X1j = α0 + γ0(Xi −Xj) (B.1)

So this motivates regressing the scalar random variable X1i −X1j on the two by one vector

X̃i ≡ (1, Xi). We can now see that if sufficient such pairs of observations, where the sum

of the ratio of derivative of probabilities could be found to equal 0, θ0 could be recovered

as the unique solution to the system of equations corresponding to the pairs, as long as

the matrix involving the terms X̃i − X̃j satisfied a full rank condition. Of course such an

approach is infeasible for two reasons. The first reason is that the probability functions,

their derivatives, and hence the ratio of derivatives are unknown. The second reason is that

even if these functions were known, if the probability functions are not discrete valued, such

“matches” will occur with probability zero.

The first problem can be remedied by replacing the true probability function values with

their nonparametric estimates. In the theory here we used a kernel estimator with kernel

functionK(·) and bandwidth Hn, whose properties are discussed below.. The second problem
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can be dealt with through the use of “kernel weights” as has been frequently employed in

the semiparametric literature.

Specifically, assuming that the ratio of derivatives of conditional probability functions

were known, we use the following weighting function for pairs of observations:

ωij =
1

hn
k

(
P k,l,r

0i + P k,l,r
0j

hn

)
(B.2)

where here P k,l,r
0i , k = 0, 1, l = 0, 1 denotes the ratio of derivatives of choice probabilities for

the ith observation. So, for example, P 1,1,r
i = P 11(X1i, Xi)/fV (Xi). hn is another bandwidth

sequence, which converges to zero as the sample sizes increases, ensuring that in the limit,

only pairs of observations with probability functions arbitrarily close to each other receive

positive weight. k(·) is the kernel function, which is symmetric around 0, and assumed to

have compact support, integrate to 1, and satisfy certain smoothness conditions discussed

later on.

With the weighting matrix defined, a natural estimate of it, ω̂ij follows from replacing

the true probability function values with their nonparametric, e.g. kernel, estimates. This

suggests a weighted least squares estimator of θ0, regressing X1i − X1j on X̃j − X̃i, with

weights ω̂ij.

Specifically, we propose the following two stage procedure. The first stage is the kernel

estimator of the ratio of derivatives of probability functions,3 and the second stage estimator

is defined as:

θ̂ = (
∑
i 6=j

τiτjω̂ij∆X̃ij∆X̃
′
ij)
−1(
∑
i 6=j

−τiτjω̂ij∆X̃ij∆X1ij) (B.3)

where ∆X1ij ≡ X1i −X1j, ∆X̃ij ≡ X̃i − X̃j and τi ≡ τ(X1i, Xi) is a trimming function.

We will sketch the asymptotic properties of this estimator. Here we use similar arguments

to this used in Chen and Khan (2008) and keep our notation as close as possible to that

used in that paper. To simplify characterizing the asymptotic properties of this estimator

and the regularity conditions we impose, we first define the following functions of P k,l,r
0i :

1. f(Pk,l,r
0

= fPk,l,r
0

(P k,l,r
0i ), where fPk,l,r

0
(·) denotes the density function of P k,l,r

0i .

3As specified in the regularity conditions, the conditions on the bandwidth sequence are more strict than

needed for the previous estimator. Specifically, they will depend on the second stage bandwidth sequence

used.
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2. µτi = E
[
τi|P k,l,r

0i

]
3. µτxi = E

[
τiX̃i|P k,l,r

0i

]
4. µτxxi = E

[
τiX̃iX̃

′
i|P

k,l,r
0i

]
Our derivation of the asymptotic properties of this estimator are based on the following

assumptions:

Assumption I (Identification) The matrix:

M1 = 2E
[
f(Pk,l,r

0 i)(µτiµτxxi − µτxiµ
′
τxi)
]

has full rank.

Assumption K (Second stage kernel function) The kernel function k(·) used in the second

stage (to match the sum of ratios of derivatives to 0) is assumed to have the following

properties:

K.1 k(·) is twice continuously differentiable, has compact support and integrates to 1.

K.2 k(·) is symmetric about 0.

K.3 k(·) is an eighth order kernel:∫
ulk(u)du = 0 for l = 1, 2, 3, 4, 5, 6, 7∫
u8k(u)du 6= 0

Assumption H (Second stage bandwidth sequence) The bandwidth sequence hn used in

the second stage is of the form:

hn = cn−δ

where c is some constant and δ ∈ ( 1
16
, 1

12
).

Assumption S (Order of Smoothness of Density and Conditional Expectation Functions)

S.1 The functions P k,l,r
0i are eighth order continuously differentiable with derivatives

that are bounded on the support of τi.
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S.2 The functions fPk,l,r
0

(·) and E[x̃i|P k,l,r
0 = ·] have order of differentiability of 8, with

eight order partial derivatives that are bounded on the support of τi.

The final set of assumptions involve restrictions for the first stage kernel estimator of

the ratio of derivatives. This involves smoothness conditions on the propensity scores P k,l,r
0i ,

smoothness and moment conditions on the kernel function, and rate conditions on the first

stage bandwidth sequence.

Assumption PS (Order of smoothness of propensity score and regressor density functions)

The functions P k,l,r
0 (·) and fX1,X(·.·) are continuously differentiable of order p, where

p > 5
2
k.

Assumption FK (First stage kernel function conditions) K(·), used to estimate the choice

probabilities and their derivatives is an even function, integrating to 1 and is of order

p̃ satisfying p̃ > 5
2
k̃. with k̃ denoting the dimension of X1, X.

Assumption FH (Rate condition on first stage bandwidth sequence) The first stage band-

width sequence Hn is of the form:

Hn = c2n
−γ/k

where c2 is some constant and γ satisfies:

γ ∈

(
k̃

p̃

(
1

3
+ δ

)
,
1

3
− 2δ

)

where δ is regulated by Assumption H.

Theorem B.1 Let f̃i denote the denote the density function of the regressors used in the

first stage choice probability estimation, and let f̃ ′i denote its derivative. Let f(·) denote the

p.d.f. of εi and define the following functions of P k,l,r
0i :

Gk,l,i = E
[
X̃i(X1i − X̃ ′iθ0)|P k,l,r

0i

]
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and

ψ1i = 2τifPk,l,r
0 i

∑
k,l=0,1

(yk,li f̃
′
i/f̃i − ∂2P

k,l,r
0i )Gk,l,i(µτix̃i − µτxi) (B.4)

then under Assumptions I,K,H,S,PS,FK,FH,

√
n(θ̂ − θ0)⇒ N(0,M−1

1 V1M
−1
1 ) (B.5)

where

V1 = E[ψ1iψ
′
1i] (B.6)

B.1 Nonparametric Factor Structure

Here we describe and estimator for the case where we have a nonparametric factor structure.

Recall for this model we had the following relationship between unobservable variables:

U = g0(V ) + Π̄ (B.7)

where we assumed that Π̄ ⊥ V .

Our goal in this more general setup is to identify and estimate both α0 and g0. Our

identification is based on the condition that

x
(1)
1 + α0 − g0(x(1)) = x̃

(1)
1 − g0(x̃(1)).

if and only if

∂2P
11(x

(1)
1 , x(1))/fV (x(1)) + ∂2P

10(x̃
(1)
1 , x̃(1))/fV (x̃(1)) = 0.

Using the same i, j pair notation as before, this gives gives us, in the nonparametric case,

X1i −X1j = α0 + (g0(Xi)− g0(Xj)) (B.8)
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Note the above equation has a “semi parametric form”, loosely related to the model

considered in, for example, Robinson (1988). However, we point out crucial differences

between what we have above and the standard semi linear model. Here we are trying to

identify the intercept α0 which is usually not identified in the semi linear model as it cannot

be separately identified from the nonparametric function. However, note above on the right

hand side, we do not just have a nonparametric function of Xi, Xj, but the difference of

two identical and additively separable functions g0(·). In fact it is this differencing of these

functions which enables us to separately identify α0. which is not usually identified in

semi linear models. Furthermore, as will now see when turning to our estimator of α0, the

structure of the nonparametric component, specifically additive separability of two identical

functions of Xi, Xj respectively, can easily be incorporated into our approximation of each

of them. From a theoretical perspective separable functions have the advantage effectively

being a one dimensional problem, as there are no interaction terms to have to deal with. It

is well known that nonparametric estimation of separable functions do not suffer from the

“curse of dimensionality”. See, for example Newey (1994).

B.1.1 Estimation of the Semilinear Model

The semi linear model, is usually expressed as

yi = x′iβ0 + g(zi) + εi

where yi denotes the observed dependent variable, xi, zi are observed regressors, g(·) is an

unknown nuisance function, εi is an unobserved disturbance term, and β0 is the unknown

regression coefficient vector which is the parameter of interest. There is a very extensive

literature in both econometrics and statistics on estimation and inference methods for this

model- see for example Powell (1994) for some references.

One popular way to estimate this model is to use an expansion of basis functions, for

example polynomials or splines to approximate g(·), and from a random sample of n obser-

vations of (yi, xi, zi) regress yi on xi, b(zi) where b(zi) denotes the set of basis functions used

to approximate g(·).

As an illustrative example, assuming zi were scalar, if one were to use polynomials as

basis functions, one would estimate the approximate model,
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yi = x′iβ0 + γ1zi + +γ2z
2
i + γ3z

3
i + ....γknz

kn
i + uin

where kn is a positive integer smaller than the sample size n, and γ1, γ2, ...γkn are addi-

tional unknown parameters. This has been done by regressing yi on xi, zi, z
2
i , ...z

kn
i , and our

estimated coefficient of xi would be the estimator of β0.

The validity of this approach has been shown in, for example, Donald and Newey (1994)

Now for our problem at hand, incorporating a nonparametric factor structure, we propose

a kerne weighted least squares estimator. The weights are as they were before, assigning great

weights to pairs of observations where the sum of derivatives of ratios of choice probabilities

are closer to 0.

The dependent variable is identical to as before, the set of n choose 2 pairs X1i − X1j,

The regressors now reflect the series approximation of g0(Xi)− g0(Xj):

g0(Xi)− g0(Xj) ≈ γ1(Xi −Xj) + γ2(Xi −Xj)
2 + γ3(Xi −Xj)

3 + ...γkn(Xi −Xj)
kn

So now our estimator would be to regress X1i −X1j on 1, (Xi −Xj), (Xi −Xj)
2, ...(Xi −

Xj)
kn , using the same weights ω̂ij so the estimator of α0 would be the coefficient on 1.

Specifying the asymptotic properties of tis estimator would require additional regularity

conditions, notable the rate at which the sequence of integers kn increases with the sample

size n.

We again only outline these regularity conditions here, and only to establish consistency:

As before we first define the following functions of P k,l,r
0i :

1. f(Pk,l,r
0

= fPk,l,r
0

(P k,l,r
0i ), where fPk,l,r

0
(·) denotes the density function of P k,l,r

0i .

2. µτi = E
[
τi|P k,l,r

0i

]
3. µτxi = E

[
τig0(X̃i)|P k,l,r

0i

]
4. µτxxi = E

[
τig0(X̃i)g0(X̃i)

′|P k,l,r
0i

]
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Our derivation of the asymptotic properties of this estimator are based on the following

assumptions:

Assumption I2 (Identification) The matrix:

M1 = 2E
[
f(Pk,l,r

0 i)(µτiµτxxi − µτxiµ
′
τxi)
]

has full rank.

Assumption K2 (Second stage kernel function) The kernel function k(·) used in the second

stage (to match the sum of ratios of derivatives to 0) is assumed to have the following

properties:

K2.1 k(·) is twice continuously differentiable, has compact support and integrates to

1.

K2.2 k(·) is symmetric about 0.

K2.3 k(·) is a second order order kernel:∫
ulk(u)du = 0 for l = 1∫
u2k(u)du 6= 0

Assumption H2 (Second stage bandwidth sequence) The bandwidth sequence hn used in

the second stage satisfies hn → 0 and nHnh
2
n → ∞. where Hn denotes the first stage

bandwidth sequence.

Assumption S2 (Order of Smoothness of Density and Conditional Expectation Functions)

S2.1 The functions P k,l,r
0i are eighth order continuously differentiable with derivatives

that are bounded on the support of τi.

S2.2 The functions fPk,l,r
0

(·) and E[x̃i|P k,l,r
0 = ·] have order of differentiability of 8,

with eight order partial derivatives that are bounded on the support of τi.

The final set of assumptions involve restrictions for the first stage kernel estimator of

the ratio of derivatives. This involves smoothness conditions on the propensity scores P k,l,r
0i ,
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smoothness and moment conditions on the kernel function, and rate conditions on the first

stage bandwidth sequence.

Assumption PS2 (Order of smoothness of propensity score and regressor density func-

tions) The functions P k,l,r
0 (·) and fX1,X(·.·) are continuously differentiable of order p,

where p > 5
2
k.

Assumption FK2 (First stage kernel function conditions) K(·), used to estimate the choice

probabilities and their derivatives is an even function, integrating to 1 and is of order

p̃ satisfying p̃ > 5
2
k̃. with k̃ denoting the dimension of X1, X.

Assumption FH2 (Rate condition on first stage bandwidth sequence) The first stage band-

width sequence Hn is of the form: satisfies Hn → 0 and nH2
n →∞.

Assumption BFC (Basis function conditions) The basis function approximation of the

unknown factor structure function satisfies the following conditions:

BFC.1 The number of basis functions, kn, satisfies kn →∞ and kn/n→ 0.

BFC.2 For every kn, the smallest eigenvalue of the matrix

E[PknP
′
kn ]

is bounded away from 0 uniformly in kn, where

Pkn ≡ (1, (Xi −Xj), (Xi −Xj)
2, ...(Xi −Xj)

kn)′
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