
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2014

Automated Mentor Assignment in Blended Learning Automated Mentor Assignment in Blended Learning

Environments Environments

Chris BOESCH
Singapore Management University, cboesch@smu.edu.sg

Kevin STEPPE
Singapore Management University, kevinsteppe@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Higher Education Commons, and the Software Engineering Commons

Citation Citation
BOESCH, Chris and STEPPE, Kevin. Automated Mentor Assignment in Blended Learning Environments.
(2014). 2014 IEEE 27th Conference on Software Engineering Education and Training (CSEE&T):
Proceedings: April 23-25, 2014, Klagenfurt, Austria. 94-98.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2046

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automated Mentor Assignment in Blended Learning Environments

Chris Boesch and Kevin Steppe
School of Information Systems, Singapore Management University

{cboesch, kevinsteppe}@smu.edu.sg

Abstract

In this paper we discuss the addition of automatic assignment of mentors during in-

class lab work to an existing online platform for programing practice. SingPath is an
web based tool for users to practice programming in several software languages. The
platform started as a tool to provide students with online feedback on solutions to
programming problems and expanded over time to support different of blended learning
needs for a variety of classes and classroom settings. The SingPath platform supports
traditional self-directed learning mechanisms such as badges and completion metrics as
well as features for use in classrooms, such as tournaments. We evaluate the addition
of the mentor assignment feature during two short workshops designed to introduce
students to the Python and JavaScript programming languages. The introduction of the
mentor assignment features provided a more collaborative and engaging experience
compared with previous courses.

KEYWORDS
Game-based learning, personalized learning, blended learning, software education

1. Introduction

Personalized, one-to-one teaching and mentoring has been recognized as one of the most
effective methods of maintaining student engagement and enhancing learning[1]. We have
been looking for ways to scale-up more personalized assessment and learning using tool
support. In 2011, we invited nearly 200 students who were on the borderline of being
accepted or rejected for university admission to learn basic Java and Python on their own.
They were instructed to use SingPath, our tool for practicing programming in a self-directed
manner, to demonstrate minimal competence, and then take part in a short software
tournament[2]. Since then, we have extended the platform to support software lab delivery in
classroom settings [3] and extended to support more personalized, self-directed learning in
preparation for classroom sessions [4]. After observing numerous students preparing for in-
class tournaments and observing how students interacted during tournaments, we looked for
ways to improve engagement and mentoring opportunities. One opportunity was to use the
tool to match better-prepared and more capable students as mentors for the less prepared and
capable students.

In our software tournaments, participants are usually asked to solve around ten small
problems. A picture of the interface is shown below in Figure 1. These are sometimes run at
the beginning of a class period to check students preparation on homework. Other times they
are run at the middle or end of the period to evaluate the participants’ understanding of the
material. In a classroom where the objective is to move all the students through the same
material, varying levels of student capability can cause a variety of issues. First, the most
capable students are likely to finish solving the problems in much less time than the least
capable students. In our experience, it is not uncommon to see some students finish problems

in as little as one fifth of the median class completion time while the least prepared students
might not be able to finish solving all of the problems regardless of the time provided. This
can make allotting time for tournaments challenging since many students in a class will be
finishing early while others will continue to need time. Secondly, it can be frustrating and
discouraging for the least capable students to continue working on the first few problems as
they realize that many of their peers have completed all of the problems. Thirdly, the most
capable students in class can become bored and distracted as they wait for their peers to
finish. And finally, it is difficult for a single instructor to assist the least capable students
quickly and efficiently enough to close the completion time gaps between the fastest and
slowest students. We felt that student mentoring could help alleviate all these issues. The less
capable students would receive more individual assistance and be less frustrated; the more
capable students would remain engaged; and the total time to completion would be reduced.

Figure 1: Practice and tournament problem solving on SingPath.com

2. Automated Mentor Assignment

During software tournaments, a live ranking is usually displayed on a screen to show the
class progress. This ranking provides feedback to the students about how the class is
progressing and provides the class instructor with information as to which students may need
the most assistance and how long the class is likely to take to finish the tournament. In some
classes we have experimented with asking early finishers to help their peers. This informal
process suffers from various social frictions. First the early finishers usually will turn to help
their friends, who generally are not the ones who need help. Second, the mentored student is
not directly informed that help is coming, thus the pair does not have process cues about what
to do, frequently resulting in no mentoring actually occurring. An automated process can
solve these issues.

In preparation, we arranged empty seats next to all students so that finishing students could
move to the location of the students that they will be mentoring. Students were also given

instructions on how the mentors would be assigned. When a student solves the final problem
in the tournament, they are assigned to serve as a mentor to the student currently at the bottom
of the ranking. Students are notified on the ranking board of whom they will be mentoring.
Additionally next to the mentored student is placed the name of the mentor. See Figure 2 for
an example from our study. The mentors then move to the location of their mentee. Once the
mentor arrives, they are not allowed to touch the mentee’s keyboard or mouse, but are free to
offer suggestions as to what the mentee should attempt to do next.

Figure 2: JavaScript tournament ranking with mentor assignment shown

This approach leverages many aspects of the Keller Plan[5]. In the Keller plan, students
that had mastered material were drafted as mentors to assist with evaluating and assisting
other students. Often, these students were teaching assistants that had mastered the material in
previous terms. The automated mentor assignment feature in software tournaments identifies
and drafts mentors on the fly based on their mastery of specific material for a specific class.
As long as a student is the first person to be able to solve all of the problems out of a class of
students, they are considered as qualified to mentor their least capable peer. And since the
first to finish are always assigned to assist the slowest progressing students, the most capable
are assigned to assist the least capable.

3. Study Methodology

This process was evaluated in early December 2013 at two short programming workshop
courses – one to teach JavaScript the other for Python. Each workshop took three hours and
was attended by 15 second-year university students with prior experience programming in
Java. The majority of the students attending the workshops had no prior experience with the
software language being. Approximately four days prior to the workshop, students were sent

an email notifying them that these workshops would be blended learning courses[8] and that
they were encouraged, but not required, to try coding in either JavaScript or Python on their
own, online prior to attending the. The students were directed towards Codecademy[6] and
SingPath[7] as potential online resources to explore the basics of each language.

Each classroom session started with a ten-problem software tournament consisting of
simple problems involving functions. After this first tournament was completed, the students
were informed that there would be a second tournament at the end of the session where the
winner would receive a small prize. The automated mentoring assignment process was used
in both the starting and ending tournaments.

4. Results

All four of the tournaments – two for each workshop – proceeded as expected. The
tournaments took between twenty-five and forty minutes to complete. There were no
significant differences between the tournaments held in the JavaScript workshop and the
tournaments held in the Python workshop. Each course took place in a forty-seat seminar
room and was attended by approximately fifteen students. The two-to-one seat-to-student
ratio considerably improved the logistics of mentoring. There was no difficulty in students
and mentors sitting together or finding appropriate space. Compared to previous ad-hoc
arrangements this saved consider time.

Figure 3: JavaScript tournament ranking at end of tournament

Explaining the process upfront as well as indicating to mentees who would come help them
considerably smoothed over social frictions. Both mentor and mentee knew what they should
be doing and were prepared for the process. We observed that mentors stayed engaged with
the class and mentee’s frustration was reduced. By automating assignment, mentors did not

stick to their prior friend groups. Our impression was that this helped form a more cohesive
class cohort and gave the tournaments more of a ‘team-sport’ feel rather than individual work.
Figure 3 shows the final assignment of mentors and completion times.

The workshops benefited from the small size as many of the students already knew each
other. For larger and more diverse groups of students, it would be necessary to provide name
cards for students to make it easier for mentors to find mentees. For much larger groups the
logistics of moving around may require that the assignment be restricted to those nearby – we
have plans to work on such a feature.

4. Conclusions

The automated mentor assignment feature provides a way to shorten the time needed for
tournaments since the earliest finishing students serve as mentors to help the slowest
progressing students. This also allows the instructor to assist a larger number of students
rather than helping just one or two students who are struggling the most. The mentor
assignment also keeps the first finishers engaged as they practice reading other students’ code
and offering advice. At the same time, less capable students are provided with a personal
mentor to assist them with any parts of the material that they may be struggling with. This
appears to reduce frustration and speed completion. The ability to provide opportunities for
self-directed learning, opportunities to mentor, and opportunities to be individually mentored
to students enables courses to provide a more personalized experience. Our observation
indicates that this increases student engagement and allows more flexibility in allocating
instructor time. This process also leads to a more social class experience since students do not
assist a wider portion of the cohort than their immediate friends. Since mentors are assigned
across the class, it gives students an opportunity to interact with other classmates with
different levels of capability. The process also helps to reinforce the idea of working through
labs and completing tournaments as a full class exercise rather than an individual exercise
since the goal is for the entire class to finish and the class cannot move on until everyone has
solved the selected problems.

Acknowledgment

The authors thank Singapore Management University for supporting this research.

References

[1] Bloom, B. (1984). "The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-
to-One Tutoring", Educational Researcher, 13:6(4-16).
[2] Boesch, C., & Steppe, K. Case Study on Using a Programming Practice Tool for Evaluating University
Applicants. 3rd Annual International Conference on Computer Science Education: Innovation and Technology.
2011.
[3] Boesch, C., & Boesch, S. (2012). Tournament-based Teaching. 4th Annual International Conference on
Computer Science Education: Innovation and Technology. 2012.
[4] Boesch, C., & Boesch, S. (2013). Adaptive Gameplay for Programming Practice. 5th Annual International
Conference on Computer Science Education: Innovation and Technology (CSEIT 2013).
[5] Keller, F. S. (1968). Goodbye teacher… Journal of Applied Behavior Analysis 1, 79-89.
[6] http://codecademy.com
[7] http://singpath.com

	Automated Mentor Assignment in Blended Learning Environments
	Citation

	Microsoft Word - Automated Mentor Assignment in Blended Learning Environments - CSEET 2014 - KS.docx

