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Automatic Recovery of Root Causes from
Bug-Fixing Changes

Ferdian Thung, David Lo, and Lingxiao Jiang
School of Information Systems
Singapore Management University, Singapore
{ferdiant.2013,davidlo,1xjiang } @smu.edu.sg

Abstract—What is the root cause of this failure? This question
is often among the first few asked by software debuggers when
they try to address issues raised by a bug report. Root cause is the
erroneous lines of code that cause a chain of erroneous program
states eventually leading to the failure. Bug tracking and source
control systems only record the symptoms (e.g., bug reports) and
treatments of a bug (e.g., committed changes that fix the bug), but
not its root cause. Many treatments contain non-essential changes,
which are intermingled with root causes. Reverse engineering
the root cause of a bug can help to understand why the bug is
introduced and help to detect and prevent other bugs of similar
causes. The recovered root causes are also better ground truth
for bug detection and localization studies.

In this work, we propose a combination of machine learning
and code analysis techniques to identify root causes from the
changes made to fix bugs. We evaluate the effectiveness of our
approach based on a golden set (i.e., ground truth data) of
manually recovered root causes of 200 bug reports from three
open source projects. Our approach is able to achieve a precision,
recall, and F-measure (i.e., the harmonic mean of precision and
recall) of 76.42%, 71.88%, and 74.08% respectively. Compared
with the work by Kawrykow and Robillard, our approach
achieves a 60.83% improvement in F-measure.

I. INTRODUCTION

There is abundant information available about many bugs
reported, recorded, and managed in bug tracking systems like
Bugzilla or JIRA. Many of these bugs could also be linked to
the corresponding bug-fixing revisions in the corresponding
source control systems [9], [51]. These two kinds of systems
provide two different views of a bug: a bug tracking system
may provide textual descriptions of the symptoms of the bug,
how to reproduce the bug, and possible failures caused by the
bug; a source control system provides the changes made to a
software system that aim to fix the bug (i.e., the treatments for
the bug). However, they do not directly answer the question:
What program elements are the root cause of the bug? In other
words, what are the erroneous program elements responsible
for the bug (i.e., their execution collectively causes a chain
of erroneous program states eventually leading to the program
failure or error behavior)?

Answers to this root cause question is important as it
highlights mistakes that developers make and can help to
perform various kinds of postmortem analyses and motivate
the design and development of better mechanisms (e.g., better
language constructs and features [17], [24], automated bug
predictors and detectors [39], [46], [52], [53]) to reduce bugs
of similar causes to happen in future.

Our work in this paper aims to automatically identify root
causes of a bug based on information available from bug
treatments. Our long-term goal is to build a curated database
containing root causes of a large number of bugs that can be
used by fellow researchers to study bug patterns and build
better bug prediction, localization, detection, and prevention
mechanisms.

There are both conceptual and technical challenges for
identifying root causes. Firstly, symptoms of a bug may not
reveal a root cause. For example, when a program fails with
a “division by zero” exception, it does not tell where the zero
comes from; a debugger may need to back track the data
flow to find the source of the zero. Secondly, treatments of a
bug (i.e., changes made to fix the bug) may often contain not
only treatments for bugs but also non-essential changes (e.g.,
code reformatting, code refactoring, etc.) [25], new feature
additions, many of which are intermingled. The treatments
may add extra code which does not reveal the location of root
causes. For example, “division by zero” exceptions can be
fixed by adding an exception handler spatially far away from
either the failure location or the root cause.

There are various techniques (e.g., fault localization, bug
prediction, etc. [2], [23], [28], [33], [40], [49]) have been
developed to locate root causes from various failure symp-
toms with various degrees of success. Different from these
techniques, we perform a retrospective analysis to recover root
causes when a bug fix is already there. Some work has been
done [27], [41], [42] to identify bug origins, i.e., versions that
induce bug fixes. Their studies mostly focus on faulty versions
and all lines changed or deleted (ignoring comment, blank line,
and format changes) are implicitly assume to be root causes,
which may not be always true. To the best of our knowledge,
DiffCat proposed by Kawrykow and Robillard [25], which
flags non-essential changes, may be the work having the clos-
est goal as ours. As defined by Kawrykow and Robillard, non-
essential changes are those ‘“cosmetic in nature”, “generally
behavior preserving”, and “unlikely to yield future insights
into the roles of or relationships between the program entities
they modify”.

Our work automatically flags likely root causes in code
from bug-fixing (file) changes, which are the set of files that
get modified between the version of code containing a bug
and a new version where the bug has been fixed. Such an
automation is feasible because we have previously manually



2033: private boolean taskLevelVerbose;
2034:

2035: public AntMessageHandler(TaskLogger logger, boolean taskVerbose,
boolean handledMessage) {

2070:
2071: }

return true;

)

(a) Sample Bug Before Fixes

-

1233:

if (this.logger!=null)

delegate = new AntMessageHandler(this.logger,this.verbose, false);
2033: private final boolean taskLevelVerbose;
2034: private final boolean handledMessage;
2035:
2036: public AntMessageHandler(TaskLogger logger, boolean taskVerbose,
boolean handledMessage) {

2039:  this.handledMessage = handledMessage
2072: return handledMessage;
2073: } /

(b) Sample Bug With Fixes

Fig. 1. A Sample Bug and Its Treatments. Lines 1233 and 2070 in Fig. 1(a) are the root causes, while the treatments in Fig. 1(b) are lines 1232, 2033, 2034,

2039, and 2072.

studied several hundreds of bug fixes and observed that many
fixes themselves actually hint at possible locations of the root
causes (e.g., the fixed program elements are located close
to the root causes). After excluding a small percentage of
ambiguous cases, we have obtained a golden set of root
causes of 200 bugs from three medium to large open source
programs [34], [46], and we believe based on patterns of the
fixes, we can automate the process of identifying root causes.

Our solution works in mainly two phases. Firstly, lines of
code that are part of essential changes are identified using
a combination of DiffCat [25] and Unix diff. Secondly, we
combines machine learning and code analysis techniques to
identify root causes. We employ a machine learning solution,
in particular a classifier, to predict if a line of code is a root
cause and filter out those lines that are unlikely to be root
causes. To train such a classifier, we extract relevant features
from code changes that could discriminate root causes from
others. Further, we perform a light-weight case-based code
analysis to recover root causes that do not appear in the
treatments but may still be responsible for the bug.

We have evaluated the effectiveness of our approach on the
golden set of root causes [34], [46] manually extracted from
the bug tracking and source control systems of Aspect] [5],
Lucene [3], and Rhino [1]. In total, we have analyzed 152,
28, and 20 bug reports and their fixing changes from Aspect],
Lucene, and Rhino respectively. We compare our approach
with DiffCat. Our results show that our approach achieves
a precision, recall, and F-measure of 76.42%, 71.88%, and
74.08%. In comparison, DiffCat achieves a much lower pre-
cision (33.30%) but a little higher recall (74.65%). In terms
of F-measure that quantifies if a gain in precision (or recall)
outweighs a loss in recall (or precision), the results of our
approach are 60.83% better than those of DiffCat.

Our contributions are as follows:

1) We propose a novel technique that automatically recover
root causes from bug fixing changes: it combines machine
learning with code analysis to recover root causes.

2) We have evaluated our approach on a golden set of 200
root causes and find that our approach achieves much
better F-measure than DiffCat.

The structure of this paper is as follows. In Section II, we

present a motivating example. In Section III, we describe some
preliminary materials on non-essential changes, and further
elaborate the difference of root causes and their treatments.
We present an overview of our approach in Section IV. We
explain the major parts of our approach in Sections V, and VL.
We present the results of our experiments in Section VIIL.
We discuss related studies in Section VIII. We conclude and
mention future work in Section IX.

II. MOTIVATING EXAMPLE

Figure 1 shows an example illustrating the need of root
cause identification. It is adapted, for the purpose of pre-
sentation in this paper, from a real bug in Aspect] from
iBugs repository [13]. The bug in Figure 1(a) is fixed in
Figure 1(a) by changing the lines with bold line numbers, and
the treatments for the bug are Lines 1232, 2033, 2034, 2039,
and 2072 in Figure 1(b).

One of the root causes is Line 1233 in Figure 1(a) where
there may be a null-pointer dereference. The fix in Figure 1(b)
adds a null-check at Line 1232, while the line of the root cause
is not changed. This illustrates that treatments may not be root
causes.

Another root cause in Figure 1(a) is at Line 2070 where
a wrong return value is used. The fix in Figure 1(b) changes
the root cause line, and adds additional code at Lines 2034
and 2039 to record one of the function parameters, which
is needed for another part of the program but irrelevant for
fixing the root cause. Also, the fix adds the final qualifier
to the private variable taskLevelVerbose, which does not
affect the functionality of the code and thus is a non-essential
change. Thus, it is a challenge to precisely identify the root
causes (e.g., Lines 1233 and 2070 in this example) based on
the treatments for bugs.

III. PRELIMINARIES

In this section, we briefly present an introduction to DiffCat,
proposed by Kawrykow and Robillard, which detects and
removes non-essential changes [25]. Next, we highlight the
difference between essential changes, which are the freatments
of a bug, and the root causes of the bug.



A. DiffCat: Detecting Non-Essential Changes

Many changes committed to source control systems are not
essential. Many changes are cosmetic in nature; for example,
developers could decide to add new comments or fix the
indentations to various source code files in a software system.
Other changes are meant to refactor a software system to make
it more manageable. These changes do not alter the behavior
of the system. These changes is referred to by Kawyrkow and
Robillard as non-essential changes [25].

Kawyrkow and Robillard proposed DiffCat which is the
state-of-the-art technique that detects non-essential changes
from revision histories [25]. DiffCat first generates ASTS
from changed files. These ASTs are then enriched with type
information that is inferred using partial program analysis
(PPA) [12]. The resulting pairs of ASTs (for each pair, one
AST is for a file before the change, another is for the file
after the change) are then input to ChangeDistiller [14] which
performs AST differencing. The output of ChangeDistiller
is used to identify name refactorings (i.e., cosmetic changes
in variable names). These name refactorings are then roll
backed and the resulting AST pairs are again processed
by ChangeDistiller. The output of ChangeDistiller is
structural differences between the AST pairs. Each of these
differences is compared to a manually constructed catalog
of non-essential differences (e.g., trivial type updates, trivial
keyword modifications, etc.) and non-essential changes are
then identified. DiffCat works on AST node level and it
returns AST node changes that are marked as essential
or non-essential. It also reports the type of the changes.
There are many types that could be reported, such as
ASSIGNMENT_UPDATE, IF_STATEMENT_UPDATE,
WHILE_STATEMENT_MOVE, ATTRIBUTE_DELETE,
FUNCTIONALITY_ DELETE, etc.

In this work, we leverage DiffCat to detect root causes from
bug-fixing file changes.

B. Essential Changes versus Root Causes

A non-essential change cannot be a root cause. On the
other hand, an essential change is not necessarily a root cause.
The relationship between essential changes and root causes is
illustrated in Figure 2. The figure contains two circles which
represent essential changes (the left circle) and root causes
(the right circle).

Propagation
Needed

Filtering
Needed

Root
Cause

Essential

Changes

Fig. 2. Essential Changes versus Root Causes

Some essential changes are root causes, as indicated by the
overlap of the two circles. However, many essential changes
are not root causes (e.g., Lines 1232, 2034 and 2039 in Fig-
ure 1(b)). Some lines of code that are part of essential changes
are the treatments of a bug but not the root causes of the
bug (e.g., Line 1232 in Figure 1(b)). Other changes, although
essential (i.e., may change the behavior of a program), may
just coincidentally happen to tangle with the changes that are
really necessary for fixing the bug [18] (e.g., Lines 2034 and
2039 in Figure 1(b)). These lines of code need to be filtered.
Conceptually, such code corresponds to the crescent region
marked by A in Figure 2.

On the other hand, not all root causes may appear in
essential changes. A root cause might remain unmodified from
the buggy version to the bug-free version (e.g., Line 1233 in
Figure 1(b)). Some bugs can be treated or fixed by adding code
(e.g., adding checks for null, adding a resource deallocation
statement, adding the missing unlock for the lock, etc.);
the root causes of the bugs are not changed during the bug-
fixing process. These cases correspond to the crescent region
marked by B in Figure 2. For detecting such root causes, we
need to propagate our code analysis from essential changes in
the treatments to their relevant surrounding code and contexts.

IV. OVERALL APPROACH

The overall structure of our approach is shown in Figure 3.
The approach processes bug-fixing file changes one at a time;
each of them is a file that is modified between the version
before the change and the one after the change. There are three
main blocks in our root cause extraction approach: essential
change extraction, filtering component, and propagation com-
ponent. We describe each of these three components in the
following.

Case

line Lovel Machine Based Potential
DiffCat ine e\{e > Learning |- ase Root
Analysis R Code
Algorithm . Cause
Analysis
Essential Change Filtering Propagation
Extraction Component Component

Fig. 3. Overall Structure of Our Root Cause Extraction Approach

A. Essential Change Extraction

In this block, we extract essential changes from a bug-fixing
file change. Non-essential changes correspond to cosmetic
changes or refactoring, and need to be removed as they cannot
be the root causes of the bug. There are two sub-blocks in this
block: DiffCat and Line Level Analysis.

DiffCat works at the level of AST nodes — it returns AST
node changes and label them as essential or non-essential.
Each AST node change contains AST nodes from the version
of a program before the change and that after the change. Root
causes of a bug must exist in the program before the change.
Thus, after employing DiffCat, for every AST node change
that is marked as essential, we only retain AST nodes from
the version before the change.



At times the returned AST node (e.g., method declaration)
could be quite big (i.e., it spans many lines of code) and
not every line in a modified AST node is modified. Thus,
we perform a line level analysis to remove lines that are not
modified. We want to extract the essential lines of code, in the
version before the change, that get modified. To do this, we
perform the following steps:

1) Get the lines of code covered by the AST nodes reported
by DiffCat in the program version before the change.

2) Perform a standard UNIX diff, between the versions
before and after the change, to get the lines of code in
the version before the change which get modified.

3) Intersect the two sets of lines produced by the above two
steps.

4) Return the resulting set of lines.

B. Filtering

In the filtering component, we remove source code lines that
are part of an essential change, but unlikely part of a root cause
of a bug. The filtering component takes as input the lines that
are produced by the essential change extraction component,
and utilizes a machine learning algorithm to predict whether a
line of code is likely to be part of a root cause. The main idea is
to build a classification model that would extract features from
a source code line and differentiate root-cause lines from non-
root-cause lines based on a set of training data. We describe
this machine learning block in detail in Section V.

C. Propagation

The propagation component looks beyond the lines that are
parts of essential changes. It propagates the effects of each
essential change to relevant neighboring lines of code (e.g.,
other statements in the same block scope as the essential
change), and performs a case-based code analysis based on
data dependencies to detect more possible root causes of the
bug. We describe the propagation component in more details
in Section VI.

V. FILTERING COMPONENT

Treatments for a bug can take various forms, and the
challenge for the filter component is to decide whether lines
of code in the treatments are unlikely to be root causes.
We employ a machine learning-based solution to address the
challenge. The solution learns from known examples (i.e.,
source code lines for which we know whether they are part of
a root cause or not) and extrapolates to unknown examples.

The structure of our machine learning block is shown in
Figure 4. It works in two phases: training and deployment.
In the training phase, we train the classifier to produce a
discriminative model that could differentiate lines that are part
of a root cause of a bug from those that are not part of a root
cause. In the deployment phase, we take the model and use it
to classify if any given line is part of a root cause or not.

The training phase takes as input a set of training data
which are lines of code with their labels (i.e., root cause or
non-root-cause). This set of training data is then subject to

Training Phase

Sets of
Feature

Training Data Feature
<line,> : <label >

<line,> : <label,>

Extraction
Values

J Model
Learning

Classifier

Root
Cause or
Not-Root-
Cause

Sets of

Feature
Feature

Testing Data

<line,>: ? Extraction

Values

<liney>: ?

Deployment Phase

Fig. 4. Structure of Machine Learning Block

a feature extraction process. The feature extraction process
would reduce each data point in the training data to some
important facets or factors that characterize the data point. At
the end of the feature extraction process we have a set of
features along with their values that characterizes each data
point. For example, if a feature is whether the line contains
an if statement or not, at the end of the process, the line could
be represented as either (if,0) or (if,1) depending if the
line contains or does not contain an if statement respectively.
We describe in more details the features that we extract from
these lines in Section V-A. The set of features and their
corresponding feature values for each of the training data is
then fed to a model learning component. We describe the
model learning component in more details in Section V-B.
This model is then output to the deployment phase.

The deployment phase takes as input the testing data which
comprises of a set of program lines with unknown labels (i.e.,
root cause or non-root-cause). Again we reduce each data point
(i.e., each line) in the training data into a set of important
factors by the feature extraction process. This process is the
same process that we perform for each data point in the
training data. The resultant set of features along with their
values are fed to the model application step (cf. Section V-B).
The output after this step is a label for each data point to
identify if it is a root cause or not.

A. Feature Extraction

Many features could be extracted from a line of code. We
could extract features from the context of a line. We refer to
the former as line features, and the latter as context features.

Features extracted from a line itself include:

1) The type of essential changes it belongs to, which is
outputted by DiffCat in our essential change extraction
component.

2) The types of program elements contained in the line.

Features extracted from the context of a line include:

1) The type of the line immediately before the current line.
2) The type of the line immediately after the current line.

The full set of features used to characterize a line is shown
in Table I. 140 of the features (F, — Fg4 and F553 — F3pg) are
line features. 168 of the features (Fg; — Fbso) are context
features. We find DiffCat change type features carry more
useful semantics for root cause identification than AST node
types. Thus we give more weight to DiffCat change type



features than to AST node type features. For AST node type
features we assign it a binary value, either O (a node of that
type does not exist in the line) or 1 (a node of that type exists
in the line). For DiffCat change type features, we assign a
value of either O (a line is not part of an AST node that is
assigned that change type) or 10 (a line is part of an AST
node is assigned that change type).

TABLE 1
FEATURES USED TO REPRESENT EACH LINE OF CODE

ID Type Description

F1-Fgy ASTNode Each of the features denotes the existence
or absence of an ASTNode type (e.g., as-
signment, for statement, method declara-
tion, etc.) in the data point (i.e., current
line).

Fg5—Fi68 ASTNode Similar to F; — Fgy4 for the line immedi-
ately preceding the data point

Fi160—F552 ASTNode Similar to Fy; — Fg4 for the line immedi-
ately after the data point

F553-F308 DiffCatChange Type of change assigned by DiffCat [25]

to the AST node containing this data point
(i.e., current line)

B. Model Learning and Application

The purpose of a model learning step is to build a model
that could discriminate data points belonging to one label from
data points belonging to another label. In our setting, we would
like to differentiate root cause from non-root-cause lines of
code. We use Support Vector Machine (SVM) [16] and one
of its implementation (i.e., svm-perf [22]) to build our model.
SVM has been shown to be effective in many past studies in
software engineering, e.g., [19], [44], [45]. Each data point
could be viewed as a point in a multi-dimensional space with
each feature representing a dimension. A machine learning
solution could then try to draw a line (or a hyperplane) that
separates as many root cause data points from non-root-cause
data points. A representation of this hyperplane is the model
that is generated by SVM.

This model is then applied to classify whether a line with
an unknown label is a root cause or not. In order to do this,
SVM simply investigates if the feature representation of the
line falls on one side of the hyperplane or the other side. SVM
also outputs the probability of a particular line being a root
cause or not based on the distance of the feature representation
of the line to the hyperplane. If the feature representation of
the line is far from the hyperplane, then the probability of it
belonging to one class is much higher than that of it belonging
to the other class.

VI. PROPAGATION COMPONENT

In the propagation component, the challenge is to discover
possible root causes that do not appear in the treatments of a
bug. Our goal is to propagate the effects of the lines flagged
as essential changes to the lines surrounding these essential
changes and locate lines that may affect or be affected by
the essential changes as possible additional root causes. For
this purpose, we perform a case-based code analysis based
on data dependencies. We have formulated several cases for
which we can identify root causes with high confidence based
on empirical studies of known essential changes.

To identify these several cases, we follow a grounded theory
approach [35]: We analyze the data and find cases that require
propagation. We then group these cases together. Past studies
in software engineering have also followed a similar approach,
e.g., [6], [20], [37]. FindBugs [6], [7], JLint [4], PMD [11], and
similar bug finding tools, analyze commonly found bugs and
create a repository of rules to capture various kinds of bugs.
Following a similar approach, we create several propagation
rules. In this paper, we create three rules to capture three
different cases. In the future, more rules could be added, just
like new rules could be added to FindBugs and other similar
bug finding tools.

A. Case 1: Null Check Not Performed

“Null check not performed” means a portion of the code is
executed without checking whether or not a variable is null.
An example of this case is shown in Figure 5. We see that
the new version of the code adds a null check for probs
at line 82 and covers a portion of the code at line 83-92 that
also appears in the old version by indenting them further. This
portion of the code, which should be not run when probs is
null, is the root causes of the bug, and we label the line 8§2-91
in the old version as the root causes.

org.aspectj/modules/org.aspectj.ajdt.core/src/org/aspect]
/ajdt/internal/core/builder/EclipseSourceContext. java

81l: IProblem[] probs = result.getProblems();

82: for (int i1 = 0; i < probs.length; i++) {

83: IProblem problem = probs[i];

84: if (problem == null) continue;

85: if (problem.getID() == IProblem.UnusedMethod...

86: || problem.getID() == IProblem.Unused...

87: if (problem.getSourceLineNumber () == ...

88: UnusedDeclaredThrownExceptionFilter filter =
89: new UnusedDeclaredThrownException...

90: result.removeProblems (filter);

AFTER

81l: IProblem[] probs = result.getProblems();

82: if (probs!=null) {

83: for (int 1 = 0; i < probs.length; i++) {

84: IProblem problem = probs[i];

85: if (problem == null) continue;

86: if (problem.getID() == IProblem.UnusedMethod...
87: || problem.getID() == IProblem.Unused...
88: if (problem.getSourceLineNumber () == ...

89: UnusedDeclaredThrownExceptionFilter filter
90: new UnusedDeclaredThrownException...
91: result.removeProblems (filter);

Fig. 5. Example Case 1 in Aspect] Bug #151845

We pinpoint the location where this case happens by first
picking the changes that add a null checking condition in
the code after fixes. For each of those changes, we check
for the existence of the entire original portion of the code
in its revised portion. If it exists, then it is indeed the case
that a null check is not performed in the original code. We
then label all lines in the original portion of code guarded by
this condition as the root causes. We notice that sometimes it
could be more accurate if we only identify lines which have
data dependencies on the variables checked in the additional
code (e.g., Lines 83 and 84 in Figure 5 directly use the
variable probs which is checked at Line 82). We leave it
as future extension to improve our current propagation rule.
The pseudocode for this algorithm is in Figure 6.



: Input:
ChangedFiles = list of files that is changed to fix the bug
Output:
Lines that are root cause of the bug
Method:
Let RootLines =
for all File in ChangedFiles do
Let DiffRanges = diff of new and old version of File
for all DiffRange in DiffRanges do
10: Let OldLines = DiffRange lines in old file
11: Let NewLines = DiffRange lines in new file
12: If NewLines contains OldLines
13: Let SubLines = Lines in NewLines and not in OldLines
14: If SubLines contains null-check
15: Add OldLines to RootLines
16: end for
17: end for
18: Output RootLines

R A ol

Fig. 6. Algorithm for Case 1

B. Case 2: Exception Not Thrown

“Exception not thrown” means a case where an exception
should be thrown. An example of this case is shown in
Figure 7. In the new version of the code, there is an addition
of null check for input variable that will throw an exception
if it is null. Thus, the line of the code at line 69 in the old
version that uses input variable without checking is the root
cause.

src/java/org/apache/lucene/util/AttributeSource. java
BEFORE

68: public AttributeSource (AttributeSource input) {
69: this.attributes = input.attributes;

AFTER

68: public AttributeSource (AttributeSource input) {
69: if (input == null) {

70: throw new IllegalArgumentException ("input

71: }

72 this.attributes = input.attributes;

Fig. 7. Example Case 2 in Lucene Bug #12425426

We locate this kind of root causes by taking the changes
that add an if statement and a throw statement inside the if
statement. We take the variable(s) checked in the if conditional
expression. We then blame all lines in the original code that
satisfy the following conditions: after the location where the if
statement is added, in the same block scope as the if statement,
and containing a use of at least one of the variable(s) (i.e.,
sharing data with the if statement). The pseudocode for this
algorithm is in Figure 8.

C. Case 3: Method Not Called

“Method not called” means the code does not invoke a
prerequisite method required to use a variable correctly. An
example of this case is shown in Figure 9. In this case, the
new version of the code adds a checkMutableReference
method invocation in line 1242 that makes use of a ref
variable. This variable is used in the next line as an input
for an Node object instantiation. Since the change is related
to the bug fix, the method addition is likely intended to
check whether the object pointed to by the ref variable
is in a valid state. Thus, the line of code at line 1242
in the old version that uses ref variable without calling
checkMutableReference is the root cause.

1: Input:
2 ChangedFiles = list of files that is changed to fix the bug
3: Output:

4:  Lines that are root cause of the bug

5: Method:

6: Let RootLines =

7: for all File in ChangedFiles do

8 Let DiffRanges = diff of new and old version of File

9: for all DiffRange in DiffRanges do

10: Let OldLines = DiffRange lines in old file

11: Let NewLines = DiffRange lines in new file

12: If NewLines add if statement containing throw statement
13: Let checkVar = variable checked in if condition

14: Let 1 = line number in OldLines where if statement is added
15: I=1+1

16: While 1 in the same block scope as if statement in old file
17: Let Var = variable used in line 1 of the old file

18: if Var contains checkVar

19: Add 1 to RootLines

20: I=1+1

21: end for

22: end for

23: Output RootLines
Fig. 8. Algorithm for Case 2

mozilla/js/rhino/src/org/mozilla/javascript/IRFactory. java
BEFORE

1240: case Token.GET_REF: ({

1241: Node ref = left.getFirstChild();

1242: return new Node (Token.SET_REF, ref, right);
AFTER

1240: case Token.GET_REF: {

1241: Node ref = left.getFirstChild();

1242: checkMutableReference (ref);

1243: return new Node (Token.SET_REF, ref, right);

Fig. 9. Example Case 3 in Rhino Bug #277935

We strictly pick only the changes that add a single method
invocation that contains a use of variable(s). We take those
variable(s) and perform the similar data sharing analysis as
described in Case 2. We blame all lines in the original code
that satisfy these conditions: after the location in which the
method invocation will be added, in the same block scope as
the method invocation, and contains a use to at least one of the
variable(s). The pseudocode for this algorithm is in Figure 10.

1: Input:

2:  ChangedFiles = list of files that is changed to fix the bug

3: Output:

4:  Lines that are root cause of the bug

5: Method:

6: Let RootLines = {}

7: for all File in ChangedFiles do

8: Let DiffRanges = diff of new and old version of File

9: for all DiffRange in DiffRanges do

10: Let OldLines = DiffRange lines in old file

11: Let NewLines = DiffRange lines in new file

12: If NewLines add method invocation And length of OldLines is 0 And length
of NewLines is 1

13: Let usedVar = variable used in method invocation

14: Let 1 = line number in OldLines where method invocation is added

15: I=1+1

16: While 1 in the same block scope as method invocation in old file

17: Let Var = variable used in line 1 of the old file

18: if Var contains usedVar

19: Add 1 to RootLines

20: I=1+1

21: end for

22: end for

23: Output RootLines
Fig. 10. Algorithm for Case 3

VII. EXPERIMENTS & ANALYSIS

In this section, we first present our experimental setting
which describes the environment where we run our algorithm,



and how we construct the golden set of root causes from bug-
fixing file changes. Next, we present our evaluation criteria
along with a baseline solution that we compare with our
approach. We then present our experimental results answering
a number of research questions. We end the section by
presenting several threats to validity.

Our experimental setting follows that of Turing test [48].
We would like to build a machine learning solution that can
make a judgment close to that made by a human being. This is
the grand challenge that many artificial intelligence studies are
trying to achieve, e.g., [38]. Many past software engineering
papers also follow similar experimental setting, e.g., [8], where
the goal is to produce a machine learning solution that can
perform as good as human beings to automate the analysis of
large amount of data.

A. Experiment Setting

We analyze bug-fixing file changes for Aspect], Lucene, and
Rhino. We retrieve the changes for Aspect] and Rhino from
iBugs [13] while Lucene’s is retrieved from its JIRA issue
tracking system [3]. iBugs provides us with pre-fix and post-
fix source code for a selected set of bugs. JIRA is a commercial
issue tracking system used in many Apache projects. It enables
a subversion-commit plugin that provides links between a bug
and its related subversion revisions. Bug-fixing file changes
can be retrieved from such links.

We manually identify the root causes of the bugs for iBugs
and Lucene version 2.9. We define the root causes of a bug
as the lines of code in the buggy version that is responsible
for the bug. Two persons manually identify the root causes of
each bug and if there are uncertainties, they meet to discuss
until an agreement is met. In an effort to ensure the quality of
the data, we select only unambiguous bugs to be the golden
set of the root causes. Unambiguous bugs mean that we have
high confidence that the lines labeled are the root causes of
the bugs. In the end, we have 152 labeled bugs from Aspect],
28 from Lucene, and 20 from Rhino.

B. Evaluation Criteria

Here we first present the metrics we use to evaluate how
good a solution is in extracting root causes. Next, we present
the baselines that we would compare with our approach.

1) Metrics: To evaluate the performance of our approach,
we use three metrics commonly used in data mining and
software mining, namely precision, recall, and F-measure.
Each of those metrics is defined as follows.

Precisi #IntersectedLine
recision =
# Potential RootCauseLine
#IntersectedLine
Recall = g
#RootCauseLine

2 % Precision * Recall

F-measure =
Precision + Recall

#IntersectedLine is the number of lines that appear in the set
of RootCauseLine and PotentialRootCauseLine. #RootCause-
Line is the number of lines labeled as a root cause of a bug

in the golden set. #PotentialRootCauseLine is the number of
lines labeled as a root cause by our approach.

Following commonly used evaluation in data mining, we
also employ k-fold cross validation [16] that split the whole
golden set of root causes into 10 subsets (i.e., k=10), and
repeat the experiments 10 times to calculate the average
precision, recall, and F-measure; each time it uses 9 of the
subsets as the training data and the other as the testing data.

2) Baselines: To the best of our knowledge, there is no
existing technique that recovers root causes from bug-fixing
file changes. The closest to our work is DiffCat which returns
essential changes. Thus, as a baseline we consider the lines
flagged by DiffCat and compare them with lines flagged by our
approach. We run DiffCat, and take the lines of code identified
by DiffCat as essential changes from the version before the
bug-fixing change. We treat these lines as the root causes
identified by DiffCat and use them to compute the precision,
recall, and F-measure for DiffCat.

We also use standard Unix diff as another baseline. We run
diff on the two versions of code before and after a bug-fixing
change, and take the lines from the old version in the diff
as the root causes identified by diff to compute the precision,
recall, and F-measure for diff.

C. Experiment Results
We consider the following research questions:

RQI

How effective is our approach as compared to
standard diff and DiffCat [25] in identifying root

causes?

RQ2 How effective is our essential change extraction
component?

RQ3 How effective is our filtering component?

RQ4 How effective is our propagation component?

RQ5 How effective is our approach when less training
data is used?

RQ6 How efficient is our solution? How much time

does our approach need to extract root causes from
bug-fixing file changes?

1) RQI: Effectiveness of Our Approach: Table Il shows the
precisions, recalls, and F-measures of our approach, standard
Unix diff, and DiffCat [25].

TABLE II

EFFECTIVENESS OF OUR APPROACH AS COMPARED TO diff AND
DIFFCAT [25] IN IDENTIFYING ROOT CAUSES

Approach Precision  Recall F-Measure
diff 22.74% 96.24% 36.78%
DiffCat [25] 33.30% 74.65% 46.06%
Our Approach 76.42% 71.88% 74.08%

We note that diff has a high recall of root causes because it
removes fewer lines of code. DiffCat has a higher recall but a
much lower precision than our approach. F-measure evaluates
if the gain in precision (or recall) outweighs the loss in recall
(or precision) and provides a balance view on precision and
recall. Our approach achieves a F-measure of 74.08%, and



outperforms the two baseline approaches, namely standard diff
and DiffCat, by 101.41% and 60.83% respectively.

2) RQ?2: Effectiveness of the Essential Change Extraction
Component: Essential change extraction component consists
of DiffCat and Line Level Analysis. To evaluate if this com-
ponent is effective, we only turn on this component and turn
off all other components in our approach (which is referred to
as as ECE), and compute the resultant precision, recall and F-
measure. The results of our experiments are shown in Table III.

TABLE III
EFFECTIVENESS OF THE ESSENTIAL CHANGE EXTRACTION
COMPONENT
Approach Precision  Recall  F-Measure
diff 22.74% 96.24% 36.78%
DiffCat [25] 33.30% 74.65% 46.06%
ECE 56.24% 74.06% 63.93%

Our approach with only essential change extraction com-
ponent turned on (ECE) could achieve a precision, recall,
and F-measure of 56.24%, 74.06%, and 63.93% respectively.
Thus ECE outperforms the two baseline approaches namely
standard diff and DiffCat. In terms of F-measure, we could
improve diff and DiffCat by 73.82% and 38.80% respectively.

3) RQ3: Effectiveness of Filtering Component: Our fil-
tering component performs machine learning. To evaluate if
this component is effective we turn on the essential change
extraction component and this component (which is referred to
as ECE+F), and compute the resultant precision, recall and F-
measure. The results of our experiments are shown in Table I'V.

TABLE IV
EFFECTIVENESS OF ESSENTIAL FILTERING COMPONENT
Approach  Precision Recall F-Measure
ECE 56.24% 74.06% 63.93%
ECE+F 75.38% 67.92% 71.46%

Our approach with only essential change extraction compo-
nent turned on (ECE+F) could achieve a precision, recall, and
F-measure of 75.38%, 67.92%, and 71.46% respectively. Thus
ECE+F outperforms ECE. The filtering component increases
precision by a large amount with a small loss of recall. In
terms of F-measure, it improves ECE by 11.78%. F-measure
measures if the gain in precision outweighs the loss in recall.

4) RQ4: Effectiveness of the Propagation Component:
Comparing Table IV and Table II, we note that our overall ap-
proach that includes the propagation component outperforms
ECE+F by an increase in F-measure by 3.67% percent.

5) RQS5: Effectiveness when Less Training Data is Used:
To evaluate the effects of less training data, we reduce the
value of k during the k-fold cross validation. The lower the
value of k, the less is the number of data that is used for
training. The results for different £ are shown in Table V.

From Table V, we notice that in terms of F-measure,
precision, and recall, the differences among different & are
minimal, around 1-2%.

TABLE V
EFFECTIVENESS OF k-FOLD CROSS VALIDATION FOR DIFFERENT
k
K Precision  Recall F-Measure
10 76.42% 71.88%  74.08%
9 76.39% 72.38%  74.33%
8 74.74% 72.08%  73.39%
7 76.26% 71.88%  74.01%
6 76.34% 7218%  74.2%
5 76.22% 71.39%  73.72%
4 75.81% 71.68%  73.69%
3 76.31% 72.08%  74.13%
2 75.31% 71.58%  73.4%

6) RQ6: Efficiency of Our Approach: The machine we
use to run the experiments runs Windows Server 2008 SP2
with a 2.53GHz Intel Xeon CPU and 24GB of memory. We
find that our approach extracts root causes from a bug-fixing
change within 2-678 seconds. On average, we could extract
root causes from a bug-fixing change in 41 seconds. Thus, we
believe our approach is practically efficient and usable.

D. Threats To Validity

There are several threats to validity that we consider in this
study: threats to internal validity, threats to external validity,
and threats to construct validity.

Threats to internal validity includes experimenter bias. The
golden set of root causes is extracted manually. There might be
subjectivity in choosing which lines are the root cause. Many
past studies that require manual labor to produce ground truth
data, e.g., [8], [15], [21], also suffer from similar threat to
validity. Still, we have tried to reduce this threat to internal
validity by checking our answers a number of times and by
asking more than one person to label the root causes and
resolve discrepancies through discussions. Also, we exclude
ambiguous bugs; decision whether a bug is ambiguous or not
is subjective.

Threats to external validity refers to the generalizability of
our findings. In this study, we have only investigated root
causes of 200 bugs from 3 software systems. Although this
does not represent all software systems, the scale that we
consider is on par with past studies that involve manual effort
in labeling data which takes much time (it takes weeks in our
case). In the future, we plan to reduce this threat further by
labeling more root causes from more bug-fixing file changes.

Threats to construct validity refers to the suitability of our
evaluation metrics. We make use of standard metrics of data
mining namely precision, recall, and their harmonic mean (i.e.,
F-measures). These metrics have also been used in many other
software engineering studies in the past, e.g., [36], [47], [S51].
Although it is important to compare to DiffCat, we need
to clearly mention that DiffCat is designed for a different
purpose. Our comparison with DiffCat is meant to demonstrate
the value of the extensions that we build on top of DiffCat to
detect root causes.

VIII. RELATED WORK

We highlight some related studies on software changes, root
causes, and empirical studies on bugs. This section is by no



means of a complete list of all related work.

A. Software Changes

Kawrykow and Robillard propose a method named DiffCat
that detects and removes non-essential changes [25]. In this
work, we address a different problem namely on the identi-
fication of root causes from bug-fixing file changes. We use
DiffCat as a building block in our approach.

Sliwerski et al. [42], Kim et al. [27], and Sinha et al. [41]
propose approaches that detect bug origins, i.e., versions that
induce bug fixes. They find the versions, made before a bug
gets reported, that introduce all lines that are changed or
deleted (ignoring comment, blank line, and format changes) in
the immediate version prior to the bug fix. These approaches
implicitly assume that these lines are root causes. However, not
every such lines are root causes. Many bug fixes involve touch-
ing hundreds or even thousands of lines of code, c.f., [34],
many of these lines are changed not because they are root
causes but because they need to be modified to facilitate the
treatment of the bug. For example, line 2033 in Figure 1(a) is
not a root cause although it is touched by the bug fix, however,
the previous approaches would find the origins of line 2033 as
well. In our work, we consider a different goal from these past
approaches, we want to classify which of these changed and
deleted lines are root causes. Thus our goal is complementary
with theirs, we can apply our technique to find root causes
and then apply theirs to find the origins of these root causes.

Kim et al. propose a technique that predicts if a software
change is clean or buggy [26]. Features are extracted from
revision histories and used for the prediction task with the aid
of a classifier. They show that a recall of 65% and an accuracy
of 78% could be achieved. In this paper, we have an orthogonal
goal to predict lines in a bug-fixing change that are the root
cause of the bug. Our approach is a retrospective analysis of
bugs while Kim et al’s approach is a prospective analysis. We
show that we can achieve recall, precision, F-measure, and
accuracy of more than 70%.

Wu et al. [51] propose an approach to automatically link
code changes with corresponding bug reports together. Our
work is complementary to theirs. We recover root causes from
such code changes that correspond to fixes to issues mentioned
in bug reports, and our results may potentially be used to
improve the quality of their results.

B. Root Causes

There have been a number of studies that try to locate
root causes given software failures. One family of techniques
is spectrum based fault localization which analyzes program
traces [2], [23], [33]. Their goal is to find an association
between program failures and the execution of some program
elements. These program elements that are associated with
failures are identified as suspicious program elements (e.g.,
lines, blocks, methods, etc.) and could then be presented to
debuggers.

Many spectrum-based techniques analyze two sets of pro-
gram traces: a set of correct program executions and a set

of program failures [2], [23], [33], [49]. Based on these two
sets of program traces, potential root causes are highlighted.
Jones and Harrold propose Tarantula that assign suspiciousness
scores to program elements based on the number of times they
are executed by correct program executions, the number of
times they are executed by program failures, the number of
correct program executions, and the number of failures [23].
Different suspiciousness formulas are proposed by several
other authors [2], [33]. Abreu et al. propose a suspiciousness
formula called Ochiai which has been shown to be more accu-
rate than Tarantula [2]. Lucia et al. analyze many association
measures and investigate their effectiveness for fault localiza-
tion [33]. Wang et al. compose many association measures
using search based techniques for fault localization [49].

In this work, we are also interested in finding root causes.
However, rather than finding root causes based on a set of
program failures, we find root causes from bug-fixing file
changes. Execution traces (including failures) are often not
available in bug reports [43].

Aside from our definition of a root cause (i.e., program
elements whose executions triggers a chain of erroneous
program states eventually leading to a program failure or
error behavior) there have been other definitions. For example,
Leszak et al. [29] defines a root cause as a factor in a software
development process that causes bugs, e.g., lack of domain
knowledge, time pressure, management mistake, incomplete
review, etc.

IX. CONCLUSION AND FUTURE WORK

Current bug tracking and source control systems only record
symptoms and treatments of bugs. One crucial information
is missing, namely: which program elements are the root
causes of the bugs? This information is important as it is
often first in the mind of developers when performing de-
bugging activities. Many past studies often manually recover
root causes from information available in bug tracking and
source control systems. However, this process is painstaking,
slow, and error prone. In this work, we automate this root
cause extraction process. We propose a framework which
consists of 3 components: essential change extraction, filtering,
and propagation. We combine case-based code analysis and
machine learning to develop our solution. We have experiment
our solution on a dataset of root causes from 200 bugs from 3
systems. These root causes are manually extracted from bug-
fixing file changes based on information from bug tracking
systems and source control systems; it took weeks for us to
get these root causes manually. We show that our automated
process could complete on average in 41 seconds, and achieve
a precision, recall, and F-measure of 76.42%, 71.88%, and
74.08%. respectively. Comparing with baseline approaches,
namely diff and DiffCat, we show that we can increase F-
measure by 101.41% and 60.83%, respectively.

In the future, we plan to improve our approach further
by incorporating more cases in our case-based code analysis
solutions. We only include simple rules in this work, we plan
to add rules that involve advanced static analysis techniques



in the future. We also plan to investigate with more features
and more classifiers to make our machine learning block better
in differentiating root causes from non root causes. We have
only used bug-fixing file changes to recover root causes; in the
future, we want to use bug symptoms (e.g., textual descriptions
in bug reports, program spectra produced by test cases (i.e., a
log of program elements executed when the test cases are run))
in addition to the bug-fixing file changes, by employing text
mining and software analytic solutions, e.g., [10], [30]-[32],
[49], [50], to improve the accuracy of root cause recovery. We
also plan to increase the number of bugs used as the golden set
of root causes. Also, we want to apply our automated approach
on a large number of bug-fixing file changes and repeat
some past empirical studies that require the identification of
root causes, e.g., [34], [46], on a larger number of bugs.
Furthermore, we plan to further investigate the effectiveness
of our approach on different kinds of bugs. We also would
like to perform a user study to solicit developers feedback on
the outputs of our tool. It would also be interesting to use our
proposed technique to create a large repository of root causes
and use the resulting repository as input to a machine learning
solution that can identify root causes of not yet solved bugs.
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