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ABSTRACT

This paper develops exact �nite sample and asymptotic distributions for a
class of reduced form estimators and predictors, allowing for the presence
of unidenti�ed or weakly identi�ed structural equations. Weak instrument
asymptotic theory is developed directly from �nite sample results, unifying
earlier �ndings and showing theusefulness of structural information inmaking
predictions from reduced form systems in applications. Asymptotic results are
reported for predictions from models with many weak instruments. Of partic-
ular interest is the �nding that, in unidenti�ed and weakly identi�ed structural
models, partially restricted reduced form predictors have considerably smaller
forecast mean square errors than unrestricted reduced forms. These results
are related to the use of shrinkage methods in system-wide reduced form
estimation.
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1. Introduction

In pioneering work on reduced form estimation, Maasoumi (1978) showed how to construct a modi�ed
Stein-like estimator of the reduced form coe�cients in a linear simultaneous equations system. This
technique cleverly combined information from restricted and unrestricted estimation via the medium
of the system-wide overidenti�cation test statistic for the structural restrictions. Innovative in its use of
a shrinkage method driven by structural information in a reduced form context, this procedure had a
further motivating feature that it ensured a thinning of the tails of the �nite sample distribution of the
reduced form coe�cients, thereby enhancing their utility in applications such as forecasting. The latter
advantagewas seen at the time to break new ground in reduced form estimation because of the discovery,
only a few years earlier, that many commonly used structural equation estimators such as two-stage and
three-stage least squares methods produced reduced form estimators that had heavy tails and possessed
no �nite integer moments.

The second advance in Maasoumi’s paper was the customized nature of the construction of the
reduced form estimator. This estimator used Stein-like shrinkage of the restricted reduced form
estimator toward an unrestricted reduced form estimator with a shrinkage tuning factor based on the
outcome of a statistical test of the restrictions. The methodology followed Sargan’s (1958; 1959) early
work on overidenti�cation testing and the test statistic mirrored Malinvaud’s (1966) system-wide test of
structural equation restrictions in a simultaneous equations setting.

The present work has a similar focus on reduced form estimation. We look particularly at cases
where there is a weak structural identi�cation and explore the implications of such weakness for reduced
form coe�cient estimation and prediction. Themethodology we pursue follows the approach developed
originally in Phillips (1989) of relating exact �nite sample distribution theory to asymptotic theory in
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ECONOMETRIC REVIEWS 819

conditions of underidenti�cation. We provide an overview of this approach in the �rst part of the paper
and then proceed to develop a similar analysis for reduced form coe�cient estimation.

The plan of the paper is as follows. Section 2 reviews some exact �nite sample theory for instrumental
variable (IV) structural estimation and illustrates its use in deriving large sample asymptotics, asymptotic
expansions, limit theory under weak identi�cation, and many instrument asymptotics. While the
capabilities of this approach are well understood in structural model estimation, the mechanism has
been seldom used in other applications. Section 3 uses the approach to develop exact �nite sample
theory and asymptotics for reduced form estimators and predictors that take advantage of structural
information even in the context of poorly identi�ed structural systems. Cases of weak instrumentation
and the use of many weak instruments are studied. Simulation exercises are reported to highlight the
practical implications of the �ndings. The conclusion in Section 4 o�ers some more general re�ections
on exact theory and reduced forms. Proofs are given in the Appendix.

2. Exact distribution theory and its asymptotic implications

2.1. A prototypical simultaneous system

We write the linear simultaneous equations system in the following form

Byt + Czt = Axt = ut , t = 1, ..., n, (1)

whereA = [B,C] is anm×(m + k)matrix of unknown structural coe�cients, xt =
(

y′
t , z

′
t

)′
is a vector of

m endogenous variables (yt) and k exogenous variables (zt), and ut ∼iid N (0,�u) is a vector of serially
independent disturbances on the structural equations. Gaussianity is assumed for the development of
a �nite sample theory but is not needed for the asymptotics (c.f. Phillips, 1989). The reduced form of
system (1) is written as

yt = Pzt + vt , with P = −B−1C and vt ∼iid N
(

0,�v = B−1�uB
′−1
)

. (2)

The notation in (1) and (2) mirrors that used inMaasoumi (1978) which follows the Sargan LSE lectures
(Sargan, 1988a), Sargan’s (1988b) research papers and the Malinvaud (1966) textbook tradition.

The system (1) is assumed to have su�cient restrictions to identify, at least apparently,1 the structural
coe�cientsA. These restrictions may take the form of analytic constraints on the coe�cientsA or direct
functional representation of the matrix A in terms of a subset θ of parameters such as A = A (θ).
Identi�cation of a particular structure, as distinct from apparent identi�cation, requires additional
conditions, of course, but these are not necessary for estimation (Phillips, 1989). When interest centers
on the reduced form, thematrix P of relevant coe�cients in (2)may be estimated directly by unrestricted

reduced form least squares giving P̂ or indirectly by P† = −B†−1C†−1 using the structural coe�cient
estimates

[

B†,C†
]

obtained by a method such as three stage least squares (3SLS).

(a) Maasoumi reduced form estimation. We follow Maasoumi (1978) and assume the restricted
estimate P† is obtained by 3SLS. Throughout the paper we denote observation matrices by capitals,

for instance Z = [z1, ..., zn]
′ , and projection matrices by PZ = Z

(

Z′Z
)−1

Z′ and QZ = In − PZ , so

that the unrestricted reduced form estimator is P̂ = Y ′Z
(

Z′Z
)−1

. Maasoumi suggested a customized

reduced form estimator of P that combined P† with P̂ using weights delivered by a shrinkage tuning
factor determined by the outcome of a statistical test of the restrictions involved in the full speci�cation
of (1).

1By apparent identi�cation, we mean that order conditions enumerating the number and form of the restrictions appear,
prima facie, to indicate identi�cation, but without the assurance of supporting rank conditions that con�rm relevance, to
use the terminology of Phillips (1989).
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820 P. C. B. PHILLIPS

The test proposed by Maasoumi was based on a Wald statistic, given in tensor trace form as

φ† = tr

[

�̂v

(

P̂ − P†
)

Z′Z
(

P̂ − P†
)′]

, (3)

where �̂v = n−1Y ′QZY is the usual unrestricted residual moment matrix estimate of �v. The statistic
φ† follows (Malinvaud, 1966, Chapter 9.5) and can equivalently be written as an overidenti�cation test
statistic analogous to that developed originally in the works of Sargan (1958, 1959). Notably, under
correct speci�cation we have the asymptotic distribution φ† ∼a χ2

N , where N is the total number of
overidentifying degrees in the structural system (1). In large samples, the restrictions are rejected if φ†

exceeds the test critical value, although in small samples the test typically overrejects, as was already well
known in the 1970s. Maasoumi used this feature of the test to construct a combined estimator of the
reduced form matrix

P∗ = λP† + (1 − λ) P̂ = P† + (1 − λ)

(

P̂ − P†
)

. (4)

If Cp is a chosen critical value for the test, then the weight λ ∈ [0, 1] is chosen so that

λ =















1 if φ† ≤ Cp (hypothesis is accepted)

φ2

φ†
if φ† > Cp (hypothesis is rejected)

for some φ2 ≤ Cp. With this rule, the combined estimator has the form

P∗ = P† + 1{Cp,∞}
(

1 − φ2

φ†

)

(

P̂ − P†
)

,

with the indicator 1{Cp,∞} = 1 if φ† > Cp achieving a switch from the restricted estimate P† to the

combined estimate P∗ that shrinks P† toward the unrestricted P̂ when the test rejects the restrictions.
Maasoumi shows that the combined estimator P∗ has �nite integer order moments to order n − m − k.
If Cp → ∞ as n → ∞ at an appropriate rate then there are no false positives in the speci�cation test
and P∗ has the same asymptotic distribution as P†, thereby capturing any implied advantages from the
structural information for forecasting and other uses of the reduced form.

This innovative approach to reduced form estimation has several advantages. First, the combined
estimator P∗ has �nite moments and thin tails compared with the 3SLS estimate P†, which typically has
no �nite sample moments and a heavy tailed distribution (Sargan, 1976/1988). Second, under broad
conditions on the construction of the test, P∗ has the same limit theory as P†, so it carries all the
advantages of the additional structural information, when data deems this information correct. Third,
P∗ is a combined OLS-3SLS estimator, has the implicit advantages of an averaging estimator, and is more
readily computed than the alternative full informationmaximum likelihood estimator, a signi�cant gain
at the time, particularly for prediction purposes where regular updating is required.

Reduced form estimation using this technique o�ered good prospects, as were quickly recognized
by Edmond Malinvaud in his 1980 public address to the Econometric Society World Congress in Aix
en Provence. Nonetheless, the impact of this methodology on empirical research and, in particular,
on forecasting has been slow in arriving, although methods that do not use structural information
have become common. For instance, shrinkage methods were suggested during the 1980s for use in
Bayesian vector autoregressions to achieve parsimony in forecasting (Doan et al., 1984) and data-
driven approaches to shrinkage factor selection have been developed (Phillips, 1996). In the last decade,
generalized approaches to shrinkage estimation such as Lasso (Tibshirani, 1996), adaptive Lasso (Zou,
2006), bagging (Breiman, 1996), and their many variants, have begun to impact empirical work in
economics. Some of these methods now use potential structural information or long-run behavior in
adapting the Lasso mechanism (Liao and Phillips, 2015). Recent work on averaging estimators has also
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ECONOMETRIC REVIEWS 821

increased the popularity of these techniques (among others, see Fan and Ullah, 1999; Hansen, 2007,
2009, 2014; Iglesias and Phillips, 2012; Kotlyarova and Zinde-Walsh, 2006).

(b) Moment exponents and heavy tails. By virtue of its construction, the restricted estimator P† =
B†−1C† = adj(B†)

det(B†)
C† is a rational function of the elements of the structural coe�cient estimates

[

B†,C†
]

.

Sargan (1976/1988) proved that such reduced form estimates (obtained by least squares and related
structural equationmethods, such as 3SLS) typically havemaximalmoment exponent of unity, so that no
�nite integral order moments exist. The distributions of such estimates, and hence those of the induced
forecasts, inevitably, therefore, have heavy tails.

The elegant argument used by Sargan relies on the ratio form of P† and the fact that most structural
equation estimates

[

B†,C†
]

have a probability density that is positive as det (B) passes through the origin.
Moments of such reduced form estimates may, therefore, be bounded below as follows

E

(

∥

∥P†
∥

∥

r
)

≥
∫

N(|det(B)|≤δ)

∥

∥adj (B)
∥

∥

r

|det (B)|r ‖C‖r fB†,C† (B,C) dB × dC, (5)

where fB†,C† (B,C) is the density of the unrestricted elements of (B,C) in (1) with respect to Lebesgue
measure dB × dC on the space of those elements, N(|det(B)|≤δ) = {(B,C) : |det (B)| ≤ δ} for some small
δ > 0, and ‖·‖ is a matrix norm. When fB†,C† (B,C) > 0 on N(|det(B)|≤δ), then the integral in (5) does

not converge and E
(
∥

∥P†
∥

∥

r) = ∞ for all r ≥ 1. So the maximal moment exponent is unity and no �nite
integral moments of the elements of P† exist. Exceptions can occur for triangular systems where det (B)

is constant and nonzero (provided the elements of
(

B†,C†
)

also have moments to high enough order)
and in some other special situations.

We illustrate with the simple example of a single structural equation where y′
t =

(

y1t , y2t
)

with one
exogenous variable zt combined with an identity (see Phillips, 2009), so that

B =
[

1 −b

−1 1

]

, C =
[

0

−1

]

, �u =
[

σ 2 0

0 0

]

and det (B) = 1− b. Suppose b† is the ordinary least squares estimate of b obtained from the regression
of y1t on y2t . In this case, the density of b† is known to be supported and nonzero on the whole real axis,
so that the density is positive in the neighborhood b† ∼ 1. It follows that the corresponding estimates
of the reduced form coe�cients

P† = 1

1 − b†

[

1 b†

1 1

] [

0

1

]

will have no integer �nite sample moments and their distributions will have heavy tails. By contrast,

the least squares reduced form coe�cient estimate P̂ is normally distributed and has Gaussian tails.
Moreover, if the structural equation is estimated by maximum likelihood (which happens to correspond

to indirect least squares in this particular case) giving b̃, then it is known that the �nite sample density of

estimate of b̃ has zero density at b = 1 (see Phillips, 2009).2 The corresponding reduced form estimates
are just the least squares estimates and have �nite integer moments and Gaussian tails.

2The density of b̃, �rst derived in Bergstrom (1962) and used later in Nelson and Startz (1990), has the form

f
b̃

(b) =
√

λn

2πσ2

1 − β

(1 − b)2
exp

{

− n

2σ2

(

b − β

1 − b

)2
}

,

where λn =
∑n

t=1 z
2
t is the noncentrality parameter in this system. Clearly limb→1 fb̃ (b) = 0. By contrast, the density of

the least squares estimator of b is positive at b = 1, as shown in Phillips (2009). The density f
b̃

(b) is also well known to

be bimodal (Phillips and Wickens, 1978; Phillips and Hajivassiliou, 1987; Nelson and Startz, 1990; Phillips, 2006; Fiorio et al.,
2010). Bimodality is particularly evident in the presence of strong endogeneity (as in this example) when the instruments
are weak (Phillips, 2006).
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822 P. C. B. PHILLIPS

This example illustrates Sargan’s (1973) important �nding that FIML estimates of the reduced form
coe�cients do have �nite integer order moments. The reason maximum likelihood avoids the problem

of a positive density of det
(

B̃
)

at points where detB = 0 is that systemmaximum likelihood recognizes

the simultaneous equations nature of the system. So existence of the reduced form (i.e., det (B) 6= 0) is

critical to the formation of the likelihood, which ensures that zero density is attached to det
(

B̃
)

= 0,

thereby avoiding the problem of heavy tails in the reduced form coe�cients.

2.2. Structural equation estimation andweak IV

We now consider a single structural equation of (1) containing n observations on m + 1 endogenous
variables

[

y1,Y2

]

written in conventional observation form as

y1 = Y2β + Z1γ + u, (6)

with conformably partitioned reduced form (where the integer symbols above the matrices indicate
column dimension)

Y =
1 m

[

y1,Y2

]

=
K1 K2

[Z1,Z2]

[

π11 512

π21 522

]

+ [v1,V2] = Z5 + V (7)

and corresponding identi�ability relations

π11 − 512β = γ ; π21 − 522β = 0. (8)

Our focus of attention in what follows will be on instrumental variable (IV) estimation of the structural
equation (6) in conjunction with the estimation of the reduced form. With no loss of generality, it is
convenient to assume standardizing transformations (see Phillips, 1983) are applied so that n−1Z′Z = IK
where K = K1 + K2, and the covariance matrix of the elements of V = [v1,V2] is In(m+1). Since
u = v1 − V2β , it follows that E

(

uu′) =
(

1 + β ′β
)

In and the structural equation error variance is
1 + β ′β .

We start with the estimation of (6) using an IV observation matrixH selected from the included and
excluded (that is, excluded from the structural equation (6)) exogenous variables Z = [Z1,Z2] according
to the scheme

H = [Z3,Z1] =
m+L K1

[Z2S,Z1].

Here S is a selector matrix that selectsm+ L ≤ K2 instruments from the excluded covariates Z2 and the
integer L ≥ 0 is the degree of (apparent) overidenti�cation or surplus instrumentation. The exogenous
variable matrix Z is taken as �xed and of full rank K, although other options are possible and employed
later in the paper. The IV estimator of β can be written as

βIV =
[

Y ′
2

(

PH − PZ1
)

Y2

]−1
Y ′
2

(

PH − PZ1
)

y1 =
[

Y ′
2CC

′Y2

]−1
Y ′
2CC

′y1, (9)

where C = QZ1Z3
(

Z′
3QZ1Z3

)−1/2
is an n× (m+L)matrix of orthonormal vectors, so that C ∈ Vm+L,n,

the Stiefel manifold ofm + L orthonormal vectors of dimension n.
We now brie�y review the exact distribution theory of βIV and associated asymptotic expansions that

facilitate some of the remaining developments. This distribution theory reveals in a simple way the weak
IV asymptotics that apply when n → ∞ and the relations (8) are only weakly identifying in the sense
that 522 = n−1/25∗

22 = O
(

n−1/2
)

. In such cases, the identi�ability relations (8) provide only limited
information about β even as n → ∞ and this uncertaintymanifests itself in the asymptotics. The theory
used here draws from Phillips (1980, 1989) and is used as a bridge to the reduced form theory derived
later in the paper. Some results on many weak IV asymptotics are also provided.
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ECONOMETRIC REVIEWS 823

2.3. IV exact distributions, asymptotics, and expansions

UnderGaussianity and standardizing transforms, the errormatrixV ismatrix normal3Nn,m+1

(

0, In(m+1)

)

and the data matrix

C′Y ∼d Nm+L,m+1

(

M′, I(m+L)n

)

, (10)

with mean vector

M′ = E
(

C′Y
)

=
(

Z′
3QZ1Z3

)−1/2
Z′
3QZ1Z5 = n1/2

(

S′S
)−1/2

S′ [π21,522]

= n1/2
(

S′S
)−1/2

S′522 [β , Im] = n1/25̄22 [β , Im] ,

where 5̄22 =
(

S′S
)−1/2

S′522 is (m + L)×mwith rank at mostm. The sample moment matrix Y ′CC′Y
is then distributed as noncentralWishart of dimensionm+1 with covariancematrix Im+1, noncentrality
matrix

MM′ = n

[

β ′

Im

]

5̄′
225̄22 [β , Im] , (11)

whose rank is at most m, and degrees of freedom m + L. This distribution is written as Wm+1

(

m +
L, Im+1, MM′) and, conformable with the partition of the structural equation (9), we may write the
matrix quadratic form

Y ′CC′Y =





1
a11

m
a12

a21 A22



 ∼d Wm+1

(

m + L, Im+1,MM′) . (12)

In terms of these components, the IV estimator (9) is βIV = A−1
22 a21, a matrix quotient of the

components of the Wishart matrix (12). The matrix n5̄′
225̄22 in (11) is called the concentration

parameter matrix and is instrumental in determining the (�nite sample and asymptotic) properties of
βIV because information about β is transmitted to the density (12) and hence to the density of βIV

through the noncentrality matrixMM′ by virtue of the matrix n5̄′
225̄22 and its behavior as n → ∞.

The exact distribution of βIV was obtained in Phillips (1980) and the density has the following series
form

fIV (r) =
etr
{

−n
2

(

I + ββ ′) 5̄′
225̄22

}

Ŵm

(

L+m+1
2

)

πm/2 [det (Im + rr′)](L+m+1)/2

×
∞
∑

j=0

(

L
2

)

j

[

(

n
2β

′5̄′
22∂

a
W5̄22β

)j
det (Im+L + W)

L−1
2 +j

j!Ŵn

(

L+m
2 + j

)

× 1F1









L + m + 1

2
,
L + m

2
+ j;

n

2
(Im+L + W) 5̄22

(

Im + βr′
) (

Im + rr′
)−1 (

Im + rβ ′) 5̄′
22

















W=0

, (13)

where etr {·} signi�es exp {trace (·)}, ∂aW = adj (∂/∂W) is the polynomial di�erential operator obtained
by taking the adjoint matrix of the matrix operator ∂/∂W, 1F1 (a, b;U) denotes a con�uent hypergeo-
metric function with matrix argument U and parameters (a, b), Ŵ is the gamma function, Ŵm denotes
the multivariate gamma function for m > 1, and the notation (a)j = a (a + 1) ...

(

a + j − 1
)

=

3We use the notation V ∼d Nn,m+1
(

0, In(m+1)

)

to signify that the matrix V is normally distributed, i.e., the n (m + 1) vector

vec (V) ∼d N
(

0, In(m+1)

)

.
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824 P. C. B. PHILLIPS

Ŵ
(

a + j
)

/Ŵ (a) is the Pochhammer forward factorial function. Readers are referred to Phillips (1980,
1983) andMuirhead (1982) for background information on the matrix spaces involved, the multivariate
methods employed, and further details of the special functions 1F1 and Ŵm.

The exact density (13) was obtained under Gaussian errors but may be extended in some cases,
for example by using Gram Charlier representations of more general error distributions. However, the
results implied by (13) turn out to be important and relevant in many other cases including those of
non-Gaussian errors, as detailed below. Importantly, the expression fIV (r) for the density facilitates
many further developments and specializations, including some helpful asymptotic results. Wemention
particularly the following:
(i) Asymptotic theory as n → ∞ follows immediately by expanding the matrix argument 1F1

function in (13) as n → ∞.
(ii) Higher order asymptotics and Laplace approximations may also be obtained in the strong

instrument case where 5̄22 has full rank. These are delivered simply by utilizing higher order
expansions of the 1F1 function as n → ∞. In particular, the Laplace approximation to the density
(13) is the much simpler expression

fIV (r) =
nm/2etr

{

−n
2

5̄′
225̄22(r−β)(r−β)′

1+r′r

}

(

det
(

5̄′
225̄22

))1/2 (
1 + β ′r

)L+1

(2π)m/2 (1 + r′r)(L+m+2)/2 (1 + 2β ′r − β ′β)L/2

×
{

1 + O
(

n−1
)}

, (14)

which delivers immediately the density of the limit distribution of Xn = √
n (βIV − β) as

fX (x) =
e
− 1

2

x′5̄′
225̄22x

1+β′β
(

det
(

5̄′
225̄22

))1/2

(2π)m/2 (1 + β ′β)m/2
≡ N

(

0,
(

1 + β ′β
) (

5̄′
225̄22

)−1
)

. (15)

(iii) Asymptotic theory in the unidenti�ed case where 5̄22 = 0 is also easily obtained without the
Gaussianity assumption on the error matrix V . We need only to take the leading term of the
series representation of the exact density fIV (r), which gives the following (scaled) multivariate t
distribution4 with L + 1 degrees of freedom and density

Ŵm

(

L+m+1
2

)

πm/2Ŵn

(

L+m
2

)

[det (Im + rr′)](L+m+1)/2
=

Ŵ
(

L+m+1
2

)

πm/2Ŵ
(

L+1
2

)

[1 + r′r](L+m+1)/2
(16)

and note that a central limit theorem (CLT) produces the required Gaussianity of (10) without
assuming Gaussianity forV . Observe further that when L = 0, the limiting density is multivariate
Cauchy and has no integer �nite sample moments. Thus, IV estimation under conditions of
apparent just identi�cation has a heavy tailed density. Asymptotic theory for statistical tests,
including general Wald test of restrictions on the structural coe�cients β , can also be easily
deduced.

(iv) Asymptotics in the weakly identi�ed case also follow immediately for reduced formmatrices that
are local to zero such as 5̄22 = n−1/25̄∗

22 = O
(

n−1/2
)

, for some matrix 5̄∗
22 of localizing

coe�cients. In this case, the limit distribution of βIV as n → ∞ is just the exact density fIV (r) of
βIV given above in (13) with the simple replacement of 5̄22 by n

−1/25̄∗
22. Similarly, asymptotic

theory for statistical tests concerning β follows, just as in (iii). In all these cases, we simply can use
the martingale CLT in Phillips (1989) to deliver the limit theory without assuming Gaussianity.

(v) The case of many weak instruments may also be explored using the exact theory. In particular,
suppose the number of surplus instruments (or degree of overidenti�cation)L → ∞. Then, under

4Strictly speaking the density (16) is proportional to a multivariate t distribution. In particular, the distribution given by the

density (16) is the distribution of tq/q
1/2 with q = L + 1 where tq is multivariate t with q degrees of freedom. See Phillips

(1989, Theorem 2.1).
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ECONOMETRIC REVIEWS 825

certain regularity conditions that include the expansion rate of L, βIV is consistent with a slower
rate of convergence than

√
n and the rate of convergence depends on the extent of the weakness in

the instruments. But when L → ∞ too rapidly relative to the expansion rate of the concentration
matrix 5̄∗′

225̄
∗
22, then βIV is inconsistent.

Items (i)–(ii) are shown in Phillips (1980) and the various items in (iii) were proved in Phillips (1989),
including the asymptotic theory of the associated statistical tests. We brie�y demonstrate (iv) here as the
methods are of some pedagogical interest in view of their simplicity. First observe that the replacement
5̄22 = n−1/25̄∗

22 ensures that (10) holds with M′ = 5̄∗
22 [β , Im] as n → ∞ by the martingale CLT. In

particular,

C′Y − E
(

C′Y
)

= C′V ∼a Nm+L,m+1

(

0, I(m+L)(m+1)

)

(17)

because C′V satis�es the stability and Lindeberg conditions, as shown in (Phillips, 1989, Lemma 2.3),
when the rows ofV are stationary and ergodicmartingale di�erences with conditional covariancematrix
Im+1. Next note that βIV is a continuous function of C′Y by virtue of (9) and the fact that the limiting
matrix normal distribution (and the impliedWishart distribution ofY ′

2CC
′Y2) is of full rank, con�rming

continuity of the mapping. The exact density fIV (r) derived under Gaussianity is then the limiting
density of βIV as n → ∞ when the reduced form coe�cients satisfy 522 = n−1/25∗

22 and the data are
not necessarily Gaussian. That is, when the instrument matrix H is weak for the endogenous variables
Y2 in the structural equation (6), the limit theory as n → ∞ reproduces the exact distribution theory
under Gaussianity with all its associated parameter dependencies under the simple replacement of 522

by n−1/25∗
22. Note that the dependence of the density (13) on the sample size n is removed by this

replacement.
This approach brings together the exact distribution theory and the weak instrument limit theory by

virtue of the simple action of the CLT (17) fromPhillips (1989) and continuousmapping from thematrix
quotient form of the estimator βIV . The argument is identical in this noncentral (weak instrument) case
to that given in Phillips (1989) for the unidenti�ed case. Results for statistical tests follow directly. Staiger
and Stock (1997) developed results in (iv) assuming high level conditions that require a CLT such as (17)
and considered k-class estimators as well as tests of overidenti�cation and exogeneity.

Item (v) was considered in Chao and Swanson (2005) and the results may be obtained in the
present framework. For instance, we may assume that the noncentrality matrix 5̄′

225̄22 satis�es
nλmin

(

5̄′
225̄22

)

= O
(

n2α
)

→ ∞, where λmin (·) denotes the smallest eigenvalue of its matrix

argument, and n1−2α5̄′
225̄22 → 9 > 0 for some given α ∈

(

0, 12
)

and for some positive de�nite
limit matrix 9 . Then the density of the centered and scaled estimator Xn = nα (βIV − β) has the form

fXn (x) =
e
− 1

2

x′
(

n
n2α

5̄′
225̄22

)

x

1+β′β
(

det
(

n
n2α

5̄′
225̄22

))1/2

(2π)m/2 (1 + β ′β)m/2

{

1 + O

(

L

nα

)}

→ N
(

0, σ 2
u9−1

)

, with σ 2
u = 1 + β ′β , (18)

as 1
L + L

nα → 0. So, under certain regularity conditions as the number of weak instruments grows
βIV is consistent at a reduced rate and has a limiting normal distribution with variance matrix σ 2

u9−1

that depends on the limit n1−2α5̄′
225̄22 → 9 and the scalar σ 2

u = 1 + β ′β , which is the variance
of the structural equation error ut a�er standardizing transformations on the reduced form have been
performed, as indicated earlier.

Recall that 5̄22 =
(

S′S
)−1/2

S′522 is (m + L) × m, so that the number of rows of 5̄22 expands as
L → ∞. Thus, depending on the extent of the weakness of the instruments (measured by themagnitude
of the elements of 5̄22), when there is an expanding instrument set the matrix quadratic form 5̄′

225̄22

can accumulate information at some rate that is related to the expansion rate of L. This rate is given
by the exponent α that appears in the excitation condition nλmin

(

5̄′
225̄22

)

= O
(

n2α
)

→ ∞ and the
regularity condition required is that L not grow too fast relative to the excitation rate, so that L/nα → 0.
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826 P. C. B. PHILLIPS

At the limits of its domain of de�nition when α = 1
2 , we have the usual strong instrumentation case

for which βIV is consistent at a
√
n rate; and when α = 0, we have conventional weak instrumentation

under which the estimator βIV is inconsistent. Other cases may also be considered and are investigated
in Chao and Swanson (2005). A further example is considered later in this paper.

3. Reduced form exact distribution theory and associated asymptotics

We start by considering the same triangular structural system as that used above, viz.,

y1 = Y2β + Z1γ + u, (19)

Y2 = Z1512 + Z2522 + V2, (20)

in which the second block of equations is already in reduced form. The complete reduced form is

[

y1 , Y2

]

= [Z1π11 + Z2π21 + v1 , Z1512 + Z2522 + V2] ,

= [Z1 (512β + γ ) + Z2522β + v1 , Z1512 + Z2522 + V2] , (21)

where v1 = u + V2β . For the development of an exact theory we assume, as earlier, that V ∼d

N
(

0, In(m+1)

)

a�er standardizing transformations. TheGaussian assumption is relaxed in the asymptotic
theory discussed later.

The system (21) solves the structural form and leads to a reduced formwith restricted coe�cients that
involve the structural parameters. However, the coe�cient π11 = 512β + γ is e�ectively unrestricted
because it has dimensionK1×1 and theK1- vector γ is also unrestricted.On the other hand,π21 = 522β

implies that the reduced form coe�cients π21 are restricted by the requirement that π21 ∈ R (522), the
range space of 522, and that the speci�c linear combination of 522 involves β . Note particularly that if
522 = 0 then π21 = 0, which imports information about 522 from the reduced form for Y2 directly
into the reduced form for y1 as a consequence of the structural model.

The system (21) is known as a partially restricted reduced form (Kakwani and Court, 1972) because
it incorporates restrictions on the reduced form equations from a single structural equation. These
restrictions may be used in estimation and they lead to the partially restricted reduced form estimator
(Knight, 1977)





π̃11 = 5̂12βIV + γIV = π̂11

π̃21 = 5̂22βIV



 , where





5̂12

5̂22



 =
(

Z′Z
)−1

Z′Y2.

The �rst component π̃11 = π̂11 is unrestricted and is Gaussianwith all itsmoments �nite. It is the second
component π̃21 = 5̂22βIV which is of primary interest because it carries the e�ects of the structural
information into reduced form estimation. Knight’s (1977) work showed that the partially restricted
reduced form estimator has �nite moments of all orders.

Since π̃11 = π̂11 is an unrestricted estimator, we need not be concerned with this component. In what
follows, therefore, we eliminate the included exogenous variables from (19) and consider the structural
equation

y1 = Y2β + u, (22)

with no included exogenous variables, and the associated reduced form
[

y1,Y2

]

= Z [π1,52] + [v1,V2] = Z5 + V , (23)

in which π1 = 52β ∈ R (52). Without loss of generality, we continue to assume that standardizing
transformations are applied to (23) so that Z′Z = nIK and V ∼d N

(

0, In(m+1)

)

.

D
ow

nl
oa

de
d 

by
 [

Si
ng

ap
or

e 
M

an
ag

em
en

t U
ni

ve
rs

ity
] 

at
 0

1:
53

 2
8 

A
ug

us
t 2

01
7 



ECONOMETRIC REVIEWS 827

3.1. Reduced form predictors

As in Maasoumi (1978), we are particularly interested in the e�ects of reduced form estimation on
prediction. We concentrate on obtaining one period ahead forecast distributions for the �rst structural
equation using restricted and unrestricted estimation. The forecast object is, therefore, y1,n+1 =
z′n+1π1 + v1,n+1, where y1,n+1 is the forecast period value of the endogenous variable in (22) and
the reduced form error v1,n+1 ∼d N (0, 1) is independent of V . In what follows, we will maintain
the Gaussian assumption to develop the exact theory and relax this assumption in developing the
asymptotics.

(a) Exact theory and asymptotics in the unidenti�ed case. We start by exploring the leading case where
the submatrix522 = 0 and the structural coe�cient β is unidenti�ed. The exact theory for the reduced
form is simpler for this case, just as it is for structural estimation theory, but su�ces to reveal interesting
features of the restricted reduced form estimator. Note that in this case π1 = 52β = 0.

The two predictors (based on the unrestricted estimate π̂1 and the restricted estimate 5̂2βIV of π1)
are given by

ŷ1,n+1 = z′n+1π̂1 and ỹ1,n+1 = z′n+1π̃1 = z′n+15̂2βIV .

With no loss of generality it is convenient to maintain the standardizing transformations and add the
normalizing condition z′n+1zn+1 = 1 on the forecast period exogenous variables. Then the unrestricted
forecast

ŷ1,n+1 ∼d N
(

z′n+1π1, z
′
n+1

(

Z′Z
)−1

z′n+1

)

= N

(

z′n+1π1,
1

n

)

(24)

is unbiased with variance 1/n. The distribution of the restricted forecast ỹn+1 is more complex and

involves the product 5̂2βIV of the unrestricted reduced form estimate 5̂2 =
(

Z′Z
)−1

Z′Y2 and the
structural form IV estimate βIV .

The exact densities of the two predictors of y1,n+1 are given in the following result.

Theorem. Under Gaussianity, the stated conditions for the model (22) and (23), and in the leading case
where π1 = 52β = 0, the exact densities of the normalized unrestricted and restricted reduced form

predictors ŷP1,n+1 = z′n+1

(√
nπ̂1

)

and ỹP1,n+1 = z′n+1

(√
n5̂2βIV

)

are given by

fŷP1,n+1

(

y
)

= e−
y2

2

√
2π

, (25)

fỹP1,n+1

(

y
)

= e−
y2

2

√
2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)

j

j!
(

K
2

)

j 1

F1

(

−j,
1

2
;
y2

2

)

, (26)

where 1F1

(

−j, 12 ;
y2

2

)

=
∑j

k=0
(−j)(−j+1)...(−j+k−1)

k!
(

1
2

)

k

(

y2

2

)k
is a terminating con�uent hypergeometric

series.

The proof of (26) is given in the Appendix and relies on a simple conditioning argument. The idea is
that, for the model (22) and (23), the restricted reduced form estimate has the following decomposition

√
n5̂2βIV =

√
n
(

Z′Z
)−1

Z′Y2 ×
(

Y ′
2CC

′Y2

)−1
Y ′
2CC

′y1

= C′V2

(

V ′
2CC

′V2

)−1/2 ×
(

V ′
2CC

′V2

)−1/2 (
V ′
2CC

′v1
)

, (27)
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828 P. C. B. PHILLIPS

whereC′ =
(

Z′Z
)−1/2

Z′ and the component variatesC′V2

(

V ′
2CC

′V2

)−1/2
and

(

V ′
2CC

′V2

)−1/2 (
V ′
2CC

′v1
)

are independent. The standardized estimate
√
n5̂2βIV , therefore, has a mixed normal distribution,5

from which the density can be evaluated by direct integration over the space Vm,K of the K × mmatrix

variate ϒ = C′V2

(

V ′
2CC

′V2

)−1/2
.

As noted in the statement of the theorem, the component factor 1F1

(

−j, 12 ;
y2

2

)

is a terminating

hypergeometric series. This series is of special interest because it arises in the computation of moments
of a noncentral normal distribution. In particular, as shown in the proof of the theorem, ifX ∼ N

(

µ, σ 2
)

the even moment formula (e.g., Winkelbauer, 2014)

E
(

X2j
)

= σ 2j2j
Ŵ
(

j + 1
2

)

√
π

1F1

(

−j,
1

2
,− µ2

2σ 2

)

,

yields
∫ ∞

−∞

1√
2π

e−
(s+iy)2

2 s2jds = 2j
(

1

2

)

j
1F1

(

−j,
1

2
,
y2

2

)

,

upon setting µ = iy and σ = 1.

When K = m, the series (26) truncates at the �rst term giving fỹP1,n+1

(

y
)

= e−
y2

2 /
√
2π = fŷP1,n+1

(

y
)

.

In this case, the structural model is (apparently) just identi�ed and there are no e�ective restrictions on

the reduced form, so that π̂1 = 5̂2βIV and the predictors are equivalent (i.e., ỹP1,n+1 = ŷP1,n+1). In this
case there is no gain from using the structural form estimate βIV because the two reduced form estimates
are equivalent.

The following moment results enable a straightforward comparison between the two predictors in
terms of variance and forecast mean square error.

Corollary. Under the same conditions as above, the normalized unrestricted and restricted reduced form
predictors have variances

E

{

(

ŷP1,n+1

)2
}

= 1, and E
{

(

ỹP1,n+1

)2
}

= m

K
. (28)

When K = 2 and m = 1 we have E
{

(

ỹP1,n+1

)2
}

= 1
2 , so the variance of the restricted reduced

form predictor is one half the variance of the unrestricted predictor ŷP1,n+1. When m = 1 and K ≥ 2
we have a variance reduction to 1/K of the variance of the unrestricted reduced form predictor ŷ1,n.
The distribution of the restricted reduced form predictor is, therefore, much less dispersed than that
of the unrestricted estimate. This �nding is intriguing in light of the fact that the restrictions are only
apparent in the present case. Indeed, the restricted predictor ỹPn+1 depends on structural estimation of an
unidenti�ed parameter and the structural estimator βIV itself is inconsistent. Yet the partially restricted
reduced form estimator substantially reduces variance in the predictor.

How is it, then, that the restricted estimator π̃1 = 5̂2βIV , which depends on the inconsistent
estimator βIV , can be less dispersed than the unrestricted estimator π̂1? The explanation is that π̃1 is
the product of two estimators 5̂2 and βIV , both of which are centered on the origin and the �rst of
which is consistent for 52 = 0. The product distribution enhances concentration around the origin,
thereby reducing variance. In e�ect, when we use the information in βIV in reduced form estimation we

employ both 5̂2, which is centered on zero (just like the unrestricted RF estimate π̂21) and βIV , which is

5A matrix variate X has a (variance matrix) mixed normal distribution if the density of X is a compound distribution of the
form pX (x) =

∫

A>0 ϕ (x,A) p (A) (dA) where ϕ (x,A) is the matrix normal density with covariance matrix A and the integral
is taken over the matrix space A > 0 with respect to the invariant measure (dA) on the cone of positive de�nite matrices
weighted by the probability density p (A) of A. See Muirhead (1982) for further details.
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ECONOMETRIC REVIEWS 829

also centered on zero, giving a combined e�ect of double centering on zero through the product 5̂2βIV .
In e�ect, shrinkage (achieved in this case by multiplication) helps to reduce variance, mirroring one of
the broad ideas inMaasoumi (1978). Importantly, structural information is seen to be useful here where
there is apparent overidenti�cation even though the structural parameters themselves are unidenti�ed

and even though there are ostensibly more coe�cients estimated in the pair
(

5̂2,βIV

)

than there are in

the simple unrestricted reduced form estimate π̂1.
The corresponding forecast mean square error (FMSE) values are

E
(

ŷ1,n+1 − y1,n+1

)2 = 1 + 1

n
, and E

(

ỹ1,n+1 − y1,n+1

)2 = 1 + m

nK
,

so that the restricted forecast also has a lower FMSE than the unrestricted forecast in this case.
The exact densities (25) and (26) do not depend on n. When we relax the assumption of Gaussianity

in the error matrix V and use instead the CLT (17), we again obtain (25) and (26) but now as the limit
distributions of ŷP1,n+1 and ỹ

P
1,n+1 as n → ∞. Thus, all of the above stated properties of the two predictors

hold asymptotically without Gaussianity.
A particularly interesting feature of the exact distribution (26) is that we may consider its limit as the

number of instruments K (or degree of overidenti�cation K − m) passes to in�nity. This limit is most
easily obtained by using the characteristic function of ζ = ỹP1,n+1 = z′n+1

(√
nπ̃2

)

that is given in the
proof of the theorem in (37), viz.,

cfζ (s) = e
− s2

2
1 F1

(

K − m

2
,
K

2
;
s2

2

)

= e−
s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K
2

)

j

(

s2

2

)j

. (29)

This characteristic function is the exact �nite sample and asymptotic (as n → ∞) characteristic function
of ζ . When K → ∞ (under the assumption that K < n → ∞) it is clear from (29)6 that

lim
K→∞

cfζ (s) = e−
s2

2

∞
∑

j=0

1

j!

(

s2

2

)j

= 1.

It follows that the limit distribution of the restricted predictor ỹP1,n+1 = z′n+1

(√
nπ̃2

)

has a point

probability mass of unity at the origin. Hence, ỹP1,n+1 →p 0 as K → ∞. Correspondingly, the predictor

variance E
{

(

ỹP1,n+1

)2
}

= m
K → 0 as K → ∞. Thus, increasing the number of (irrelevant) instruments

has a dramatic shrinking e�ect on the restricted predictor, just as it does in fact for the distribution of
βIV .

7

(b) The weak IV case. We next consider the weak IV case. We have the same predictors ŷ1,n+1 =
z′n+1π̂1 and ỹ1,n+1 = z′n+1π̃1 = z′n+15̂2βIV , but now [π1,52] = n−1/2

[

π∗
1 ,5

∗
2

]

with π∗
1 = 5∗

2β .

The normalized unrestricted reduced form estimates satisfy
√
n
[

π̂1, 5̂2

]

∼d N
([

π∗
1 ,5

∗
2

]

, IK(m+1)

)

=
N
([

5∗
2β ,5

∗
2

]

, IK(m+1)

)

so that ŷP1,n+1 = √
nŷ1,n+1 = √

nz′n+1π̂1 ∼ N
(

z′5∗
2β , 1

)

. For the restricted
reduced form estimator, we know that in this weak IV case with K �xed we have βIV ⇒ ζβ where ζβ

has the distribution given in (13) as n → ∞ a�er making the replacements 5̄22 7→ n−1/25∗
2 and

6The result follows by examining the expansion (29), letting K → ∞, and noting that
(

K−m
2

)

j
/

(

K
2

)

j
→ 1 as K → ∞ for all j.

Alternatively, we may use the large-parameter asymptotic expansion 1F1 (a, c; x) = ex
[

1 + O
(

|c|−1
)]

which holds when

c → ∞ and c − a and x are bounded, as in the present case (see Erdélyi, 1953, p. 279).
7Recall from Footnote 4 that the exact density (16) of βIV in the irrelevant instrument case is the scaled multivariate

t- distribution tq/q
1/2, with q = K − m + 1 degrees of freedom, which collapses to the origin as K → ∞.
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830 P. C. B. PHILLIPS

m + L 7→ K in the density. Then, as n → ∞,

ỹP1,n+1 =
√
nỹ1,n+1 =

√
nz′n+15̂2βIV

= z′
(

5∗
2 + C′V2

)

βIV ∼a N
(

z′5∗
2 , Im

)

× ζβ ,

where βIV can be written in component form as follows

βIV =
[(

5∗′
2 + V ′

2C
) (

5∗
2 + C′V2

)]−1 [(
5∗′

2 + V ′
2C
) (

π∗
1 + C′v1

)]

.

Under either Gaussianity or asymptotically as n → ∞, we have C′V2 ∼d N (0, IKm) and, as before, C′V2

is independent of C′v1 ∼d N (0, IK).
Setting W5 =

(

5∗
2 + C′V2

)

∼d N
(

5∗
2 , IKm

)

, we have the following representation, by virtue of
initial conditioning on C′V2,

(

5∗
2 + C′V2

)

βIV = W5

(

W′
5W5

)−1 [
W′

5

(

5∗
2β + C′v1

)]

= PW5
5∗

2β + PW5
C′v1 ∼d MN

(

PW5
5∗

2β ,PW5

)

,

which involves amean and covariancematrix normalmixture, for whichwe use the symbolismMN (·, ·).
Hence, the normalized predictor

ỹP1,n+1 =
√
nz′n+15̂2βIV ∼d MN

(

z′PW5
5∗

2β , z
′PW5

z
)

. (30)

When, 5∗
2 = 0, this distribution reduces to MN

(

0, z′PC′V2z
)

as in the decomposition (27) used for

the central case; and, when β = 0, we have ỹP1,n+1 ∼d MN
(

0, z′PW5
z
)

. In both these cases, we have
a variance matrix normal mixture. Since PW5

is a projection matrix and W5 has a full rank normal
distribution which implies that W′

5z 6= 0 with probability one, it follows that z′PW5
z ∈ (0, 1) a.s. So,

just as in the completely unidenti�ed case, the variance of the normalized restricted predictor is smaller
than the variance of the unrestricted predictor in the weak IV case when β = 0.

It is also possible to analyze the case of many weak instruments as K → ∞. For example, suppose
z = iK/

√
K where iK = (1, ..., 1)′ is a K- vector with unity in each position, and assume that

K−1i′K5∗
2 →p 0 and K−15∗′

2 5∗
2 →p �5 > 0 for some positive de�nite m × m matrix �5. These

conditions are satis�ed, for instance, when 5∗
2 =

[

5∗
21, ...,5

∗
2K

]′
in which the component vectors

5∗
2k ∼iid (0,�5) and are independent of V . Since C′V2 ∼d N (0, IKm) either exactly under Gaussianity

or asymptotically using (17), we have K−1V ′
2CC

′V2 →p Im, K
−1V ′

2C5∗
2 →p 0, and K−1i′KC

′V2 →p 0.
The quadratic form z′PW5

z = K−1i′KPW5
iK then satis�es

z′PW5
z = 1

K
i′K
(

5∗
2 + C′V2

) [(

5∗′
2 + V ′

2C
) (

5∗
2 + C′V2

)]−1 (
5∗′

2 + V ′
2C
)

iK

=
(

i′K5∗
2

K
+ i′KC

′V2

K

)[(

5∗′
2 5∗

2

K
+ 5∗′

2 C
′V2

K
+ V ′

2C5∗
2

K
+ V ′

2CC
′V2

K

)]−1

×
(

5∗′
2 iK

K
+ V ′

2CiK

K

)

→ p 0.

Hence, we may expect the variance of the predictor ỹP1,n+1 to decrease as K → ∞ in the many weak IV
case, just as in the unidenti�ed case.

The location variate in (30) is also of interest when β 6= 0. If we assume the conditions above that
the weak reduced form parameters 5∗

2k ∼iid (0,�5) and are independent of V , then K−1/2i′K5∗
2 ⇒
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ECONOMETRIC REVIEWS 831

ζ52 ∼a N (0,�5) and since K−1/2i′KC
′V2 ⇒ ζV ∼d N (0, Im) , we �nd that

z′PW5
5∗

2β = 1√
K
i′K
(

5∗
2 + C′V2

) [(

5∗′
2 + V ′

2C
) (

5∗
2 + C′V2

)]−1 (
5∗′

2 + V ′
2C
)

5∗
2β

=
(

i′K5∗
2√

K
+ i′KC

′V2√
K

)[(

5∗′
2 5∗

2

K
+ 5∗′

2 C
′V2

K
+ V ′

2C5∗
2

K
+ V ′

2CC
′V2

K

)]−1

×
(

5∗′
2 5∗

2

K
+ V ′

2C5∗
2

K

)

β

⇒
(

ζ ′
52

+ ζ ′
V

)

(�5 + Im)−1 �5β ,

which shows that prediction bias can be expected in the many weak IV case when the structural
coe�cients β 6= 0. This bias is related to the fact that the IV estimate βIV is inconsistent in this particular
many weak IV case. Speci�cally, for given K the �nite sample (or asymptotic distribution under (17) as
n → ∞) distribution is given by

βIV =
[(

5∗′
2 + V ′

2C
) (

5∗
2 + C′V2

)]−1 [(
5∗′

2 + V ′
2C
) (

π∗
1 + C′v1

)]

=
(

W′
5W5

)−1
W′

5

(

π∗
1 + C′v1

)

=
(

W′
5W5

)−1
W′

5

(

5∗
2β + C′v1

)

∼d MN
(

(

W′
5W5

)−1
W′

55∗
2β ,

(

W′
5W5

)−1
)

.

As above, we have

K−1W′
5W5 =

(

5∗′
2 5∗

2

K
+ 5∗′

2 C
′V2

K
+ V ′

2C5∗
2

K
+ V ′

2CC
′V2

K

)

→p �5 + Im,

when K → ∞, and so

(

W′
5W5

)−1
W′

55∗
2β =

(

W′
5W5

K

)−1 W′
55∗

2β

K
→p (�5 + Im)−1 �5β

=
[

�−1
5 − �−1

5

(

�−1
5 + I

)−1
�−1

5

]

�5β = β − (�5 + Im)−1 β .

Hence, in this case,

βIV →p β − (�5 + Im)−1 β (31)

and the IV estimator is inconsistent, a result that was obtained earlier in Chao and Swanson (2005,
Theorem 2.4b). While a limit distribution theory is possible, it is obviously of less interest due to
the inconsistency. Observe that 5∗′

2 5∗
2 = O (K) here, which ensures that in Chao and Swanson’s

notation their rn = K, and so rn/K → 1, thereby establishing the correspondence with their result.
By contrast, the many weak IV case (iv) considered earlier has the concentration matrix expansion rate
5∗′

2 5∗
2 = O

(

n2α
)

with K/n2α → 0, and βIV is consistent at rate O (nα) and asymptotically normal.
Thus, consistency holds when the instrument set does not expand too fast in relation to information
accumulated in the concentration matrix as K → ∞. Again, a limit distribution theory is possible.

In the general noncentral weak IV case where 5∗
2 6= 0 and β 6= 0, the distribution of the predictor is

themean and variancematrixmixture of normals (30) in which the conditional mean vector z′PW5
5∗

2β

is random. This substantially complicates the exact distribution theory and introduces a (random)
conditional bias e�ect into the predictor that may not be eliminated asymptotically and may in�ate
variance. Although theremay still be conditional variance reductions in this case because the conditional
variance in (30) has the same value z′PW5

z, the overall e�ect of the random mean mixture on the
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832 P. C. B. PHILLIPS

Figure 1. Exact densities of reduced form and partially restricted reduced form predictors in an unidenti�ed structural model with
m + 1 = 2 endogenous variables and K − m degrees of apparent overidenti�cation in the equation.

properties of the restricted predictor ỹP1,n+1 is mixed. Some simulation evidence is presented next to
provide further information on these properties.

3.2. Simulations

We �rst consider the unidenti�ed case and produce numerical illustrations of the density results (25)
and (26) given in the theorem. The IV (restricted) predictor density is readily computed directly from
the analytic expression (26). The unrestricted predictor density is standard normal. Figures 1 and 2 show
these densities for various values of the degree of overidenti�cationK−m and form = 1 andm = 3. As is
clear in both �gures, the densities of the IV predictor are considerablymore concentrated than that of the
unrestricted predictor.Moreover, the concentration increases asK−m increases. These numerical results
con�rm the analytic �ndings and show that the forecast variance reduction is particularly dramatic when
m = 1.

Figures 3 and 4 provide simulation-based kernel density estimates of the unrestricted and partially
restricted reduced form (PRRF) predictors in theweak IV case.We report results for the two endogenous
variable case (i.e.,m = 1 and there is a single right hand endogenous variable in the structural equation
(22)), sample size n = 100, and instrument numbers K = 3, 11, and 19. The K- vector 5∗

2 has its
elements drawn (once and for all) from the normal distribution N (0, IKm), 52 = n−1/25∗

2 , giving a

conventional weak instrument matrix, and the forecast period vector zn+1 = iK/
√
K. The structural

coe�cient has values β = 0 in Figure 3, and β = 1 in Figure 4. These di�erences in the values of the
structural coe�cient β turn out to be of substantial importance, as inspection of Figures 3 and 4 con�rm.

First, it is clear from Figure 3 that when β = 0, the predictor distributions are all centred on the origin
as, conditional on 5∗

2 , the mean forecast period value is E
(

y1,n+1

)

= z′n+1π1 = z′n+152β = 0. Second,

the unrestricted predictor ŷP1,n+1 = √
nz′n+1π̂1 ∼d N (0, 1) since z′n+1zn+1 = 1, and it is apparent in

the �gure that the �nite sample density matches the standard normal density. Third, the density of the
PRRF predictor depends closely on the degree of overidenti�cation K − 1. Even for small degrees of
overidenti�cation like K − 1 = 2, the PRRF predictor has a more concentrated density. As K increases,
the density concentrates sharply, corroborating the analytic �nding that the variance tends to zero as
K → ∞.

Figure 4 gives the densities for the centred and scaled versions of the predictors
√
n
(

ŷ1,n+1 − y1,n+1

)

and
√
n
(

ỹ1,n+1 − y1,n+1

)

when β = 1 and the remaining parameters are as in Figure 3. Again, the
distribution of the unrestricted predictor matches the asymptotic N (0, 1). The densities of the PRRF
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ECONOMETRIC REVIEWS 833

Figure 2. Exact densities of reduced form and partially restricted reduced form predictors in an unidenti�ed structural model with
m + 1 = 4 endogenous variables and K − m degrees of apparent overidenti�cation in the equation.

Figure 3. Densities of the unrestricted and partially restricted reduced form predictors in the noncentral weak IV case when β = 0.

Simulations are based on n = 100,m = 1, K = 3, 11, and 19, zn+1 = iK/
√
K , and 50, 000 replications.

predictors show non-Gaussian features with peakedness, skewness, and location bias for allK, re�ecting
the mean and variance mixed normal form of the analytic distribution (30). In each case, the density
is more concentrated than that of the unrestricted predictor, which corroborates the limit theory. The
location bias is particularly noticeable for K = 3 and K = 11 and re�ects the bias in the IV estimate
(30) that is present for �xed K as n → ∞. However, the density for K = 19 in Figure 4 shows that for
larger K, the bias is reduced and the predictor distribution is better centered. This evidence matches the
asymptotic theory that βIV is consistent in themanyweak instrument case, providedK does not increase
too fast. 8

4. Re�ections on exact theory and reduced forms

At the time when Maasoumi’s (1978) paper appeared, �nite sample theory (including exact distribution
theory) was the Rolls Royce of research areas in econometrics, a position it had occupied for nearly a
decade. The avalanche of asymptotic theory that emerged in the 1980s appeared for a while to bury

8For a detailed analysis of the bias properties of IV estimation, but not prediction, readers are referred to Chao and Swanson
(2007), who consider various cases that allow for di�erent expansion rates of K and n passing to in�nity in IV estimation
under weak instrumentation.
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834 P. C. B. PHILLIPS

Figure 4. Densities of the centred and scaled unrestricted reduced form predictor and the partially restricted reduced form predictor

in the noncentral weak IV case when β = 1. Simulations are based on n = 100,m = 1, K = 3, 11, and 19, zn+1 = iK/
√
K , and 50, 000

replications.

much of this literature. But the relentless search for generality in econometric methods never obscured
the reality of the �nite sample dependencies of econometric estimation and inferential methods that
were one of the highlights of �nite sample results. The recognition that asymptotics reproduce such
dependencies in models that are only partly identi�ed brought a revival of interest in exact distribution
theory and analytic methods of approximation that capture the central features of those parameter
dependencies.

This recognition, in its turn, put a premium on the search for inferential methods that assist in
achieving some robustness to such dependencies. In structural equation models, the use of reduced
form methods for inference on structural coe�cients was noted by Chernozukov and Hansen (2008)
who used the identi�ability relation π1 = 52β to construct robust tests of hypotheses on the structural
coe�cientsβ using unrestricted reduced form estimates ofπ1. Similar testingmethodsmay be employed
with partially restricted reduced form estimates and are currently under investigation.

The present paper uses this same correspondence but in a di�erent manner and with a di�erent focus
to seek improvements in forecasting. The results reveal that such improvements are possible and can
apply in the case where β is unidenti�ed, thereby showing that information about the structural form
may be useful even in the absence of e�ective instrumentation. These improvements are partly induced
by shrinkage, just as those originally implemented by Maasoumi (1978) on system-wide reduced form
estimates.

5. Appendix

The following lemma gives a matrix space integral that is useful in multivariate analysis. Part (a) is
a minor extension of a standard result (Muirhead, 1982). We need this lemma and the characteristic
function given in Part (b) in our main development.

Lemma A.

(a) If the p × p matrix X is positive semi-de�nite and Vq,p is the Stiefel manifold of q < p frames of p × 1
orthonormal vectors

∫

Vq,p

etr
{

XH1H
′
1

}

(dH1) = 1F1

(q

2
;
p

2
;X
)

, (32)
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ECONOMETRIC REVIEWS 835

where the p × q matrix H1 ∈ Vq,p with H
′
1H1 = Ip, (dH1) is the (normalized) Haar measure on Vq,p

so that
∫

Vq,p
(dH1) = 1, and 1F1

( q
2 ;

p
2 ;X

)

is a matrix argument con�uent hypergeometric function.

(b) The characteristic function cfζ (s) = E
(

eisζ
)

of the random vector ζ ∼ MN
(

0, z′ϒϒ ′z
)

, where ϒ =
4
(

4′4
)−1/2

, 4 is K × m with K > m and distributed as matrix normal 4 ∼ N (0, ImK), and z is a
�xed K- vector with z′z = 1, is given by

cfζ (s) = e−
s2

2 1F1

(

K − m

2
,
K

2
;
s2

2

)

= e−
s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K2
2

)

j

(

s2

2

)j

. (33)

Proof of Lemma A.
(a) Muirhead (1982, p. 288, Exercise 7.8) gives (32) for positive de�niteX. We show the result also holds

whenX is positive semi-de�nite. SetH = [H1,H2] ∈ O
(

p
)

, whereH2 is an orthogonal complement
toH1. WriteHH′ = H1H

′
1+H2H

′
2, so that etr

{

XH1H
′
1

}

= etr
{

XH1H
′
1 + 0H2H

′
2

}

= etr
{

XHYH′}

with

H1H
′
1 = [H1,H2]

[

Iq 0

0 0

][

H′
1

H′
2

]

, and Y =
[

Iq 0

0 0

]

.

From Constantine (1963) and James (1964) studies, we have the zonal polynomial formula

Cϕ

(

Iq
)

= c (ϕ)Zϕ

(

Iq
)

/1.3....(2q − 1) = c (ϕ) 22j
(q

2

)

ϕ

j!
(

2j
)

!
, (34)

where c (ϕ) is a degree representation of the symmetric group (see formulae (23)–(25) of James
(1961) and Muirhead (1982, p. 272)), ϕ =

(

j1, ..., jq
)

is a partition of the integer j into not

more than q parts, and (a)ϕ =
q
∏

i=1

(

a − 1
2 (i − 1)

)

ji
is a generalized hypergeometric coe�cient or

forward factorial. Then, by standard multivariate methods (Muirhead, 1982, Theorem 7.3.3. and
Lemma 7.5.7), utilizing (34), and noting that Cϕ

(

Iq
)

= 0 if ϕ is a partition into more than q parts
(Muirhead, 1982, p. 272), we obtain

∫

Vq,p

etr
{

XH1H
′
1

}

(dH1) =
∫

O(p)
etr
{

XHYH′} (dH)

= 0F
(p)
0 (X,Y) =

∞
∑

j=0

∑

ϕ

Cϕ (X)Cϕ

(

Iq
)

j!Cϕ

(

Ip
)

=
∞
∑

j=0

∑

ϕ

Cϕ (X)

[

22jj!
( q
2

)

ϕ
/
(

2j
)

!
]

j!
[

22jj!
( p
2

)

ϕ
/
(

2j
)

!
]

=
∞
∑

j=0

∑

ϕ

( q
2

)

ϕ
Cϕ (X)

j!
( p
2

)

ϕ

= 1F1

(q

2
;
p

2
;X
)

,

as required for (32) and this derivation holds for X positive semi-de�nite. The �nal line above uses
the series representation of the matrix argument con�uent hypergeometric function.
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836 P. C. B. PHILLIPS

(b) If 4 ∼ N (0, IKm) then the K × m matrix ϒ = 4
(

4′4
)−1/2 ∈ Vm,K (K ≥ m) is easily seen to be

uniformly distributed on the Stiefel manifoldVm,K . Thus, we need to �nd the characteristic function
of the random vector ζ ∼ MN

(

0, z′ϒϒ ′z
)

where ϒ is uniform on Vm,K and z is a �xed K- vector
with z′z = 1. First observe that if K = m then ϒ = Im and ζ ∼ N (0, 1) so that in this case

cfζ (s) = E
(

eisζ
)

= e−
s2

2 . In the general case with K > m we need to resolve the following integral

cfζ (s) = E
(

E
(

eisζ |ϒm

))

= E

(

e−
s2

2 z
′ϒϒ ′z

)

=
∫

VK,m

etr

{

− s2

2
ϒϒ ′zz′

}

(dϒ) ,

where (dϒ) is the normalized invariant measure on the Stiefel manifold Vm,K . Construct the
orthonormal matrix H = [z, z⊥] ∈ O (K) , where z⊥ is an orthogonal complement matrix for
the vector z. Note that the measure (dϒ) is invariant under the transformation ϒ 7−→ H′ϒ =
U ∈ Vm,K . Then, de�ning the K- dimensional coordinate vector e1 = (1, 0, ...0)′ , using Part (a),
and transforming the arguments of the 1F1 function using the Kummer relation (Lebedev, 1972), we
have

cfζ (s) =
∫

Vm,K

etr

{

− s2

2
ϒϒ ′zz′

}

(dϒ) =
∫

Vm,K

etr

{

− s2

2
U ′H′zz′HU

}

(dU)

=
∫

Vm,K

etr

{

− s2

2
U ′e1e

′
1U

}

(dU) = 1F1

(

m

2
,
K

2
;− s2

2
e1e

′
1

)

= e−
s2

2 1F1

(

K − m

2
,
K

2
;
s2

2
e1e

′
1

)

= e−
s2

2 1F1

(

K − m

2
,
K

2
;
s2

2

)

= e−
s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K2
2

)

j

(

s2

2

)j

,

giving the result as stated. The penultimate line above follows because the matrix argument 1F1
function reduces to the scalar argument 1F1 function

1F1

(

K − m

2
,
K

2
;
s2

2
e1e

′
1

)

=1 F1

(

K − m

2
,
K2

2
;
s2

2

)

,

since unity is the single non-zero eigenvalue of e1e
′
1 and so zonal polynomials of s2

2 e1e
′
1 reduce to

powers of s2

2 , giving Cϕ

(

s2

2 e1e
′
1

)

=
(

s2

2

)j
(c.f., Muirhead, 1982, Corollary 7.2.4).

Proof of the Theorem. We seek to �nd the distribution of the predictor ỹP1,n+1 = z′n+1

(√
nπ̃1

)

=
z′n+1

(√
n5̂2βIV

)

. Suppose K > m. Under Gaussianity and a�er standardizing transformations,

we have
√
nπ̃1 =

√
n
(

Z′Z
)−1

Z′Y2 ×
(

V ′
2CC

′V2

)−1
V ′
2CC

′v1

= C′V2 ×
(

V ′
2CC

′V2

)−1
V ′
2CC

′v1

=
[

(

C′V2

) (

V ′
2CC

′V2

)−1/2
]

(

V ′
2CC

′V2

)−1/2 (
V ′
2CC

′v1
)

,

using C′ =
(

Z′Z
)−1/2

Z′ and
√
n
(

Z′Z
)−1/2 = IK . De�ne 4 = C′V2 ∼d N (0, IKm) , and it

follows that ϒ = 4
(

4′4
)−1/2

is uniformly distributed on the Stiefel manifold Vm,K . The vector
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ECONOMETRIC REVIEWS 837

(

V ′
2CC

′V2

)−1/2
V ′
2CC

′v1 ∼d N (0, Im) and is independent of 4 and, hence, ϒ . It follows that

√
nπ̃1 ∼d MN

(

0,C′V2

[

V ′
2CC

′V2

]−1
V ′
2C
)

= MN
(

0,ϒϒ ′) ,

so that the exact distribution of
√
nπ̃1 is mixed normal with mixing variance matrix ϒϒ ′ =

4
(

4′4
)−1

4′ which projects ontoR (4) . Then, setting zn+1 = z, we have ỹP1,n+1 = z′n+1

(√
nπ̃1

)

∼d

MN
(

0, z′ϒϒ ′z
)

=: ζ . The required expression for the density is obtained by integrating out the mixed
normal distribution with respect to ϒ over the manifold Vm,K .

It is simplest to proceed by working with the characteristic function as follows. The forecast density of
ỹP1,n+1 is, by inversion, fỹP1,n+1

(

y
)

= 1
2π

∫∞
−∞ e−isycfζ (s) ds. Since ζ ∼d MN

(

0, z′ϒϒ ′z
)

, its characteristic

function is obtained directly from Lemma A as

cfζ (s) = e−
s2

2 1F1

(

K − m

2
,
K

2
;
s2

2

)

= e−
s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K
2

)

j

(

s2

2

)j

. (35)

The required density follows by inversion. The series may be integrated term by term because the
con�uent hypergeometric series 1F1 series is an entire function and uniformly convergent (e.g., Lebedev,
1972, p. 261). Proceeding, we obtain

fỹP1,n+1

(

y
)

= 1

2π

∫ ∞

−∞
e−isye−

s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K
2

)

j

(

s2

2

)j

ds

= 1

2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)j

j!
(

K
2

)

j

∫ ∞

−∞
e−isye−

s2

2 s2jds

= 1

2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)j

j!
(

K
2

)

j

e−
y2

2

∫ ∞

−∞
e−

(iy)2

2 e−isye−
s2

2 s2jds

= 1√
2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)j

j!
(

K
2

)

j

e−
y2

2

∫ ∞

−∞

e−
(s+iy)2

2 s2j√
2π

ds

= e−
y2

2

√
2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)j

j!
(

K
2

)

j

2jŴ
(

j + 1
2

)

Ŵ
(

1
2

) 1F1

(

−j;
1

2
;
y2

2

)

= e−
y2

2

√
2π

∞
∑

j=0

(

K−m
2

)

j

(

1
2

)

j

j!
(

K
2

)

j

1F1

(

−j;
1

2
;
y2

2

)

, (36)

where the fourth line is obtained by the recentering
∫ ∞

−∞
e−isye−

s2

2 s2jds = e−
y2

2

∫ ∞

−∞
e−

(iy)2

2 e−isye−
s2

2 s2jds = e−
y2

2

∫ ∞

−∞
e−

(s+iy)2

2 s2jds

and the penultimate line by the even moment formula for the normal distribution. In particular, if X ∼d

N
(

µ, σ 2
)

we have

E
(

X2j
)

= σ 2j2j
Ŵ
(

j + 1
2

)

√
π

1F1

(

−j,
1

2
,− µ2

2σ 2

)
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and, setting µ = iy and σ = 1, we have

∫ ∞

−∞

e−
(s+iy)2

2 s2j√
2π

ds =
2jŴ

(

j + 1
2

)

√
π

1F1

(

−j,
1

2
,
y2

2

)

= 2j
(

1

2

)

j
1F1

(

−j,
1

2
,
y2

2

)

.

The K = m case is obtained from (36) by noting that the series truncates at the �rst term giving

fỹP1,n+1

(

y
)

= e−
y2

2 /
√
2π . In fact, when K = m, the exact densities of the two predictors are the same

and so ỹP1,n+1 = ŷP1,n+1, thereby giving (25) as a special case of (26).

Proof of the Corollary. To calculate moments, we �rst employ the characteristic function of the normal-
ized predictor ζ = ỹP1,n+1 = z′n+1

(√
nπ̃2

)

∼d MN
(

0, z′ϒϒ ′z
)

, given earlier in (35), viz.,

cfζ (s) = e−
s2

2 1F1

(

K − m

2
,
K

2
;
s2

2

)

= e−
s2

2

∞
∑

j=0

(

K−m
2

)

j

j!
(

K
2

)

j

(

s2

2

)j

. (37)

The function cfζ (s) is analytic because both e−
s2

2 and 1F1

(

K−m
2 , K2 ;

s2

2

)

are entire functions. So, all

moments of ζ exist and are �nite. The series representation of (35) produces the Taylor expansion of
cfζ (s) , viz.,

cfζ (s) = e−
s2

2

(

1 +
K−m
2
K
2

s2

2
+
(

K−m
2

) (

K−m+2
2

)

2
(

K
2

) (

K
2

)

(

s2

2

)2

+ O
(

s6
)

)

= 1 + s2

2

(

K − m

K
− 1

)

+ O
(

s4
)

,

so that cf ′′ζ (0) = −m
K . Hence E

(

ỹPn+1

)2 = m
K . Since ỹ

P
1,n+1 = z′n+1

(√
nπ̃1

)

= √
nỹ1,n+1, it follows that

E
(

ỹ1,n+1 − y1,n+1

)2 = 1 + m
nK , giving the forecast mean square error in the general case.
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