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A Smoothed Q-Learning Algorithm for Estimating Optimal
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Abstract

In this paper we propose a smoothed Q-learning algorithm for estimating optimal dynamic

treatment regimes. In contrast to the Q-learning algorithm in which non-regular inference

is involved, we show that under assumptions adopted in this paper, the proposed smoothed

Q-learning estimator is asymptotically normally distributed even when the Q-learning estima-

tor is not and its asymptotic variance can be consistently estimated. As a result, inference

based on the smoothed Q-learning estimator is standard. We derive the optimal smoothing

parameter and propose a data-driven method for estimating it. The finite sample properties of

the smoothed Q-learning estimator are studied and compared with several existing estimators

including the Q-learning estimator via an extensive simulation study. We illustrate the new

method by analyzing data from the Clinical Antipsychotic Trials of Intervention Effectiveness-

Alzheimer’s Disease (CATIE-AD) study.
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1 Introduction

A dynamic treatment regime (DTR) is a sequence of decision rules, one per stage or time period.

The decision rule at each stage prescribes a recommended treatment on the basis of the subject’s

treatment and covariate history. A DTR is optimal if it optimizes the mean outcome1 at the end

of the final stage of the treatment. The optimal DTR must be estimated from data. Chakraborty

and Moodie (2013) present a comprehensive discussion of existing statistical methods for the

estimation and inference for DTRs based on sequential randomized trials. We refer interested

readers to Chakraborty and Moodie (2013) for the pros and cons of existing methods and their

applications.

One simple yet powerful method for estimating DTRs is the Q-learning algorithm. Consider the

simplest Q-learning algorithm for a two-stage dynamic binary treatment based on linear models.

The estimation using the Q-learning algorithm proceeds in two steps with each step involving

a linear regression so can be done using any statistical software. However, statistical inference

for the first stage parameter in the optimal DTR based on the Q-learning estimator is often

complicated. The reason is that the dependent variable in the linear regression in the second step

of the Q-learning algorithm is a generated variable which depends on the first stage parameter

estimator through a max operation, see Section 2.1 below or Laber et al. (2013) for the exact

expression. As shown in Robins (2004) for g-estimation2 and Laber et al. (2013) for the Q-

learning algorithm, the max operation involved in the g-estimation or in the second step regression

in the Q-learning algorithm leads to non-standard asymptotics for estimators of parameters in the

first stage Q-function or the optimal DTR. First, these estimators are asymptotically biased for

some data generating processes (DGPs) known as exceptional laws (see Moodie and Richardson,

2010). Second, their asymptotic distributions are normal for some DGPs but non-normal for

other DGPs (namely, exceptional laws), rendering statistical inference based on the Q-learning

estimators difficult.

Various remedies have been proposed in the literature to alleviate both problems. To reduce

asymptotic bias, Moodie and Richardson (2010) propose hard-thresholding for g-estimation, while

Chakraborty et al. (2010) and Laber et al. (2013) study both hard- and soft-thresholding for the Q-

learning algorithm. Although they may reduce the bias to some extent, statistical inference is still

difficult due to the fact that they still involve non-smooth operations. Chakraborty et al. (2010)

propose and study the finite sample performances of several bootstrap confidence intervals (CIs)

based on the Q-learning algorithm and the hard- and soft-thresholding estimators via simulation.3

1In general, the mean outcome can be replaced by the mean of any known function of the outcome.
2We refer interested readers to Robins (2004) for g-estimation and the implications of the max operation on its

asymptotic properties.
3We note that none of these bootstrap CIs is asymptotically valid under exceptional laws.
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Using local sequences, Laber et al. (2013) propose and evaluate a locally consistent Fixed Adaptive

Confidence Interval (FACI) for the parameters of the optimal DTR. Existing simulation results

seem to suggest that the FACI is often conservative and none of these methods dominates the rest;

see Chakraborty and Moodie (2013).

This paper develops a new algorithm, a smoothed Q-learning algorithm, for estimating optimal

DTRs. It involves the same two estimation steps as the Q-learning algorithm except that in the

smoothed Q-learning algorithm, the non-smooth step function in the max operation in the second

step of the Q-learning algorithm is replaced by a sequence of smooth distribution functions in-

dexed by a smoothing parameter such that the sequence of distribution functions approaches the

step function when the sample size approaches infinity. For any finite sample size, however, the

smoothed Q-learning estimators of parameters in the first stage Q-function are smooth functions

of the first step estimators. We show that under assumptions adopted in this paper, the smoothed

Q-learning estimators possess standard asymptotic properties, namely, they are asymptotically

unbiased and normally distributed even under exceptional laws.4 As a result, statistical inference

based on the smoothed Q-learning estimator is standard. Indeed we construct a consistent estima-

tor of the asymptotic variance of the smoothed Q-learning estimator based on which Wald-type

inference can be carried out. Further by deriving higher order mean square error (MSE) expansions

for the smoothed Q-learning estimator, we derive the optimal smoothing parameter and propose

a data-driven method for estimating it.

To shed further light on the finite sample performances of some existing statistical estimation

and inference methods and our smoothed Q-learning algorithm, we conduct an extensive simu-

lation study following a similar design in Chakraborty et al. (2010). First, we consider seven

estimators: the smoothed Q-learning estimator with three different bandwidth choices, the Q-

learning estimator, the hard-thresholding estimator of Moodie and Richardson (2010) with two

choices of the tuning parameter, and the soft-thresholding (ST) estimator of Chakraborty et al.

(2010). Second, we compare eight CIs: the first three are Wald-type CIs constructed from our

smoothed Q-learning estimators; the fourth one is the FACI in Laber et al. (2013); and the last

four are centered bootstrap percentile CIs based on the last four estimators respectively. For each

estimator, we report its bias and MSE. For each CI, we report its coverage probability (CP) and

interval length (IL). We construct six designs ranging from fully regular to close to non-regular

to fully non-regular. We find that (i) all methods perform well in fully regular designs; (ii) the

4In Hirano and Porter (2012) and Robins (2004), it is shown that when the true parameter is a non-differentiable

functional of the underlying DGP, there is no regular or locally asymptotically unbiased estimator. However this

does not imply non-existence of pointwise asymptotically unbiased estimator. The Q-learning estimator is point-wise

asymptotically biased and non-normally distributed under exceptional laws, but our smoothed Q-learning estimator

is pointwise asymptotically unbiased and asymptotically normally distributed under assumptions adopted in this

paper.
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Q-learning and soft-thresholding CIs may severely under-cover in non-regular and close to non-

regular designs; (iii) the FACI is in general valid but can be very conservative; (iv) in term of

the MSE, the hard-thresholding estimators and our smoothed Q-learning estimators are compara-

ble for all the designs, while in terms of the CP, the hard-thresholding CIs over-cover more than

our smoothed Q-learning CI in fully non-regular and close to fully non-regular designs. Overall,

our smoothed Q-learning method and the associated Wald CI perform the best for the designs

considered in terms of MSE, CP, and IL.5 Moreover it is the least costly computationally.

To illustrate the new method, we estimate the optimal dynamic treatment regime for the

Alzheimer’s Disease, using data from the Clinical Antipsychotic Trials of Intervention Effectiveness-

Alzheimer’s Disease (CATIE-AD) study. The study aims to assess the effectiveness of the second

generation antipsychotic drugs (olanzapine, quetiapine, and risperidone) in treating delusions, hal-

lucinations, aggression, and agitation for patients with Alzheimer’s Disease. The estimated optimal

dynamic treatment regime allows the clinician to recommend treatment based on the Neuropsychi-

atric Inventory (NPI) score, age, and gender. We find that olanzapine is in general more effective

than other medications in reducing symptoms associated with the Alzheimer’s Disease. In particu-

lar, olanzapine tends to be more effective for a patient with a higher NPI score, and more effective

for female patients than for male patients. We do not find any statistically significant age effect.

We note that the same smoothing technique was first used in Horowitz (1992) to construct

the smoothed maximum score estimator of parameters in a binary response model. Although the

maximum score estimator of Manski (1975, 1985) converges at cubic rate and has a non-normal

asymptotic distribution, the smoothed maximum score estimator has a faster rate of convergence

and an asymptotic normal distribution. In our context, the smoothed Q-learning estimator retains

the root-n convergence rate of the Q-learning estimator, but unlike the Q-learning estimator, it is

asymptotically normally distributed for all DGPs satisfying our assumptions.

The rest of this paper is organized as follow. Section 2 first reviews the basic set-up and the

Q-learning algorithm, then presents the smoothed Q-learning algorithm. Section 3 establishes the

asymptotic theory for the smoothed Q-learning algorithm. The optimal smoothing parameter is

derived in Section 4. Section 4 also develops a data-driven method for estimating the optimal

smoothing parameter. Section 5 presents numerical results from a simulation study. Section 6 uses

the new method to study the optimal DTR for the CATIE-AD data. Some concluding remarks are

offered in Section 7. All the technical proofs are relegated to Appendix A. Appendix B presents

the model used in the simulation study.

We close this section by introducing some notation. For a real matrix A, we denote its

5We expect the penalized Q-learning in Song et al. (2015), the adaptive Q-learning in Goldberg, Song, and

Kosorok (2013), and the m-out-of-n bootstrap in Chakraborty, Laber, and Zhao (2013) to perform similarly to our

smoothed Q-learning algorithm. All three methods are shown to be asymptotically valid under regularity conditions.

They are however computationally more costly than our smoothed Q-learning algorithm.
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transpose as A′, its Frobenius norm as ‖A‖ (≡ [tr(AA′)]1/2), and its spectral norm as ‖A‖sp (≡
[λmax (AA′)]1/2), where λmax (·) (similarly λmin (·)) denotes the maximum (minimum) eigenvalue

of certain matrix. We will use 0a×b to denote the a × b matrix of zeros. Let
d→ and

p→ denote

convergence in distribution and probability, respectively.

2 The Basic Set-up and two Q-learning Algorithms

We consider the basic set-up of a two-stage dynamic binary treatment. The sample information

contains n i.i.d. observations denoted as {X1i, A1i, Y1i, X2i, A2i, Y2i}ni=1, where for t = 1, 2, Xti

denotes individual i’s characteristics collected prior to the t-th treatment assignment, Ati ∈ {0, 1}
denotes individual i’s binary treatment assigned at stage t, with Ati = 1 indicating treatment,

and Ati = 0 indicating no treatment, and Yti is individual i’s outcome variable at stage t. We

assume that Yti has been coded such that a higher value corresponds to a better outcome. Let

Hti = (X1i, A1i, · · · , Xti)
′ be individual i’s history up to stage t, that is, the information available

to the decision maker (who could be the individual) before the t-th treatment assignment Ati. For

a two-stage treatment, H1i = X1i and H2i = (X ′1i, A1i, X
′
2i)
′.

A Dynamic Treatment Regime (DTR) denoted as π = (π1, π2) is an ordered pair of functions

πt : Ht → {0, 1}, where Ht is the domain of Ht, t = 1, 2. The objective is to learn a DTR π which

maximizes the expected outcome E (Y π
1 + Y π

2 ), where Y π
t denotes the potential outcome in period

t associated with treatment regime π. Chakraborty and Moodie (2013) offer a detailed discussion

on various methods for estimating optimal DTRs.

We review one simple yet powerful approach, the Q-learning algorithm in the next subsection

and propose a smoothed Q-learning algorithm in the second subsection. Throughout the paper,

we adopt the following assumptions.

• Stable unit treatment value assumption (SUTVA): A subject’s outcome is not influenced by

other subjects’ treatment allocation (Rubin, 1980).

• No unmeasured confounders (NUC): For any regime (a1, a2) ∈ {0, 1}2,

A1 ⊥ (Y1 (a1) , X2 (a1) , Y2 (a1, a2)) |H1 and

A2 ⊥ Y2 (a1, a2) |H2,

where X2 (a1) is the potential covariate at stage 2 if the treatment in stage 1 is a1, Y1 (a1) is

the potential outcome6 corresponding to treatment a1 at stage 1, and Y2 (a1, a2) is the stage

2 potential outcome corresponding to treatment (a1, a2) for both stages.

6We note that X2 (a1) could include Y1 (a1) as a component in which case Y1 (a1) in the first condition in NUC

is redundant.
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As discussed in Chakraborty and Moodie (2013), the NUC assumption always holds under com-

plete or sequential randomization and is sometimes called the sequential randomization assumption

(SRA) or sequential ignorability.

2.1 The Q-learning Algorithm

To describe the Q-learning Algorithm, we define the Q-functions for the two stages as:

Q2 (h2, a2) = E [Y2|H2 = h2, A2 = a2] and

Q1 (h1, a1) = E
[
Y1 + max

a2∈{0,1}
Q2 (H2, a2) |H1 = h1, A1 = a1

]
, (2.1)

where E[·|·] denotes the conditional expectation. Under SUTVA and NUC, if the conditional

expectations in the preceding display were known, then dynamic programming provides an optimal

DTR given by

πdpt (ht) ∈ arg max
at∈{0,1}

Qt (ht, at) , t = 1, 2, (2.2)

and studying the functions πdpt (·) amounts to studying the Q functions. In most practical settings,

these Q functions are unknown and must be estimated from data.

To reduce dimensionality of the problem, most works in the existing literature adopt linear

specifications for both stage Q functions:

Qt (Hti, Ati;βt) = H ′t0,iβt0 + (H ′t1,iβt1)Ati, t = 1, 2, (2.3)

where βt = (β′t0, β
′
t1)′, Ht0,i and Ht1,i are column vectors of features depending on individual i’s

history at stage t. They can be subvectors or functions of Hti and there can be overlap between

Ht0,i and Ht1,i. Note the asymmetric roles of Ht0,i and Ht1,i: Ht0,i which includes an intercept

term denotes the main effect of history, where Ht1,i which also includes an intercept term denotes

the treatment effects of history. Under the above linear specification, an optimal DTR is given by

πdpt (ht) ∈ arg max
at∈{0,1}

[
(h′t1β

∗
t1)at

]
, t = 0, 1, (2.4)

where h′t = (h′t0, h
′
t1) and β∗t1 denotes the true value of βt1.

Remark. Two points are worth emphasizing here. First, any optimal policy only depends on ht1;

Second, there is no unique optimal policy for stage t when h′t1β
∗
t1 = 0.

Estimating the optimal DTR is equivalent to estimating the unknown parameters in the Q

functions. Let β∗t denote the true value of βt with β∗t = (β∗′t0, β
∗′
t1)′. The Q-learning algorithm

proceeds to estimate β∗1 and β∗2 in two steps.

Step 1. Regress Y2i on H2i and A2i, i = 1, · · · , n, to obtain

β̂2 = arg min
β2

n∑
i=1

[Y2i −Q2 (H2i, A2i;β2)]2 . (2.5)

6



Step 2. (a) Define the predicted future reward following the optimal policy as

Ỹ1q,i = Y1i + max
A2i∈{0,1}

Q2

(
H2i, A2i; β̂2

)
= Y1i +H ′20,iβ̂20 +

(
H ′21,iβ̂21

)
1{H ′21,iβ̂21 ≥ 0},

where 1{·} is the indicator function.

(b) Regress Ỹ1q,i on H1i and A1i, i = 1, · · ·, n, to obtain

β̂1q = arg min
β1

n∑
i=1

[
Ỹ1q,i −Q1 (H1i, A1i;β1)

]2
. (2.6)

The Q-learning algorithm is popular in applied work because of its computational simplicity.

However statistical inference for the first stage parameter β∗1 using the Q-learning estimator β̂1q

is difficult and the standard Wald-type inference may be misleading. The reason is that the

asymptotic distribution of β̂1q changes discontinuously with the underlying DGP from normal when

the underlying DGP is such that Pr
(
H ′21,iβ

∗
21 = 0

)
= 0 to non-normal when Pr

(
H ′21,iβ

∗
21 = 0

)
> 0

(exceptional law).7 This was first observed by Robins (2004) for g-estimation. Laber et al. (2013)

establish precise expressions for the asymptotic distribution of β̂1q in both cases. Interestingly this

is related to the first stage treatment effect or equivalently whether there is a unique first stage

optimal treatment. When the DGP is such that Pr
(
H ′21,iβ

∗
21 = 0

)
= 0, the optimal treatment for

the first stage is unique; otherwise, it is not.

2.2 A Smoothed Q-learning Algorithm

This section proposes a smoothed Q-learning algorithm. In sharp contrast to β̂1q, we show that

under conditions adopted in Section 3 in this paper, the asymptotic distribution of the smoothed

Q-learning estimator is normal whether Pr
(
H ′21,iβ

∗
21 = 0

)
= 0 or Pr

(
H ′21,iβ

∗
21 = 0

)
> 0.

The smoothed Q-learning algorithm also follows two steps. The first step is the same as that

in the Q-learning algorithm and the second step replaces Step 2 in the above Q-learning algorithm

with Step 2∗ below.

Step 2∗. (a) Define the predicted future reward following the smoothed optimal policy as

Ỹ1sq,i = Y1i +H ′20,iβ̂20 +
(
H ′21,iβ̂21

)
Kα(H ′21,iβ̂21), (2.7)

whereKα(x) = K(x/α), K(·) is a cumulative distribution function (CDF) that admits a probability

density function (PDF) denoted as k (·), and α = αn > 0 is a smoothing parameter (bandwidth)

that converges to zero as n→∞.
7The case where the underlying DGP satisfies Pr

(
H ′21,iβ

∗
21 = 0

)
= 0 is referred to as the regular setting, while

the case where the underlying DGP is that Pr
(
H ′21,iβ

∗
21 = 0

)
> 0 is referred to as non-regular setting and the

corresponding DGP is called an exceptional law. In this paper we use non-regular setting and exceptional law

interchangeably.
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(b) Obtain the smoothed estimator of β1 as

β̂1,sq = arg min
β1

n∑
i=1

[
Ỹ1sq,i −Q1 (H1i, A1i;β1)

]2
. (2.8)

Compared with the Q-learning algorithm, the smoothed Q-learning algorithm replaces the step

function 1{· ≥ 0} in Step 2 (a) with a smooth CDF K(·/α) in Step 2∗(a), where the smaller the

smoothing parameter α, the closer K(·/α) is to 1{· ≥ 0} and as n goes to ∞, K(·/α) approaches

1{· ≥ 0}. But for any finite sample size n, α > 0 and K(·/α) is a smooth function, so β̂1,sq is a

smooth function of β̂21.

3 Asymptotic Theory for the Smoothed Q-learning Algorithm

Let β̂sq = (β̂′1,sq, β̂
′
2)′. In this section, we study the asymptotic properties of β̂sq. To simplify

the technical analysis, we first reformulate β̂sq as a method-of-moment estimator or Z-estimator

considered in van der Vaart (1998, ch.5).

3.1 A Method-of-Moment Formulation

Let Bt = (H ′t0, AtH
′
t1)′ for t = 1, 2. Observe that β̂sq is a solution to the following system of

estimating equations

En[mn(β̂sq)] = 0, (3.1)

where En[·] denotes the empirical measure, mn(β) = (m1n(β)′,m2(β)′)′,

m1n(β) = m1n(W ;β) = B1

[
Y1 +H ′20β20 +Kα(H ′21β21)H ′21β21 −B′1β1

]
,

m2(β) = m2 (W ;β) = B2(Y2 −B′2β2), (3.2)

and W = (X ′1, A1, Y1, X
′
2, A2, Y2)′. So β̂sq is a Method-of-Moment estimator or Z-estimator consid-

ered in van der Vaart (1998, ch.5). Complication arises because our moment function mn depends

on n through the smoothing parameter α.

Let β∗ = (β∗′1 , β
∗′
2 )′, where for t = 1, 2, β∗t = (β∗′t0, β

∗′
t1)′ denotes the true value of βt = (β′t0, β

′
t1)′.

Let

M (β) ≡ E [m (β)] = E [m (W ;β)] ,

where m(W ;β) = (m1(W ;β)′,m2(W ;β)′)′ in which

m1(W ;β) = B1

[
Y1 +H ′20β20 + (H ′21β21)+ −B′1β1

]
. (3.3)

Note that E [m(W ;β)] = 0 if and only if β = β∗ = (β∗′1 , β
∗′
2 )′ under Assumption A2(i), where

β∗1 =
(
E
[
B1B

′
1

])−1 E[B1

(
Y1 +H ′20β

∗
20 + (H ′21β

∗
21)+

)
] and

β∗2 =
(
E
[
B2B

′
2

])−1 E[B2Y2].

8



In contrast to the standard GMM, E [mn (β∗)] is in general not equal to zero for finite n

because of smoothing m1(W ;β) in (3.3) to m1n(W ;β) in (3.2). Nonetheless, we show consistency

and asymptotic normality of β̂sq under assumptions below.

3.2 Consistency

Let Z (β21) = H ′21β21 and Z = Z (β∗21) = H ′21β
∗
21. Let FZ(·;β21) denote the CDF of Z (β21) and

FZ(·) = FZ(·;β∗21). Further let

ε1 = Y1 +H ′20β
∗
20 + (H ′21β

∗
21)+ −B′1β∗1 and ε2 = Y2 −B′2β∗2 .

Note that ε1 and ε2 denote the population errors in the least squares projections of [Y1 +H ′20β
∗
20+

(H ′21β
∗
21)+] on (A1, H1) and that of Y2 on (A2, H2) respectively. LetWi = (X ′1i, A1i, Y1i, X

′
2i, A2i, Y2i)

′

and B1, B20, B21 denote the parameter spaces of β1, β20, β21, respectively. Let B denote the pa-

rameter space of β = (β′1, β
′
2)′ . Let k1, k2, k20 and k21 denote the dimensions of β1, β2, β20, and

β21, respectively.

To study the consistency of β̂sq, we make the following assumptions.

Assumption A1. (i) {Wi}ni=1 is a random sample.

(ii) B, B1, B20, and B21 are all compact.

(iii) For each β21 ∈ B21, the CDF FZ(·;β21) can be written as FZ(·;β21) = (1− pβ21)FC (·;β21)+

pβ21FD (·;β21) , where FC (·;β21) and FD (·;β21) denote the continuous and discrete components

of Z (β21) , respectively. FC (·;β21) admits a PDF fC (·;β21) that is continuously differentiable for

all β21 ∈ B21. FD (·;β21) is a discrete CDF such that if ZD v FD (·;β21) , then P (ZD = zd) =

fD (zd;β21) and
∑

zd
fD (zd;β21) = 1.

(iv) Let r1 (z;β21) ≡ E [B1|H ′21β21 = z] . For some small ε > 0, there exists a constant cr1 <∞
such that supβ21∈B21 sup|z|≤ε ‖r1 (z;β21) fC (z;β21)‖ ≤ cr1 .

(v) Let r2(z) ≡ P [B1H
′
21|H ′21β

∗
21 = z] and g2 (z) ≡

∫ z
−∞ r2 (s) fC (s) ds. For some small ε > 0,

there exists a constant cg2 < ∞ such that sup|z|≤ε ‖g2 (z)‖ ≤ cg2 . g2 (∞) ≡ limz→∞ g2 (z) exists

and is finite.

Assumption A2. (i) The eigenvalues of E [B1B
′
1] and E [B2B

′
2] are all bounded and bounded

away from zero.

(ii) E[ ‖B1Y1‖+ ‖B1H
′
20‖+ ‖B2Y2‖] <∞ and E[ ‖B1H

′
21‖

2] <∞.
(iii) E[ ‖B1B

′
1‖
(
Z2 + ε2

1

)
] <∞, E[ ‖B1B

′
2‖ ‖Zε2‖] <∞, and E[ ‖B2B

′
2‖ ε2

2] <∞.
(iv) There exists some δ > 0 such that E ‖Btεt‖2+δ <∞ for t = 1, 2 and E ‖B1H

′
21‖

2+δ <∞.

Assumption A3. (i) The kernel function K (·) is a CDF that admits a PDF k (·) with compact

support [−1, 1] . k (·) is continuous, symmetric around 0, and has bounded variation.

(ii) As n→∞, α→ 0, nα4 → 0, and nα/ lnn→∞.
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Assumption A1(i)-(ii) are standard in the literature on Q-learning. A1(iii) indicates that

the distribution FZ(·;β21) of H ′21β21 is a mixed type distribution. When β21 = β∗21, we will write

fC (z;β∗21) , fD (zd;β
∗
21) , and pβ∗21 simply as fC (z) , fD (zd) , and p, respectively. Note that we allow

p = pn ∈ [0, 1] to be n-dependent, in which case {Wi = Win} should be read as a triangular array

process. But for notational simplicity, we suppress the dependence of all variables on n. A1(iv)-

(v) impose conditions on the conditional moments of B1 and B1H
′
21. A2(i) is an identification

condition. A2(ii)-(iv) specify some moment conditions. A3(i) specifies the conditions on the kernel

function K (·) and its derivative function k (·) . We assume that k (·) has compact support [−1, 1]

to simplify the proofs. Many kernels that are frequently used in the kernel estimation literature

satisfy this condition. In particular, they include the following kernels:

1. Epanechnikov kernel: k (z) = 3
4

(
1− z2

)
1 {|z| ≤ 1} ;

2. Triangular kernel: k (z) = (1− |z|) 1 {|z| ≤ 1} ;

3. Quartic kernel: k (z) = 15
16

(
1− z2

)2
1 {|z| ≤ 1} ;

4. Triweight kernel: k (z) = 35
32

(
1− z2

)3
1 {|z| ≤ 1} .

One can relax the compactness assumption at the cost of more lengthy proofs and some tail con-

ditions on fC (·;β21) , fD (·;β21) , r1 (·;β21) , and r2(·). A3(ii) imposes conditions on the smoothing

parameter α. Note that nα4 → 0 ensures that the bias associated with our smoothed Q-learning

estimator β̂sq is asymptotically negligible.

The following theorem studies the consistency of β̂sq.

Theorem 3.1 Suppose that Assumptions A1(i)-(iv), A2(i)-(ii), and A3 hold. Then for the smoothed

Q-learning estimator, we have

β̂sq = β∗ + oP (1) .

Note that Assumptions A1(v) and A2(iii)-(iv) are not used in the proof of the above theorem.

3.3 Asymptotic Normality and Covariance Estimation

The following theorem studies the asymptotic normality of β̂sq.

Theorem 3.2 Suppose that Assumptions A1-A3 hold. Then for the smoothed Q-learning estima-

tor, we have
√
n(β̂sq − β∗)

d→ N(0, Ω),

10



where Ω ≡ Ξ−1Λ(Ξ−1)′, Λ =

(
Λ11 Λ12

Λ′12 Λ22

)
, Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
=

(
−E[B1B

′
1] Ξ12

0k1×k2 −E[B2B
′
2]

)
,

Λ11 = E
{
B1B

′
1[Y1 −B′1β∗1 +H ′20β

∗
20 +

(
H ′21β

∗
21

)
+

]2
}
,

Λ12 = E
{
B1B

′
2[Y1 −B′1β∗1 +H ′20β

∗
20 +

(
H ′21β

∗
21

)
+

][Y2 −B′2β∗2 ]
}
,

Λ22 = E
{
B2B

′
2[Y2 −B′2β∗2 ]2

}
, and

Ξ12 = lim
n→∞

(E[B1H
′
20], (1− pn) [g2 (∞)− g2(0)] + pn[

1

2
r2(0)fD (0) +

∑
zd>0

r2(zd)fD (zd)]). (3.4)

Remark. Noting that the eigenvalues of the block upper triangular matrix Ξ are given by those

of Ξ11 and Ξ22 which are all negative under Assumption A2(i), Ξ must be nonsingular. This occurs

no matter p ∈ (0, 1) , p = 0, or p = 1 and no matter fD (0) = 0 (regular setting) or fD (0) > 0 (non-

regular setting or exceptional law). Theorem 3.2 shows that our smoothed Q-learning estimator β̂sq

is always
√
n-consistent for β∗ and asymptotically normally distributed even under the non-regular

setting. This greatly simplifies the inference procedure. In contrast, the Q-learning estimator of

β∗1 is asymptotically normally distributed in the regular case but non-normally distributed in the

non-regular case.

To make inference, we need to construct a consistent estimate of Ω. We propose to estimate Λ

and Ξ by Λ̂n ≡ Λ̂n(β̂sq) and Ξ̂n ≡ Ξ̂n(β̂sq), where

Λ̂n (β) =

(
Λ̂n,11 (β) Λ̂n,12 (β)

Λ̂′n,12 (β) Λ̂n,22 (β)

)
, Ξ̂n(β) =

(
Ξ̂n,11(β) [Ξ̂n,12,0(β), Ξ̂n,12,1(β)]

0k1×k2 Ξ̂n,22(β)

)
,

Λ̂n,11(β) = En
{
B1B

′
1[Y1 −B′1β1 +H ′20β20 +Kα(H ′21β21)H ′21β21]2

}
,

Λ̂n,12(β) = En
{
B1B

′
2[Y1 −B′1β1 +H ′20β20 +Kα(H ′21β21)H ′21β21](Y2 −B′2β2)

}
,

Λ̂n,22(β) = En
{
B2B

′
2(Y2 −B′2β2)2

}
.

Ξ̂n,11(β) = −En[B1B
′
1], Ξ̂n,22(β) = −En[B2B

′
2], Ξ̂n,12,0(β) = En[B1H

′
20], and

Ξ̂n,12,1(β) = En
{
B1H

′
21

[
1

α
kα(H ′21β21)H ′21β21 +Kα(H ′21β21)

]}
.

in which kα (z) = k (z/α) . Then we can estimate Ω by Ω̂n = Ξ̂−1
n Λ̂n(Ξ̂−1

n )′.

The following theorem establishes the consistency of Ω̂n.

Theorem 3.3 Suppose that Assumptions A1-A3 hold. Suppose that E[ ‖B1B
′
1‖ (‖Y1‖ + ‖B1‖ +

‖H20‖)] <∞, and E[ ‖B1B
′
1‖

2 ‖H21‖2] <∞. Then Ω̂n = Ω + oP (1).

11



3.4 Inference

Let k = k1 + k2 and c = (c′1, c
′
2)′ ∈ Rk1 × Rk2 . The asymptotic variance of

√
nc′(β̂sq − β∗) is given

by

σ2
c = c′Ξ−1Λ

(
Ξ−1

)′
c.

We estimate σ2
c by σ̂2

c ≡ c′Ξ̂−1
n Λ̂n(Ξ̂−1

n )′c. Theorem 3.3 implies consistency of σ̂2
c and the result

that Tn
d→ N(0, 1), where

Tn =
√
nc′(β̂sq − β∗)/σ̂c. (3.5)

It is interesting to observe that regardless of Pr
(
H ′21,iβ

∗
21 = 0

)
= 0 or not, the limiting dis-

tribution of the t-ratio Tn is the standard normal and inference on β∗, including the first stage

parameter β∗1 , is thus standard. In contrast, discontinuity of the asymptotic distribution of the

Q-learning estimator in the underlying DGP renders inference based on it difficult.

4 Optimal Choice of the Smoothing Parameter

In this section, we study the optimal choice of the smoothing parameter α. For this purpose, we

need to conduct a higher-order asymptotic analysis.

4.1 Higher Order Expansion

Following Linton (1995), we consider the scalar standardized quantities Tn and T0n :

T0n =
√
nc′(β̂sq − β∗)/σc and Sn =

√
n(σ̂c − σc)/σc. (4.1)

When c = ek,j , a k × 1 vector with 1 in its jth position and zeros elsewhere, T0n and Tn can be

regarded as infeasible and feasible test statistics respectively for testing the individual significance

of the jth coefficient in β.

By a Taylor expansion, we have T0n = T ∗0n +R∗0n, where

T ∗0n = −σ−1
c c′Ξ−1ξN + (nα)−1/2σ−1

c c′Ξ−1ξDΞ−1
n ξN − (nα)−1σ−1

c c′Ξ−1ξDΞ−1ξDΞ−1ξN

+(nα)−3/2σ−1
c c′Ξ−1ξDΞ−1ξDΞ−1ξDΞ−1ξN and

R∗0n = −(nα)−2σ−1
c c′[Ξ̂n(β̄)]−1ξDΞ−1ξDΞ−1ξDΞ−1ξDΞ−1ξN ,

in which ξN =
√
nEn[mn(β∗)] and ξD =

√
nα[Ξ̂n(β̄) − Ξ] with β lies between β∗ and β̂sq. See

Appendix A for details. We will show that the first term in T ∗0n contributes to the dominant bias

of T0n and the first two terms in T ∗0n contribute to the first and second order asymptotic variances

of T0n, respectively.
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To study the asymptotic bias and variance of Tn, we also need the expansion of Sn. We show

in Appendix A that

Sn =
−2c′Ξ−1ξ†DΩc−

√
αc′Ξ−1ξΛΞ−1′c

2σ2
c

+
2c′Ξ−1ξ†DΞ−1ξ†DΩc+ c′Ξ−1ξ†DΩξ†DΞ−1′c+ σ−2

c (c′Ξ−1ξ†DΩc)2

2
√
nασ2

c

+ oP ((nα)−1/2)

≡ S∗n + oP ((nα)−1/2), (4.2)

where ξΛ =
√
n(Λ̂n − Λ) and ξ†D =

√
nα(Ξ̂n − Ξ). Then we have Tn = T ∗n + oP ((nα)−1), where

T ∗n = −σ−1
c c′Ξ−1ξN + (nα)−1/2 σ−1

c c′Ξ−1ξDΞ−1
n ξN + (nα)−1/2σ−1

c c′Ξ−1ξNS
∗
n

− (nα)−1 σ−1
c c′Ξ−1

{
ξDΞ−1ξDΞ−1ξN −

ξDΞ−1ξNc
′Ξ−1ξ†DΩc

σ2
c

+
2ξN (c′Ξ−1ξ†DΩc)2

σ4
c

}
. (4.3)

We will show that the optimal bandwidth in terms of minimizing the asymptotic mean squared

error (MSE) of either T ∗0n or T ∗n is proportional to n−2/5.

Let Ω = Ξ−1ΛΞ−1′ =

(
Ω11 Ω12

Ω′12 Ω22

)
with Ωts being kt × ks for t, s = 1, 2. Similarly, partition

Ω̂n as

(
Ω̂n,11 Ω̂n,12

Ω̂′n,12 Ω̂n,22

)
. To state the next result, we add the following assumption.

Assumption A4. (i) E ‖Btεt‖8 < ∞ and E ‖BtB′t‖
8 < ∞ for t = 1, 2, and E ‖B1H2t‖8 < ∞ for

t = 0, 1.

(ii) k (·) is continuously differentiable and its first order derivative has bounded variation.

A4(i) strengthens the moment conditions on Btεt, BtB
′
t, and B1H2t. A4(ii) imposes additional

conditions on k (·) .

Theorem 4.1 Suppose that α ∝ n−2/5. Suppose that Assumptions A1-A2, A3(i), and A4 hold.

Let the additional moment conditions in Theorem 3.3 hold. Then

(i) T0n and T ∗0n have the same distribution to order n−3/5 in the sense supu |P (T0n ≤ u)−P (T ∗0n
≤ u)| = o

(
n−3/5

)
;

(ii) E[T ∗0n] = −
√
nα4σ−1

c c′Ξ−1B + o
(
n−3/10

)
and Var[T ∗0n] = 1 + (nα)−1 σ−2

c c′Ξ−1Φ0Ξ−1′c

+o
(
n−3/5

)
;

(iii) E[T ∗n ] = −
√
nα4σ−1

c c′Ξ−1B+o
(
n−3/10

)
and Var[T ∗n ] = 1+(nα)−1 σ−2

c c′Ξ−1ΦΞ−1′c +o
(
n−3/5

)
,
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where

B =

(
α−2E {B1 [Kα(H ′21β

∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+]}

0k2×1

)
= O (1) ,

Φ0 =

(
αE
[
η̄1 (β∗21) Ω22η̄1 (β∗21)′

]
0k1×k2

0k2×k1 0k2×k2

)
= O (1) , and

Φ = Φ0 + ασ−4
c E[η∗1 (β∗21)]2Λ + ασ−2

c E[η∗1 (β∗21) η∗∗1 (β∗21) Λ + Λη∗∗1 (β∗21)′ η∗1 (β∗21)] = O (1) ,

in which

η̄1 (β21) ≡ η̄1 (H21;β21) = η1 (β21)− E [η1 (β21)] ,

η1 (β21) ≡ η1(H21;β21) = [0k1×k20 , B1H
′
21 ×

1

α
kα(H ′21β21)H ′21β21],

η∗1 (β21) = c′Ξ−1

(
0k1×k1 η̄1(β21)

0k2×k1 0k2×k2

)
Ωc = c′1Ξ−1

11 η̄1 (β21)
[
Ω′12c1 + Ω22c2

]
, and

η∗∗1 (β21) =

(
0k1×k1 η̄1(β21)

0k2×k1 0k2×k2

)
Ξ−1 =

(
0k1×k1 η̄1 (β21) Ξ−1

22

0k2×k1 0k2×k2

)
.

Remark. Theorem 4.1 implies that Tn and T0n share the same dominant asymptotic bias term

that is O(
√
nα4) = O

(
n−3/10

)
while they have different asymptotic variances up to the order

(nα)−1 = O
(
n−3/5

)
. From Lemma A.1 in Appendix A, we know that Var

(
ξDΞ−1ξN

)
= Φ0 + o (1)

and Var
(
ξDΞ−1ξN + σ−2

c c′Ξ−1ξ†DΩcξN

)
= Φ+o (1). The second term in the last variance operator

reflects the cost for estimating the asymptotic variance σ2
c .

To sum up, we have shown that the mean squared errors of T0n and Tn are approximately given

by

MSE0 (α) = 1 + nα4σ−2
c

(
c′Ξ−1B

)2
+ (nα)−1 σ−2

c c′Ξ−1Φ0Ξ−1′c and (4.4)

MSE (α) = 1 + nα4σ−2
c

(
c′Ξ−1B

)2
+ (nα)−1 σ−2

c c′Ξ−1ΦΞ−1′c. (4.5)

4.2 Optimal Bandwidths

The approximate mean squared errors of T0n and Tn are given in (4.4) and (4.5) respectively. They

depend on the smoothing parameter through the approximate bias of order nα4 and approximate

variance of order (nα)−1. The optimal bandwidth for either T0n or Tn balances the corresponding

two terms in (4.4) or (4.5) under an additional assumption stated below.

Assumption A5. For c in (3.5) and (4.1), it holds that c′Ξ−1B 6=0.

Assumption A5 ensures that the approximate bias for T0n and for Tn are non-zero. We can

then choose α to minimize either MSE0 (α) or MSE(α) to obtain the respective solution

α∗0 =

[
c′Ξ−1Φ0Ξ−1′c

4 (c′Ξ−1B)2

]1/5

n−2/5 or α∗ =

[
c′Ξ−1ΦΞ−1′c

4 (c′Ξ−1B)2

]1/5

n−2/5.
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Since α∗0 and α∗ depend on some unknown quantities, namely, Ξ, Φ0, Φ, and B, they are not

feasible. To obtain a feasible version of α∗0 or α∗, we need to estimate these quantities.

Let β̂21 be a consistent estimator of β∗21 that is not affected by the smoothing procedure. A

rule of thumb (RoT) choice of the bandwidth is to set α = sn−2/5, where s denotes the sample

standard deviation of H ′21β̂21. We can use this bandwidth as the pilot bandwidth and obtain the

smoothed Q-learning estimator β̂sq = (β̂′1,sq, β̂
′
2)′. Let Ξ̂n and Λ̂n be defined as in the previous

subsection. We propose to estimate Φ0, Φ, and B consistently by

Φ̂0n =

(
αEn[η̂1(β̂21)Ω̂n,22η̂1(β̂21)′] 0k1×k2

0k2×k1 0k2×k2

)
,

Φ̂n = Φ̂0n + ασ−4
c En[η̂∗1(β̂21)]2Λ̂n + ασ−2

c En[η̂∗1(β̂21)η̂∗∗1 (β̂21)Λ̂n + Λ̂nη̂
∗∗
1 (β̂21)′η̂∗1(β̂21)], and

B̂n =

(
α−2En[B1{Kα(H ′21β̂21)H ′21β̂21 − (H ′21β̂21)+}]

0k2×1

)
,

respectively, where

η̂1(β̂21) = η1(β̂21)− En[η1(β̂21)],

η̂∗1(β̂21) ≡ η̂∗1(H21; β̂21) = c′1Ξ̂−1
n,11η̂1(β̂21)[Ω̂′n,12c1 + Ω̂n,22c2], and

η̂∗∗1 (β̂21) ≡ η̂∗∗1 (H21; β̂21) =

[
0k1×k1 η̂1(β̂21)Ξ̂−1

n,22

0k2×k1 0k2×k2

]
.

Notice that η̂1(β̂21) can be replaced by η1(β̂21) without affecting the consistency of Φ̂0n, Φ̂n, and

B̂n. Then a feasible optimal bandwidth is given by

α̂∗0 =

c′Ξ̂−1
n Φ̂0nΞ̂−1′

n c

4
(
c′Ξ̂−1

n B̂n
)2


1/5

n−2/5 or α̂∗ =

c′Ξ̂−1
n Φ̂nΞ̂−1′

n c

4
(
c′Ξ̂−1

n B̂n
)2


1/5

n−2/5. (4.6)

We will examine the finite sample performance of the smoothed Q-learning estimators based on

the RoT bandwidth, α̂∗0, and α̂∗ in the next section. Note that α̂∗0 is also optimal in terms of

minimizing the MSE of c′β̂sq.

Remark. The optimal bandwidths and their data-driven choices in (4.6) depend critically on

Assumption A5 which may fail for some DGPs, e.g., when fD (0) = 1. To accommodate such

cases, we propose the following data-driven bandwidth choices. If α̂∗0 or α̂∗ exceeds a large positive

constant, we use RoT ; otherwise we use α̂∗0 or α̂∗. Simulation results in the next section indicate

that they work well.
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5 A Simulation Study

In this section, we present some simulation results on the finite sample performances of several

existing estimators and CIs, and compare them with our smoothed Q-learning estimators and the

associated Wald-type CIs.

5.1 The Data Generating Process

The simulation design we use is adapted from Chakraborty, Murphy, and Strecher (2010). For

notational simplicity, we follow the notation in Chakraborty, Murphy, and Strecher (2010) in this

section. Without loss of generality, we assume Y1 = 0 and Y2 is generated as

Y2 = γ1 + γ2X1 + γ3A1 + γ4X1A1 + γ5A2 + γ6X2A2 + γ7A1A2 + ε2,

where ε2 ∼ N(0, 1) and is independent of all the covariates in the above model. We consider binary

treatments randomized with probability 1/2, i.e., P (At = 0) = P (At = 1) = 1/2, t = 1, 2. The

binary covariates Xt’s are generated as P (X1 = −1) = P (X1 = 1) = 1/2 and P (X2 = 1|X1, A1) =

1− P (X2 = −1|X1, A1) = expit(δ1X1 + δ2A1), where expit(x) = ex/(1 + ex).

Recall that H1 = X1 and H2 = (X1, A1, X2). Under the above DGP, we have

Q2(H2, A2) = γ1 + γ2X1 + γ3A1 + γ4X1A1 + (γ5 + γ6X2 + γ7A1)A2,

and

Q1(H1, A1) = E[Y1 + max
a2∈{0,1}

Q2(H2, a2)|H1, A1]

= γ1 + γ2X1 + γ3A1 + γ4X1A1 + E{[γ5 + γ6X2 + γ7A1]+|X1, A1}.

It is shown in Appendix B that Q1(H1, A1) for the above DGP is equivalent to the following linear

function:

Q1(H1, A1) = ψ1 + ψ2X1 + (ψ3 + ψ4X1)A1,

where

ψ1 = γ1 +
a1 + a3

2
, ψ2 = γ2 +

a3 − a1

2

(
2expit(δ1)− 1

)
,

ψ3 = γ3 −
a1 − a2 + a3 − a4

2
+
a4 − a2

2

(
expit(−δ1 + δ2) + expit(δ1 + δ2)− 1

)
, and

ψ4 = γ4 +
a3 − a1

2

(
1− 2expit(δ1)

)
+
a4 − a2

2

(
− expit(−δ1 + δ2) + expit(δ1 + δ2)

)
,

in which a1 = [γ5 − γ6]+, a2 = [γ5 − γ6 + γ7]+, a3 = [γ5 + γ6]+, and a4 = [γ5 + γ6 + γ7]+. In

the above DGP, the stage 2 treatment effect is represented by γ5 + γ6X2 + γ7A1, and the stage 1

treatment effect is represented by ψ3 + ψ4X1. We focus on ψ3 and ψ4.
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Recall that Z = γ5+γ6X2+γ7A1. Using the notation in Section 3.2, we have fD (z) = P (Z = z).

Define the “standardized effect size” as φ = |µZ |/σZ , where µZ = E[Z] and σZ =
√

Var(Z). We

consider the following six designs.

Design 1 (fD (0) = 0, φ = 0.959): Consider a completely regular setting where there is a

reasonably large stage 2 treatment effect for every subject in the population. This is achieved

by setting γ1 = γ2 = γ3 = γ4 = 1, γ5 = 0.25, γ6 = γ7 = 0.5, and δ1 = δ2 = 0.5. In this case,

ψ3 = 1.491 and ψ4 = 1.024.

Design 2 (fD (0) = 0, φ undefined): Consider a setting where there is a very weak positive

stage 2 treatment effect for every subject in the population. This is achieved by setting γ1 = γ2 =

γ3 = γ4 = 1, γ5 = 0.01, γ6 = γ7 = 0, and δ1 = δ2 = 0.5. In this case, ψ3 = ψ4 = 1. This is a

regular but close to non-regularity setting.

Design 3 (fD (0) = 0, φ = 1.04): Consider a setting where there is a very weak positive stage

2 treatment effect for half of the population, but a reasonably large positive effect for the other half

of the population. This is achieved by setting γ1 = γ2 = γ3 = γ4 = 1, γ5 = 0.01, γ6 = 0, γ7 = 0.5,

and δ1 = δ2 = 0.5. In this case, ψ3 = 1.5 and ψ4 = 1. This is a regular but close to non-regular

setting.

Design 4 (fD (0) = 1/2, φ = 1): Consider a setting where there is no stage 2 treatment effect

for half of the population, but a reasonably large positive effect for the other half of the population.

This is achieved by setting γ1 = γ2 = γ3 = γ4 = 1, γ5 = γ6 = 0, γ7 = 1, and δ1 = δ2 = 0.5. In this

case, ψ3 = 2 and ψ4 = 1. This is a non-regular setting.

Design 5 (fD (0) = 1/2, φ = 1): Consider a setting where there is no stage 2 treatment effect

for half of the population, but a reasonably large negative effect for the other half of the population.

This is achieved by setting γ1 = γ2 = γ3 = γ4 = 1, γ5 = γ6 = 0, γ7 = −1, and δ1 = δ2 = 0.5. In

this case, ψ3 = ψ4 = 1. This is a non-regular setting.

Design 6 (fD (0) = 1, φ undefined): Consider a setting where there is no stage 2 treatment

effect for any subject. This is achieved by setting γ1 = γ2 = γ3 = γ4 = 1, γ5 = γ6 = γ7 = 0, and

δ1 = δ2 = 0.5. In this case, ψ3 = ψ4 = 1. This is a fully non-regular scenario.

5.2 Estimators, CIs, and Simulation Results

We consider seven estimators of (ψ3, ψ4)′: the smoothed Q-learning estimator with three different

bandwidth choices and with the Gaussian kernel, the Q-learning estimator, the hard-thresholding

(HT) estimator of Moodie and Richardson (2010), and the soft-thresholding (ST) estimator of

Chakraborty et al. (2010). In the hard- and soft-thresholding methods, the predicted future
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rewards following the optimal policy are defined as

Ỹ HT
1i = Y1i +H ′20,iβ̂20 + [H ′21,iβ̂21]+1


√
n[H ′21,iβ̂21]+√
H ′21,iΣ̂21H21,i

≥ z1−a
2

 ,

and

Ỹ ST
1i = Y1i +H ′20,iβ̂20 + [H ′21,iβ̂21]+

[
1−

3H ′21,iΣ̂21H21,i

n(H ′21,iβ̂21)2

]
+

,

respectively, where Σ̂21 is the estimated covariance matrix of β̂21, z1−a/2 is the 1 − a/2 quantile

of the standard normal distribution. In our simulation, we follow Moodie and Richardson (2010)

to consider two choices of the tuning parameter a, 0.08 and 0.20, and denote the corresponding

hard-thresholding methods as HT0.08 and HT0.20.

Since both hard- and soft-thresholding estimators still involve non-smooth functions of β̂21, they

suffer from the same problem as the original Q-learning estimator as far as statistical inference

is concerned. We compare eight CIs: the first three are Wald-type CIs constructed from our

smoothed Q-learning estimators; the fourth one is the FACI in Laber et al. (2013); and the last

four are centered bootstrap percentile CIs based on the last four estimators respectively. For each

estimator, we report its bias and MSE. For each CI, we report its coverage probability (CP) and

interval length (IL).

In our simulation, we consider two sample sizes, 200 and 1000, with 10, 000 replications and 500

bootstrap replications. Tables 1 and 2 present results for ψ3, while Tables 3 and 4 present results

for ψ4. Like Chakraborty et al. (2010), we find that all estimators and CIs perform reasonably

well for ψ4 and for all designs. So we focus our discussion below on Tables 1 and 2 for ψ3. We

first summarize the performances of the estimators and CIs for each design and then offer some

general observations from Tables 1 and 2.

< −−−−−− Table 1 and Table 2 Here−−−−−− >

Design 1 (p0 = 0, φ = 0.959) is a completely regular setting, so we expect the Q-learning

and our smoothed Q-learning algorithms to perform well. (i) In terms of the bias and MSE, the

Q-learning and our smoothed Q-learning estimators perform better than the threshold estimators

for both sample sizes except when n = 200 in which case the soft-thresholding estimator has the

smallest MSE. (ii) In terms of the CP, all the CIs are comparable, except that the ST CI under-

covers when n = 1000. (iii) In terms of the IL, the Q-learning and our smoothed Q-learning CIs

are tighter. Considering all the performance measures and the cost of computation, the three

smoothed Q-learning estimators emerged as the best.8

8For example, on a computer with Intel 2.00 GHz processor, when n = 1, 000, our smoothed Q-learning method
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Design 2 (p0 = 0, φ undefined) is a regular setting with a very weak positive stage 2 treatment

effect for every subject in the population. This setting is close to the fully non-regular setting.

Several observations emerge from results in Tables 1 and 2. (i) The ST estimator dominates the

rest in terms of bias for both sample sizes. However, the Q-learning and our smoothed Q-learning

estimators dominate in terms of MSE for both sample sizes. (ii) In terms of the CP, although all

CIs over-cover, the soft-thresholding CI produces coverage rate closer to the nominal rate, followed

by the Q-learning and our smoothed Q-learning CIs. (iii) In terms of the IL, the Q-learning CI

is the tightest, followed by the soft-thresholding and our smoothed Q-learning CIs. Overall, the

soft-thresholding, the Q-learning and our smoothed Q-learning methods are comparable, but the

smoothed Q-learning methods are less costly computationally.

Design 3 (p0 = 0, φ = 1.04) is a regular setting with a very weak positive stage 2 treatment

effect for half of the population, but a reasonably large positive effect for the other half of the

population. Qualitatively the performances of the estimators and CIs are similar to those in

Design 1. (i) In terms of the bias, all estimators except the ST estimator are comparable for the

smaller sample, and the two hard-thresholding estimators have the smallest biases for the larger

sample size. (ii) In terms of the MSE, the Q-learning and our smoothed Q-learning estimators

dominate for the smaller sample size, and the hard-thresholding estimators improve greatly as the

sample size increases. (iii) In terms of the CP, the FACI and HT0.08 CIs have better coverage

rates for the smaller sample. The smoothed Q-learning CI with bandwidth α̂∗ and the HT0.20 CI

have better coverage rates for the larger sample. The CIs based on the Q-learning method and

the soft-thresholding method severely under-cover for both sample sizes. (iv) In terms of the IL,

our smoothed Q-learning CIs are in general tighter. In sum, our smoothed Q-learning algorithm

with bandwidth α̂∗ and the HT0.20 method perform the best.

Design 4 (p0 = 1/2, φ = 1) is a non-regular setting with no stage 2 treatment effect for

half of the population, but a reasonably large positive effect for the other half of the population.

Qualitatively the performances of the estimators and CIs are similar to Design 3 with the smoothed

Q-learning method using bandwidth α̂∗ and the HT0.08 method emerging as the winners.

Design 5 (p0 = 1/2, φ = 1) is a non-regular setting with no stage 2 treatment effect for half

of the population, but a reasonably large negative effect for the other half of the population. (i)

The soft-thresholding estimator has the smallest bias and MSE for both sample sizes. (ii) In terms

of the CP and IL, our smoothed Q-learning methods and the threshold methods are in general

comparable. The Q-learning CI severely under-covers. In this design, the soft-thresholding method

appears to be the best, followed by our smoothed Q-learning method with bandwidth α̂∗ and the

HT0.20 method.

takes less than 4 minutes for 10, 000 repetitions with 10 parallel R workers. In the same setup, the HT0.20 method

takes about 11.7 hours. The computation time for all other methods using bootstrap are similar to that of the

HT0.20 method.
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Design 6 (p0 = 1, φ undefined) is a fully non-regular setting with no treatment effect for any

subject in stage 2. Qualitatively the performances of the estimators and CIs are similar to those

in Design 2. (i) The soft-thresholding estimator dominates in terms of the bias for both sample

sizes. The Q-learning and our smoothed Q-learning estimators dominate in terms of the MSE for

both sample sizes. (ii) In terms of the CP, all the CIs over-cover, but the soft-thresholding CI,

the Q-learning, and our smoothed Q-learning CIs have better CPs than the hard-thresholding and

FACI CIs. The Q-learning CI has the shortest length. Consider all the performance measures, the

Q-learning method, our smoothed Q-learning method, and the soft-thresholding method are the

winners.

To sum up, the Q-learning method has the shortest CIs for all the designs, but severely under-

covers in Designs 3, 4, and 5. The soft-thresholding method also severely under-covers in Designs

3 and 4. The FACI is in general valid but can be very conservative. In term of the MSE, the

hard-thresholding estimators and our smoothed Q-learning estimators are comparable for all the

designs. In terms of the CP, the hard-thresholding CIs over-cover more than our smoothed Q-

learning CIs in Designs 2 and 6. Our smoothed Q-learning method, especially the one using the

bandwidth α̂∗, and the associated Wald CI perform the best for the designs considered in terms

of MSE, CP, and IL. Moreover it is the least costly computationally.

6 An Empirical Application: Analysis of the CATIE-AD Data

In this section, we study the optimal dynamic treatment regime for the Alzheimer’s Disease,

using data from the Clinical Antipsychotic Trials of Intervention Effectiveness-Alzheimer’s Disease

(CATIE-AD) study. This NIMH funded study aims to assess the effectiveness of the second-

generation antipsychotic drugs (olanzapine, quetiapine, and risperidone) in treating delusions,

hallucinations, aggression, and agitation for patients with Alzheimer’s disease.

There are four phases in this 36 weeks’ study, with double-blind Phases I and II, an open-label

Phase III, and an open-choice Phase IV. In Phase I, patients were randomly assigned to receive

either one of the three drugs or placebo. At Week 12, the investigator decided whether the current

medication was optimal or if it would be more beneficial to try another randomized medication.

If the original medication was continued, the patient remained in Phase I, otherwise the patient

proceeded to Phase II. The patient could further proceed to Phases III and IV later on at the

investigator’s discretion. A detailed description of the study design and primary analysis can be

found in Schneider et al. (2001) and Schneider et al. (2006).

For the purpose of estimating the optimal dynamic treatment regime, we focus on two-stage

treatment and define the two stages for a patient as follows: if the patient takes the same medication

throughout the study, then his/her Stage 1 is defined as the first 12 weeks, and Stage 2 is defined
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as the remaining 24 weeks. If the patient ever changes the type of medication, then his/her Stages

1 and 2 correspond to Phases I and II in the study. In the empirical analysis, first, we include

three covariates: (i) the Neuropsychiatric Inventory (NPI), which measures the level of delusion

and hallucination, with a higher score indicating a worse condition of the patient; (ii) age; (iii)

gender, with female to be 0 and male to be 1, and there are 125 male and 171 female out of 296

patients. Second, we choose the Clinical Global Impression of Change (CGIC, on a 1-7 scale) as

the dependent variable. We negate the original CGIC score so that a higher score represents a

better outcome. Third, the treatment variable is defined as At = 1, t = 1, 2 if the patient takes

olanzapine and 0 otherwise.9 In Stage 1, there are 70 patients taking olanzapine and 226 otherwise.

In Stage 2, there are 60 patients taking olanzapine and 236 otherwise.

We are primarily interested in estimating the optimal dynamic treatment regime so that proper

guidance is available to provide personalized treatment decision. The Q-functions are specified as

Qt(Ht, At) = βt0,0 + βt0,1NPIt + βt0,2Age + βt0,3Gender

+ (βt1,0 + βt1,1NPIt + βt1,2Age + βt1,3Gender)At, t = 1, 2.

The estimation results are summarized in Tables 5 and 6. Stage 2 is a standard linear regression,

and its estimated parameters are qualitatively similar to those of Stage 1 for the same covariates.

We thus focus on Stage 1 for discussion.

From Table 6, it is clear that the point estimates from different methods are very close. In

terms of lengths of confidence intervals, our smoothed Q CIs dominate all others in 4 out of

8 parameters of interest, and the soft-threshold CI dominates all others in the rest 4 out of 8

parameters of interest. As in the simulation results, the length of the FACI confidence interval is

relatively conservative, with the longest interval lengths for all parameters of interest.

< −−−−−− Tables 5 and 6 Here−−−−−− >

Next, given the similarity of estimated parameters across different methods, we focus on those

of the smoothed Q-learning method with bandwidth α̂∗ for interpretation. First, NPI has a

statistically significant negative main effect, which indicates that given any treatment status, a

higher score of NPI leads to a lower CGIC score. From the estimate of the interaction term

9This definition of treatment variable is due to two reasons. First, in the design of the study, patients who

take drugs in the Stage 1 does not have the choice of switching to placebo in Stage 2. This does not allow us

to define treatment variable as 1 if the patient takes one of the drugs and 0 for placebo, as this will violate the

sequential randomization assumption. Second, previous studies found that olanzapine is more effective in treating

Schizophrenia (see Tran et al.(1997)), we are interested if olanzapine is also more effective than other drugs in

treating the Alzheimer’s Disease.
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between NPI and treatment, we find that olanzapine is more effective in reducing the symptoms

of Alzheimer’s Disease for a patient with a higher NPI score. Second, we do not find a statistically

significant main effect of age, but the estimate of the interaction term between age and treatment

suggests that olanzapine tends to be more effective for a younger patient. Third, male tends to

have a lower CGIC score given that he suffers from the Alzheimer’s Disease. From the estimate

of the interaction term between gender and treatment, we find that olanzapine tends to be more

effective for female patients than male patients. Fourth, the treatment tends to have a positive

main effect, although it is not statistically significant. This is consistent with the previous finding

in Tran et al. (1997) that olanzapine is more effective than risperidone in treating Schizophrenia.

Finally, the estimated optimal DTR for the both stages (using α̂∗ for Stage 1) are given by

πdp2 (h2) = 1 {3.904 + 0.004NPI2 − 0.051Age− 0.874Gender ≥ 0} ,

πdp1 (h1) = 1 {2.539 + 0.026NPI1 − 0.046Age− 0.041Gender ≥ 0} .

As an illustration, we consider the treatment prescriptions for the average patient10 in each gender

group, which is summarized in Table 7. For the average female patient in our sample, it is suggested

not to use olanzapine in Stage 1 and to use olanzapine in Stage 2. For the average male patient in

our sample, it is suggested not to use olanzapine in both stages. In general, the above estimated

optimal dynamic treatment regime allows the clinician to prescribe a treatment based on NPI

score, age, and gender in each stage.

< −−−−−−−− Table 7 Here−−−−−−−− >

7 Concluding Remarks

In this paper, we have proposed a smoothed Q-learning algorithm for estimating optimal dynamic

treatment regimes. Under assumptions in Section 3, we have established asymptotic properties

of the smoothed Q-learning estimator and developed valid Wald-type inference procedures for

parameters in the unknown Q-functions. In a simulation study investigating the finite sample

performance of several estimators and CIs, the smoothed Q-learning estimators and the associated

Wald-type CIs perform favorably in terms of accuracy, computational simplicity, and robustness to

the degree of non-regularity. We illustrate the new method by analyzing the data from the CATIE-

AD study. The estimated optimal dynamic treatment regime allows the clinician to recommend

treatment based on the NPI score, age, and gender. We find that olanzapine is in general more

effective than other medications in reducing symptoms associated with the Alzheimer’s Disease. In

particular, olanzapine tends to be more effective for a patient with a higher NPI score, and more

10An average patient refers to a hypothetical one with each covariate to be at the sample mean.
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effective for female patients than for male patients. We do not find any statistically significant age

effect.

Like other methods, the smoothed Q-learning algorithm has straightforward extensions to

more complex dynamic treatment regimes such as dynamic treatments involving multiple stages

and multi-valued treatments. One important and also challenging extension is statistical inference

for the value of the optimal treatment, see Chakraborty and Moodie (2013) for a discussion on the

technical challenges involved. We hope that the technique of smoothing an otherwise non-smooth

function in the parameter of interest may simplify the task of developing valid inference for the

value function. This is beyond the scope of this paper, but currently under investigation by the

authors.
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APPENDIX

A Proof of The Main Results

We adopt the standard notation in the empirical process literature (e.g., van der Vaart, 1998): For

any K-dimensional random function g :W → RK , we define

En [g] = En [g (W )] =
1

n

n∑
i=1

g (Wi) , and

Gn [g] = Gn [g (W )] = n−1/2
n∑
i=1

{g (Wi)− E [g (Wi)]}.

Let C denote a generic large positive constant that may vary across lines. We also use C1, C2, ...

to denote finite positive constants.

Proof of Theorem 3.1. Let Mn (β) = En[mn(β)] = 1
n

∑n
i=1mn (Wi;β) , where mn(W ;β) =

(m1n(W ;β)′,m2(W ;β)′)′, m1n(W ;β) = B1 [Y1 +H ′20β20 +Kα(H ′21β21)H ′21β21 −B′1β1] , andm2(W ;

β) = B2(Y2 −B′2β2). Note that Mn(β̂sq) = 0, where β̂sq = (β̂1,sq, β̂2)′. Let

M (β) ≡ E [m (β)] = E [m (W ;β)] ,

wherem(W ;β) = (m1(W ;β)′,m2(W ;β)′)′ andm1(W ;β) = B1 [Y1 +H ′20β20 + (H ′21β21)+ −B′1β1] .

Note that E [m(W ;β)] = 0 if and only if β = β∗ = (β∗′1 , β
∗′
2 )′ under Assumption A2(i), where

β∗1 =
(
E
[
B1B

′
1

])−1 E[B1

(
Y1 +H ′20β

∗
20 + (H ′21β

∗
21)+

)
], and β∗2 =

(
E
[
B2B

′
2

])−1 E[B2Y2]. (A.1)

By Theorem 5.9 in van der Vaart (1998), the claim in the theorem follows if we can show that

sup
β∈B
‖Mn (β)−M (β)‖ = oP (1) . (A.2)

We prove (A.2) by showing that (i) supβ∈B ‖Mn (β)− E[Mn (β)]‖ = oP (1) and (ii) supβ∈B ||E[Mn (β)]−
M (β) || = o (1) .

To show (i), we consider a class of functions

M1 =

{
mβ : mβ (w) =

(
m1β (y1, b1, h20, h21)

m2β (y2, b2)

)
, β ∈ B

}
,

wherem1β (y1, b1, h20, h21) = b1 [y1 + h′20β20 +K(h′21β21/α)h′21β21 − b′1β1] , andm2β (y2, b2) = b2(y2−
b2β2). Note that the functions in M are composed of the classes of functions

M1,1 =
{
b1
[
y1 + h′20β20 − b′1β1

]
: β1 ∈ B1, β20 ∈ B20

}
,

M1,2 =
{
h′21β21 : β21 ∈ B21

}
,

M1,3 =
{
K(h′21β21/α) : β21 ∈ B21

}
,

M1,4 =
{
b2
[
y2 − b′2β2

]
: β2 ∈ B2

}
.
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By Lemma 2.13 in Pakes and Pollard (1989), M1,1, M1,2 and M1,4 are all Euclidean class

of functions with envelopes respectively given by C(‖b1y1‖ + ‖b1h20‖ + ‖b1b′1‖), C ‖h21‖ , and

C(‖b2y2‖ + ‖b2b′2‖). By Lemma 22 in Nolan and Pollard (1987), M1,3 is also Euclidean for a

constant envelope. As a result, M is Euclidean by Lemma 2.14 in Pakes and Pollard (1989). In

addition, one can readily check that mβ (W ) has an envelope function that can be written as the

summation of two terms: one is not associated withM1,3 and has finite first moment, and the other

is associated withM1,3 and has finite second moment. Then by Theorem 37 in Pollard (1984, p.34)

which allows the function class to be n-dependent11 and Lemma 2.8 in Pakes and Pollard (1989)

which does not consider n-dependent function class, we have supβ∈B ‖Mn (β)− E[Mn (β)]‖ = o (1)

almost surely, implying (i).

Next, we show that

sup
β∈B
‖E[Mn (β)−M (β)‖ = sup

β∈B

∥∥∥E[B1

[
H ′21β21Kα(H ′21β21)−

(
H ′21β21

)
+

]∥∥∥ = o (1) .

Let g1 (z;β21) =
∫ z
−∞ r1 (s;β21) sfC (s;β21) ds and g

(1)
1 (z;β21) = dg1 (z;β21) /dz = r1 (z;β21) zfC(z;

β21). By Assumption A1(iii),

E
{
B1

[
H ′21β21Kα(H ′21β21)−

(
H ′21β21

)
+

]}
= E

{
r1

(
H ′21β21;β21

) [
H ′21β21Kα(H ′21β21)−

(
H ′21β21

)
+

]}
= (1− p

β21
)

∫ ∞
−∞

r1 (z;β21)
[
zK(

z

α
)− z+

]
fC (z;β21) dz

+ p
β21

∑
zd

r1 (zd;β21)
[
zdK(

zd
α

)− (z
d
)+

]
fD (zd;β21)

≡ (1− p
β21

)IC (β21) + p
β21
ID (β21) , say.

11M1,3 here is n-dependent through the bandwidth parameter α.
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For the first term, we have

IC (β21) =

∫ ∞
−∞

r1 (z;β21) zfC (z;β21)
[
K(

z

α
)− 1 {z ≥ 0}

]
dz

=

∫ ∞
−∞

[
K(

z

α
)− 1 {z ≥ 0}

]
dg1 (z;β21)

= −
∫ ∞
−∞

g1 (z;β21) d
[
K(

z

α
)− 1 {z ≥ 0}

]
= − 1

α

∫ ∞
−∞

g1 (z;β21) k(
z

α
)dz + g1 (0;β21)

= −
∫ 1

−1
[g1(uα;β21)− g1 (0;β21)] k(u)du

= −α
∫ 1

0

∫ 1

−1
g

(1)
1 (tuα;β21)uk(u)dudt,

where the second line follows from the change of variables, the third line from integration by parts,

and the last line follows from a first order Taylor series expansion with an integral remainder and

the fact that
∫ 1
−1 uk (u) du = 0 under Assumption A3(i).

Next, we note that

ID (β21) =
∑
zd>0

r1 (zd;β21) zd

[
K(

zd
α

)− 1
]
fD (z;β21) +

∑
zd<0

r1 (zd;β21) zdK(
zd
α

)fD (z;β21) .

For any fixed zd > 0, K( zdα ) = 1 for sufficiently small α when n is large enough as k (·) has

compact support [−1, 1]. This ensures the first term in the last expression to vanish in large

samples. Similarly, for any fixed zd < 0, K( zdα ) = 0 for sufficiently small α when n is large enough,

ensuring the second term to vanish in large samples. As a result, ID (β21) = 0 uniformly in β21

when n is sufficiently large. It follows that for sufficiently large n,

sup
β21∈B21

∥∥∥E{B1

[
H ′21β21Kh(H ′21β21)−

(
H ′21β21

)
+

]}∥∥∥
= sup

β21∈B21
(1− p

β21
) ‖IC (β21)‖ ≤ α sup

β21∈B21

∥∥∥∥∫ 1

0

∫ 1

−1
g

(1)
1 (tuα;β21)uk(u)dudt

∥∥∥∥
= α2 sup

β21∈B21

∥∥∥∥∫ 1

0
t

∫ 1

−1
r1 (tuα;β21) fC (tuα;β21)u2k(u)dudt

∥∥∥∥
→ α2 sup

β21∈B21
‖r1 (0;β21) fC (0;β21)‖

∫ 1

−1
u2k(u)du = O

(
α2
)
,

where the convergence follows from the dominated convergence theorem (DCT) and Assumptions

A1(iv) and A3. �

Proof of Theorem 3.2. Expanding En[mn(β̂sq)] around β∗ yields

0 = En[mn(β̂sq)] = En[mn(β∗)] + En[∇β′mn(β̄)](β̂sq − β∗), (A.3)
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where β̄ lies between β̂sq and β∗ element by element. We prove the theorem by showing that

(i)
√
nEn[mn(β∗)]

d→ N (0,Λ) , (ii) Ξn ≡ E[∇β′mn(β∗)] = Ξ + o (1) , and (iii) En[∇β′mn(β̄)] =

E[∇β′mn(β∗)] + oP (1) . Then we have

√
n(β̂sq − β∗) = −

[
En[∇β′mn(β̄)]

]−1√
nEn[mn(β∗)]

d→ N
(
0,Ξ−1ΛΞ−1′)

as Ξ is nonsingular under Assumption A2(i).

Step 1. We first prove (i)
√
nEn[mn(β∗)]

d→ N (0,Λ) .Note that
√
nEn[mn(β∗)] = Gn[mn(β∗)]+

√
nE[mn(β∗)]. Observe that

√
nE[mn(β∗)] =

( √
nE[m1n(β∗)]
√
nE[m2(β∗)]

)
=

( √
nE[m1n(β∗)]

0

)
.

In view of the fact that Q1 (H1, A1;β∗1) = B′1β
∗
1 is the population least squares projection of

Y1 +H ′20β
∗
20 + (H ′21β

∗
21)+ on (H1, A1) and B1 = (H ′10, A1H

′
11)′ , we have

E
{
B1

[
Y1 +H ′20β

∗
20 + (H ′21β

∗
21)+ −B′1β∗1

]}
= 0.

It follows that

√
nE[m1n(β∗)] =

√
nE
{
B1

[
Y1 +H ′20β

∗
20 +Kα(H ′21β

∗
21)H ′21β

∗
21 −B′1β∗1

]}
=
√
nE
{
B1

[
Kα(H ′21β

∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+

]}
.

Following the analysis of E {B1 [Kα(H ′21β21)H ′21β21 − (H ′21β21)+]} in the proof of Theorem 3.1, for

sufficiently large n,

√
nE[m1n(β∗)] =

√
nE
{
B1

[
Kα(H ′21β

∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+

]}
=
√
n(1− p)IC (β∗21) =

√
n(1− p)O

(
α2
)

= o (1) by Assumption A3(ii). (A.4)

Next, we calculate the second moment of mn(β∗). Observe that

Λn ≡ E
[
mn(β∗)mn(β∗)′

]
=

(
E [m1n(β∗)m1n(β∗)′] E [m1n(β∗)m2(β∗)′]

E [m2(β∗)m1n(β∗)′] E [m2(β∗)m2(β∗)′]

)
≡

(
Λn,11 Λn,12

Λ′n,12 Λ22

)
,

where

Λn,11 = E
{
B1B

′
1[Y1 −B′1β∗1 +H ′20β

∗
20 +Kα(H ′21β

∗
21)H ′21β

∗
21]2
}
,

Λn,12 = E
{
B1B

′
2[Y1 −B′1β∗1 +H ′20β

∗
20 +Kα(H ′21β

∗
21)H ′21β

∗
21][Y2 −B′2β∗2 ]

}
,

Λ22 = E
{
B2B

′
2[Y2 −B′2β∗2 ]2

}
.
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Let Λ11 and Λ12 be defined analogously as Λn,11 and Λn,12 with Kα(H ′21β
∗
21)H ′21β

∗
21 replaced by

(H ′21β
∗
21)+ ; see Theorem 3.2. We can readily show that Λn,11 = Λ11 +o (1) and Λn,12 = Λ12 +o (1) .

For example, using

Y1 −B′1β∗1 +H ′20β
∗
20 +Kα(H ′21β

∗
21)H ′21β

∗
21

=
[
Y1 −B′1β∗1 +H ′20β

∗
20 +

(
H ′21β

∗
21

)
+

]
+
[
Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]
= ε1 +

[
Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]
,

we have

Λn,11 − Λ11 = E
{
B1B

′
1[ε1 +Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]2
}
− E

(
B1B

′
1ε

2
1

)
= E

{
B1B

′
1[Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]2
}

+2 · E
{
B1B

′
1[Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]ε1

}
.

For any z > 0, Kα(z)z− (z)+ → z−z = 0 as α→ 0, and for any z < 0, Kα(z)z− (z)+ → 0−0 = 0

as α→ 0. In addition, noting that
∣∣Kα(z)z − (z)+

∣∣ ≤ |z| for all z ∈ R, we have∥∥∥B1B
′
1[Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]2
∥∥∥ ≤ ∥∥B1B

′
1

∥∥ (H ′21β
∗
21

)2
,

and the right hand side object in the last expression has finite first moment by Assumption

A2(iii). Then E
{
B1B

′
1[Kα(H ′21β

∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+]2

}
= o (1) by the DCT. Similarly, E{B1B

′
1

[Kα(H ′21β
∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+]ε1} = o (1) by the DCT and Λn,11 = Λ11 + o (1) . Analogously,

we have Λn,12 = Λ12 + o (1) by Assumption A2(iii) and the DCT. It follows that Λn = Λ + o (1) ,

where Λ =

(
Λ11 Λ12

Λ′12 Λ22

)
. In addition,

Var (mn(β∗)) = E
[
mn(β∗)mn(β∗)′

]
− E [mn(β∗)]E

[
mn(β∗)′

]
= Λn −O

(
α2
)
O
(
α2
)

= Λ + o (1) .

Now, we show that E ‖mn(β∗)‖2+δ < ∞. Let ω = (ω′1, ω
′
2)′ ∈ Rk1 × Rk2 be nonrandom such

that ‖ω‖ = 1. Let δ > 0 be given as in Assumption A2(iv). Then by the repeated use of the Cr

inequality, we obtain

E
∣∣ω′mn(β∗)

∣∣2+δ ≤ 21+δE
∣∣ω′1m1n(β∗)

∣∣2+δ
+ 21+δE

∣∣ω′2m2(β∗)
∣∣2+δ

≤ 22+2δE
∣∣ω′1 [m1n(β∗)−m1(β∗)]

∣∣2+δ
+ 22+2δE

∣∣ω′1m1(β∗)
∣∣2+δ

+ 21+δE
∣∣ω′2m2(β∗)

∣∣2+δ
.

By Assumption A2(iii), E |ω′lml(β
∗)|2+δ ≤ ‖ωl‖2+δ E ‖ml(β

∗)‖2+δ < ∞ for l = 1, 2. By the DCT

(as used in the proof that Λn,11 = Λ11 + o (1)) and Assumption A2(iv),

E
∣∣ω′1 [m1n(β∗)−m1(β∗)]

∣∣2+δ ≤ ‖ω1‖2+δ E ‖m1n(β∗)−m1(β∗)‖2+δ

= ‖ω1‖2+δ E
∥∥∥B1

[
Kα(H ′21β

∗
21)H ′21β

∗
21 −

(
H ′21β

∗
21

)
+

]∥∥∥2+δ
= o (1) .
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It follows that E ‖mn(β∗)‖2+δ < ∞. Then by the Liapounov central limit theorem (CLT, e.g.,

Davidson 1994, ch23.2),
√
nEn[mn(β∗)] = Gn[mn(β∗)] + o (1)

d→ N (0,Λ) .

Step 2. We prove (ii) Ξn ≡ E[∇β′mn(β∗)] = Ξ + o (1) . Observe that

Ξn =

(
E[∇β′1m1n(β∗)] E[∇β′2m1n(β∗)]

E[∇β′1m2(β∗)] E[∇β′2m2(β∗)]

)
≡

(
Ξn,11 Ξn,12

Ξn,21 Ξn,22

)
.

Noting that ∇β′1m1n(β∗) = −B1B
′
1, ∇β′1m2(β∗) = 0, and ∇β′2m2(β∗) = −B2B

′
2, we have Ξn,11 =

−E[B1B
′
1], Ξn,21 = 0, and Ξn,22 = −E[B2B

′
2]. For Ξn,12, we have

∇β′2m1n(β∗) =
[
∇β′20m1n(β∗),∇β′21m1n(β∗)

]
,

where ∇β′20m1n(β∗) = B1H
′
20 and ∇β′21m1n(β∗) = B1H

′
21[ 1

αkα(H ′21β
∗
21)H ′21β

∗
21 +Kα(H ′21β

∗
21)]. Let

Ξn,12,t ≡ E[∇β′2tm1n(β∗)] for t = 0, 1. It is easy to see that Ξn,12,0 = E[B1H
′
20]. Let r2(z) =

E[B1H
′
21|H ′21β

∗
21 = z] and g2 (z) =

∫ z
−∞ r2 (t) fC (t) dt. Then

Ξn,12,1 = E
{
r2(H ′21β

∗
21)[

1

α
kα(H ′21β

∗
21)H ′21β

∗
21 +Kα(H ′21β

∗
21)]

}
= (1− p)

∫ ∞
−∞

r2 (z) [
1

α
kα(z)z +Kα(z)]fC (z) dz + p

∑
zd

r2 (zd) [
1

α
kα(zd)zd +Kα(zd)]fD (zd)

≡ (1− p)IIC + pIID, say,

where kα (z) = k (z/α) . For the first term IIC , we have by the change of variables:

IIC =
1

α

∫ ∞
−∞

r2(z)zfC(z)k(z/α)dz +

∫ ∞
−∞

r2(z)fC(z)K(z/α)dz

= α

∫ 1

−1
r2(αu)ufC(αu)k(u)du+

∫ ∞
−∞

K(z/α)dg2(z).

By the DCT and Assumption A3,
∫ 1
−1 r2(αz)zfC(αz)k(z)dz → r2(0)fC(0)

∫ 1
−1 zk(z)dz = 0 as

α → 0. By the integration by parts, change of variables, DCT, and Assumptions A1(v) and A3,

we obtain∫ ∞
−∞

K(z/α)dg2(z) = g2 (∞)− 1

α

∫ ∞
−∞

k(z/α)g2(z)dz = g2 (∞)−
∫ 1

−1
k(z)g2(αz)dz

→ g2 (∞)− g2(0)

∫ 1

−1
k(z)dz = g2 (∞)− g2(0).

It follows that IIC = g2 (∞)−g2(0) +o (1) . Noting that for any fixed |zd| 6= 0, kα(zd) = k(zd/α) = 0

for sufficiently small α by the fact that k (·) has compact support [−1, 1] , we have for large enough
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n

1

α

∑
zd

r2(zd)kα(zd)zdfD (zd)

=
1

α

∑
zd<0

r2(zd)kα(zd)zdfD (zd) +
1

α

∑
zd>0

r2(zd)kα(zd)zdfD (zd) = 0 + 0 = 0.

Similarly, for any fixed zd > 0, Kα(zd) = K(zd/α) = 1 and Kα(−zd) = K(−zd/α) = 0 for

sufficiently small α. Then for sufficiently large n,∑
zd

r2(zd)Kα(zd)fD (zd)

=
1

2
r2(0)fD (0) +

∑
zd<0

r2(zd)Kα(zd)fD (zd) +
∑
zd>0

r2(zd)Kα(zd)fD (zd)

=
1

2
r2(0)fD (0) +

∑
zd>0

r2(zd)fD (zd) ,

where we use the fact that K (0) = 1/2 by the symmetry of k (·) under Assumption A3(i). It

follows that for sufficiently large n,

IID =
1

2
r2(0)fD (0) +

∑
zd>0

r2(zd)fD (zd) .

Consequently, Ξn,12,2 = (1− p) [g2 (∞)− g2(0)] +p[1
2r2(0)fD (0) +

∑
zd>0 r2(zd)fD (zd)] + o (1) and

Ξn,12,2 = Ξ12 + o (1) , where Ξ12 is defined in (3.4). In sum, we have shown that Ξn = Ξ + o (1).

Step 3. We show that En[∇β′mn(β̄)] = E[∇β′mn(β∗)] + oP (1) . Note that ∇β′mn(β) =(
−B1B

′
1 ∇β′2m1n(β)

0 −B2B
′
2

)
, where ∇β′2m1n(β) =

[
∇β′20m1n(β), ∇β′21m1n(β)

]
,

∇β′20m1n(β) = B1H
′
20, and ∇β′21m1n(β) = B1H

′
21[

1

α
kα(H ′21β21)H ′21β21 +Kα(H ′21β21)].

We first show that supβ21∈Nε(β∗21)

∥∥n−1/2Gn[∇β′mn(β)]
∥∥ = oP (1) as ∇β′mn(β) depends on β only

through β21. Here Nε (β∗21) denotes the ε-neighborhood of β∗21 with respect to the Euclidean norm

on Rk21 . Since −B1B
′
1, −B2B

′
2, and B1H

′
20 are not β21-dependent and it is standard to show that

n−1/2Gn[An (W )] = oP (1) for An (W ) = −B1B
′
1, −B2B

′
2, and B1H

′
20. It suffices to prove the last

claim by showing that

sup
β21∈Nε(β∗21)

∥∥∥n−1/2Gn[∇β′21m1n(β)]
∥∥∥ = oP (1) .

Consider a class of functions,

M2 =

{
mβ21 : mβ21 (w) = b1h

′
21[

1

α
k(h′21β21/α)h′21β21 +K(h′21β21/α)], β21 ∈ B21

}
.
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Note that the functions in M2 are composed of the following classes of functions:

M2,1 =
{
h′21β21 : β21 ∈ B21

}
,

M2,2 =
{
b1h
′
21k(h′21β21/α) : β21 ∈ B21

}
,

M2,3 =
{
b1h
′
21K(h′21β21/α) : β21 ∈ B21

}
.

By Lemma 2.13 in Pakes and Pollard (1989), M1 is an Euclidean class of functions with an

envelope given by C ‖h21‖. By Lemma 22 in Nolan and Pollard (1987), M2,2 and M2,3 are

also Euclidean with envelopes respectively given by ‖b1h′21‖max|u|≤1 k (u) and ‖b1h′21‖ as k (·)
has bounded variation and K (·) is monotone with range [0, 1]. As a result, M2 is Euclidean

by Lemma 2.14 in Pakes and Pollard (1989). Then by standard arguments used in the kernel

estimation literature (e.g., Theorem 1 of Einmahl and Mason (2000)), we can show that

sup
β21∈Nε(β∗21)

∥∥∥n−1/2Gn∇β′21m1n(β)
∥∥∥ = OP ((nα/ lnn)−1/2) = oP (1) .

This, in conjunction with the fact that E[∇β′2m1n(β)] is continuous in β21 and that β̄ = β∗+oP (1),

implies that

En
[
∇β′21m1n(β̄)

]
= E

[
∇β′21m1n(β)

]∣∣∣
β=β̄

+ oP (1) = E
[
∇β′21m1n(β∗)

]
+ oP (1) .

This completes the proof of the theorem. �

Proof of Theorem 3.3. To prove that Ω̂n−Ω = oP (1), it suffices to show that (i) Λ̂n(β̂sq)−Λn =

op(1) and (ii) Ξ̂n(β̂sq) − Ξn = op(1) as we have shown that Λn = Λ + o (1) and Ξn = Ξ + o (1) in

the proof of Theorem 3.2.

To show (i) Λ̂n(β̂sq)−Λn = op(1), it suffices to show that Λ̂n,11(β̂sq)−Λn,11 = op(1), Λ̂n,12(β̂sq)−
Λn,12 = op(1), and Λ̂n,22(β̂sq) − Λn,22 = op(1). We only prove the first claim as the proofs of the

other two are similar and simpler. Write

Λ̂n,11(β̂sq)− Λn,11 = [Λ̂n,11(β̂sq)− Λn,11 (β∗)] + [Λn,11 (β∗)− E[Λn,11 (β∗)]] .

The second term is oP (1) by the WLLN. Consider a class of functions,

M3 = {m̄β : m̄β (w) = b1b
′
1[y1−b′1β1 +h′20β20 +K(h′21β21/α)h′21β21, β1 ∈ B1, β20 ∈ B20, β21 ∈ B21}.

Noting that the functions in M3 are composed of the following classes of functions:

M3,1 =
{
b1b
′
1

[
y1 − b′1β1 + h′20β20

]
: β1 ∈ B1, β20 ∈ B20

}
,

M3,2 =
{
b1b
′
1h
′
21β21 : β21 ∈ B21

}
,

M3,3 =
{
b1b
′
1K(h′21β21/α) : β21 ∈ B21

}
,
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we can readily argue that M3 is an Euclidean class of functions with a well-behaved envelope

function. Consequently, m̄β (w) is P -Glivenko-Cantelli by Theorem 37 in Pollard (1987, p. 34)

and Lemma 2.8 in Pakes and Pollard (1989) under our conditions, and we have

Λ̂n,11(β̂sq) = E[Λ̂n,11(β̂sq)] + oP (1) = E[Λ̂n,11(β∗)] + oP (1) = Λn,11 + oP (1)

where the second equality follows from the fact that E[Λ̂n,11(β)] is continuous in β and that

β̄ = β∗ + oP (1) .

To show (ii) Ξ̂n(β̂sq) − Ξn = op(1), it suffices to show that Ξ̂n,11(β̂sq) = Ξn,11 + oP (1) ,

Ξ̂n,22(β̂sq) = Ξn,22 + oP (1) , Ξ̂n,12,0(β̂sq) = Ξn,12,0 + oP (1) , and Ξ̂n,12,1(β̂sq) = Ξn,12,1 + oP (1) .

Noting that Ξ̂n,11(β), Ξ̂n,22(β), and Ξ̂n,12,0(β) are not β-dependent, it is trivial to show the first

three claims. The last claim can be shown as in the analysis of Λ̂n,11(β̂sq). This completes the

proof of the theorem. �

Proof of Theorem 4.1. (i) Our proof is analogous to that of Theorem 1 in Linton (1995). Note

that
√
n(β̂sq − β∗) = −[Ξ̂n(β̄)]−1√nEn[mn(β∗)]. Using [Ξ̂n(β̄)]−1 = Ξ−1 + {[Ξ̂n(β̄)]−1 − Ξ−1} and

[Ξ̂n(β̄)]−1−Ξ−1 = −[Ξ̂n(β̄)]−1[Ξ̂n(β̄)−Ξ]Ξ−1 repeatedly, we have the following expansion for T0n :

T0n = −σ−1
c c′[Ξ̂n(β̄)]−1ξN = −σ−1

c c′Ξ−1ξN − σ−1
c c′{[Ξ̂n(β̄)]−1 − Ξ−1}ξN

= −σ−1
c c′Ξ−1ξN + σ−1

c c′[Ξ̂n(β̄)]−1[Ξ̂n(β̄)− Ξ]Ξ−1ξN

= −σ−1
c c′Ξ−1ξN + σ−1

c c′Ξ−1[Ξ̂n(β̄)− Ξ]Ξ−1ξN + σ−1
c c′{[Ξ̂n(β̄)]−1 − Ξ−1}[Ξ̂n(β̄)− Ξ]Ξ−1ξN

= ...

= {−σ−1
c c′Ξ−1ξN + (nα)−1/2 σ−1

c c′Ξ−1ξDΞ−1ξN − (nα)−1 σ−1
c c′Ξ−1ξDΞ−1ξDΞ−1ξN

+ (nα)−3/2 σ−1
c c′Ξ−1ξDΞ−1ξDΞ−1ξDΞ−1ξN}

− (nα)−2 σ−1
c c′[Ξ̂n(β̄)]−1ξDΞ−1ξDΞ−1ξDΞ−1ξDΞ−1ξN

= T ∗0n +R∗0n,

where ξN =
√
nEn[mn(β∗)] and ξD =

√
nα[Ξ̂n(β̄)− Ξ]. To proceed, we apply the following result

of Sargan and Mikhail (1971): for all u ∈ R and ζ > 0,

|P (T0n ≤ u)− P (T ∗0n ≤ u)| ≤ P (|R∗0n| > ζ) + P (|T ∗0n − u| < ζ) .

The last term isO (ζ) provided T ∗0n has a bounded density. Therefore we choose ζ = O
(
[n3/5 lnn]−1

)
.

We want to show that for any positive constant C1,

P
(
|R∗0n| > C1[n3/5 lnn]−1

)
= o

(
n−3/5

)
.

LetA1 =
{
|R∗0n| > C1[n3/5 lnn]−1

}
andA2 = {

∥∥∥[Ξ̂n(β̄)]−1
∥∥∥

sp
> C2}, where C2 = [λmin (ΞΞ′)]−1/2/2.

Note that
∥∥∥[Ξ̂n(β̄)]−1

∥∥∥
sp

= [λmin(Ξ̂n(β̄)Ξ̂n(β̄)′)]−1/2. Observe that

P (A1) ≤ P (A1 ∩A2) + P (Ac2) .
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When
∥∥∥[Ξ̂n(β̄)]−1

∥∥∥
sp
< C2, we have

‖ξD‖sp = n1/2
∥∥∥Ξ̂n(β̄)− Ξ

∥∥∥
sp

= n1/2
∥∥∥Ξ̂n(β̄)[Ξ−1 − Ξ̂n(β̄)−1]Ξ

∥∥∥
sp

≥ n1/2{λmin[Ξ̂n(β̄)Ξ̂n(β̄)′]λmin

(
ΞΞ′

)
}1/2

∥∥∥Ξ−1 − Ξ̂n(β̄)−1
∥∥∥

sp

≥ n1/2C−1
2 (2C2)−1

(∥∥Ξ−1
∥∥

sp
−
∥∥∥Ξ̂n(β̄)−1

∥∥∥
sp

)
≥ 1

2
n1/2C−2

2 (2C2 − C2) =
1

2
n1/2C−1

2 ,

where the first inequality follows from the fact that

‖ABC‖2sp = λmax

(
ABCC ′B′A′

)
≥ λmax

(
ABB′A′

)
λmin

(
CC ′

)
= λmax

(
B′A′AB

)
λmin

(
CC ′

)
≥ λmax

(
B′B

)
λmin

(
A′A

)
λmin

(
CC ′

)
,

and the second inequality follows from the triangle inequality. In conjunction with Chebyshev

inequality, this implies that

P (Ac2) ≤ P
(
‖ξD‖sp ≥

1

2
n1/2C−1

2

)
≤

E[ ‖ξD‖2sp]

4nC−2
2

= O
(
n−1

)
= o(n−3/5)

as E[ ‖ξD‖2sp] = O (1) by Lemma A.1 below and Jensen inequality.

Conditional on A2,

‖R∗0n‖ ≤ (nα)−2σ−1
c ‖c‖

∥∥∥[Ξ̂n(β̄)]−1
∥∥∥

sp

∥∥Ξ−1
∥∥4

sp
‖ξD‖4sp ‖ξN‖ ≤ C3(nα)−2 ‖ξD‖4sp ‖ξN‖

for some C3 > 0. Let Ā2 = {c3(nα)−2 ‖ξD‖2sp ‖ξN‖ ≥ C4[n3/5 lnn]−1} for some C4 > 0. Then

A1 ∩A2 ⊂ Ā2 and

P (A1 ∩A2) ≤ P
(
Ā2

)
= P

(
‖ξD‖2sp ‖ξN‖ ≥ (C4/C3)(nα)2n−3/5(lnn)−1

)
≤ (C3/C4)8/5

[
(nα)−2n3/5 lnn

]8/5
· E[‖ξD‖32/5

sp ‖ξN‖8/5]

≤ (C3/C4)α−16/5n−56/25(lnn)8/5 ·
{
E ‖ξD‖8sp

}4/5 {
E ‖ξN‖8

}1/5

= O
(
n−24/25(lnn)8/5

)
= o(n−3/5),

by Markov inequality, Hölder inequality, Lemma A.1 below and the fact that α ∝ n−2/5. Conse-

quently, we have P (A1) = P
(
|R∗0n| > C1[n3/5 lnn]−1

)
= o(n−3/5) and |P (T0n ≤ u)−P (T ∗0n ≤ u) | ≤

P (|R∗0n| > ζ) + P (|T ∗0n − u| < ζ) = o(n−3/5) uniformly in u.

(ii) By Lemma A.1 and direct moment calculations, we have

E[T ∗0n] = −σ−1
c c′Ξ−1E[ξN ] +O(n−1/2) = −

√
nα4σ−1

c c′Ξ−1B + o(n−3/10),
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and

Var[T ∗0n] = Var[−σ−1
c c′Ξ−1ξN ] + Var[(nα)−1/2 σ−1

c c′Ξ−1ξDΞ−1ξN ] + o(n−3/5)

= σ−2
c c′Ξ−1[Λ +O

(
α2
)
]Ξ−1′c+ (nα)−1 σ−1

c c′Ξ−1Var[ξDΞ−1ξNΞ−1′c] + o(n−3/5)

= 1 + (nα)−1 σ−1
c c′Ξ−1Φ0Ξ−1′c+ o(n−3/5),

where we use the fact that the other variance and covariance terms in the expansion of Var[T ∗0n]

are all o(n−3/5) under Assumption A4, and B and Φ0 are defined in Theorem 4.1.

(iii) We first consider the Taylor expansion of Sn with remainder term OP
(
(nα)−1

)
:

Sn =

√
nα(σ̂c − σc)

σc
=

√
nα(σ̂2

c − σ2
c )

σ2
c

[
1

2 + (σ̂c/σc − 1)

]
=

√
nα(σ̂2

c − σ2
c )

σ2
c

{
1

2
− 1

4

(
σ̂c
σc
− 1

)}
+OP

(
(nα)−1

)
=

√
nα(σ̂2

c − σ2
c )

2σ2
c

−
√
nα(σ̂2

c − σ2
c )

4σ2
c

σ̂c − σc
σc

+OP
(
(nα)−1

)
=

√
nα(σ̂2

c − σ2
c )

2σ2
c

−
[√
nα(σ̂2

c − σ2
c )
]2

8
√
nασ4

c

+OP
(
(nα)−1

)
.

Next,

√
nα(σ̂2

c − σ2
c ) =

√
nαc′

[
Ξ̂−1
n Λ̂n(Ξ̂−1

n )′ − Ξ−1Λ
(
Ξ−1

)′]
c

=
√
nαc′

[
[(Ξ̂−1

n − Ξ−1) + Ξ−1]Λ̂n[(Ξ̂−1
n − Ξ−1) + Ξ−1]′ − Ξ−1Λ

(
Ξ−1

)′]
c

=
√
nαc′{2(Ξ̂−1

n − Ξ−1)Λ̂nΞ−1′ + Ξ−1(Λ̂n − Λ)Ξ−1′ + (Ξ̂−1
n − Ξ−1)Λ̂n(Ξ̂−1

n − Ξ−1)′}c

= −2c′Ξ̂−1
n ξ†DΞ−1Λ̂nΞ−1′c+

√
αc′Ξ−1ξΛ

(
Ξ−1

)′
c+ c′Ξ̂−1

n ξ†DΞ−1Λ̂nΞ−1′ξ†DΞ̂−1′
n c/

√
nα

= −2c′Ξ−1ξ†DΞ−1ΛΞ−1′c+
√
αc′Ξ−1ξΛ

(
Ξ−1

)′
c

+2[c′Ξ−1ξ†DΞ−1ξ†DΞ−1ΛΞ−1′c+ c′Ξ−1ξ†DΞ−1ΛΞ−1′ξ†DΞ−1′c]/
√
nα

−2c′Ξ−1ξ†DΞ−1ξΛΞ−1′c/
√
n+OP

(
(nα)−1

)
where ξΛ =

√
n(Λ̂n − Λ) and ξ†D =

√
nα(Ξ̂n − Ξ). Plugging the last expansion into that of Sn and

simplifying yields Sn = S∗n + oP
(
(nα)−1/2

)
where S∗n is defined in (4.2). It follows that

Tn =

√
nc′(β̂sq − β∗)

σc
· σc
σ̂c

=
T0n

1 + (nα)−1/2Sn

= T0n

{
1− (nα)−1/2Sn + 2(nα)−1S2

n

}
+ oP ((nα)−1)

= T ∗0n + (nα)−1/2
[
σ−1
c c′Ξ−1ξN − (nα)−1/2 σ−1

c c′Ξ−1ξDΞ−1
n ξN

]
S∗n − 2(nα)−1σ−1

c c′Ξ−1ξNS
∗2
n

+oP ((nα)−1)

= T ∗n + oP ((nα)−1),
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where T ∗n is defined in (4.3). It is easy to verify that only the first term in the definition of T ∗n
contributes to the E[T ∗n ] up to the order (nα)−1/2 = O

(
n−3/10

)
:

E[T ∗n ] = −
√
nα4σ−1

c c′Ξ−1B + o(n−3/10),

and only the first three terms contribute to Var[T ∗n ] up to order (nα)−1 = O
(
n−3/5

)
:

Var[T ∗n ] = Var[−σ−1
c c′Ξ−1ξN ] + Var[(nα)−1/2 σ−1

c c′Ξ−1(ξDΞ−1ξN + σ−2
c c′Ξ−1ξ†DΩcξN )] + o(n−3/5)

= σ−2
c c′Ξ−1[Λ +O(α2)]Ξ−1′c+ (nα)−1 σ−1

c c′Ξ−1Var[ξDΞ−1ξN + σ−2
c c′Ξ−1ξ†DΩcξN ]Ξ−1′c

+o
(
n−3/5

)
= 1 + (nα)−1 σ−1

c c′Ξ−1ΦΞ−1′c+ o
(
n−3/5

)
,

where Φ is defined in Theorem 4.1. �

Lemma A.1 Recall that ξN =
√
nEn[mn(β∗)] and ξD =

√
n[Ξ̂n(β̄)−Ξn]. Suppose that the condi-

tions in Theorem 4.1 hold. Then (i) E ‖ξN‖8 = O (1) , (ii) E ‖ξD‖8 = O (1) , (iii) Var[ξDΞ−1ξN ] =

Φ0 + o (1) , and (iv) Var[ξDΞ−1ξN + σ−2
c c′Ξ−1ξ†DΩcξN ] = Φ + o (1) .

Proof. (i) Let ξN,1 =
√
nEn[m(β∗)] =

√
nEn

(
B1ε1

B2ε2

)
and ξN,2 = ξN − ξN,1. Let Fi =

σ {Wi,Wi−1, ...W1} , the sigma-field generated byWi,Wi−1, ...W1.Noting that E [m(Wi;β
∗)|Fi−1] =

E [m(Wi;β
∗)] = 0, we can apply Rosenthal’s inequality (e.g., Hall and Heyde 1980, p. 23) to obtain

E ‖ξN,1‖8 ≤ C

E

[
n−1

n∑
i=1

E[ ‖m(Wi;β
∗)‖2 |Fi−1]

]4

+ n−4
n∑
i=1

E ‖m(Wi;β
∗)‖8


= C

{[
E ‖m(Wi;β

∗)‖2
]4

+ n−3E ‖m(Wi;β
∗)‖8

}
= O (1)

under Assumptions A1(i) and A4(i). Similarly, we can show that E ‖ξN,2 − E(ξN,2)‖8 = O (1) . In

addition, noting that

mn(β∗)−m(β∗) =

(
B1

[
Kα(H ′21β

∗
21)H ′21β

∗
21 − (H ′21β

∗
21)+

]
0

)
,

we have ‖E(ξN,2)‖ = O(n1/2α2) = o(1) by the proof of Theorem 3.2. Then by the Cr inequality,

E ‖ξN,2‖8 ≤ 128E ‖ξN2 − E(ξN,2)‖8 + 128 ‖E(ξN,2)‖8 = O (1) + o (1) = O (1) .

Consequently, E ‖ξN‖8 ≤ 128(E ‖ξN,1‖8 + E ‖ξN,2‖8) = O (1) .
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(ii) Let η (β21) = η (H21;β21) = B1H
′
21[ 1

αkα(H ′21β21)H ′21β21 + Kα(H ′21β21)]. We make the fol-

lowing decomposition

ξD =
√
α

(
0 (0,Gn[η (β∗21)])

0 0

)
+
√
α

(
0
(
0, n1/2En

[
η
(
β̄21

)
− η (β∗21)

])
0 0

)

+
√
αGn

(
−B1B

′
1 (B1H

′
20, 0)

0 −B2B
′
2

)
≡ ξD,1 + ξD,2 + ξD,3, say.

As in part (i), we can readily show that E ‖ξD,3‖8 = O
(
α4
)

= o (1) . By Theorem 3.2 and the fact

that β̄21 lies between β̂21 and β∗21 element by element, we have β̄21 = β∗21 +OP
(
n−1/2

)
. Then, we

can apply Sargan and Mikhail’s (1971) inequality as in the proof of Theorem 4.1 and show that

E ‖ξD,3‖8 = o (1) . In addition, one can readily show that α4E ‖η (β∗21)‖8 = O (1) . It follows that

E ‖ξD‖8 = E ‖ξD,1‖8 + o (1) = α4E ‖η (β∗21)‖8 = O (1) .

(iii) Note that Var
(
ξDΞ−1ξN

)
= E

(
ξDΞ−1ξNξ

′
NΞ−1′ξ′D

)
− E

(
ξDΞ−1ξN

)
E
(
ξ′NΞ−1′ξ′D

)
. It is

easy to show that E
(
ξDΞ−1ξN

)
= O

(
α1/2

)
. Using the decomposition of ξN and ξD in (i) and (ii),

we can readily show that

E
(
ξDΞ−1ξNξ

′
NΞ−1′ξ′D

)
= E

(
ξD,1Ξ−1ξN,1ξ

′
N,1Ξ−1′ξ′D,1

)
+ o (1)

=
α

n2

n∑
i,j,k,l=1

E

{(
0 η̄1 (H21,i;β

∗
21)

0 0

)
Ξ−1

(
B1jB

′
1kε1jε1k B1jB

′
2kε1jε2k

B2jB
′
1kε2jε1k B2jB

′
2kε2jε2k

)
Ξ−1′

×

(
0 η̄1 (H21,l;β

∗
21)

0 0

)′}
+ o (1)

= αE

{(
0 η̄1 (β∗21)

0 0

)
Ω

(
0 η̄1 (β∗21)

0 0

)′}
+ o (1)

=

(
αE
[
η̄1 (β∗21) Ω22η̄1 (β∗21)′

]
0

0 0

)
+ o (1) = Φ0 + o (1) ,

where η̄1 (β21) ≡ η̄1 (H21;β21) = η1 (β21)−E [η1 (β21)] , and η1 (β21) ≡ η1(H21;β21) = [0k1×k20 , B1H
′
21

× 1
αkα(H ′21β21)H ′21β21]. Then (iii) follows.

(iv) Var(ξDΞ−1ξN+σ−2
c c′Ξ−1ξ†DΩcξN ) =Var(ξDΞ−1ξN )+Var(σ−2

c c′Ξ−1ξ†DΩcξN )+Cov(ξDΞ−1ξN ,

σ−2
c c′Ξ−1ξ†DΩcξN ) +Cov(σ−2

c c′Ξ−1ξ†DΩcξN , ξDΞ−1ξN ). Following the analysis in (iii) and noting
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that ξ†D is defined as ξD with β̄ replaced by β̂, we can readily show that

Var
(
σ−2
c c′Ξ−1ξ†DΩcξN

)
= σ−4

c c′Ξ−1E
(
ξ†DΩcξNξ

′
Nc
′Ωξ†′D

)
Ξ−1′c− o (1)

= σ−4
c c′Ξ−1E

(
ξD,1ΩcξN,1ξ

′
N,1c

′Ωξ′D,1
)

Ξ−1′c+ o (1)

= σ−4
c c′Ξ−1E

(
ξD,1ΩcΛc′Ωξ′D,1

)
Ξ−1′c+ o (1)

= α σ−4
c c′Ξ−1E

{(
0 η̄1 (β∗21)

0 0

)
ΩcΛc′Ω

(
0 η̄1 (β∗21)

0 0

)′}
Ξ−1′c+ o (1)

= ασ−4
c E[η∗1 (β∗21)]2Λ + o (1)

and

Cov
(
ξDΞ−1ξN , σ

−2
c c′Ξ−1ξ†DΩcξN

)
= σ−2

c E
[
ξDΞ−1ξNξ

′
Nc
′Ωξ†′D

]
Ξ−1′c− o (1)

= σ−2
c E

[
ξD,1Ξ−1ξN,1ξ

′
N,1c

′Ωξ′D,1
]

Ξ−1′c+ o (1)

= σ−2
c E

[
ξD,1Ξ−1Λc′Ωξ′D,1

]
Ξ−1′c+ o (1)

= ασ−2
c E

[(
0 η̄1 (β∗21)

0 0

)
Ξ−1Λc′Ω

(
0 η̄1 (β∗21)

0 0

)′]
Ξ−1′c+ o (1)

= ασ−2
c E[η∗1 (β∗21) η∗∗1 (β∗21)]Λ,

where η∗1 (β21) and η∗∗1 (β21) are defined in Theorem 4.1. It follows that Var[ξDΞ−1ξN+σ−2
c c′Ξ−1ξ†DΩcξN ]

= Φ0 +ασ−4
c E[η∗1 (β∗21)]2Λ +ασ−2

c E[η∗1 (β∗21) η∗∗1 (β∗21) Λ + Λη∗∗1 (β∗21)′ η∗1 (β∗21)] + o (1) = Φ + o (1)

B The Generative Model

Let γ1 + γ2X1 + γ3A1 + γ4X1A1 = M , then

max
α2

Q2(H2, A2) = M + [γ5 + γ6X2 + γ7A1]+

= M +
α1

2
(1−X2)(1−A1) +

α2

2
(1−X2)A1 +

α3

2
(1 +X2)(1−A1) +

α4

2
(1 +X2)A1,
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where α1 = [γ5− γ6]+, α2 = [γ5− γ6 + γ7]+, α3 = [γ5 + γ6]+, and α4 = [γ5 + γ6 + γ7]+. Therefore,

Q1(H1, A1)

= E[Y1 + max
α2

Q2(H2, α2)|H1, A1]

= M +
α1

2
(1−A1)E[1−X2|X1, A1] +

α2

2
A1E[1−X2|X1, A1]

+
α3

2
(1−A1)E[1 +X2|X1, A1] +

α4

2
A1E[1 +X2|X1, A1]

= M +
α1 + α3

2
(1−A1) +

α2 + α4

2
A1 +

1

2
(α3 − α1)(1−A1)E[X2|X1, A1] +

1

2
(α4 − α2)A1E[X2|X1, A1]

(4)
= M +

α1 + α3

2
(1−A1) +

α2 + α4

2
A1

+
1

2
(α3 − α1)

(
expit(−δ1)(1−X1)(1−A1) + expit(δ1)(1 +X1)(1−A1)− (1−A1)

)
+

1

2
(α4 − α2)

(
expit(−δ1 + δ2)(1−X1)A1 + expit(δ1 + δ2)(1 +X1)A1 −A1

)
(5)
= ψ1 + ψ2X1 + (ψ3 + ψ4X1)A1,

where

ψ1 = γ1 +
α1 + α3

2
+

1

2
(α3 − α1)

(
expit(−δ1) + expit(δ1)− 1

)
= γ1 +

α1 + α3

2
,

ψ2 = γ2 +
α3 − α1

2

(
− expit(−δ1) + expit(δ1)

)
= γ2 +

α3 − α1

2

(
2expit(δ1)− 1

)
,

ψ3 = γ3 −
α1 − α2 + α3 − α4

2
+
α3 − α1

2

(
− expit(−δ1)− expit(δ1) + 1

)
+
α4 − α2

2

(
expit(−δ1 + δ2) + expit(δ1 + δ2)− 1

)
= γ3 −

α1 − α2 + α3 − α4

2
+
α4 − α2

2

(
expit(−δ1 + δ2) + expit(δ1 + δ2)− 1

)
,

ψ4 = γ4 +
α3 − α1

2

(
1− 2expit(δ1)

)
+
α4 − α2

2

(
− expit(−δ1 + δ2) + expit(δ1 + δ2)

)
.

In Step (4) of derivation of Q1(H1, A1), we used the fact that

E[X2|X1, A1] = 2expit(δ1X1 + δ2A1)− 1

= expit(−δ1)(1−X1)(1−A1) + expit(−δ1 + δ2)(1−X1)A1

+ expit(δ1)(1 +X1)(1−A1) + expit(δ1 + δ2)(1 +X1)A1 − 1,

and thus

(1−A1)E[X2|X1, A1] = expit(−δ1)(1−X1)(1−A1) + expit(δ1)(1 +X1)(1−A1)− (1−A1),

A1E[X2|X1, A1] = expit(−δ1 + δ2)(1−X1)A1 + expit(δ1 + δ2)(1 +X1)A1 −A1,

which is in turn due the facts that A2
1 = A1, A1(1 − A1) = 0 and (1 − A1)2 = 1 − A1 since

A1 ∈ {0, 1}. In Step (5), we used the fact that expit(−x) + expit(x) = 1.
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SQ(α̂∗0) −0.1417 2.5730 97.12 0.7293 −0.0701 0.5170 97.53 0.3273

SQ(α̂∗) −0.1458 2.6090 97.10 0.7307 −0.0709 0.5226 97.48 0.3281

FACI - - 98.33 0.8063 - - 98.47 0.3625

Q −0.1423 2.5650 97.07 0.6664 −0.0659 0.5169 97.14 0.2963

HT0.08 −0.1209 3.6680 98.37 0.7926 −0.0170 0.7221 98.41 0.3543

HT0.20 −0.2410 3.3550 98.33 0.7594 −0.0666 0.6782 98.31 0.3393

ST −0.0027 3.6290 96.41 0.7342 0.0015 0.7099 96.66 0.3263

3 SQ(RoT) −8.5060 4.0560 93.52 0.7550 −3.5630 0.8023 94.19 0.3414

SQ(α̂∗0) −8.5420 4.0500 93.63 0.7568 −3.6000 0.8024 94.23 0.3414

SQ(α̂∗) −8.1870 4.0330 93.80 0.7611 −3.3890 0.7930 94.53 0.3446

FACI - - 95.57 0.8252 - - 96.43 0.3602

Q −8.6080 4.0510 90.69 0.7130 −3.6150 0.8026 90.55 0.3242

HT0.08 −8.6900 6.9100 94.41 0.8946 −0.1508 0.7776 96.11 0.3586

HT0.20 −6.3550 5.1070 94.08 0.8207 −1.2150 0.7710 94.84 0.3467

ST −24.710 10.5700 80.54 0.7917 −5.5940 1.2070 89.01 0.3664

Table 1: Performances of Different Estimators for ψ3
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Sample Size: 200 Sample Size: 1000

Design Bias MSE CP IL Bias MSE CP IL

(×102) (×102) (%) (×102) (×102) (%)

4 SQ(RoT) −8.8710 4.1900 93.46 0.7592 −3.9100 0.8320 93.82 0.3421

SQ(α̂∗0) −9.0770 4.1940 93.51 0.7599 −4.0640 0.8370 93.69 0.3414

SQ(α̂∗) −8.4760 4.1090 94.01 0.7648 −3.7410 0.8155 94.33 0.3449

FACI - - 96.03 0.8074 - - 96.23 0.3598

Q −9.1970 4.2040 89.82 0.7298 −4.0940 0.8381 89.60 0.3242

HT0.08 −2.3470 4.0680 95.34 0.8246 −0.9354 0.7808 95.38 0.3510

HT0.20 −4.3260 3.9740 94.07 0.7856 −1.8560 0.7850 94.06 0.3441

ST −16.5100 7.5520 85.65 0.8372 −3.3960 0.9158 92.45 0.3446

5 SQ(RoT) −8.8110 4.1070 94.11 0.7592 −3.8250 0.8116 94.00 0.3419

SQ(α̂∗0) −9.0180 4.1120 94.12 0.7600 −3.9800 0.8165 93.88 0.3413

SQ(α̂∗) −8.4130 4.0240 94.54 0.7653 −3.6570 0.7950 94.58 0.3448

FACI - - 96.16 0.8035 - - 96.16 0.3596

Q −9.1390 4.1210 90.00 0.7285 −4.0090 0.8175 90.31 0.3242

HT0.08 −2.1350 3.9090 95.68 0.7891 −0.8507 0.7658 95.61 0.3509

HT0.20 −4.2460 3.8680 94.47 0.7732 −1.7710 0.7669 94.59 0.3441

ST −0.6916 3.8530 95.20 0.7606 −0.2797 0.7574 95.39 0.3384

6 SQ(RoT) −0.1440 2.5720 97.12 0.7262 −0.0635 0.5152 97.44 0.3270

SQ(α̂∗0) −0.1427 2.5720 97.19 0.7293 −0.0622 0.5149 97.45 0.3273

SQ(α̂∗) −0.1447 2.6080 97.11 0.7309 −0.0633 0.5201 97.43 0.3279

FACI - - 98.28 0.8054 - - 98.45 0.3616

Q −0.1431 2.5640 97.03 0.6663 −0.0635 0.5148 97.02 0.2961

HT0.08 −0.0949 3.6590 98.33 0.7901 −0.0210 0.7229 98.23 0.3516

HT0.20 −0.1858 3.3530 98.22 0.7577 −0.0710 0.6710 98.21 0.3375

ST 0.0032 3.6590 96.37 0.7353 0.0034 0.7222 96.54 0.3274

Table 2: Performances of Different Estimators for ψ3
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Sample Size: 200 Sample Size: 1000

Design Bias MSE CP IL Bias MSE CP IL

(×102) (×102) (%) (×102) (×102) (%)

1 SQ(RoT) −0.2118 2.4430 94.75 0.6091 −0.0204 0.4809 95.24 0.2735

SQ(α̂∗0) −0.2128 2.4460 94.79 0.6100 −0.0233 0.4807 95.24 0.2735

SQ(α̂∗) −0.2079 2.4560 94.76 0.6105 −0.0482 0.4819 95.30 0.2741

FACI - - 95.15 0.6278 - - 95.18 0.2756

Q −0.2174 2.4400 94.74 0.6085 −0.0216 0.4808 94.67 0.2714

HT0.08 1.3120 2.5900 95.00 0.6258 0.3630 0.4947 94.78 0.2741

HT0.20 0.4963 2.5210 94.90 0.6181 0.1091 0.4834 94.72 0.2727

ST 3.2640 2.6150 94.50 0.6174 1.6110 0.5187 94.45 0.2741

2 SQ(RoT) −0.2971 2.0950 94.53 0.5609 −0.0551 0.4024 95.34 0.2513

SQ(α̂∗0) −0.3004 2.0960 94.57 0.5614 −0.0546 0.4023 95.36 0.2515

SQ(α̂∗) −0.3028 2.0970 94.51 0.5608 −0.0553 0.4026 95.36 0.2513

FACI - - 95.75 0.5958 - - 96.20 0.2638

Q −0.2964 2.0940 94.36 0.5606 −0.0551 0.4023 94.90 0.2481

HT0.08 −0.2233 2.1130 94.69 0.5690 −0.0241 0.4075 95.06 0.2513

HT0.20 −0.2475 2.1210 94.64 0.5671 −0.0361 0.4073 95.02 0.2506

ST −0.1996 2.0820 94.37 0.5602 −0.0121 0.4001 94.85 0.2480

3 SQ(RoT) −0.1980 2.1030 94.58 0.5597 −0.0031 0.4028 95.19 0.2506

SQ(α̂∗0) −0.1962 2.1030 94.54 0.5599 −0.0032 0.4028 95.19 0.2506

SQ(α̂∗) −0.1941 2.1050 94.53 0.5593 −0.0035 0.4030 95.21 0.2504

FACI - - 95.76 0.5927 - - 95.62 0.2572

Q −0.1982 2.1020 94.37 0.5614 −0.0032 0.4027 94.83 0.2482

HT0.08 0.0348 2.2120 94.90 0.5757 0.0038 0.4108 94.96 0.2507

HT0.20 −0.1147 2.1530 94.67 0.5691 0.0025 0.4080 94.86 0.2497

ST 0.0818 2.1520 94.49 0.5673 0.1457 0.4125 94.73 0.2507

Table 3: Performances of Different Estimators for ψ4
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Sample Size: 200 Sample Size: 1000

Design Bias MSE CP IL Bias MSE CP IL

(×102) (×102) (%) (×102) (×102) (%)

4 SQ(RoT) −0.1906 2.1040 94.60 0.5597 −0.0023 0.4035 95.26 0.2507

SQ(α̂∗0) −0.1908 2.1030 94.56 0.5594 −0.0023 0.4034 95.26 0.2506

SQ(α̂∗) −0.1898 2.1040 94.53 0.5586 −0.0028 0.4035 95.23 0.2503

FACI - - 95.39 0.5826 - - 95.59 0.2570

Q −0.1909 2.1020 94.40 0.5617 −0.0022 0.4032 94.83 0.2483

HT0.08 −0.1740 2.1410 94.68 0.5695 −0.0015 0.4099 94.92 0.2504

HT0.20 −0.2119 2.1320 94.54 0.5663 0.0035 0.4088 94.87 0.2497

ST 0.1676 2.1590 94.50 0.5688 0.0685 0.4101 94.73 0.2499

5 SQ(RoT) −0.1675 2.1030 94.40 0.5582 −0.0094 0.4034 95.07 0.2506

SQ(α̂∗0) −0.1668 2.1030 94.35 0.5579 −0.0096 0.4033 95.04 0.2505

SQ(α̂∗) −0.1663 2.1040 94.34 0.5571 −0.0096 0.4034 94.99 0.2501

FACI - - 95.07 0.5809 - - 95.40 0.2569

Q −0.1677 2.1020 94.35 0.5601 −0.0094 0.4032 94.69 0.2481

HT0.08 −0.1732 2.0970 94.55 0.5634 −0.0086 0.4025 94.97 0.2491

HT0.20 −0.1911 2.1110 94.53 0.5629 −0.0037 0.4046 94.85 0.2490

ST −0.1856 2.0790 94.30 0.5582 −0.0082 0.3991 94.77 0.2472

6 SQ(RoT) −0.2983 2.0950 94.51 0.5608 −0.0551 0.4024 95.34 0.2513

SQ(α̂∗0) −0.3010 2.0960 94.53 0.5614 −0.0549 0.4025 95.33 0.2515

SQ(α̂∗) −0.3035 2.0970 94.49 0.5608 −0.0551 0.4026 95.32 0.2513

FACI - - 95.71 0.5956 - - 96.20 0.2637

Q −0.2975 2.0940 94.38 0.5606 −0.0551 0.4024 94.92 0.2481

HT0.08 −0.2086 2.1100 94.62 0.5685 −0.0230 0.4056 95.05 0.2509

HT0.20 −0.2535 2.1200 94.58 0.5668 −0.0320 0.4074 95.07 0.2504

ST −0.1995 2.0810 94.37 0.5600 −0.0116 0.3998 94.84 0.2478

Table 4: Performances of Different Estimators for ψ4
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Mean of NPI1 Mean of NPI2 Mean of Age Stage 1 Stage 2

Female 38.7 31.5 78.6 0 1

Male 34.4 27.3 76.5 0 0

Table 7: Example of Treatment Prescription from Estimated Optimal DTR

46


	A smoothed Q-learning algorithm for estimating optimal dynamic treatment regime
	Citation

	tmp.1502866860.pdf.690wl

