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1 Introduction

For many years, continuous time models have enjoyed a great deal of success in finance

(Merton, 1990) and more generally in economics (Dixit, 1993). Correspondingly,

there has been growing interest in estimating continuous systems using econometric

methods.

Many models used in finance for modelling asset prices can be written in terms of

a diffusion process as

dXt = µ(Xt; θ1)dt + σ(Xt; θ2)dBt, (1)

where Bt is a standard Brownian motion, σ(Xt; θ2) is a known diffusion function,

µ(Xt; θ1) is a known drift function, and θ = (θ1, θ2)
′ is a vector of k1 + k2 unknown

parameters. Note that we isolate the vector of parameters θ2 in the diffusion function

from θ1 for reasons which will be clear below. The attractions of the Ito calculus

make it easy to work with processes generated by diffusions like (1) and as a result

these processes have been used widely in finance to model asset prices, including stock

prices, interest rates, and exchange rates.

From an econometric standpoint, the estimation problem is to estimate θ from

observed data which are typically recorded discretely at (∆, 2∆, · · · , n∆∆(≡ T )) over

a certain time interval [0, T ], where ∆ is the sampling interval and T is the time

span of the data. For example, if Xt is recorded as the annualized interest rate and

observed monthly (weekly or daily), we have ∆ = 1/12 (1/52 or 1/250). Typically

T can be as large as 50 for US Treasury Bills, but is generally much smaller for

data from swap markets. Also note that due to time-of-day effects and possibly

other market microstructure frictions, it is commonly believed that intra-day data

do not follow diffusion models such as (1). As a result, daily and lower frequencies

are most frequently used to estimate continuous time models. However, Barndorff-

Nielsen and Shephard (2002) and Bollerslev and Zhou (2002) recently showed how to

use information from intra-day data to estimate continuous time stochastic volatility

models.

A large class of estimation methods is based on the likelihood function derived

from the transition probability density of discrete sampling and then resorts to long

span asymptotic theory (ie T →∞). Except for a few cases, the transition probability

density does not have a closed form expression and hence the exact maximum likeli-

hood (ML) method based on the likelihood function for the discretely sampled data
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is not directly available. In the financial econometrics literature, interest in obtaining

estimators which approximate or approach ML estimators has been growing, in view

of the natural attractiveness of maximum likelihood and its asymptotic properties.

Several alternative methods of this type have been developed in recent years.

The main purpose of the present paper is to propose an alternative method of es-

timating diffusion processes of the form given by model (1) from discrete observations

and to establish asymptotic properties by resorting to both the long span (ie T →∞)

and in-fill asymptotics (ie ∆ → 0). The estimation procedure involves two steps. In

the first step, we propose to use a quadratic variation type estimator of θ2. In the

second step, an approximate in-fill likelihood function is maximized to obtain a ML

estimator of θ1. This method is not dependent on finding an appropriate auxiliary

model, and does not require simulations, nor polynomial expansions. Furthermore, it

decomposes the optimization problem into two smaller scale optimization problems.

Hence, it is easy to implement and computationally more attractive relative to many

other existing methods. The approach also appears to work well in finite samples.

The paper is organized as follows. In Section 2 we review the literature on the ML

estimation of diffusion processes and motivate our approach. Section 3 introduces the

new method and Section 4 derives the asymptotic properties of the estimates. Section

5 presents some Monte Carlo evidence and Section 6 concludes. Proofs are provided

in the Appendix.

2 Literature Review and Motivation

2.1 Literature Review

2.1.1 Transition probability density based approaches

As explained above, a large class of estimation methods is based on the likelihood

function derived from the transition probability density of the discretely sampled

data. Suppose p(Xi∆|X(i−1)∆, θ) is the transition probability density. The Markov

property of model (1) implies the following log-likelihood function for the discrete

sample

`TD(θ) =

n∆∑
i=2

log(p(Xi∆|X(i−1)∆, θ)). (2)
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Under regular conditions, the resulting estimator is consistent, asymptotically nor-

mally distributed and asymptotically efficient (Billingsley, 1961). Unfortunately, ex-

cept for a few cases, the transition density does not have a closed form expression

and hence the exact ML method based on the likelihood function of the discrete

sample is not a practical procedure. In the financial econometrics literature, interest

in finding estimators that approach ML estimators in some quantifiable sense has

been growing and many alternative methods have been developed in recent years.

For example, Lo (1987) suggested calculating the transition probability density by

solving a partial differential equation numerically. Pedersen (1995) and Brandt and

Santa-Clara (2002) advocate an approach which calculates the transition probability

density using simulation with some auxiliary points between each pair of consecutive

observations introduced. This method is also closely related to the Bayesian MCMC

method proposed by Elerian, Chib and Shephard (2001) and Eraker (2001). As an

important alternative to these numerical and simulated ML methods, Aı̈t-Sahalia

(2002) proposed to approximate the transition probability density of diffusions using

analytical expansions via Hermite polynomials. Aı̈t-Sahalia (1999) implemented the

approximate ML methods and documents its good performance. Apart from these

likelihood-based approaches, numerous alternative methods are available. We simply

refer readers to the book by Prakasa Rao (1999a) for a review of many alternative

approaches.

2.1.2 Approaches based on realized volatility and in-fill likelihood

When the transition probability density does not have a closed form expression but

Xt is observed continuously over [0, T ], an alternative method can be used to estimate

the diffusion models. We now review it in detail.

When the diffusion term is known (ie σ(Xt; θ2) = σ(Xt)) and so does not depend on

any unknown parameters, one can construct the exact continuous record log-likelihood

via the Girsanov theorem (e.g., Liptser and Shiryaev, 2000) as follows.

`IF (θ1) =

∫ T

0

µ(Xt; θ1)

σ2(Xt)
dXt −

1

2

∫ T

0

µ2(Xt; θ1)

σ2(Xt)
dt.

Lánska (1979) established the consistency and asymptotic normality of the continuous

record ML estimator of θ1 when T →∞ under a certain set of regularity conditions.
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The assumptions of a known diffusion function and the availability of a continuous

time record are not realistic in financial and other applications. Motivated by the fact

that the drift and diffusion functions are of different orders (Bandi and Phillips, 2003,

2004), however, we argue that it seems desirable to estimate the diffusion parameters

separately from the drift parameters. For example, when σ(Xt; θ2) = θ2, i.e., the dif-

fusion function is an unknown constant, a two-stage approach can be used to estimate

the model. First, θ2 can be estimated by the realized volatility function, i.e.,

θ̂2 =

√
[X∆]T

T
, (3)

where [X∆]T =
∑n∆

i=2(Xi∆ −X(i−1)∆)2. This is because model (1) implies that

(dXt)
2 = θ2

2dt, ∀t,

and hence

[X]T =

∫ T

0

(dXt)
2dt =

∫ T

0

θ2
2dt = Tθ2

2,

where [X]T is the quadratic variation of X which can be consistently estimated by

[X∆]T as ∆ → 0. As a result, θ̂2 should be a very reasonable estimate of θ2 when

∆ is small, which is typically the case for interest rate data. Second, the following

logarithmic continuous record likelihood function of model (1)

`IF (θ1) =

∫ T

0

µ(Xt; θ1)

σ2(Xt; θ̂2)
dXt −

1

2

∫ T

0

µ2(Xt; θ1)

σ2(Xt; θ̂2)
dt.

may be approximated by the in-fill likelihood function

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

θ̂2
2

(Xi∆ −X(i−1)∆)− ∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

θ̂2
2

, (4)

which is in turn maximized with respect to θ1. This approach is closely related to the

method proposed by Florens-Zmirou (1989) where a contrast function instead of the

logarithmic in-fill likelihood function was used in the second step.

When the diffusion term is only known up to a scalar factor, that is,

dXt = µ(Xt; θ1)dt + θ2f(Xt)dBt, (5)
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the above two-stage method is easily modified. First, θ2
2 can be estimated by

θ̂2
2 =

[X∆]T
∆

∑n∆

i=2 f 2(X(i−1)∆)
. (6)

Second, the following approximate logarithmic in-fill likelihood function can then be

maximized with respect to θ1 (denoting the resulting estimator by θ̂1)

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

θ̂2
2f

2(X(i−1)∆)
(Xi∆ −X(i−1)∆)− ∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

θ̂2
2f

2(X(i−1)∆)
. (7)

This method is applicable to many popular interest rate models, including those

proposed by Vasicek (1977), Cox et al (1985) (CIR hereafter), and Ahn and Gao

(1998). It is also closely related to the method proposed by Yoshida (1992). In

particular, instead of using the estimator in (6), Yoshida (1992) used the following

estimator for θ2
2:

θ̃2
2 =

1

T

n∆∑
i=2

(Xi∆ −X(i−1)∆)2

f 2(X(i−1)∆)
. (8)

Also, Yoshida (1992) suggested using an iterative procedure to construct a better

estimate of θ2
2 (denoted by θ̃2

2). Under the conditions of ∆ → 0, T → ∞, and

∆2T → 0, Yoshida (1992) derived the limiting normal distribution for
√

n∆(θ̃2
2 − θ2

2)

and
√

T (θ̂1 − θ1). Since
√

n∆/
√

T =
√

1/∆ → ∞, the diffusion parameter enjoys a

faster rate of convergence.

The restriction on the diffusion term regarding parameter dependence was some-

what “relaxed” in Hutton and Nelson (1986) who based estimation on the following

first order condition of the logarithmic quasi-likelihood function:∫ T

0

∂µ(Xt; θ)/∂θ

σ2(Xt; θ)
dXt −

1

2

∫ T

0

∂µ2(Xt; θ)/∂θ

σ2(Xt; θ)
dt = 0.

Although their model seems to allow for a more flexible diffusion function, it requires

that the drift term share the same set of parameters as the diffusion term. This

assumption is too restrictive for practical applications. Moreover, although this one-

stage estimation approach is easy to implement, the estimation is mainly based on

the drift function and hence leads to inferior finite sample properties, as we will show

below in the context of a simple example.
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2.2 Motivation

Our two-stage method is in line with the methods proposed by Florens-Zmirou (1989)

and Yoshida (1992). That is, in the first stage, we estimate the parameters in the

diffusion functions based on the realized volatility, a quantity which consistently es-

timates the quadratic variation under very mild conditions. In the second step, by

assuming the diffusion function is known, we derive and approximate the logarithmic

in-fill likelihood function. To motivate the two-step approach, we consider two simple

examples.

2.2.1 Example 1

In the first example, we consider estimating the following CIR model

dXt = κ(µ−Xt)dt + σ
√

XtdBt, (9)

using the exact ML method based on the transition probability density and the two-

stage method discussed in Section 2.1.

The natural estimator of σ based on realized volatility is

σ̂ =

√
[X∆]T

∆
∑n∆

i=1 X(i−1)∆

. (10)

Moreover, since θ1 = (κ, µ)′, the logarithmic in-fill likelihood is,

n∑
i=1

κ(µ−X(i−1)∆)(X(i−1)∆ −X(i−1)∆)

σ̂2X(i−1)∆

− ∆

2

n∑
i=1

κ2(µ−X(i−1)∆)2

σ̂2X(i−1)∆

. (11)

CIR (1985) showed that the distribution of X(t + ∆) conditional on X(t) is non-

central chi-squared, χ2[2cX(t), 2q + 2, 2λ(t)], where c = 2κ/(σ2(1 − e−κ∆)), λ(t) =

cr(t)e−κ∆, q = 2κµ/σ2 − 1, and the second and third arguments are the degrees of

freedom and non-centrality parameters, respectively. This transition probability den-

sity is used to calculate the likelihood function and to obtain the exact ML estimates.

Table 1 reports some results obtained from a Monte Carlo study where we compare

two estimation methods. We vary both the sampling frequencies and time spans. Note

that the parameters and the sampling frequencies are all set to empirically reasonable

values. In all cases, the two-stage method performs comparably with the ML method.
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Even in the case where very coarsely sampled data (∆ = 1/12) are available, the two-

stage method works quite well. In light of Phillips and Yu (2004), the observed bias

in the estimates of κ are the result of the near unit root problem. The observation

that the two-stage method is not dominated by ML is quite remarkable, as the data

generating process is based on the transition probability density on which ML itself is

based. An interesting side result to emerge from this simulation is that the two-stage

method is able to reduce the finite sample bias and variance in κ in all cases, even

though the reductions are small.

∆ T Method κ = 0.3 µ = 0.09 σ = 0.06
Mean SD Mean SD Mean SD

×100 ×100
1/12 20 MLE .5417 .2832 .0898 1.3848 .0603 .2841

2-STAGE .5265 .2663 .0898 1.3785 .0597 .2793
1/12 15 MLE .6350 .3610 .0903 1.8937 .0604 .3232

2-STAGE .6133 .3355 .0904 1.9611 .0596 .3198
1/52 20 MLE .5075 .2582 .0906 1.3467 .0601 .1332

2-STAGE .5045 .2552 .0906 1.3470 .0600 .1347
1/52 10 MLE .7154 .4390 .0925 2.4234 .0601 .2035

2-STAGE .7069 .4306 .0924 2.3301 .0600 .2024
1/250 20 MLE .5268 .2725 .0898 1.3176 .0600 .0617

2-STAGE .5260 .2718 .0898 1.3179 .0600 .0634
1/250 10 MLE .7533 .4737 .0904 1.9306 .0601 .0874

2-STAGE .7519 .4714 .0903 1.9283 .0600 .0891

Table 1: Simulation results under the CIR model, dXt = 0.3(0.09 − Xt)dt +
0.06

√
XtdBt, based on 1000 replications. Mean and SD stand for the average and

standard deviation across 1000 replications, respectively.

2.2.2 Example 2

The model in the second example is taken from Hutton and Nelson (1986)

dXt = αdt + αdBt. (12)

Although this model is generally not well suited to interest rate data, the feature that

the drift and diffusion functions share the same parameter provides a nice framework

7



to investigate the relative performance of the estimation method based on the diffusion

only, against that based on the drift only and that based on the drift and diffusion

jointly.

The first method is based on the realized volatility and hence only uses the diffusion

term to estimate the model. It is easy to show that

α̂1 =

√
[X∆]T

T
.

The second method is based on the transition probability density given by

Xi∆|X(i−1)∆ ∼ N(X(i−1)∆ + α∆, α2∆).

Clearly this method uses information both in the drift and diffusion functions. Denote

the resulting estimate by α̂2.

The third method was proposed by Hutton and Nelson (1986). It uses mainly

information in the drift function and is based on maximization of the following loga-

rithmic quasi-likelihood function∫ T

0

α−2dXt −
∫ T

0

α−1dt.

As a result, the estimate has the following analytical expression:

α̂3 =
XT

T
.

Table 2 reports results obtained from a Monte Carlo study where we compare the

three estimation methods with different sampling frequencies. In all cases, the two-

stage method and ML perform much better than QML; and, most remarkably, the

two-stage method performs better than ML. Just as in Example 1, the fact that the

simple two-stage method outperforms ML in finite samples is surprising. Moreover,

the better performance of the first and second methods clearly reflects the order

difference in the drift and diffusion functions.

3 A Two-Stage Method

The estimation procedure discussed in Section 2.1 is not directly applicable to gen-

eral diffusions such as model 1, as it requires either a constant diffusion function or

8



True value of α = 0.1
∆ T RV ML QML

Mean Variance Mean Variance Mean Variance
×100 ×100 ×100

1/12 20 .1013 .0224 .1054 .0266 .0954 .469
1/52 20 .1003 .00488 .1013 .00514 .1005 .5121
1/250 20 .1000 .0011 .1002 .0011 .0992 .518

Table 2: Simulation results under dXt = 0.1dt + 0.1dBt based on 1000 replications.
Mean and variance are calculated across 1000 replications, respectively.

separability of the scalar parameter from the reminder of the diffusion function. As a

result, we have to provide a more general two-step procedure to estimate a diffusion

process in the form of model (1). In particular, in the first step we propose to estimate

the parameters in the diffusion function by using the feasible central limit theorem

for realized volatility derived by Barndorff-Nielsen and Shephard (2002).

Assume that Xt is observed at times

t = ∆, 2∆, · · · , M∆∆(=
T

K
), (M∆ + 1)∆, · · · , 2M∆∆(=

2T

K
), · · · , n∆∆(= T ),

where n∆ = KM∆ with K being a fixed and positive integer, T is the time span of the

data, ∆ is the sampling frequency, and M∆ = O(n∆). This particular construction

allows for the non-overlapping K sub-samples

((k − 1)M∆ + 1)∆, · · · , kM∆∆, where k = 1, · · · , K,

so that each sub-sample has M∆ observations over the interval ((k − 1) T
K

, k T
K

]. For

example, if ten years of weekly observed interest rates are available and we split the

data into ten blocks, then T = 10, ∆ = 1/52, M∆ = 52, K = 10. The total number

of observations is 520 and the number of observations contained in each block is 52.

As ∆ → 0, n∆ = T
∆
→∞ and M∆ →∞, so that

M∆∑
i=2

(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 p→ [X]k T
K
− [X](k−1) T

K
, (13)

and∑M∆

i=2 (X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − ([X]k T
K
− [X](k−1) T

K
)

rk

d→ N(0, 1), (14)
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log(
∑M∆

i=2 (X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − log([X]k T
K
− [X](k−1) T

K
)

sk

d→ N(0, 1),

(15)

where

rk =

√√√√2

3

M∆∑
i=2

(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)4

and

sk = min{
√

r2
k

(
∑M∆

i=2 (X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2)2
,

2

M∆

} (16)

for k = 1, · · · , K. The limit (13) follows by virtue of the definition of quadratic

variation, while the central limit theorem (CLT) results (14) and (15) are due to

Barndorff-Nielsen and Shephard (2002), where (16) involves a finite sample correction

on the asymptotic theory of Barndorff-Nielsen and Shephard (2005).

Based on the CLT (14), θ2 can be estimated in the first stage by running a (non-

linear) least squares regression of the standardized realized volatility∑M∆

i=2 (X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2

rk

(17)

on the standarized diffusion function

([X]k T
K
− [X](k−1) T

K
)

rk

=

(∫ k T
K

(k−1) T
K

σ2 (Xt; θ2) dt
)

rk

(18)

'
∑M∆

i=2 σ2
(
X(k−1)M∆+(i−1)∆; θ2

)
∆

rk

(19)

for k = 1, · · · , K. Denote the resulting estimator of θ2 by θ̂2. In fact, we can write θ̂2

as the extremum estimator

θ̂2 = arg min
θ2

Q∆ (θ2) , (20)

where

Q∆ (θ2) = ∆
K∑

k=1

[∑M∆

i=2

{
(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − σ2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆

}
rk

]2

.
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A similar regression in standardized log levels of realized volatility can be run using

result (15).

This approach provides a more general estimation procedure than those designed

to estimate models with a constant diffusion or a scalar parameter in the diffusion

function. Indeed, when K = 1, the least squares regression above is equivalent to

minimizing the squared difference between the terms given by Equations (17) and

(18), which yields exactly the expression of the estimator (6) when the diffusion term

is known up to the scalar factor.

In the second stage, the approximate log-likelihood function is maximized with

respect to θ1 (denoting the resulting estimator by θ̂1)

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

σ2(X(i−1)∆; θ̂2)
(Xi∆ −X(i−1)∆)− ∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

σ2(X(i−1)∆; θ̂2)
. (21)

4 Asymptotic Results

The asymptotic theory of a slightly different two-stage estimator in the multivariate

case has been obtained in Yoshida (1992) for models whose diffusion term is known

up to a constant (matrix) factor, where both infill and long span asymptotics are

employed both for the diffusion and drift parameter estimators. In this section we first

derive the asymptotic theory for the same class of (scalar) models but only resort to

long span asymptotics for the drift parameter asymptotic theory. We then investigate

the asymptotic properties of the estimators proposed in Section 3 for model (1) whose

diffusion function has a general form.

4.1 Scalar Parameter in the Diffusion Function

Assume the data are generated from the following stochastic differential equation:

dXt = µ(Xt; θ
∗
1)dt + θ∗2f(Xt)dBt. (22)

Denote θ2
2 by τ and θ∗22 by τ ∗. Both µ(·; θ1) and f(·) are time-homogeneous, B-

measurable functions on D = (l, u) with −∞ ≤ l < u ≤ ∞, where B is the σ-field

generated by Borel sets on D. τ is estimated by τ̂ defined by Equation (6); θ1 is

estimated by θ̂1, the maximizer of Equation (7).
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To prove consistency of τ̂ in a diffusion process with a constant diffusion term (ie

f(Xt) = 1), Florens-Zmirou (1989) assumed ∆ → 0, T → ∞, and ∆2T → 0. The

same set of assumptions were employed by Yoshida (1992) to deal with the diffusion

process for more general, but still known, f(Xt). In this paper, using the theory of

Barndorff-Nielsen and Shephard (2002) we show that the condition of an infinite time

span of data (ie T →∞) is not needed to develop the asymptotic theory for τ̂ .

We list the following conditions.

Assumption 1: Equation [X]t − τ
∫ t

0
f 2(Xs)ds = 0 has a unique solution at

τ ∗ > 0 ∀t > 0.

Assumption 2: infx∈J f 2(x) > 0, where J is a compact subset of the range of the

process.

Assumption 3:
∫ t

0
µ2(Xs; θ1)ds > 0 ∀t < ∞.

Remark 4.1: Assumption 1 is an identification condition. Assumption 3 ensures

weak convergence of the error process from the Euler approximation to the diffusion

process (Jacod and Protter, 1998).

THEOREM 4.1 (Asymptotics of the Diffusion Parameter Estimate): Suppose

Assumptions 1-2 hold, τ̂
p→ τ ∗ as ∆ → 0. If, in addition, Assumption 3 holds,

∆−1/2(τ̂ − τ ∗)
d→
√

2
∫ T

0
τ ∗f 2(Xs)dWs∫ T

0
f 2(Xs)ds

.

where Wt is a Brownian motion which is independent of Xt.

Remark 4.2: With a different estimate for τ , we improve the results of Yoshida

(1992), who derived asymptotic properties of diffusion estimate by assuming ∆ → 0

and T →∞, by only requiring in Theorem 4.1 that ∆ → 0.

To establish the asymptotic properties of the drift parameter estimate, we follow

Yoshida (1992) closely. In particular, we first list the following conditions.

Assumption 4: θ1 ∈ Θ1 where the parameter space Θ1 ⊂ RK1 is a compact set

with θ∗1 ∈ Int(Θ1).

Assumption 5: Both µ(·; θ1) and f(·) functions are twice continuously differen-

tiable. As a result, for any compact subset J of the range of the process, we have the

following two conditions:

(i) (Lipschitz condition) There exists a constant L1 so that

|µ(x; θ∗1)− µ(y; θ∗1)|+ θ∗2|f(x)− f(y)| ≤ L1|x− y|,

12



for all x and y in J .

(ii) (Growth condition) There exists a constant L2 so that

|µ(x; θ∗1)|+ θ∗2|f(x)| ≤ L2|1 + x|,

for all x and y in J .

Assumption 6: Define the scale measure of Xt by

s(x; θ) = exp

(
− 2

∫ x

c

µ(y; θ1)

τf 2(y)
dy

)
,

where c is a generic constant. We assume the following conditions hold∫ u

c

s(x; θ)dx =

∫ c

l

s(x; θ)dx = ∞,

and ∫ u

l

1

s(x; θ)τf 2(x)
dx = A(θ) < ∞.

Assumption 7: For arbitrary p ≥ 0,

sup
t

E(|Xt|p) < ∞.

Assumption 8: Define the following function

θ1 → Y (θ1; τ
∗) =

∫
µ(x, θ1)

τ ∗f 2(x)
(µ(x, θ∗1)−

1

2
µ(x, θ1))πθ(dx)

and assume function Y (·; τ ∗) has the unique maximum at θ1 = θ∗1, where πθ is defined

in Remark 4.4.

Assumption 9: For fixed θ1, the derivatives ∂lµ(x; θ1)/∂xl and ∂lf(x)/∂xl ( l =

1, 2) exist and they are continuous in x. For fixed x, ∂lµ(x; θ1)/∂θl
1 exist. Moreover,

|∂lµ(x; θ1)/∂xl|, |∂lf(x)/∂xl|, |∂lµ(x; θ1)/∂θl
1| ≤ C(1 + |x|)C ,

for l = 0, 1, 2.

Assumption 10: The matrix

Φ =

∫
∂µ(x; θ∗1)

∂θ>1
(τ ∗f 2(x))−1∂µ(x; θ∗1)

∂θ1

πθ(dx) (23)

13



is positive definite.

Remark 4.3: Under Assumption 5, these exists a solution process for the stochas-

tic differential equation and the solution is unique.

Remark 4.4: Under Assumption 6, the process Xt is ergodic with an invariant

probability measure that has density

πθ(x) =
1

A(θ)s(x; θ)τf 2(x)
,

for x ∈ (l, u) with respect to Lebesque measure on (l, u), where A(θ) and s(x; θ) are

defined in Assumption 6. We further assume that X0 ∼ πθ∗ so that Xt is a stationary

process with Xt ∼ πθ∗ .

THEOREM 4.2 (Asymptotics of the Drift Parameter Estimates): Let θ̂1 =

argmax
θ1∈Θ1

T−1 log `AIF (θ1) with `AIF (θ1) given by Equation (7). Suppose Assump-

tions 1-10 hold, θ̂1
p→ θ∗1 as ∆ → 0 and T →∞. If, in addition, ∆2T → 0,

T 1/2(θ̂1 − θ∗1)
d→ N(0, Φ−1),

where Φ is given in Equation (23).

4.2 General Diffusions

Suppose data are generated from the following stochastic differential equation

dXt = µ(Xt; θ
∗
1)dt + σ(Xt; θ

∗
2)dBt, (24)

where θ1 ∈ Θ1 ⊂ RK1 and θ2 ∈ Θ2 ⊂ RK2 . Both µ(·, θ1) and σ(·; θ2) are time-

homogeneous, B-measurable functions on D = (l, u) with −∞ ≤ l < u ≤ ∞, where B
is the σ-field generated by Borel sets on D. θ2 is estimated by regressing (17) on (18),

giving the extremum estimator (20); θ1 is estimated by θ̂1, defined by Equation (21).

As in the scalar factor parameter case, we show that an infinite time span (ie

T →∞) is not needed to develop the asymptotic theory for θ̂2.

Some additional assumptions are required, given the nonlinear dependence of the

diffusion σ(Xt; θ2) on θ2. Also we have to modify some earlier Assumptions listed in

Section 4.1.

Assumption 1′: The equation

[X]t −
∫ t

0

σ2(Xs; θ2)ds =

∫ t

0

σ2(Xs; θ
∗
2)ds−

∫ t

0

σ2(Xs; θ2)ds = 0 (25)

14



has a unique solution at θ∗2, ∀t > 0.

Assumption 2′: infx∈J σ2(x; θ∗2) > 0, where J is a compact subset of the range of

the process.

Assumption 4′: θ1 ∈ Θ1, θ2 ∈ Θ2, where parameter spaces Θ1 ⊂ Rk1 and

Θ2 ⊂ Rk2 are compact set with θ∗1 ∈ Int(Θ1) and θ∗2 ∈ Int(Θ2).

Assumption 5′: Both µ(·; θ1) and σ(·; θ2) functions are twice continuously dif-

ferentiable. As a result, for any compact subset J of the range of the process, we have

the following two conditions:

(i) (Lipschitz condition) There exists a constant L1 so that

|µ(x; θ∗1)− µ(y; θ∗1)|+ |σ(x; θ∗2)− σ(y; θ∗2)| ≤ L1|x− y|,

for all x and y in J .

(ii) (Growth condition) There exists a constant L2 so that

|µ(x; θ∗1)|+ |σ(x; θ∗2)| ≤ L2|1 + x|,

for all x and y in J .

Assumption 6′: Define the scale measure of Xt by

s(x; θ) = exp

(
− 2

∫ x

c

µ(y; θ1)

σ2(y; θ2)
dy

)
,

where c is a generic constant. We assume the following condition holds∫ u

c

s(x; θ)dx =

∫ c

l

s(x; θ)dx = ∞,

and ∫ u

l

1

s(x; θ)σ2(x; θ2)
dx = A(θ) < ∞.

Assumption 8′: Define the following function

θ1 → Y (θ1; θ
∗
2) =

∫
µ(x, θ1)

σ2(x; θ∗2)
(µ(x, θ∗1)−

1

2
µ(x, θ1))πθ∗(dx)

and assume Y (·; θ∗2) has the unique maximum at θ1 = θ∗1.
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Assumption 9′: For fixed θ1, the derivatives ∂lµ(x; θ1)/∂xl and ∂lσ(x; θ2)/∂xl

( l = 1, 2) exist and they are continuous in x. For fixed x, ∂lµ(x; θ1)/∂θl
1 and

∂lσ(x; θ2)/∂θl
2 exist. Moreover,

|∂lµ(x; θ1)/∂xl|, |∂lσ(x; θ2)/∂xl|, |∂lµ(x; θ1)/∂θl
1|, |∂lσ(x; θ2)/∂θl

2| ≤ C(1 + |x|)C ,

for l = 0, 1, 2.

Assumption 10′: The matrices

Φ1 =

∫
∂µ(x; θ∗1)

∂θ1

σ−2(x; θ∗2)
∂µ(x; θ∗1)

∂θ′1
πθ(dx) (26)

and

∫ t

0

∂σ2 (Xs; θ
∗
2)

∂θ2

∂σ2 (Xs; θ
∗
2)

∂θ′2
ds

are positive definite and
∫ t

0
σ4 (Xs; θ

∗
2) ds > 0 for all t > 0.

THEOREM 4.3 (Asymptotics of the Diffusion Parameter Estimate): Suppose

Assumptions 1 ′-10 ′ hold. Then, θ̂2
p→ θ∗2 as ∆ → 0 and

∆−1/2
(
θ̂2 − θ∗2

)
d→

 K∑
k=1

∫ k T
K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

∂σ2(Xs;θ∗2)
∂θ′2

ds∫ k T
K

(k−1) T
K

σ4 (Xs; θ∗2) ds


−1

×

 K∑
k=1

√
2
∫ k T

K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

σ2 (Xs; θ
∗
2) dWs

2
∫ k T

K

(k−1) T
K

σ4 (Xs; θ∗2) ds

 ,

where Wt is a Brownian motion which is independent of Xt.

THEOREM 4.4 (Asymptotics of the Drift Parameter Estimate): Let θ̂1 =

argmax T−1 log `AIF (θ1) with `AIF (θ1) given by Equation (21). Suppose Assumptions

1′ − 10′ hold, then θ̂1
p→ θ∗1 as ∆ → 0 and T →∞. If, in addition, ∆2T → 0,

T 1/2(θ̂1 − θ∗1)
d→ N(0, Φ−1

1 ),

where Φ1 is given in Equation (26).
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5 Monte Carlo Results

To examine the performance of the proposed procedure, we estimate the following

model for short-term interest rates due to Chan et al. (CKLS hereafter) (1992),

dXt = κ(µ−Xt)dt + σXγ
t dBt, (27)

with κ = 0.6, µ = 0.09, σ = 0.06, γ = 0.5. We choose γ = 0.5 so that the true

model becomes a CIR model which enables an exact data simulation. The parameters

are estimated from 10 years of daily data (2500 observations). The experiment is

replicated 1000 times to get the means and standard errors for each estimate. Two

estimation methods are employed to estimate the model: the approximate ML method

of Aı̈t-Sahalia (2002) and the proposed two-stage method.1 The results are reported

in Table 3.

To use the two-stage method, the number of subsamples has to be chosen. Since

there are two parameters in the diffusion term, K = 1 is not adequate. Although

K = 2 may seem a natural choice, the simulation results suggest that larger values

of K are better and the performance of the procedure improves substantially when

K ≥ 10. The estimation of parameters in the drift function does not seem to be

dependent on the diffusion parameters in any critical way. This suggests that in all

cases the quadratic variations are well estimated.

6 Conclusion

This paper proposes a two-stage method to estimate diffusion processes in a general

form. In the first stage the realized volatility calculated from a sequence of split

samples is regressed on the corresponding quadratic variation in order to estimate all

the parameters in the diffusion function. Then, conditional on the resulting consistent

estimate of the diffusion, the in-fill likelihood function approximation of the diffusion

process can be readily constructed. The resulting discrete approximation produces

estimates of all the parameters in the drift function. Monte Carlo simulations show

1Although the asymptotic theory has been developed for the standardized realized volatility in
the present paper, the finite sample performance often improves for the regression based on the log
realized volatility. As a result, the Monte Carlo results reported in Table 3 are based on Equation
(15).
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Two-Stage Method
AML K=2 K=10 K=20 K=50

γ Mean 0.4901 0.5326 0.4992 0.4954 0.4927
(=0.5) SD 0.1044 0.5117 0.1295 0.1136 0.1104

σ Mean 0.0604 0.1562 0.0628 0.0612 0.0603
(=0.06) SD 0.0157 0.4754 0.0235 0.0177 0.0167

κ Mean 1.0716 1.0697 1.0729 1.0730 1.0726
(=0.6) SD 0.5447 0.5399 0.5417 0.5417 0.5415

µ Mean 0.0901 0.0902 0.0902 0.0902 0.0902
(=0.09) SD 0.0097 0.0094 0.0094 0.0094 0.0094

Table 3: Simulation results under the CKLS model, dXt = κ(µ − Xt)dt + σXγ
t dBt,

based on 1000 samples of 2500 daily observations. Mean and SD stand for the average
and standard deviation across 1000 replications, respectively.

that the finite sample performance of the proposed method is very satisfactory and

as good as conventional maximum likelihood even when the discrete likelihood can be

obtained. One advantage of the proposed method is that a larger scale optimization

problem is decomposed into two smaller scale optimization problems. Although, like

other extreme estimators, our method tends to over estimate the mean reversion

parameter, κ, the numerical attractability of our method makes it an ideal initial

estimate for the jackknife method of Phillips and Yu (2004) to reduce the finite sample

bias in κ.

The approach can be readily extended to the multi-dimensional case. Both imple-

mentation and asymptotic theory only need trivial modifications. Since the method

separates estimation of the drift and diffusion functions, it may be a desirable method

to use when the drift but not the diffusion involves certain market microstructure

features.
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7 Appendix

Proof of Theorem 4.1: It is known that all diffusion-type processes are semi-

martingales (Prakasa Rao, 1999b). As a result, when ∆ → 0,

[X∆]T
p→ [X]T = τ ∗

∫ T

0

f 2(Xs)ds,

where the convergence follows from the theory of quadratic variation for semi-martingales

and the equality follows from Assumption 1.

By Assumption 3, we have

τ̂ =
[X∆]T∑n∆

i=1 f 2(X(i−1)∆)

p→ [X]T∫ T

0
f 2(Xs)ds

= τ ∗.

This proves the first part of Theorem 1.

Since Xt is a semi-martingale, by Ito’s lemma for semi-martinagles (Prakasa Rao,

1999b) we have

X2
T = [X]T + 2

∫ T

0

Xs−dXs−.

Following Theorem 1 of Barndorff-Nielsen and Shephard (2002) we have

∆−1/2([X∆]T − [X]T )
d→ τ ∗

√
2

∫ T

0

f 2(Xs)dWs, (28)

where Wt is a Brownian motion which is independent of Xt. Hence,

∆−1/2(τ̂ − τ ∗)

= ∆−1/2

(
[X∆]T∑n∆

i=1 f 2(X(i−1)∆)
− [X]T∫ T

0
f 2(Xs)ds

)

= ∆−1/2 1∫ T

0
f 2(Xs)ds

( ∫ T

0
f 2(Xs)ds∑n∆

i=1 f 2(X(i−1)∆)
[X∆]T − [X]T

)
. (29)

By Assumption 3, ∑n∆

i=1 f 2(X(i−1)∆)∫ T

0
f 2(Xs)ds

p→ 1.
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By Slutsky’s theorem, Equations (28) and (29) imply that

∆−1/2(τ̂ − τ ∗)
d→ τ ∗

√
2
∫ T

0
f 2(Xs)dWs∫ T

0
f 2(Xs)ds

. (30)

This completes the proof of Theorem 1.

Proof of Theorem 4.2:

Obviously, the proposed drift estimator is in the class of extremum estimators.

Hence, one can prove consistency by checking sufficient conditions for extremum es-

timation problems. It is convenient here to check the conditions given in Newey and

McFadden (1994, p.2121), namely, compactness, continuity, uniform convergence, and

identifiability.

Compactness of Θ, continuity of T−1 log `AIF (θ1; τ̂) and the identification condi-

tion are assured by Assumption 1, Assumption 9 and Assumption 8, respectively.

The uniform convergence of T−1 log `AIF (θ1) to Y (θ1, τ
∗) follows from Proposition 1,

Lemma 1 and Lemma 2 in Yoshida (1992). Hence the first part of the theorem is

proved.

To show asymptotic normality, we follow Yoshida (1992) by obtaining the weak

convergence of the likelihood ratio random field,

Z∆,n∆
(τ, u) = `AIF (θ∗1 + T−1/2u; τ̂)/`AIF (θ∗1; τ̂).

Under the listed conditions, Yoshida (1992) showed that

log Z∆,n∆
(τ ∗, u) = u>T−1/2

n∆∑
i=1

∂µ(x; θ∗1)

∂θ1

1

τ ∗f 2(X(i−1)∆)

∫ i∆

(i−1)∆

τ ∗f(x)dWt

−1

2
u>Φu + ρ∆,n(u), (31)

where ρ∆,n(u)
p→ 0 and Φ is defined in Equation (23).

From Theorem 1, we have, ∀η > 0, that there exists a ∆ and a positive number

c1 such that

P (∆−1/2(τ̂ − τ ∗) > c1) < η/2.
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Let τ̂ = τ ∗ + ∆1/2M and we have, ∀ε > 0

P (| log Z∆,n∆
(τ̂ , u)− log Z∆,n∆

(τ ∗, u)| > ε)

= P (∆−1/2(τ̂ − τ ∗) > c1) + P ( sup
|M |≤c1

| log Z∆,n(τ̂ , u)− log Z∆,n∆
(τ ∗, u)| > ε)

< η. (32)

Combining equations (31) and (32) proves Proposition 4 of Yoshida (1992). Sim-

ilarly, we can obtain Propositions 5 and 6 of Yoshida (1992) based on τ̂ . The week

convergence of the likelihood random field follows these propositions. In particular,

T 1/2(θ̂1 − θ∗1)
d→ N(0, Φ).

This completes the proof of Theorem 4.2.

Proof of Theorem 4.3:

The argument is briefly sketched here. We consider the case where the estimate

θ̂2 is obtained from the extremum estimation problem (20), viz.,

θ̂2 = arg min
θ2

Q∆ (θ2) ,

where

Q∆ (θ2) = ∆
K∑

k=1

[∑M∆

i=2

{
(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − σ2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆

}
rk

]2

.

A similar argument can be employed in the case where standardized log levels of

realized volatility are used in the regression based on the CLT result (15).

Observe that, as ∆ → 0,

Q∆ (θ2)
p→ Q (θ2) =

K∑
k=1

{∫ k T
K

(k−1) T
K

σ2 (Xs; θ
∗
2) ds−

∫ k T
K

(k−1) T
K

σ2 (Xs; θ2) ds
}2

2
∫ k T

K

(k−1) T
K

σ4 (Xs; θ∗2) ds
,

uniformly in θ2, since

M∆∑
i=2

(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 p→ [X]k T
K
− [X](k−1) T

K
=

∫ k T
K

(k−1) T
K

σ2 (Xs; θ
∗
2) ds,
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and
M∆∑
i=2

σ2
(
X(k−1)M∆+(i−1)∆; θ2

)
∆

p→
∫ k T

K

(k−1) T
K

σ2 (Xs; θ2) ds, (33)

uniformly in θ2 ∈ Θ2 in view of the compactness of Θ2 and the smoothness of

σ2 (Xs; θ2) . Next,

r2
k

∆
=

2

3∆

M∆∑
i=2

(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)4 p→ 2

∫ k T
K

(k−1) T
K

σ4 (Xs; θ
∗
2) ds, (34)

as in Barndorff-Nielsen and Shephard (2002, hereafter BNS). Thus, since Q (θ2) is

minimized for θ2 = θ∗2 in view of (25), we have θ̂2
p→ θ∗2 by a standard extremum

estimator argument.

Next, by a Taylor series argument under the stated smoothness and positive defi-

niteness assumptions, we have

∆−1/2
(
θ̂2 − θ∗2

)
=

 1

∆

∂2Q∆

(
θ̃2

)
∂θ2∂θ′2

−1 [
1

∆3/2

∂Q∆ (θ∗2)

∂θ2

]

∼
[

1

∆

∂2Q∆ (θ∗2)

∂θ2∂θ′2

]−1 [
1

∆3/2

∂Q∆ (θ∗2)

∂θ2

]
, (35)

where θ̃2 is on the line segment connecting θ̂2 to θ∗2 and thus satisfies θ̃2 →p θ∗2. Setting

g∗i = g
(
X(k−1)M∆+(i−1)∆; θ∗2

)
=

∂σ2
(
X(k−1)M∆+(i−1)∆; θ∗2

)
∂θ2

,

we get

1

∆3/2

∂Q∆ (θ∗2)

∂θ2

= − 2

∆3/2

K∑
k=1

∑M∆

i=2 g∗i ∆
{
(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − σ2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆

}
r2
k

∆

= − 2

∆1/2

K∑
k=1

∑M∆

i=2 g∗i
{
(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − σ2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆

}
r2
k

∆

(36)
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and, in view of Theorem 1 of BNS,

1

∆1/2

M∆∑
i=2

g∗i ∆
{
(X(k−1)M∆+i∆ −X(k−1)M∆+(i−1)∆)2 − σ2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆

}
d→
√

2

∫ k T
K

(k−1) T
K

∂σ2 (Xs; θ
∗
2)

∂θ2

σ2 (Xs; θ
∗
2) dWs (37)

where Ws is a standard Brownian motion independent of Xt. It follows from (34),

(37)and (36) that

1

∆3/2

∂Q∆ (θ∗2)

∂θ2

d→
K∑

k=1

√
2
∫ k T

K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

σ2 (Xs; θ
∗
2) dWs

2
∫ k T

K

(k−1) T
K

σ4 (Xs; θ∗2) ds
. (38)

Next we have

1

∆

∂2Q∆ (θ∗2)

∂θ2∂θ′2
∼ 2

∆

K∑
k=1

∑M∆

i=2 g∗i g
∗′
i ∆2

r2
k

∆

= 2
K∑

k=1

∑M∆

i=2 g∗i g
∗′
i ∆

r2
k

∆

p→ 2
K∑

k=1

∫ k T
K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

∂σ2(Xs;θ∗2)
∂θ′2

ds

2
∫ k T

K

(k−1) T
K

σ4 (Xs; θ∗2) ds

=
K∑

k=1

∫ k T
K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

∂σ2(Xs;θ∗2)
∂θ′2

ds∫ k T
K

(k−1) T
K

σ4 (Xs; θ∗2) ds
. (39)

Combining (35), (38) and (39) we obtain

∆−1/2
(
θ̂2 − θ∗2

)
d→

 K∑
k=1

∫ k T
K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

∂σ2(Xs;θ∗2)
∂θ′2

ds∫ k T
K

(k−1) T
K

σ4 (Xs; θ∗2) ds


−1

×

 K∑
k=1

√
2
∫ k T

K

(k−1) T
K

∂σ2(Xs;θ∗2)
∂θ2

σ2 (Xs; θ
∗
2) dWs

2
∫ k T

K

(k−1) T
K

σ4 (Xs; θ∗2) ds

 ,
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as stated.

Proof of Theorem 4.4:

The proof follows similar lines to the proof of Theorem 4.2 and is therefore omit-

ted.
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