
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2013

Adaptive Gameplay for Programming Practice Adaptive Gameplay for Programming Practice

Chris BOESCH
Singapore Management University, cboesch@smu.edu.sg

Sandra BOESCH
Pivotal Expert Pte Ltd, sandracboesch@gmail.com

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Education Commons, and the Software Engineering Commons

Citation Citation
BOESCH, Chris and BOESCH, Sandra. Adaptive Gameplay for Programming Practice. (2013). 4th Annual
International Conference on Computer Science Education: Innovation and Technology (CSEIT 2013):
Proceedings: October 28-29, Phuket, Thailand. 36-38.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2045

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Adaptive Gameplay for Programming Practice

Chris Boesch & Sandra Boesch

School of Information Systems (SIS) Singapore

Management University (SMU) Singapore

and Pivotal Expert, Pte. Ltd. Singapore

Abstract— Over the past four years, we have collaborated to

develop a set of online games to enable users to practice software

languages in a self-directed manner and as part of a class.

Recently we introduced a new adaptive difficulty feature that

enables players to self-regulate the difficulty of the games they

are playing to practice. These new features also provide

additional information to further adapt the problem content to

better meet the needs of the users.

Keywords-education, programming, game-based learning

I. INTRODUCTION

When setting out to develop a more effective method to
teach basic computer science, the authors were looking for
innovative ways to provide additional, individualized feedback
to students learning software languages such as Python,
JavaScript, and Java for undergrad university courses. The
authors took the approach to enable students to practice
software languages on their own by having them solve short
programming problems in an online game (see Figure 1) in a
variety of software languages.

Figure1. SingPath Difficulty Selection Screen

Students were able to practice solving these problems on
their own time, from their own systems, wherever they had
Internet access. This method enabled the authors to provide
additional feedback to students in a more real-time manner
than had been previously possible with live, in-class quizzes
[1] and weekly problem sets turned in as homework. Students
were still assigned problems to solve as in previous terms, but
by requiring students to solve all problems in an online system,
the authors were able to provide students with real-time

feedback on their progress and at the same automatically track
which students were on pace to solve all required problem prior
to weekly deadlines.

As more people around the world began to solve problems
on the online system, two consistent categories of feedback
were received. A portion of the users continued to make
comments such as “These problems are too difficult” while
other users would provide comments such as “I am bored.
Please let me skip the easy problems.” To address this
feedback, the authors created an adaptive difficulty mode. This
enabled users to adjust the difficulty of problems to reduce the
amount of boredom or frustration users might be encountering.
The authors hypothesize that by enabling users to adjust the
difficulty of the games they are playing, the users will be able
to better balance their own boredom and frustration and
increase the likelihood that they will be able to enter in to and
stay in a state of learning flow [2] while practicing. Four
difficulty modes were introduced: Easy, Medium, Hard, and
Drag-n-drop. When users play on easy mode, they are provided
step-by-step problems suitable for beginners. These problems
often contain skeleton code to prompt the users and point them
in the right direction for developing solutions. The hard setting
presents the user with the hardest problems that have been
loaded into the system for a given level. The relative difficulty
of problems is determined by keeping track of how many
attempts and how much time it takes all players to solve the
problems. This enables the development of a ranking of
relative problem difficulty. The medium difficulty level was
designed to be adaptive to each user’s individual skill level.
This was accomplished by attempting to forecast how much
time and how many attempts a user would require to solve
problems in a given level. The problems that were considered
to be easy or difficult were excluded. The remaining problems
where considered medium difficulty problems. The initial
settings for easy problems, based on past problem solving
results, were set to be one or two attempts and less that sixty
seconds. This meant that any problem that a user could solve
with only one or two attempts within less than sixty seconds
was considered an easy problem for the player. Similarly, hard
problems were set to be any problems that required more than
five attempts or more than five minutes to solve. This left the
range for medium problems to be any problems that a user was
able to solve in three to five attempts and in between one and
five minutes. When there are insufficient problems for the user
available that fall within the difficulty range the user is playing
in, the remaining problems are selected from the next problem
difficulty level(s). When playing in easy, if there are no

2

unsolved problems predicted to be easy for the player, the
system selects from available medium problems to make up the
difference. When the user is playing on the hard difficulty and
insufficient problems are predicted to be difficult for the
player, the remaining problems are selected from the problems
that are predicted to be of medium difficulty for the user. And
when the player is playing on the medium difficulty setting and
insufficient problems are predicted to be of medium difficulty
for the player, the problems to be solved are selected from a
combination of the least easy and least hard problems
forecasted for the user. Whenever insufficient easy, medium or
hard problems are available for a player, the system makes a
log entry indicating the need for additional content of a specific
difficulty in a specific level. Over time, it is the goal of the
researchers to use this data to guide the creation of additional
problems at level of difficulty required by the majority of users.

Figure 2. Easy Mode Problem Solving Screen

Even when the easy problems were created to be step-by-
step problems with hints and guidance, some users still found
the process of writing code for the first time to be difficult and
stressful. The help alleviate this stress and encourage a wider
audience to practice new software languages, the authors
created a drag-n-drop mode that enabled users to assemble
solutions from available lines of code rather than having to
type them (see Figure 3). This had the dual benefits of creating
an easier practice mode for beginners and a way to practice
new software languages on mobile platforms such as tablets
where keyboards might not be readily available and typing
code could be a cumbersome experience. When users select to
play a game in drag-n-drop mode, they are able to drag lines of
code around and see feedback automatically rather than having
to press a button to compile or test their solution. For users that
have never programmed before, the drag-n-drop mode appears
to be similar to puzzle games that users may have played on
mobile devices in the past accept that in this situation the
puzzles consist of lines of software code rather than colored
jewels or other puzzle pieces. The authors hypothesize that
after solving problems in drag-n-drop mode the users will be
more comfortable reading software code in a new language
when the move on to start writing their own code.

To encourage users to practice, the authors included a
variety of gamification features such as badges, rankings, and
completion metrics to complement the adaptive difficulty
feature. They authors also added support for challenges, which
require users to solve a specified number of problems at a

specified difficulty level before unlocking a secret message.
This challenge mode enables parents, mentors, and classroom
facilitators to encourage users to practice with various learning
outcomes in mind. Challenging users to practice in drag-n-drop
mode can be used to raise the awareness of a programming
language. Challenging users to play on medium difficulty will
require users to play in a difficulty mode that adapts to their
own individual capability.

Figure 3. Drag-n-Drop Difficulty

The ability to provide challenges to students could be used
to support Team-based learning methods [3] where students are
required to learn material on their own before coming together
as groups in class to attempt solving more advanced problems.

II. FINDINGS & RESULTS

As the authors continue to collect more data and content,
they hope to find ways to more consistently and automatically
enable users to enter into a state of flow while practicing.
While the ability for users to self-regulate is a first step, the
medium mode of play is intended to automate the process of
keeping users in a certain zone of challenge. However, it is not
known if the current, arbitrary challenge zone of three to five
attempts in one to five minutes is optimal for achieving flow. It
is also unknown if there will be and optimal flow zone for a
majority of users or if every user’s flow zone will be different.
The authors how to explore this design space in future research.

III. DISCUSSION & CONCLUSIONS

In previous work, one of the authors found that highly-
motivated students were able to achieve significant learning
outcomes on their own [4] with minimal instruction. By
providing a less boring and/or frustrating experience, it should
be possible for users with less extrinsic motivation to practice
longer and achieve higher levels of mastery. The introduction
of drag-n-drop should also enable greater usage on mobile
devices and enable the online game to be used in lab settings
where only tablets are available. And as more users play, the
data collected on the relative difficulty of different problems
and the experience of users should enable the online game to
be further enhanced.

3

ACKNOWLEDGMENTS

We are grateful to the Singapore Management University
School of Information Systems for enabling us to conduct
tournaments in live classroom settings. We are also grateful to
the staff of Pivotal Expert for maintaining and enhancing the
SingPath platform and for making it free to students and
faculty around the world.

REFERENCES

[1] Boesch, Chris; Boesch, Sandra. Tournament-based

Teaching. 4
th

 Annual International Conference on

Computer Science Education: Innovation and

Technology (CSEIT 2012).

[2] Csikszentmihalyi, M. Finding flow: The psychology of

engagement with everyday life. 1
st
 edition. Basic

Books: New York, NY;1997.

[3] Michaelsen LK, Knight AB, Fink LD. Team-Based

Learning, A Transformative Use of Small Groups in

College Teaching. 1
st
 edition. Sterling, Virginia:

Stylus Publishing, LLC; 2002.

[4] Boesch, Chris; Steppe, Kevin. Case Study on Using a

Programming Practice Tool for Evaluating

University Applicants. 3rd Annual International

Conference on Computer Science Education:

Innovation and Technology (CSEIT 2011).

	Adaptive Gameplay for Programming Practice
	Citation

	Microsoft Word - 381570-convertdoc.input.369876.OjLDk.doc

