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UpSizeR: Synthetically Scaling an Empirical Relational

DatabaseI

Y.C. Tay∗, Bing Tian Daib, Daniel T. Wangc, Eldora Y. Suna, Yong Lina,
Yuting Lina

aNational University of Singapore, Republic of Singapore
bSingapore Management University, Republic of Singapore

cTeradata

Abstract

The TPC benchmarks have helped users evaluate database system per-
formance at different scales. Although each benchmark is domain-specific,
it is not equally relevant to different applications in the same domain. The
present proliferation of applications also leaves many of them uncovered by
the very limited number of current TPC benchmarks.

There is therefore a need to develop tools for application-specific database
benchmarking. This paper presents UpSizeR, a software that addresses the
Dataset Scaling Problem: Given an empirical set of relational tables D
and a scale factor s, generate a database state D̃ that is similar to D but s
times its size. Such a tool can be useful for scaling up D for scalability testing
(s > 1), scaling down for application testing (s < 1), or anonymization
(s = 1).

Experiments with Flickr show that query results and response times on
UpSizeR output match those on crawled data. They also accurately predict
throughput degradation for a scale out test.

The UpSizeR version in this paper focuses on extracting and replicating
the correlation induced by the primary and foreign keys. There are many
other forms of correlation involving nonkey values. It is a large task to
develop UpSizeR into a tool that can extract and replicate all important
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correlation, so community effort is required. The current UpSizeR code has
therefore been released for open-source development. The ultimate objective
is to replace TPC with UpSizeR, so database owners can generate bench-
marks that are relevant to their applications.

Keywords: application-specific benchmarking, synthetic data generation,
scale factor, empirical dataset, attribute value correlation, social networks

1. Introduction

A database managements system for an enterprise is a complicated col-
lection of software and hardware. Its complexity and its critical role require
that a different index design, a scale out of machines, a new business appli-
cation, etc., be adequately tested before deployment. Such testing needs to
use a dataset of an appropriate size.

One possibility is to use a TPC1 benchmark for such tests. TPC datasets
can be scaled to desired sizes, and are also domain-specific: TPC-C for online
transaction processing, TPC-H for decision support, etc. Vendors have used
these benchmarks to improve and compare their products, and researchers
have used them to test and compare their algorithms and prototypes. The
TPC benchmarks have thus played an important role in the growth of the
database industry and the progress of database research.

However, while there are myriad database applications, there are only
a few TPC benchmarks. There are therefore innumerable applications not
covered by these benchmarks. A TPC benchmark is also not equally relevant
to two different applications even when they belong in the same domain. This
is why vendors never use TPC benchmarks when tuning the performance of
their customers’ systems.

The mismatch between applications and TPC can only get worse, as the
proliferation of new database applications far outpaces the approval of new
TPC benchmarks [1].

1.1. Problem Statement

There is thus a pressing need for a tool to help database owners generate
application-specific datasets to specified size. We state this issue as the

1http://www.tpc.org/
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Dataset Scaling Problem:

Given a set of relational tables D and a scale factor s, generate
a database state D̃ that is similar to D but s times its size.

This paper presents UpSizeR, a first-cut tool for solving the above problem.
One can define “s times its size” in various ways (number of tuples or

bytes, etc.), and numerical precision is unnecessary — if s = 3, it would

not matter if the generated D̃ were actually 3.14 times D’s size (however
defined).

Rather, the issue here is “similarity”. One could define similarity mea-
sures that are based on graph properties [2] or information content [3], but
we expect the database practitioner to be more interested in query results.
For this paper, we assume the database owner has some set of queries Q on
hand, and she will judge if D̃ is similar to D by running Q on both.

However, for this paper, we do not assume that UpSizeR has access to
Q (the UpSizeR user may change Q anytime anyway). It follows that we
cannot rely on using Q to help generate the data. Moreover, we believe no
single similarity metric suffices.

The UpSizeR algorithms therefore aim to replicate the distribution of
attribute values and correlations extracted from D alone. This fundamental
approach is a surer way for UpSizeR to satisfy a changeable Q and multiple
similarity metrics. In our experiments, we verify similarity with sizes of tables
and query results (Table 1, Table 5), throughput (Table 2), execution time
(Table 3) and aggregate values (Table 4).

1.2. Motivation for s > 1, s = 1, s < 1

There are various possibilities for why one might want to synthetically
scale up (s > 1) an empirical dataset. Some web applications have user pop-
ulations that grow at breakneck speed (one recent example being Animoto2),
so a small but fast-growing service may need to test the scalability of their
hardware and software architecture with larger versions of their datasets.

Another example is where an enterprise supplies a vendor with only a
sample of its dataset (e.g. the entire dataset is too large for easy transfer),
and the vendor needs to scale up the sample to an appropriate size.

2http://animoto.com
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Taking a small sample of a large dataset is itself nontrivial. For example,
if a dataset contains 2000000 buyers, and we want to extract a sample with
1000 buyers, it does not suffice to randomly pick 1000 buyers; e.g. we may
need to add their suppliers’ other buyers, and this recursive adding can grow
the sample to an indeterminate size. Instead, one can use UpSizeR with
s < 1 to downsize the dataset.

An enterprise may want to downsize its dataset, not just for a vendor,
but for itself. For example, rather than test a new application by running it
on a production dataset, one can use UpSizeR to get a small synthetic copy
for testing.

In providing a vendor with just a small sample of its dataset, an enterprise
may be motivated by privacy or proprietary considerations. UpSizeR also
addresses such issues, since its output dataset is synthetic. Thus, for s = 1,
UpSizeR can be viewed as making an anonymized copy of a dataset. Note,
however, that some information leakage is inevitable since D̃ is, after all,
similar to D.

Such anonymization can be useful for, say, exploring different system
configurations or implementations in the cloud (leveraging on its elasticity,
and before investing in a particular configuration). Instead of exposing their
real dataset (i.e. their crown jewels), an enterprise can use UpSizeR to upload
a synthetic copy into the cloud.

1.3. Our Contribution

The TPC benchmarks have detailed scaling rules, and a table is generated
by independently generating the required number of tuples. The decision to
generate completely synthetic relations, instead of modeling empirical cor-
relations, can be traced back to the Wisconsin benchmark [4]. Bitton et al.
made that choice then because

(i) very large amounts of data are needed for the empirical values to reflect
their underlying distribution;

(ii) synthetic data facilitates query design (for desired selectivity factors,
join sizes, etc.); and

(iii) empirical datasets are hard to scale.

Nowadays, (i) is not an issue, since most datasets are big. In fact, gar-
gantuan datasets are so common that the case for scale factor s < 1 may be

4
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Figure 1: D = {R, T }, D′ = {R′, T ′}, s = 2. Naive copying does not work: For
(a), creating new values may violate constraints on B (e.g. value range or
number of distinct values). For (b), without creating new values, the scale
up in join sizes may be wrong (for the natural join on B, |R ⊲⊳ T | = 4 but
|R′ ⊲⊳ T ′| = 16 6= 4s.)

more important than s > 1. The task for UpSizeR is to scale a dataset; we
assume the dataset owner already has an application-specific query set Q, so
we do not have to design the queries and (ii) is not a problem.

Issue (iii) remains true, i.e. the Dataset Scaling Problem is hard. How-
ever, thirty years have passed, so it is time to revisit the problem, and this
paper’s contribution lies in our UpSizeR solution. Note that although the
UpSizeR user may have a query set Q on hand, UpSizeR itself may not have
access to Q.

To see why the Dataset Scaling Problem is hard, consider the toy D in
Fig. 1. An obvious possibility for s = 2 is to scale D to D̃ by making a copy.
However, as Fig. 1 illustrates:

Case (a) If new attribute values are created, then that may violate column
constraints like value range or number of distinct values.

Case (b) If no new attribute values are created, then join sizes may scale
by a wrong factor.

Besides, copying does not work for s ≤ 1.
Our wish is that UpSizeR can work for any relational database. However,

the UpSizeR version in this paper is far from solving the Dataset Scaling
Problem. The algorithms here focus on replicating the correlation induced by
primary/foreign keys. For inter- and intra-tuple correlation involving nonkey
values, we only illustrate what can be done by presenting solutions for some

5



special cases. To model and replicate all important correlations sufficiently
(so UpSizeR can satisfactorily scale any application’s dataset) requires more
effort than any one research or development team can provide.

In other words, given the diversity of applications, the complexities in
real data and the pressing need for a scaling tool, it will take a community
effort to develop UpSizeR. As contribution to this task, we have released two
implementations of UpSizeR for open-source development3 — a single-server
version and a parallelized Hadoop MapReduce4 version.

Our UpSizeR release is the first step in our vision for a paradigm shift from
top-down benchmark design by committee consensus to bottom-up collabo-
rative development of tools and techniques for scaling empirical datasets5.

Sec. 5 also identifies an Attribute Value Correlation Problem for
Social Networks. This problem (not addressed in this paper) calls for the
development of a database theory for how social interactions affect inter-
column and inter-row correlations in relational databases. We believe this is
a rich, new area for database research [5].

1.4. Paper Overview

We begin in Sec. 2 by introducing our notation and stating our assump-
tions. Sec. 3 then presents the UpSizeR algorithms. Sec. 4 describes how
the assumptions can be relaxed, while Sec. 5 points out some limitations.
Sec. 6 validates UpSizeR by comparing it to real data, and demonstrates
how it can predict throughput degradation in a scale out test. Sec. 7 reviews
related work, before Sec. 8 concludes with a summary and a proposal for
extending UpSizeR into a broader program for the paradigm shift mentioned
above.

2. UpSizeR Specification

We first fix our terminology and notation in Sec. 2.1 and list our assump-
tions in Sec. 2.2. We then describe the input and output for UpSizeR in
Sec. 2.3.

3http://www.comp.nus.edu.sg/∼upsizer
4http://hadoop.apache.org/
5http://www.vldb.org/2011/files/slides/cv1/cvSession1-3.pptx
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Figure 2: A small schema graph for a photograph database F . Photo records
the owners (PUid) who uploaded the photographs, Comment records the com-
ments on photographs (CPid) and their authors (CUid), and Tag records the
tags on photographs (TPid) and the users who specified the tags (TUid).
User records these owners, authors and taggers. Sorting this graph into Di

(Sec. 3) gives D0 = {User}, D1 = {Photo} and D2 = {Comment, Tag}. D1 has
one equivalence class [{Uid}] = {Photo} and D2 also has one equivalence class
[{Pid, Uid}] = {Comment, Tag} (see [K] definition in Sec. 3).

2.1. Terminology and Notation

We assume the reader is already familiar with the relevant definitions, and
the following only serves to state our choice of terminology and notation.

A database state D consists of a set of tables. Each table has a rela-
tion scheme, a corresponding relation, and a primary key. The relation
scheme is a set of attributes, including the primary key. The relation is a
set of tuples, each of which assigns values to the attributes.

If a primary key K of table T appears as an attribute K ′ in another table
T ′, K ′ is a foreign key. Such a K defines an edge from T ′ to T . These
edges form a directed schema graph for the database state D.

Fig. 2 gives an example of a schema graph for a database F , like Flickr6,
that stores photographs uploaded by, commented upon and tagged by a
community of users.

Each edge in the schema graph induces a bipartite graph between T and
T ′, with bipartite edges between a tuple in T with K value v and the tuples
in T ′ with K ′ value v. The number of such edges is denoted deg(v, T ′). This

6http://www.flickr.com
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is illustrated in Fig. 3 for F .
For a positive number s, to scale D by s is to generate a synthetic

database state D̃ such that:
(S1) D̃ has the same schema graph (or, simply, schema) as D.

(S2) D̃ and D are similar in terms of query results.

(S3) For each table T0 that has no foreign key, the number of T0 tuples in D̃
should be s times that in D; the sizes of tables with foreign keys are indirectly
determined through their foreign key constraints.

How should one measure similarity of D̃ and D? What counts as similar
for one application may not be so for another. Since one motivation for Up-
SizeR lies in its use for scalability studies, UpSizeR should provide accurate
forecasts of storage requirement, query time and retrieval results for larger
datasets. The latter two are possible similarity measures, and they require
some set Q of test queries.

We hence assume that the UpSizeR user has such aQ on hand (in addition

to the database state D) to measure the similarity of D̃ and D, in terms of
tuples retrieved, aggregates computed, response time, etc. This definition
of dataset similarity, in terms of some user-specified Q and result similarity,
makes (S2) application-specific.

For (S3), if D has the schema graph in Fig. 2, where User has no foreign

keys, then the number of User tuples in D̃ should be s times the number of
User tuples in D. The number of Photo tuples in D̃ will be determined by
deg(Uid, Photo), and the size of Comment then determined by the correlated
values of deg(Pid, Comment) and deg(Uid, Comment).

One central issue in scaling up D lies in replicating its empirical inter-key
correlations. For example, in the Comment table of F , an author is more likely
to comment on her own photographs. This implies that deg(Uid, Comment)
and deg(Uid, Photo) are correlated. For each primary key K, let fK be the
joint degree distribution, i.e.

fK(d1, . . . , dr) = Pr(deg(v, T1) = d1, . . . , deg(v, Tr) = dr),

where the random variable is K value v, and T1, . . . , Tr are the tables that
contain K as foreign key.

Furthermore, if users are clustered into chefs, writers, etc., and pho-
tographs are clustered into cars, cakes, etc., then chefs are more likely to
comment on photographs of cakes.

8
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Figure 3: A schema graph edge in Fig. 2 from Photo to User for the key
Uid induces a bipartite graph between the tuples of User and Photo. Here,
deg(x, Photo) = 0 and deg(y, Photo) = 4. Similarly, deg(x, Comment) = 2 and
deg(y, Comment) = 1.

For a table T with two foreign keys, let X be the random variable for a
foreign key value, where these values are divided into clusters cX1 , . . . , c

X
m. Let

random variable Y and clusters cY1 , . . . , c
Y
n be similarly defined for the other

foreign key. Each 〈cXi , c
Y
j 〉 is called a co-cluster [6], with joint distribution

f cc
T induced by T , i.e.

f cc
T (cXi , c

Y
j ) = Pr(X ∈ cXi , Y ∈ cYj ).

Thus, in F , Comment induces a co-clustering for photographs and users
through a joint distribution f cc

Comment.
Finally, we refer to generation of values for non-key attributes as content

generation.
We will use v, T and deg(v, T ′) to denote a value, table or degree in

the given D, and ṽ, T̃ and deg(ṽ, T̃ ′) to denote their synthetically generated

counterparts in D̃.

2.2. Assumptions

To start, we assume the following:
(A1) Each primary key is a single attribute (i.e. no composite primary keys).
(A2) A table has at most two foreign keys.
(A3) The schema graph is acyclic.
(A4) The degree distribution is static. (E.g. the number of comments per

user has the same distribution in F and F̃ .)
(A5) Non-key attribute values for a tuple t only depends on t’s key values.

9



(A6) Key values only depend on the joint degree and co-clustering distribu-
tions. (This is not true for F — see Sec. 5.)

These assumptions are mostly adopted as a tradeoff, giving up technical
generality for expository clarity. In Sec. 4, we discuss how they can be
relaxed.

2.3. Input and Output

The input to UpSizeR is given by an empirical dataset D and a positive
number s that specifies the scale factor.

In response, UpSizeR will generate a synthetic database state D̃ satisfying
(S1), (S2) and (S3) — see Sec. 2.1. The ratio in size of D̃ to D is only

approximately s, since the exact size of D̃ is determined by key constraints,
schema semantics (e.g. certain tables may have fixed sizes) and randomness
in tuple generation.

The main issue in the Dataset Scaling Problem is similarity. For UpSizeR
to be generally applicable, similarity must be application-specific. By defin-
ing dataset similarity in terms of query results (instead of, say, statistical
distributions or graph properties), (S2) gives the UpSizeR user the final say.

3. UpSizeR Algorithms

We now describe the UpSizeR algorithms, using F as an example. The
Appendix provides more details in pseudocode.

3.1. Extract probability distributions

For each table T in D, UpSizeR processes T to extract the joint degree
distribution fK , where K is the primary key of T (see Sec. 2.1). This is
done by normalizing the frequency distribution obtained from T . From fK ,
UpSizeR can derive various marginal distributions, as needed, including that
for deg(v, T ′) where v is a K value and T ′ is any table with K as foreign key.

If T has more than one foreign key, UpSizeR then extracts the co-clustering
distribution f cc

T among the foreign keys. UpSizeR can work with any co-
clustering algorithm (for the experiments, we use the one by Dhillon et al. [6]).

3.2. Sort the tables

Recall from (A3) that we assume the schema graph is acyclic. UpSizeR
first groups the tables in D into subsets D0,D1,D2, . . . by sorting this graph,
in the following sense:

10



• all tables in D0 have no foreign keys;
• for i ≥ 1, Di contains tables whose foreign keys are primary keys in D0 ∪
D1 ∪ · · · ∪ Di−1.

For F , D0 = {User}, D1 = {Photo} and D2 = {Comment, Tag}; here, the
tables in Di coincidentally have i foreign keys. This is not true in general.
For the TPC-H example in the Appendix, the tables in D2 have just 1 foreign
key each.

3.3. Partition Di into equivalence classes [K]

For each Di and set of foreign keys K, let [K] be the set of all tables in
Di with K as foreign keys. [K] is thus an equivalence class, and each Di is
partitioned by [K].

In the F example, D1 has one equivalence class [{Uid}] = {Photo}, and
D2 also has one equivalence class [{Pid, Uid}] = {Comment, Tag}. In general,
Di may have more than 1 equivalence class. (For the TPC-H example in the
Appendix, D3 has 2 equivalence classes.)

We need this definition because the tables in [K] are correlated through
K, so they are generated together.

3.4. Generate T in D0

Suppose T in D0 has h tuples. Since T has no foreign keys, UpSizeR
simply generates sh primary key values for T̃ . For example, the User table
in F̃ has s times the number of Uids in F .

Recall assumption (A5) that non-key values of a tuple depend only on its
key values. For D0, this means the non-key attributes can be independently
generated (without regard to the primary key values, which are arbitrary)
by some content generator.

For example, values for Uname and Ulocation in F̃ can be picked from
sets of names and locations, according to frequency distributions extracted
from F .

3.5. UpSizeR’s main loop

A loop now generates tables in D1,D2, . . . in that order. The loop termi-
nates when all tables are generated.

Each loop first generates deg(ṽ, T̃ ′) before generating T̃ ′.

11



3.5.1. Generate deg(ṽ, T̃ ′)

In our F example, deg(ũ, Photo) and deg(ũ, Comment) are correlated, since
a user ũ is likely to comment on her own photographs. With the Di order-
ing, Photo is scaled before Comment, so we must compute the conditional
probability to generate deg(ũ, Comment). Specifically, we use the joint degree
distribution fUid(deg(u, Comment), deg(u, Photo)) to calculate

Pr(deg(u, Comment) = d′ | deg(u, Photo) = d) =
fUid(d

′, d)∑
x

fUid(x, d)
.

For a user ũ with d tuples in Photo, we use this conditional probability to
generate d′ tuples in Comment.

In general, suppose T̃ ′ has the set of foreign keys K, K ∈ K and K is
the primary key of T . By the ordering D0,D1,D2, . . ., T̃ would already have
been generated, so the synthetic K values ṽ are ready to be used as foreign
key values to generate T̃ ′.

Let T ′
1, . . . , T

′
n be the tables that have K as foreign keys, i.e. [K] =

{T ′

1, . . . , T
′

n}. Earlier iterations of UpSizeR’s main loop may have generated
deg(x̃, T̃ ′′

1 ), . . . , deg(x̃, T̃
′′

m) for all K values x̃ and some tables T̃ ′′

1 , . . . , T̃
′′

m.
Like the fUid example above, UpSizeR now derives from the joint degree
distribution fK the conditional

Pr(deg(ṽ, T ′

1) = d′1, . . . , deg(ṽ, T
′

n) = d′n | deg(ṽ, T̃
′′

1 ) = d1, . . . , deg(ṽ, T̃
′′

m) = dm).

This distribution is then used to compute the marginal distribution

Pr(deg(ṽ, T ′

i ) = d′1 | deg(ṽ, T̃
′′

1 ) = d1, . . . , deg(ṽ, T̃
′′

m) = dm)

for i = 1, . . . , n.

3.5.2. Generate T̃ ′ in Di for i ≥ 1

By (A2), each T ′ in Di (i ≥ 1) has 1 or 2 foreign keys.

Case T ′ has 1 foreign key:
Suppose T ′ has foreign key set K = {K}, where K is primary key of T .
In the F example, Photo has K = {Uid} and User is generated first;
for each Uid ṽ, we then generate deg(ṽ, Photo) tuples for Photo.

In general, for each ṽ, we generate deg(ṽ, T̃ ′) tuples of T̃ ′, using ṽ for
their K value and arbitrary (but unique) values for their primary key.
Each tuple’s non-key values are then assigned by content generation.

12



Case T ′ has 2 foreign keys:
Suppose T ′ has foreign key set K = {K1, K2} and Ki is the primary
key of Ti for i = 1, 2. For F , Comment has K = {Pid, Uid}, so we need
to use the distribution f cc

Comment that co-clusters Pids and Uids.

For i = 1, 2, UpSizeR first assigns every previously generated Ki value
ṽi to a cluster cci, then assigns deg(ṽi, T̃

′) according to the degree distri-
bution. We then force

∑
ṽ1
deg(ṽ1, T̃

′) =
∑

ṽ2
deg(ṽ2, T̃

′) by randomly
incrementing nonzero degrees in the smaller sum.

To generate a new tuple t for T̃ ′, UpSizeR generates a new primary
key value ṽ′ for T̃ ′ and assigns ṽ′ to a random 〈cc1, cc2〉 according to
f cc
T ′. Within this co-cluster, UpSizeR picks ṽi in cci with probability
proportional to deg(ṽi, T̃

′).

The key values ṽ, ṽ1, ṽ2 now suffice to generate the rest of t. deg(ṽ1, T̃
′)

and deg(ṽ2, T̃
′) are then decremented before generating the next tuple.

This loop terminates when all deg(ṽi, T̃
′) are 0.

4. Relaxing the Assumptions

We adopted the strong assumptions above to help simplify the presenta-
tion. We now explain how (A1)–(A5) can be relaxed.

4.1. Composite primary keys

We can relax the assumption (A1) that primary keys are not composite
by adding new attributes. If a table T has, say, attributes B1 and B2 that
together act as the primary key, we add a new attribute C to take over as
primary key. This is what we do for the TPC-H example in the Appendix.

To do so, we must ensure that 〈B1, B2〉 values are unique in T̃ ′. If B1

and B2 are foreign keys and there are degree constraints deg(ṽ1, T̃
′) and

deg(ṽ2, T̃
′) from B1 and B2 values ṽ1 and ṽ2 that are generated first, then we

have to check for repetitions and resample when they occur.

4.2. More than two foreign keys

Assumption (A2) states that a table should have at most two foreign
keys. UpSizeR can generate a table T̃ ′ with d foreign keys for d ≥ 3, as long
as there is an algorithm for co-clustering in d dimensions,

For example, if d = 3, we use any 3-dimensional co-clustering algorithm
to generate the clusters, then use the degree distributions to assign deg(ṽ, T̃ ′).
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A new tuple is then assigned a co-cluster 〈cc1, cc2, cc3〉, using the co-clustering
distribution f cc

T ′(cc1, cc2, cc3). The foreign key values ṽi in cci are then chosen
according to deg(ṽi, T̃

′).
In the case of two foreign keys, the time complexity for the algorithm

used in our experiments [6] is O(NCL) where N is the number of key values,
C is the number of clusters and L is the number of loops before convergence.
The convergence is fast if the clustering is strong, but one can control the co-
clustering time by pre-specifying C and tweaking the convergence threshold.
For big datasets, one could use sampling instead.

4.3. Cyclic schemas

UpSizeR uses the acyclicity assumption (A3) to sort the tables intoD0,D1, . . .
and generate them in that order. The simplest violation of (A3) is where the
schema graph has a self-loop. The most important example of this is where
a table T has employee number Eid as primary key and manager Mid as for-
eign key (since every manager is also an employee), and the 〈Eid, Mid〉 pairs
define a forest of management trees.

Here, we have to scale not just the number of nodes in the forest, but
also maintain the “shape” of the trees. We describe the “shape” by

• rnodei , which is the number of nodes at level i divided by the total
number of nodes, and

• rleafi , which is the number of leaves at level i divided by the total number
of nodes at level i.

We use i = 1 for the roots, so rnode1 also specifies the number of trees.
Given a table T , we first obtain the empirical distributions for rnodei and

rleafi by regression against i. We then use the regression equations for extrap-
olation, if necessary (for s > 1), and for generating the appropriate number
of nodes and leaves at each level. After generating the trees, we then assign
Eid to the nodes, and each parent’s Eid becomes Mid for her children.

Sec. 9.3 in the Appendix presents an experimental evaluation of this idea
for a Twitter7 dataset.

7http://twitter.com
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4.4. Nonstatic degree distribution

UpSizeR first scales by s all tables in D0 (see Sec. 3.4), and the other table
sizes are then indirectly determined by the degree distributions. It follows
from the static degree distribution assumption (A4) that all tables are scaled
by s approximately. This may not be the right thing to do.

Some datasets may have fixed-size tables (e.g. NATION in TPC-H), thus

changing the degree distribution in D̃. Suppose T has a primary key that
appears as foreign key in T ′. If T is static, then UpSizeR uses s× deg(v, T ′)
for scaling. If T ′ is static, then UpSizeR can use deg(v, T ′)/s but, in practice,
it is unlikely that a foreign key is unaffected by a scaling in the primary key.

Another reason for a change in degree distribution when a dataset grows
lies in the passage of time. For example, one expects the number of comments
posted by a user to increase over time, possibly shifting the deg(Uid, Photo)
distribution. We can further relax (A4) by having UpSizeR extract the degree
growth function by mining the dates in the data (e.g. Cdate in Comment,
Tdate in Tag, etc.).

4.5. Content generation for non-key attributes

This paper focuses on replicating key value correlation. There are many
ways of generating non-key attribute values.

For example, one could extract from D relevant probability distributions
(e.g. for Ulocation, Psize or Clanguage) and use them for content gener-
ation. The UpSizeR user can also supply a method for, say, generating fake
Comment text (e.g. TEXTURE [7]).

Non-key attributes may also induce tuple correlation, thus violating as-
sumption (A5). For example, there is some distribution for how many pho-
tographs an F user uploads per day. UpSizeR can replicate such correlation
with deg(d, Photo) where d is a value for Pdate (which is not a key).

A more difficult form of tuple correlation for a non-key attribute in F is
tag value (“bird”, “car”, etc.). The tags used by a bird watcher are likely to
have a coherence that makes them recognizably different from those used by
a car enthusiast. One must take such coherence into account when generating
synthetic tags.

For the experiments in Sec. 6, we use the following algorithm to generate
the taglist for a user ũ in F̃ , by perturbing the taglist ℓ of a random real
user in F : determine ‖ℓũ‖, i.e. how many tags ũ uses, from Tag in F̃ ; if
‖ℓ‖ > ‖ℓũ‖, randomly remove excess tags from ℓ; else if ‖ℓ‖ < ‖ℓũ‖, use the
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Photo Comment 

Pid   PUid  ... Cid   CPid   CUid    ...

Px           x
Py           y

Px           y
Py           x

Figure 4: Users x and y comment on each other’s photographs. Such interactions
induce inter-column and inter-row correlations in the tables above.

joint tag distribution to add tags to ℓ; we thus get ‖ℓ‖ = ‖ℓũ‖, and can assign
ℓ to ℓũ.

5. Limitations

The main issue in scaling an empirical dataset lies in the correlations, but
it is computationally intractable to replicate all of them. For example, ex-
tracting pairwise correlation in tag values from F (Sec. 4.5) takes far longer
than the rest of UpSizeR. One must therefore judiciously choose which cor-
relations to replicate. This choice can be made by the UpSizeR user, or by
examining the queries (Sec. 7).

While the algorithms described so far may suffice for classical commer-
cial datasets (in banking, telecom, etc.), social network data require more.
For example, Flickr friends are more likely to comment on each other’s pho-
tographs. Such an interaction appears in F as inter-column and inter-row
correlation as illustrated in Fig. 4. Such correlations that are induced by
social interactions go beyond assumption (A6). How can UpSizeR replicate
such correlations?

Fig. 5 illustrates one possibility: First extract a graph 〈V,E〉 from D,
where the nodes in V represent members of the social network, and each
edge in E represents a social interaction. This graph is then scaled by s
to 〈Ṽ , Ẽ〉, and “injected” into D̃ (constructed under assumption (A6)) by

modifying the values in D̃.
Recall from Sec. 1.1 that the UpSizeR approach to achieving similarity

in query results is to extract statistics from D and reproduce them in D̃.
In scaling 〈V,E〉, this necessarily means that UpSizeR must replicate the
graph topology — number of triangles (a friend of a friend is likely to be a
friend), path lengths (6 degrees of separation), etc. The purpose here is not
to achieve graph similarity, but to capture the data correlation induced by
the topology. This is not easy, but the techniques will rely on graph theory.
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Figure 5: How UpSizeR can replicate correlation in a social network dataset D
by extracting and scaling the social interaction graph 〈V,E〉.

From the database perspective, the real difficulty lies in the graph extrac-
tion/injection, which may require some database theory for social network

data. Given a relational dataset D̃ from a social network, how does one
extract a social interaction graph? Conversely, what data dependencies are
induced in the relations by, say, the triangles in the graph? We state this is-
sue as the Attribute Value Correlation Problem for Social Networks
(AVCSN):

Suppose a database state D records data from a social network.

How do the social interactions affect the correlation among at-

tribute values in D?

There are many papers on online social networks, but we found none that
translates that literature into relational database theory. We believe this
Attribute Value Correlation Problem points to a rich, new area for database
research.

6. Experiments

The TPC benchmarks are well-established, so the reader may expect us
to compare UpSizeR to one of them; on the other hand, TPC datasets are
purely synthetic. We therefore postpone a comparison to Sec. 9.1 in the
Appendix.

To validate UpSizeR, we need to compare its results against real datasets
for various values of s. We therefore use crawled data from Flickr for com-
parison in Sec. 6.1 below.

One motivation for UpSizeR is in scalability testing, so we also validate
UpSizeR with a scale out test in Sec. 6.2.
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#tuples User Photo Comment Tag F1 F2 F3 F4 F5 F6
F1.00 146374 529926 1505267 3343964 945 85137 2654 1 2075 120
UpSizeR(F1.00, 1.00) 146374 581069 1654678 3765474 906 71080 2896 0 3081 161
F2.81 410892 1557856 4234147 9198476 2398 219499 9717 3 8448 255
UpSizeR(F1.00, 2.81) 411305 1557650 4410086 10377427 2687 205334 8119 1 9973 474
F5.35 783821 2803603 7709470 16299952 4369 401464 15671 4 15513 485
UpSizeR(F1.00, 5.35) 783090 2823268 8093519 17813587 5063 406099 15751 5 17306 972
F9.11 1332796 4474956 18136861 27743408 8258 734766 27491 15 32619 1513
UpSizeR(F1.00, 9.11) 1333448 4693496 13702306 29637029 8673 717454 26686 13 31640 1746

Table 1: Comparing table sizes and query results (number of tuples) for real Fs and
synthetic UpSizeR(F1.00, s).

6.1. UpSizeR Validation with Flickr

We downloaded four datasets from Flickr for F . These datasets were
then combined to give different sizes.

The downloads were at different times. Since deg(x, Photo), deg(x, Comment)
and deg(x, Tag) generally increase over time for any user x,, the static degree
assumption (A4) does not hold. Although we can extend UpSizeR to model
this effect of time (Sec. 4.4), we impose (A4) in this validation exercise by
keeping each pair of datasets disjoint through renaming. In other words,
if two downloaded datasets E1 and E2 have some common Uids (say), we
rename the Uids in one of them so that E1 and E2 have no common Uids.

Rather than try to control the scale factor for the real datasets, we let
them decide the s value for UpSizeR. Specifically, since the scaling up starts
with D0 = {User}, we obtain s by s = t1/t2, where ti is the number of Uids
in an F dataset. The baseline size is given by a fixed dataset F1.00 and, in
general, F datasets are denoted Fs according to their s value when compared
to F1.00. For example, F2.81 has a number of Uids that is 2.81 times that in
F1.00.

Hence, the validation is a comparison between a real Fs and a synthetic
UpSizeR(F1.00, s), as shown in Table 1

Since the s value given to UpSizeR is calculated from the real dataset Fs,
and the scaling up starts with D0 = {User}, the close agreement in Table 1
between real and synthetic User is expected.

For D1 = {Photo}, UpSizeR uses the degree distribution to generate
the table. The efficacy of doing so cannot be taken for granted, since the
difference between F1.00 and UpSizeR(F1.00, 1.00) is about 10% for Photo in
Table 1. The agreement is better for the other s values.

For D2 = {Comment, Tag}, Table 1 shows that UpSizeR’s use of co-
clustering produces table sizes that are in good agreement, considering the
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vagaries of empirical data in Fs.
However, merely matching table sizes does not suffice. We have argued

that dataset similarity should be judged with queries. Since the UpSizeR
version in this paper does not replicate social interactions, we avoid querying
the social network below. We start with the following queries:
F1: Retrieve users who uploaded photographs (0 joins).
F2: Retrieve photographs that are commented on by their owners (1 join).
F3: Retrieve users who tagged others’ photographs (1 join).
F4: Retrieve users who uploaded photographs but made no comments (2
joins).

F1 tests UpSizeR’s ability to reproduce selectivity, while F2, F3 and F4
test for correct join sizes. The number of tuples retrieved by these queries
for the real Fs and UpSizeR(F1.00, s) are also shown in Table 1.

Agreement in query results is harder to achieve than table sizes, since the
datasets must also have similar data correlation. It is hence not surprising
that discrepancy is now larger. Still, agreement is generally good. Note in
particular that the UpSizeR datasets accurately return a very small num-
ber of tuples for F4 from among the millions of tuples for photographs and
comments.

Although F3 tests the join of Tag and Photo, it does not query the (non-
key) tag values. To test the taglist generation described in Sec. 4.5, we use
the following:
F5: Retrieve photographs tagged with “bird”.
F6: Retrieve photographs tagged with “bird” and “sky”.
In particular, F6 tests our algorithm for replicating tag coherence. (Recall
that our taglist generation only tries to maintain coherence for the tags used
by a user.)

Table 1 shows that the number of tuples retrieved by F5 and F6 from the
synthetic datasets, although inaccurate, are in the right ball park. Surely,
there is room for improvement (e.g. associate “bird” and “birds”), but the F5
and F6 results already show how inter-tuple correlation induced by non-key
attributes can be captured through content generation, like what we have
done through taglist generation by sampling and perturbation.

6.2. UpSizeR Validation with Scale Out Test

Every system must encounter, sooner or later, some hardware or soft-
ware bottleneck that causes performance to saturate. Beyond the saturation
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concurrency C 1 4 8 10 12 16 20
F1.00 0.040 0.125 0.172 0 .186 0.175 0.167 0.142
UpSizeR(F1.00, 1.00) 0.043 0.131 0.164 0 .185 0.169 0.167 0.145

concurrency C 1 4 8 12 16 20 24 28 32
F2.81 0.039 0.153 0.271 0.312 0.339 0.355 0 .378 0.358 0.356
UpSizeR(F1.00, 2.81) 0.041 0.147 0.273 0.304 0.348 0.362 0 .389 0.355 0.348

concurrency C 1 4 8 12 16 20 24 28 32
F5.35 0.038 0.149 0.253 0.276 0.313 0.326 0 .354 0.342 0.336
UpSizeR(F1.00, 5.35) 0.039 0.141 0.273 0.301 0.327 0.333 0 .359 0.347 0.341

concurrency C 1 4 8 12 16 20 24 28 32
F9.11 0.040 0.154 0.296 0.323 0.377 0.384 0.401 0 .422 0.418

UpSizeR(F1.00, 9.11) 0.043 0.154 0.275 0.343 0.354 0.386 0.423 0 .435 0.424

Table 2: A scale out test that compares throughput (queries per second) when
concurrent queries retrieve blobs from the real and synthetic datasets. The
underlined numbers indicate where throughputs are maximum; note that the
synthetic data accurately predict where throughput begins to degrade.

point, resource contention usually causes inefficiencies that result in perfor-
mance degradation. We now validate UpSizeR’s accuracy in locating where
performance begins to degrade as a system is scaled out.

For this experiment, we include synthetic blobs (binary large objects) in
place of photographs. These blobs are stored in Hadoop Object Store [8], a
storage system — similar to Facebook’s custom-built Haystack [9] — that
we built on top of Hadoop.

We use the same Awan cluster as in the TPC-H experiments (Sec. 9.1).
We run C concurrent queries, where each query retrieves all photographs
uploaded by a user who is randomly selected by name. (On average, each
user in our Flickr data uploads 550 photographs.) We fix C by replacing
each terminating query with a new query.

For each s, there is a concurrency Cs where throughput is maximum: as
C increases, throughput is increasing for C < Cs and decreasing for C > Cs.
Our experiment tests if UpSizeR data can accurately predict the saturation
point Cs for each s.

For validation, we use the real non-blob data (in particular, User and
Photo) for s = 1.00, 2.81, 5.35 and 9.11. With the blobs included, the total
dataset sizes are approximately 50GBytes for F1.00, 132GBytes for F2.81,
271GBytes for F5.35 and 426GBytes for F9.11.

We are limited by the size of our machine cluster, so the number of nodes
used in the scale out test is set to 2, 6, 10 and 18 for s = 1.00, 2.81, 5.35 and
9.11 respectively.
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Table 2 shows that throughput (queries per second) measured when the
queries run on UpSizeR data is close to that for real Flickr non-blob data.
More important, the synthetic dataset correctly identifies the concurrency
Cs at which throughput begins to degrade.

One would hope that, as a system scales out, it can support higher con-
currency; in particular, Cs should scale linearly with s. However, for this
workload, Table 2 shows C1.00 = 10, C2.81 = 24, C5.35 = 24 and C9.11 = 28.
Such a prediction of weak scalability with UpSizeR data would suggest a
need for performance debugging or system redesign.

7. Related Work

Scalability engineering [10] requires an exploration of the design space for
load balancing [11], query plans [12], power budgeting [13], etc. For example,
the designers of SCOPE (a SQL-like scripting language for parallel processing
of massive data [14]) exercised it with scalability tests that use TPC-H.

The TPC approach is being adopted by a new generation of bench-
marks [15, 16]. However, Seltzer et al. [17] have observed how standard
benchmarks can be irrelevant for particular applications, and argued for
application-specific benchmarking. For database systems, this alternative
approach must start with application-specific datasets [5].

So far, the use of empirical data is very limited. For example, MUDD only
extracts names and addresses from a real dataset [18], while TEXTURE [7]
extracts word distribution, document lengths, etc. from “seed” documents
and use them to independently generate synthetic documents (like how TPC
generates tuples).

Bruno and Chaudhuri’s Data Generation Language [19] can specify value
distributions and generate data tuples, while Hoag and Thompson’s Syn-
thetic Data Description Language [20] has a construct for specifying foreign
keys, but data generation by both languages do not replicate correlation be-
tween foreign keys (like UpSizeR does with joint degree and co-clustering
distributions).

Houkjær et al. have described a data generating tool [21] that processes
the schema graph in the opposite order to UpSizeR. (For the Flickr example
of Fig. 2, they would generate Comment and Tag before Photo and User.)
This necessitates the use of temporary foreign key values that are replaced
after primary key values are generated later. The tool also uses cardinalities
and value (not correlation) distributions extracted from real data.
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For s = 1, related work on anonymization (k-anonymity, etc.) mostly
focused on a single table, or allowed at most one foreign key per table [22].
There is recent work on anonymization that preserves semantic constraints [23]
or query plans [24]; UpSizeR can adopt some of their techniques to address
those issues for s 6= 1.

Recall that the UpSizeR version presented here does not make use of the
application queries. Binnig et al.’s reverse query processing [25] uses query
results to generate a smallest dataset to test the application, whereas QAGen
uses a given query plan with size constraints to generate a corresponding
dataset [26], without requiring similarity to real data.

CORDS is a tool that uses the application queries to select columns whose
correlations are important for query optimization [27]. It also uses the cor-
relation to generate synthetic data, but this purely valued-based generation
(e.g. humidity and temperature) is different from the entity-based correlation
(e.g. gardeners and flowers) described in Sec. 3.5.2. CORADD is another
tool that discovers attribute correlations that are important to the queries,
and use them to design materialized views and indexes [28]. Although the
current UpSizeR does not rely on the application queries for data genera-
tion, it can follow CORDS and CORADD in using the queries to select the
attributes for correlation replication.

8. Conclusion

We believe that the TPC benchmarking paradigm cannot sufficiently
cover, in timely fashion, the diverse applications in the ballooning number
of data-centric systems [1]. (A recent empirical analysis of Hadoop MapRe-
duce workloads shows that this is an issue for schema-less key-value stores
as well [29].)

After a summary on UpSizeR in Sec. 8.1, we therefore propose in Sec. 8.2
a program to develop tools and techniques for application-specific bench-
marking of such systems [5]. Unlike TPC’s top-down approach to bench-
mark design by committee consensus, we expect this program will be driven
bottom-up by application developers. Such a community effort must grow
from some seed, and UpSizeR can possibly play such a role.

8.1. Paper Summary

We have presented UpSizeR, a software that addresses the Dataset Scaling
Problem. UpSizeR’s ability to synthetically scale an empirical dataset makes
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it a tool for generating application-specific benchmarks.
Table 1 confirms that UpSizeR can accurately scale table sizes for the

Flickr dataset, and the query results show good agreement with crawled data,
considering the intractable complexities of real data. Table 2 also shows that
the datasets produced by UpSizeR can accurately predict where throughput
degrades when scaling out a system.

These results suggest that UpSizeR has the basic techniques for scaling
up traditional datasets (in retail, logistics, etc.). Indeed, Sec. 9.1 in the
Appendix shows that UpSizeR gives an excellent match for TPC-H query
results and response time.

Given the proliferation of relational databases, and the heterogeneity
among them, an attack on the Dataset Scaling Problem is now overdue.
UpSizeR is only a first-cut solution, and much remains to be done. We have
therefore released a single-server version and a Hadoop MapReduce version
for open-source development by the database community.

Although UpSizeR is intended for scaling real data, its accuracy for TPC-
H is so good that one can use it to get around the difficulties in generating
large TPC datasets [30]. Specifically: use TPC’s DBGen to generate a small
(1GB, say) TPC-H datasetH, then use our MapReduce version of UpSizeR to
scale up H on some — e.g. cloud-resident — cluster of commodity machines;
i.e. no need for a large database server nor special parallel algorithms. We
have verified that this works for a 200GB dataset.

8.2. A Program Proposal:

Application-Specific Benchmarking of Data-Centric Systems

Our experience with UpSizeR shows that, for data system benchmarking
to break away from the TPC paradigm, there is much to be done in the
development of tools and techniques.

Currently, UpSizeR does not replicate correlations induced by social in-
teractions (so Sec. 6.1 avoids querying the social network). The extension
sketched in Fig. 5 would require graph-theoretic techniques that properly
scale the degrees, triangles, paths, etc. It also requires a database-theoretic
understanding of inter-column and inter-row correlations generated by social
interactions (a probabilistic dependency theory for AVCSN, say). We see
CORDS and CORADD as early signs of a growing interest in research on
attribute value correlation and we believe, in particular, that AVCSN is a
very promising area for future work.
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For example, what attributes make one Flickr user more likely to comment
on another user’s photographs? What events (e.g. birthdays) can induce
temporal tuple correlations (e.g. writing on Facebook walls) in the tables?
Without understanding how social interactions induce tuple correlations, one
cannot replicate them, and the synthetic dataset will produce inaccurate
results for queries that touch on the social network.

Online social networks are now major generators of data, and a better
understanding of such data is necessary if one is to extract value from these
networks. This is why we highlight AVCSN here. The only related work we
found in this area is by Qin et al. [31], who present an algorithm (no theory)
for extracting communities of authors that are induced by keyword queries
on the DBLP relational dataset.

The Web is driving the growth of XML databases. To generate a set of
synthetic XML documents, it is particularly important that one starts with
an empirical collection, since real documents are usually more restrictive
than their DTD specifications. Where an XML dataset is exported from a
relational database, the synthetic documents are probably best generated by
first scaling the relations. However, there is a growing body of native XML
fragments (e.g. generated by RSS feeds) that are not stored in relational
format, so a scaling tool for XML may be necessary.

As a dataset grows, its applications may grow with it. For example,
an insert transaction may generate more tuples, where the values inserted
follow the correlation in the database. For a scalability study to exercise
the indexes, locks, etc., the applications must also be scaled to match the
dataset. This suggests the need for a tool that will, say, take as input a set
of transactions, as well as the dataset they use, and scale up both.

The query log will also scale with a database. In fact, for Internet ser-
vices, much of the value may lie in their click logs, so a log scaling tool may
have corresponding commercial value. One particular difficulty here is the
correlation among the clicks. For example, a log records an interleaving of
multiple click streams, where the data returned by one click probabilistically
determines the next click in its stream.

Two clicks from different streams that are close in time in a log may
also have correlated data, so log scaling will be harder than stream scaling.
Despite the intense interest in data streaming in recent years, there are very
few benchmarks in this area [32]. Perhaps there is insufficient commercial
motivation for a TPC-like effort to define streaming benchmarks. Since there
is an abundance of stream data in finance, surveillance, traffic, e-commerce,
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etc., but many are jealously guarded, the development of a tool to anonymize
and synthetically scale a recorded data stream may be a way of overcoming
the dearth in streaming benchmarks.
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Figure 6: Schema H for the TPC-H benchmark that is used for UpSizeR
comparison in Sec. 9.1. Sorting this graph into Di (Sec. 3) gives D0 =
{PART, REGION}, D1 = {NATION}, D2 = {SUPPLIER, CUSTOMER}, D3 = {PARTSUPP, ORDERS}
and D4 = {LINEITEM}. D1, D2 and D4 have one equivalence class each, namely
[{REGIONKEY}] = {NATION} for D1, [{NATIONKEY}] = {SUPPLIER, CUSTOMER} for D2

and [{PSKEY, ORDERKEY}] = {LINEITEM} for D4. However, D3 has two equivalence
classes: [{PARTKEY, SUPPKEY}] = {PARTSUPP} and [{CUSTKEY}] = {ORDERS}.

9. Appendix

This appendix presents more experimental results and UpSizeR details.
Sec. 9.1 compares results of queries that are run on data generated by DBGen
and UpSizeR for the TPC-H schema graph in Fig. 6. Sec. 9.2 further describes
UpSizeR in pseudocode.

9.1. Comparing UpSizeR and TPC-H

One can view UpSizeR as generating datasets for benchmarking. The
TPC benchmarks are de rigueur for database systems, and they also generate
datasets to specified scale. Since the TPC benchmarks are widely accepted,
the reader may reasonably expect a comparison between UpSizeR and a TPC
benchmark. We do that here, and also demonstrate the use of UpSizeR for
scaling down.

The latest TPC benchmarks are TPC-E for online transaction process-
ing and TPC-H for decision support. TPC-E has tables that contain three or
more foreign keys, thus requiring the use of compute-intensive high-dimensional
co-clustering. We therefore choose to validate with TPC-H.

TPC-H datasets are generated by DBGen and specified by size. The 1GB,
2GB, 10GB and 40GB DBGen datasets are denoted H1, H2, H10 and H40,
respectively. We use UpSizeR to scale down H40 with s = 0.025, 0.05 and
0.25. Thus, UpSizeR(H40,0.025) is a dataset that is similar in size to H1,
and replicates data correlation extracted from H40.
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The correlation in DBGen data lies in the key values, and this correlation
is replicated by UpSizeR through the use of joint degree and co-clustering
distributions. For the generation of non-key values, UpSizeR uses the same
techniques as DBGen when scaling down H40.

The experiments here use our single-server UpSizeR version on a machine
with a 64GB RAM. This puts a constraint on the input size D for UpSizeR,
which is why we did not scale down from a bigger Hs.

The queries we use to compare DBGen data and UpSizeR output are
simplified versions of TPC-H queries, as shown in Fig. 7. The comparison
is in terms of number of tuples retrieved, the aggregates computed, and the
response time.

The run times are measured on a cluster — called Awan8 — of 14 com-
modity machines, each having an Intel Xeon Quad Core, (2.4GHz, 8MB
cache), 2×4GB ECC RAM and 2×500GB hard disk (SATA II, 3.5 inches).
They run 64-bit Linux CentOS (release 5.5), the files are stored with Hadoop
0.20.2 and the queries executed with Hive 0.5.0. (Hadoop9 is an open-source
variant of MapReduce; Hive10 is a data warehouse infrastructure built on
Hadoop.) We use default values for the parameters (e.g. 3 replicas).

Table 3 shows good agreement in the number of tuples returned by the
queries. Table 3 shows weaker agreement for response times. We expected
this since even the same dataset, when loaded into Hive on separate occasions,
can generate different query response times.

Query H1 computes ave() and count() and H4 computes sum(), so
the appropriate comparison is in the returned values. Table 4 shows that
the aggregates computed with UpSizeR output agrees well with those from
DBGen.

8“Awan” is “cloud” in Malay and Bahasa Indonesia; “wan” is also “cloud” in Cantonese,
and “Awan” is a common name for girls in Guangdong and Hong Kong.

9http://hadoop.apache.org/
10http://hadoop.apache.org/hive/
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count(*) as count_order
from

lineitem

where

group by

order by

l_shipdate <= ’1998−12−01’

l_returnflag

l_returnflag

avg(l_extendedprice) as avg_price,

select
l_returnflag,

H1:

select
l_orderkey,
o_orderdate

from
customer,
orders,
lineitem

where
c_mktsegment = ’AUTOMOBILE’
and c_custkey = o_custkey
and l_orderkey = o_orderkey

group by

o_orderdate
l_orderkey,

order by
o_orderdate

H3:

select
ps_partkey,
sum(ps_supplycost*ps_availqty) as value

from

group by

order by
value desc

where

H5:

partsupp,
lineitem,

supplier

l_ps_id = ps_id

ps.ps_partkey

and ps_suppkey = s_suppkey
and l_quantity < 20

select
sum(l_extendedprice*(1 − 1_discount) as revenue

from
lineitem,

part
partsupp,

where
( l_ps_id = ps_id 

)

  and p_brand = ’Brand#13’

or
( l_ps_id = ps_id 

)
or
( l_ps_id = ps_id 

)

  and p_brand = ’Brand#25’

  and p_brand = ’Brand#35’

  and l_shipinstruct like ’DELIVER IN PERSON’

  and l_shipinstruct like ’DELIVER IN PERSON’

  and l_shipinstruct like ’DELIVER IN PERSON’

  and ps_partkey = p_partkey

  and ps_partkey = p_partkey

  and ps_partkey = p_partkey

H4:

from
part,
supplier,
partsupp,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and p_size > 21
and p_type like ’%BRASS’

order by
s_acctbal desc,
n_name,
s_name,
p_partkey

p_partkey
n_name,
s_name,
s_acctbal,

select
H2:

Figure 7: Queries used to compare DBGen data and UpSizeR output.
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#tuples(time) H1 H2 H3 H4 H5
1GB DBGen H1 3 (52s) 92196(192s) 297453(173s) 1(138s) 199998(135s)

UpSizeR(H40, 0.025) 3 (50s) 92667(194s) 302264(177s) 1(150s) 199999(141s)
2GB DBGen H2 3 (77s) 184156(203s) 597099(206s) 1(188s) 399995(156s)

UpSizeR(H40, 0.05) 3 (78s) 185693(196s) 595398(212s) 1(188s) 399998(155s)
10GB DBGen H10 3(131s) 927140(265s) 3000540(297s) 1(356s) 1999983(235s)

UpSizeR(H40, 0.25) 3(168s) 928464(280s) 3006459(352s) 1(346s) 1999980(239s)

Table 3: A comparison of resulting number of tuples and execution time (in
brackets) when the queries H1,...,H5 in Fig. 7 are run over TPC-H data gen-
erated with DBGen and UpSizeR. Table 4 shows the aggregates computed by
H1 and H4.

H1 avg(count) H4
l returnflag A N R sum

1GB DBGen H1 38273 (1478493) 38248 (3043852) 38250 (1478870) 6.586E09
UpSizeR(H40, 0.025) 38252 (1482196) 38246 (3042663) 38216 (1483192) 6.550E09

2GB DBGen H2 38252 (2959267) 38234 (6076312) 38263 (2962417) 1.306E10
UpSizeR(H40, 0.05) 38246 (2963035) 38245 (6083163) 38239 (2965648) 1.304E10

10GB DBGen H10 38237(14804077) 38234(30373792) 38251(14808183) 6.554E10
UpSizeR(H40, 0.25) 38236(14802818) 38237(30387309) 38243(14808265) 6.556E10

Table 4: A comparison of returned aggregate values: ave() and count() for H1,
sum() for H4. (A, N and R are values of l returnflag.)

9.2. UpSizeR’s pseudocode

This section presents pseudocode for the UpSizeR algorithm in Sec. 3,
without the extensions in Sec. 4.

Algo. 1:UpSizeR(D, x) starts with the extraction of probability distribu-
tions (Sec. 3.1), sorting of tables into Di (Sec. 3.2), partitioning of Di into
equivalence classes [K] (Sec. 3.3), and table generation for D0 (Sec. 3.4 and
Algo. 2:gen0FKTable(T, s)). Algo. 1 then enters the main loop (Sec. 3.5).

To generate a table T̃ ′ with foreign key(s), Algo. 3:genTables(K) first gen-
erates deg(ṽ, T̃ ′) (Sec. 3.5.1 and Algo. 4:genDegree(ṽ, [K])). The two cases in
Sec. 3.5.2 correspond to Algo. 5:gen1FKTable(K) and Algo. 6:gen2FKTable(K1, K2).
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Algorithm 1 UpSizeR(D, s)

Input: database state D and a scale factor s
Output: a synthetic database state that scales up D by s

get joint degree distribution fK from D for each key K
get co-clustering distribution f cc

T for each table T
use the schema graph to sort D into D0,D1, . . .
partition each Di into equivalence classes [K]
for all T ∈ D0 do
gen0FKTable(T, s)

end for
i← 0
repeat
i← i+ 1
for all T ∈ Di do
flag(T )←false

end for
for all T ∈ Di and flag(T ) =false do
Let K be the set of foreign keys in T
genTables(K)
for all T ′ ∈ [K] do
flag(T )←true

end for
end for

until all tables are generated

Algorithm 2 gen0FKTable(T, s)

Input: table T with no foreign keys and scale factor s

Output: a synthetic T̃ that is s times the size of T

let t be the number of T tuples in the given D
for i = 1 to st do
generate a unique primary key value ṽ
genContent(T̃ , ṽ)

end for
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Algorithm 3 genTables(K)

Input: a set of keys K

Output: a synthetic T̃ for each T ∈ [K]

for all K ∈ K do
for all K value ṽ do
genDegree(ṽ, [K])

end for
end for
if K = {K} then
gen1FKTable(K)

end if
if K = {K1, K2} then
gen2FKTable(K)

end if

Algorithm 4 genDegree(ṽ, [K])

Input: a value ṽ for key K ∈ K where
[K] is the set of tables with K as foreign keys

Output: deg(ṽ, T̃ ′) for each T̃ ∈ [K]

let T ′′

1 , T
′′

2 , . . . , T
′′

m be the tables for which
earlier calls on genDegree has generated
deg(x̃, T̃ ′′

1 ), . . . , deg(x̃, T̃
′′
m) for all K value x̃

let [K] = {T ′

1, . . . , T
′

n}
derive from the joint degree distribution fK
the conditional distribution

Pr(deg(ṽ, T ′

1) = d′1, . . . deg(ṽ, T
′

n) = d′n
| deg(ṽ, T ′′

1 ) = d1, . . . deg(ṽ, T
′′
m) = dm)

for all T ′

i do
use the conditional distribution to choose deg(ṽ, T̃ ′

i )
end for
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Algorithm 5 gen1FKTable(K)

Input: primary key K
Output: a table for each T ′ ∈ [{K}]

for all T ′ ∈ [{K}] do
for all K value ṽ do
choose deg(ṽ, T̃ ′) according to degree distribution

end for
repeat
generate a new value ṽ′ for primary key of T ′

choose ṽ with probability proportional to deg(ṽ, T̃ ′)
decrement deg(ṽ, T̃ ′)
genContent(T̃ ′, ṽ′)

until
∑
ṽ

deg(ṽ, T̃ ′) = 0

end for

9.3. Scaling a self-loop

Sec. 4.3 describes how UpSizeR can be modified for a schema graph that
has a self-loop, namely one where there is an employee table with a manager
column. Since we have no sizeable real employee-manager data for testing,
we use Twitter11 data instead.

To test the scaling algorithm for a self-loop, we use just one table T with
two attributes:

• a primary key Tid that identifies the tweet (a short message);

• a foreign key that identifies an earlier tweet Tid′ if Tid retweets (i.e.
forwards) Tid′, or is NULL if Tid is not a retweet.

This tweet table T thus has a self-loop. It can be represented as a forest of
tweet trees, in which Tid is a root if Tid′ is NULL; otherwise, it has Tid′ as
parent.

We collected our tweets through Palanteer12, a service that allows users
to search for socio-political tweets generated by a set of Twitter users in

11http://twitter.com/
12http://research.larc.smu.edu.sg/palanteer/, developed by Living Analytics Research

Centre at the Singapore Management University.
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Algorithm 6 gen2FKTable(K1, K2)

Input: primary keys K1 and K2

Output: a table for each T ′ ∈ [{K1, K2}]

for all T ′ ∈ [{K1, K2}] do
for all K1 value ṽ1 and K2 value ṽ2 do
assign ṽ1 and ṽ2 to clusters cc1 and cc2
according to marginal distributions of f cc

T ′

randomly choose deg(ṽ1, T̃
′) and deg(ṽ2, T̃

′)
according to the degree distributions

end for
make

∑
ṽ1

deg(ṽ1, T̃
′) and

∑
ṽ2

deg(ṽ2, T̃
′) equal

repeat
generate a new value ṽ′ for primary key of T ′

assign ṽ′ to a random 〈cc1, cc2〉 according to f cc
T ′

randomly choose ṽ1 in cc1 with probability
proportional to deg(ṽ1, T̃

′)
randomly choose ṽ2 in cc2 with probability
proportional to deg(ṽ2, T̃

′)
create a T̃ ′ tuple with key values ṽ′, ṽ′1, ṽ

′

2

for primary key, K1 and K2

decrement deg(ṽ1, T̃
′) and deg(ṽ2, T̃

′)
genContent(T̃ ′, ṽ′)

until
∑
ṽ1

deg(ṽ, T̃ ′) = 0 =
∑
ṽ2

deg(ṽ2, T̃
′)

end for

Algorithm 7 genContent(T̃ ′, ṽ′)

Input: a synthetic table T̃ ′ and key value ṽ′

Output: tuple for ṽ′ acquires non-key values

for an attribute A that is not a primary or foreign key,
this paper assumes that A’s value is a function of the
key values, and is generated through sampling from D,
data mining or user-supplied methods etc.
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Singapore. Palanteer starts from 69 seed Twitter users who are interested in
current affairs, including political candidates, political parties or organiza-
tions, journalists, and bloggers. The set of Twitter users is further expanded
by following the incoming and outgoing follow-links from the seed users. This
expansion is done for two times, i.e., all users are within 2-hops away from
the 69 seed users. Note that only users who explicitly specify their loca-
tion as Singapore in their profiles are included. In this experiment, we used
the data collected by Palanteer in April 2011. We then recursively removed
retweets whose reference tweet is not inside this set. The final dataset has
some 2,352,000 tweets and 15,000 users.

Recall from Sec. 4.3 that we get the empirical distributions for nodes
(rnodei ) and leaves (rleafi ) by regression. Fig. 8 shows that the data points in
the log-log plots are approximately linear. Since the number of nodes have
variances that depend on i, we use the number of nodes at each level to
weight the linear regression, and thus get linear equations for extrapolating
(rnodei ) and (rleafi ).

For experimental validation, we use the following queries:
C1: Count the number of nodes.
C2: Count the number of trees.
C3: Count the number of parents.
C4: Count the number of leaves.
C5: Count the number of level 2 nodes.
C6: Count the number of paths of length 2 (2-hop retweets).
C7: Count the number of paths of length 3 (3-hop retweets).

Each of these queries can be interpreted for both the tweet trees here
and the management trees in Sec. 4.3. We have 4 real tweet datasets: Cs for
s = 1, 3, 5, 9, where Cs has s times the number of tweets in C1. We then scale
C1 by s = 3, 5, 9 and compare the result of running the above queries on Cs
and UpSizeR(C1, s).

Table 5 shows good agreement in query results between the empirical
datasets and UpSizeR’s synthetic versions. We plan to continue this work
on self-loops in two directions: (1) extend the solution to more general cyclic
schemas, and (2) adding correlation between tweets and users (thus taking a
crack at AVCSN).
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Figure 8: Log-log regression of node and leaf distributions across levels.

C1 C2 C3 C4 C5 C6 C7
C3 705637 635988 54009 651628 39137 30512 19425
UpSizeR(C1, 3) 705636 635324 54766 650870 39414 30898 19489
C5 1176062 1061902 88953 1087109 64236 49924 31713
UpSizeR(C1, 5) 1176060 1058857 91864 1084196 64690 51513 32498
C9 2116912 1910213 161224 1955688 116196 90503 57792
UpSizeR(C1, 9) 2116908 1905965 164929 1951979 118242 92701 58474

Table 5: Comparing query results for real Cs and UpSizeR(C1, s).
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