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Covariance selection by thresholding the sample

correlation matrix

Binyan Jiang

The Living Analytics Research Centre (LARC), Singapore Management University and
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

This article shows that when the nonzero coefficients of the population cor-
relation matrix are all greater in absolute value than (C1 log p/n)1/2 for some
constant C1, we can obtain covariance selection consistency by thresholding
the sample correlation matrix. Furthermore, the rate (log p/n)1/2 is shown
to be optimal.

Keywords: Bernstein type inequality, Covariance selection, Large
correlation matrix, Large covariance matrix, Thresholding

1. Introduction

In the last decade, there has been a surge in interest in the estimation of
large covariance matrices under sparsity assumptions. The number of vari-
ables p may be larger than the sample size n and the population covariance
matrix is usually assumed to be sparse in that a number of the off-diagonal
elements are zero.

Suppose X is a p-dimensional multivariate random vector with unknown
mean µ = (µ1, . . . , µp)

T and covariance matrix Σp×p = (σij)p×p and let
X1, ..., Xn be independent, identically distributed random observations of
X. Write X̄ = 1/n

∑n
i=1Xi. The sample covariance matrix is:

S = (sij)p×p =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T . (1)
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One popular approach in estimating a sparse Σ is to use regularized or
thresholded sample covariance matrices as estimators. More specifically, a
thresholding estimator Σ̂ = (σ̂ij)p×p is usually defined by:

σ̂ij = σ̂ji = Tij(sij),

where Tij(·) is a general thresholding function. For example, Bickel and Lev-
ina (2008) considered hard-thresholding Tij(s) = sI(|s| > t), 1 ≤ i < j ≤ p,
where I(·) is the indicator function. The thresholding parameter t controls
the sparsity of the estimator Σ̂. Rothman et al. (2009) considered thresh-
olding sample covariance matrices with more general thresholding functions
possessing shrinkage properties. However, similarly to Bickel and Levina
(2008), they used a thresholding parameter to threshold all the off-diagonal
elements of S. Hence in this paper we shall call thresholding methods of Bick-
el and Levina (2008) and Rothman et al. (2009) the universal-threshold
approach. Intuitively, when the diagonal elements of the population matrix
are not all equal to each other, the universal-threshold approach may not be
appropriate. Recently, Cai and Liu (2011) proposed an adaptive thresholding
method which is applicable when the p elements in X are not homoscedastic.
They used different thresholding parameters for different sij depending on
the variance of sij. Similar to the universal-threshold approach, the sparsity
of the resulting estimator is determined by a thresholding parameter. Other
than sample covariance matrices, thresholding approaches were also applied
to sample correlation matrices. El Karoui (2008) applied hard-thresholding
to the off-diagonal elements of the sample correlation matrix and showed con-
sistency under a special notion of sparsity. Cai and Liu (2011) also provided
some discussion on the thresholded sample correlation matrix.

In this paper, we focus on answering a relatively simple question: when
is it possible to obtain covariance selection consistency by applying the
universal-threshold approach to the sample correlation matrix? Here the
universal-threshold approach is applied to the sample correlation matrix in-
stead of the sample covariance matrix so that it is adaptive to the case that
p elements in X are not homoscedastic. Suppose the nonzero coefficients
of the population correlation matrix are all greater in absolute value than
k(n, p). Here k(n, p) is the separation gap between zero and those nonzero
elements of the population correlation matrix. Clearly, when k(n, p) is large
enough, the universal-threshold approach might be able to obtain covariance
selection consistency for a proper thresholding parameter. However, it is
not clear how large the separation k(n, p) should be. To obtain covariance
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selection consistency, it is shown in Section 2 that the rate of the minimal
separation is exactly (log p/n)1/2. This result is extended in Section 3 to the
case that X1, . . . , Xn are weakly dependent.

2. Covariance selection by thresholding the sample correlation ma-
trix

Let X1, ..., Xn be independent, identically distributed p-dimensional ran-
dom vectors with unknown mean µ = (µ1, . . . , µp)

T and covariance ma-
trix Σp×p = (σij)p×p. The sample covariance matrix is given by (1) and
the sample correlation matrix is denoted as R = (rij)1≤i,j≤p where rij =
sij/(siisjj)

1/2, 1 ≤ i, j ≤ p. Denote the population correlation matrix by
Γ = (ρij)p×p and define:

G = {(i, j) : ρij 6= 0, 1 ≤ i < j ≤ p}. (2)

For a thresholding parameter t, define:

Ĝ(t) = {(i, j) : |rij| ≥ t, 1 ≤ i < j ≤ p}. (3)

As mentioned in Section 1, to obtain covariance selection consistency, the
rate of k(n, p) should be (log p/n)1/2 or larger. More specifically, we shall
show that:

(i)When ρ2ij > C1 log p/n for all (i, j) ∈ G and some constant C1 > 0

large enough, a threshold t exists such that pr{Ĝ = G} → 1;
(ii)An example exists in that ρ2ij = C2 log p/n for some (i, j) ∈ G and

when constant C2 > 0 is small enough, pr{Ĝ = G} → 0 for any t.

The following conditions are needed in the main results of this section:
Condition 1. Denote Xj = (X1j, ..., Xpj)

T , 1 ≤ j ≤ n. there exist
positive constants B and σ2 such that for any 1 ≤ i ≤ p,

E|(Xi1 − µi)2/σii − 1|r ≤ 1/2σ2Br−2r!, r ≥ 2.

Condition 1 is analogous to the condition for the well-known Bernstein’s
inequality in Bennett (1962), and it is satisfied when (Xi1−µi)2/σii, 1 ≤ i ≤ p
have exponential moments. In particular, Condition 1 holds true when X
follows a multivariate normal distribution.

Condition 2. log p/n→ 0 as p, n→∞.
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Theorem 1. Let G and Ĝ(t) be as in (2) and (3). Suppose |ρij| ≥
k(n, p) for any (i, j) ∈ G. Under Condition 1, there exists a constant c > 0
such that for any 0 < t < k,

pr{Ĝ(t) = G} ≥ 1−O[p2 exp{−cn(t2 ∧ (k − t)2)}],

where t2 ∧ (k − t)2 = min{t2, (k − t)2}. In particular, under Condition 2, if
k(n, p) ≥ (C1 log p/n)1/2 for some constant C1 > 8/c, by choosing t = k/2,
we have:

pr{Ĝ(t) = G} → 1.

k(n, p) in Theorem 1 is the separation gap between zero and those nonzero
off-diagonal elements of Γ. The second statement of Theorem 1 indicates that
(i) is true. Theorem 2 below indicates that (ii) is true, and hence we conclude
that the rate (log p/n)1/2 is optimal.

Theorem 2. Suppose X1, ..., Xn are independent, identically distribut-
ed multivariate normal random vectors with mean 0 and correlation matrix
Γ = Ip×p + (C2 log p/n)1/2(e1e

T
2 + e2e

T
1 ) where Ip×p is the identity matrix and

ei is the ith column of Ip×p. Under Condition 2, when constant C2 > 0 is
small enough,

pr{Ĝ(t) = G} → 0,

for any t > 0.

3. Extension to a weakly dependent case

DenoteXj = (X1j, ..., Xpj)
T and Y j

kl = {(Xkj−µk)/σ1/2
kk +(Xlj−µl)/σ1/2

ll }2,
1 ≤ j ≤ n, 1 ≤ k, l ≤ p. In this section we assume that for any 1 ≤ k, l ≤ p,
Y 1
kl, Y

2
kl, . . . is a sequence of stationary, strongly mixing random variables.

For any 1 ≤ k, l ≤ p, and integers 1 ≤ a ≤ b, let Fa,bkl denote the σ-field
generated by {Y i

kl : a ≤ i ≤ b}. Define

α(F1,a
kl ,F

a+b,∞
kl ) = sup

A∈F1,a
kl ,B∈F

a+b,∞
kl

|pr(A ∩B)− pr(A)pr(B)| (a, b ≥ 1),

αkl(b) = sup
a≥1

α(F1,a
kl ,F

a+b,∞
kl ) (b ≥ 1). (4)
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From the definition of strong mixing, we have αkl(b)→ 0 as b→∞. Assume
now that X1, X2, . . . satisfy the following conditions:

Condition 3. (semiexponential tail) There exist constants δ > 0,
γ1 ∈ (0, 1) and K > 0, such that

sup
i
E[exp{δ|(Xi1 − µi)2/σii − 1|γ1}] ≤ K.

Condition 4. There exist positive constants γ2, a and c such that for
any b ≥ 1 the strong mixing coefficients αkl(b) satisfy

αkl(b) ≤ a exp(−cbγ2) (1 ≤ k, l ≤ p).

Condition 5. γ < 1 where γ is defined by 1/γ = 1/γ1 + 1/γ2.
These three conditions are similar to the conditions in Theorem 1 of

Merlevede et al. (2011). Similar to Theorem 1, we have

Theorem 3. Let G and Ĝ(t) be as in (2) and (3). Suppose |ρij| ≥
k(n, p) for any (i, j) ∈ G. Under Conditions 3 and 4 and 5, there exist
constants c1 and c2 such that for any 0 < t < k,

pr{Ĝ(t) = G} ≥ 1−O[p2n exp{−c1nγ(tγ ∧ (k − t)γ)}
+p2 exp{−c2n(t2 ∧ (k − t)2)}],

where t2∧(k−t)2 = min{t2, (k−t)2}. In particular, if log p = O{nγ/(2−γ)} and
k(n, p) ≥ (C log p/n)1/2 for some constant C > 0 large enough, by choosing
t = k/2, we have:

pr{Ĝ(t) = G} → 1.

4. Numerical study

In this section we provide some numerical results on covariance selection
using the following three approaches: (i) Thresholding the sample correlation
matrix R using a universal threshold. We shall denote this method as TR;(ii)
Thresholding the sample covariance matrix S using a universal threshold as
in Bickel and Levina (2008). We shall denote this method as TS; (iii) Thresh-
olding the sample covariance matrix S using the adaptive thresholding ap-
proach as in Cai and Liu (2011). We shall denote this method as ATS. The
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universal threshold for the sample correlation matrix is chosen empirically us-
ing cross validation; see for example Bickel and Levina (2008). More specif-
ically, split the n sample randomly into two sets of size n1 = n − bn/ log nc
and n2 = bn/ log nc and repeat this N times. Here b·c is the greatest integer
function. For the kth split, let R1,k, R2,k be the sample correlation matrix
based on the n1 and n2 observations respectively. The Frobenius norm of a
matrix R = (rij)p×p is defined as ‖ R ‖2F=

∑
1≤i,j≤p r

2
ij. For a given threshold

t define the thresholding operator by Tt(R) = [rijI(|rij| > t)]p×p. We then
choose t such that

CV (t) =
1

N

N∑
k=1

‖ Tt(R1,k)−R2,k ‖2F ,

is minimized.
In this simulation, we set n = 100, p = 50, 100, 200 and we consider the

following two models:
Model 4.1 (Homoscedastic). Following Jiang and Loh (2012), let

Σ = (σij)1≤i,j≤p, where σii = 1, 1 ≤ i ≤ p; σij = 0.3 if 1 ≤ i, j ≤ p/2, i 6= j
and σij = 0 otherwise.

Model 4.2 (Heteroscedastic). Following Cai and Liu (2011), let
Σ = (σij)1≤i,j≤p, where σij = (1 − |i − j|/10)+ if 1 ≤ i, j ≤ p/2, σii = 4 if
p/2 + 1 ≤ i ≤ p, and σij = 0 otherwise.

For each case, the simulation is repeated 100 times. Denote the sparsity,
i.e., the proportion of zero elements in the off-diagonal of Γ as ω. Let R̂ =
(r̂ij)p×p be the thresholded sample correlation matrix obtained using the TR
method or the thresholded covariance matrix obtained using the TS or ATS
method. Denote the proportion of zero elements in the off-diagonal of R̂ as
ω̂. The mean and its standard deviation (sd) of the following quantities are
computed over 100 replications: (i) L1-loss: |ω̂ − ω|; (ii) Error1 = #{(i, j) :
1 ≤ i < j ≤ p, ρij = 0, r̂ij 6= 0}; (iii) Error2 = #{(i, j) : 1 ≤ i < j ≤ p, ρij 6=
0, r̂ij = 0}. Error1 is the number of times of classifying a zero element to a
nonzero element while Error2 is the number of times of classifying a nonzero
element to a zero element. Hence Error1+Error2 is the total misclassification
error. Simulation results are given in Tables 1 and 2.

From Tables 1 and 2 we can see that the TR approach generally has
smaller L1-loss values under Models 4.1 and 4.2, indicating the TR approach
can better estimate the sparsity of Σ than the other two approaches under
models 4.1 and 4.2. In addition, the TR approach has smaller Error1+Error2

6



Table 1: Simulation results under Model 4.1 over 100 replications.
p = 50 TR TS ATS
L1-loss(sd) 0.024(0.002) 0.037(0.003) 0.044(0.004)
Error1(sd) 42.4(2.0) 54.9(3.8) 67.0(4.4)
Error2(sd) 40.2(2.5) 43.5(3.0) 35.4(2.8)
p = 100
L1-loss(sd) 0.026(0.003) 0.046(0.005) 0.051(0.005)
Error1(sd) 182.9(9.2) 261.3(20.4) 276.1(16.1)
Error2(sd) 193.8(15.3) 203.5(20.2) 193.9(22.3)
p = 200
L1-loss(sd) 0.019(0.002) 0.038(0.004) 0.041(0.001)
Error1(sd) 700.8(29.2) 897.3(49.3) 1109.4(56.8)
Error2(sd) 755.6(39.0) 872.9(76.0) 689.0(62.1)

values, indicating that in terms of covariance selection, the TR approach can
have smaller misclassification errors.

Appendix A. Technical details

For 1 ≤ j, k ≤ p, 1 ≤ i ≤ n, denote tjk = nσ
1/2
jj σ

1/2
kk /s

1/2
jj s

1/2
kk , Zji =

(Xji − µj)/σ1/2
jj and Z∗ji = (Xji − X̄j)/σ

1/2
jj where X̄j is the j-th element of

X̄.

Lemma 1. Under Condition 1, for any 1 ≤ j, k ≤ p and 0 < x ≤ K,
there exists a constant f > 0, depending on K, B and σ2 only, such that

pr
[∣∣∣ n∑

i=1

{
(Z∗ji + Z∗ki)

2 − 2(1 + ρjk)
}∣∣∣ ≥ nx

]
≤ exp(−fnx2); (A.1)

pr
[∣∣∣ n∑

i=1

{
(Z∗ji − Z∗ki)2 − 2(1− ρjk)

}∣∣∣ ≥ nx
]
≤ exp(−fnx2). (A.2)

Proof. Define Z̄j = 1/n
∑n

i=1 Zji. By verifying the condition of the Bern-
stein’s inequality using Condition 1, see (7) of Bennett (1962), we have:

pr(Z̄2
j ≥ x) ≤ exp(−d1nx2), (A.3)
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Table 2: Simulation results under Model 4.2 over 100 replications.
p = 50 TR TS ATS
L1-loss(sd) 0.035(0.001) 0.057(0.003) 0.047(0.001)
Error1(sd) 2.4(0.4) 44.0(3.7) 0.6(0.2)
Error2(sd) 44.9(1.0) 103.6(1.9) 57.9(1.3)
p = 100
L1-loss(sd) 0.023(<0.001) 0.030(0.001) 0.030(0.001)
Error1(sd) 4.7(0.7) 126.6(5.2) 2.6(0.4)
Error2(sd) 117.9(1.3) 273.2(2.9) 148.8(2.5)
p = 200
L1-loss(sd) 0.014(<0.001) 0.011(0.001) 0.018(<0.001)
Error1(sd) 4.5(0.4) 588.6(20.6) 4.2(0.7)
Error2(sd) 289.2(2.5) 557.0(5.7) 353.0(6.1)

pr
[∣∣∣ n∑

i=1

{
(Zji + Zki)

2 − 2(1 + ρjk)
}∣∣∣ ≥ nx

]
≤ exp(−d2nx2), (A.4)

for some positive constants d1, d2 depending on K, B and σ2 only. From
(A.3), (A.4) and the following fact

n∑
i=1

(
Z∗ji + Z∗ki

)2
=

n∑
i=1

(
Zji + Zki

)2
− nZ̄2

j − nZ̄2
k − 2nZ̄jZ̄k,

we conclude (A.1) holds. (A.2) can be proved similarly.

The following proposition is a key in proving Theorems 1, 2 and 3. It gives
a Bernstein type inequality for elements of the sample correlation matrix.

Propositon 1. Under Condition 1, for any 0 < v ≤ 2 and 1 ≤ j, k ≤
p, there exist constants d1 > 0 and d2 > 0, depending on B and σ2 only, such
that

pr(|rjk − ρjk| ≥ v) ≤ d1 exp(−d2nv2).
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Proof. When ρjk = ±1, LHS of the inequality equals zero, and so the
inequality holds. Now we consider the case: −1 < ρjk < 1.

pr(|rjk − ρjk| ≥ v) = pr
(∣∣∣ 1
n

n∑
i=1

Z∗jiZ
∗
kitjk − ρjk

∣∣∣ ≥ v
)

≤ pr
{∣∣∣ 1
n

n∑
i=1

Z∗jiZ
∗
ki(tjk − 1)

∣∣∣ ≥ v

2

}
+pr

{∣∣∣ 1
n

n∑
i=1

(Z∗jiZ
∗
ki − ρjk)

∣∣∣ ≥ v

2

}
. (A.5)

From Lemma 1 and the following equality

n∑
i=1

(
Z∗jiZ

∗
ki − ρjk

)
=

1

4

[ n∑
i=1

{(
Z∗ji + Z∗ki

)2
− 2
(

1 + ρjk

)}
−

n∑
i=1

{(
Z∗ji − Z∗ki

)2
− 2
(

1− ρjk
)}]

,

we conclude that there exists a constant f1 > 0, depending on B and σ2 only,
such that,

pr
(∣∣∣ 1
n

n∑
i=1

(Z∗jiZ
∗
ki − ρjk

)∣∣∣ ≥ v

2

)
≤ exp(−f1nv2). (A.6)

On the other hand, let a = v
2(|ρjk|+v)

, we have:

pr
(∣∣∣ 1
n

n∑
i=1

Z∗jiZ
∗
ki(tjk − 1)

∣∣∣ ≥ v

2

)
≤ pr

(∣∣∣ n∑
i=1

Z∗jiZ
∗
ki

∣∣∣ ≥ nv

2a

)
+pr(|tjk − 1| > a). (A.7)

Similar to (A.6), there exists a constant f2 > 0 such that,

pr
(∣∣∣ n∑

i=1

Z∗jiZ
∗
ki

∣∣∣ ≥ nv

2a

)
≤ pr

(∣∣∣ n∑
i=1

Z∗jiZ
∗
ki − nρjk

∣∣∣ ≥ nv
)

≤ exp(−f2nv2). (A.8)
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pr(|tjk − 1| > a) = pr
{ n∑

i=1

Z∗2ji

n∑
i=1

Z∗2ki <
n2

(1 + a)2

}
+pr

{ n∑
i=1

Z∗2ji

n∑
i=1

Z∗2ki >
n2

(1− a)2

}
≤ pr

( n∑
i=1

Z∗2ji <
n

1 + a

)
+ pr

( n∑
i=1

Z∗2ki <
n

1 + a

)
+pr

( n∑
i=1

Z∗2ji >
n

1− a

)
+ pr

( n∑
i=1

Z∗2ki >
n

1− a

)
≤ pr

{∣∣∣ n∑
i=1

(
Z∗2ji − 1

)∣∣∣ > an

1 + a

}
+pr

{∣∣∣ n∑
i=1

(
Z∗2ki − 1

)∣∣∣ > an

1 + a

}
.

Again by Lemma 1, there exists a constant f3 > 0 independent of n such
that,

pr(|tjk − 1| > a) ≤ 2 exp{−f3na2/(1 + a)2} ≤ 2 exp(−f3nv2/64). (A.9)

The theorem is proved by combining (A.5), (A.6), (A.7), (A.8) and (A.9).

Proof of Theorem 1. Theorem 1 follows from Proposition 1 and the fol-
lowing inequality.

pr{Ĝ(t) 6= G} ≤ p2pr{|rij − ρij| ≥ |k − t|, (i, j) ∈ Gc}
+p2pr{|rij| ≥ t, (i, j) ∈ Gc}.

Proof of Theorem 2. Without loss of generality assume that p is an odd
number. It suffices to show that when constant C2 is small enough,

pr{|r12| < max(|r34|, |r56| . . . , |rp−1,p|)} → 1.

SinceX1 . . . , Xn’s are multivariate normal and Γ = Ip×p+(C2 log p/n)1/2(e1e
T
2 +

e2e
T
1 ), we know that r12, r34, . . . , rp−1,p are independent. Therefore it suffices

to show that

pr(|r12 − ρ12| ≤ ρ12){1− pr(|r34| ≤ 2ρ12, . . . , |rp−1,p| ≤ 2ρ12)} → 1. (A.10)
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We shall prove (A.10) by showing:

pr(|r12 − ρ12| ≤ ρ12)→ 1, (A.11)

and

pr(|r34| ≤ 2ρ12, . . . , |rp−1,p| ≤ 2ρ12) = pr(|r34| ≤ 2ρ12)
(p−2)/2 → 0. (A.12)

By Markov’s inequality, we have

pr(|r12 − ρ12| ≤ ρ12) ≥ 1− E(r12 − ρ12)2/ρ212.

Together with the following observation from Kendall (1960),

E(r12 − ρ12)2 = O(1/n),

we conclude that (A.11) is true.
Now using the density function of r34, see for example Anderson (2003),

and (4.2) of Bustoz and Ismail (1986) we have

pr(|r34| ≤ 2ρ12) = 1− 2

∫ 1

2ρ12

Γ(n/2− 1/2)

Γ(n/2− 1) π1/2
(1− r2)(n−4)/2dr

≤ 1− 2

π1/2

∫ 3ρ12

2ρ12

(n/2− 2)1/2(1− r2)n/2dr

≤ 1− 21/2(n− 4)1/2

π1/2
ρ12(1− 9ρ212)

n/2

→ 1− (2C2)
1/2 log1/2 p

π1/2p9C2/2
.

Therefore there exists a constant 0 < c < (2C2/π)1/2 such that when p, n are
large enough,

pr(|r34| ≤ 2ρ12)
(p−2)/2 ≤

{
1−

(
c log p/p9C2

)1/2}p/2−1
→ exp{−(c log p/p9C2−2)1/2/2}

which will tends to 0 as long as C2 < 2/9. Hence we conclude that (A.12) is
true when C2 is small enough.

Proof of Theorem 3. Under Conditions 3, 4 and 5, by Theorem 1 in
Merlevede et al. (2011) we can obtain a Bernstein type inequality for the
sample correlation coefficients as in Proposition 1. The rest of the proof is
similar to the proof of Theorem 1.
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