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Abstract

We propose a class of two-step estimators for nonparametric panel data models with random effects that are
more efficient than the conventional least squares estimators. We establish asymptotic normality for the proposed
estimators and derive the most efficient estimator in the class.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently nonparametric panel data models have become a research topic of much interest. This is
especially true for random effects nonparametric panel data models. See Li and Stengos (1996), Li and
Ullah (1998), Lin and Carroll (2000), Henderson and Ullah (2005), among others. In such models the
regression mean is generally estimated by the local linear least squares (LLLS) estimator. But this
estimator ignores the covariance structure in the disturbance term and thus is inefficient. To take into
account the covariance structure, Henderson and Ullah (2005) propose local linear weighted least squares
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estimation. Unfortunately, as Lin and Carroll (2000) demonstrate, one cannot achieve asymptotic
improvement over the LLLS estimator by this approach.

In this paper, we follow the idea of Ruckstuhl et al. (2000) and propose a class of two-step estimators that
employ the covariance structure to achieve asymptotic improvement over the LLLS estimator. In comparison
with their approach, our estimators are different in at least three aspects. First, we allow the regressor to be a
random vector. Second, we consider more efficient estimation of both the nonparametric regression mean
and its first order derivatives. Third, we use two different bandwidth sequences in the two steps that will
greatly facilitate the comparison of our estimator with the conventional LLLS estimator.

The paper is structured as follows. We introduce a class of two-step estimators in Section 2 and study
their asymptotic property in Section 3. We conduct Monte Carlo simulations in Section 4.

2. The estimator

We consider a two-step estimation of nonparametric panel data models with random effects:

yit ¼ mðzitÞ þ ui þ vit; i ¼ 1; 2; N ; n; t ¼ 1; 2; N T ; ð2:1Þ
where zit is a q×1 vector of exogenous variables, ui is i.i.d. (0, σu

2), vit is i.i.d. (0, σv
2), ui and vjt are

uncorrelated for all i, j=1, 2,…n, and m (·) is an unknown smooth function. We are interested in
consistent estimation of m(z) and its first order derivatives m˙(z) at an interior point z. We establish the
asymptotic theory by letting n approach infinity and holding T fixed.

Let εit=ui+vit and εi=(εi1, .…, εiT)′. Then Σ≡E(εiε′i ) takes the form Σ=σv
2IT+σu

2iTi ′T, where IT is a
T×T identity matrix and iT is a T×1 vector of ones. Let K denote a kernel function on ℝq and H=diag
(h1, …, hq), a matrix of bandwidth sequences. Set KH(z)= |H |−1K(H−1z) and YZitðzÞ ¼ ½1; fH−1ðzit−zÞg V� V,
where |H| is the determinant ofH. Further denoteKH(z)=diag(KH(z11−z),…, KH(z1T−z),…, KH(zn1−z),…,
KH(znT−z)) and

YZðzÞ ¼ ðYZ 11ðzÞ; N ;YZ 1TðzÞ; N ;YZn1ðzÞ; N ;YZnTðzÞÞ V. The LLLS estimator ofM(z)≡ (m(z),
(Hm(̇z))′)′ is obtained by

eMHðzÞ ¼ argmin
Maℝqþ1

Y−YZðzÞM
� �0

KHðzÞ Y−YZðzÞM
� �

; ð2:2Þ

where Y=( y11, …, y1T, …, yn1, …, ynT)′. That is,M
~(z)=S(z)Y, where SðzÞ ¼ ½YZðzÞ VKHðzÞYZðzÞ�−1YZðzÞ VKHðzÞ

is a smoothing operator. In particular, the estimator form(z) is given bym~H(z)=s(z)′Y, where s(z)′=e′S(z), and
e=(1, 0, …, 0)′ is a (q+1)×1 vector.

The LLLS estimatorM
~
H(z) ignores the information contained in the variance matrixΣ and it is inefficient.

For this reason, Henderson andUllah (2005) propose local linear weighted least squares estimation. However,
Lin andCarroll (2000) demonstrate that one cannot achieve asymptotic improvement over the LLLS estimator
by such an approach. Here, we follow the idea of Ruckstuhl et al. (2000) and propose a class of two-step
estimators that employ the covariance structure to achieve asymptotic improvement over the LLLS estimator.

For the moment, we assume that Σ is known. Let P=Σ−1 and let P1/2 be its symmetric square root.
The procedure is as follows:

1. Choose bandwidth H0=diag(h01, …, h0q) and obtain the usual LLLS estimator of M(z̃) as in Eq. (2.2)
and denote it by M~H0

(z̃ ) for z̃ = z11, …, znT.
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2. Define Yi⁎=τP
1/2Yi− (τP1/2− IT)m~H0

(zi) and denote its typical element as yit⁎, where Yi=( yi1, …., yiT)′
and m~H0

(zi)= (m~H0
(zi1)…., m~H0

(ziT))′. Obtain the estimator M
~
H(z) by regressing yit⁎′s on z′it s:

eMHðzÞuarg min
Maℝqþ1

Y*−YZðzÞM
� �0

KHðzÞ Y*−YZðzÞM
� �

; ð2:3Þ

where Y⁎=(Y1⁎′, …, Yn⁎′)′. In particular, m(z) is estimated by m~H(z)=e′MbH(z).
The intuition for the above estimator is simple. Write Yi=m(Zi)+εi, multiply both sides by τP1/2 and

rearrange terms so that we have τP1/2Yi− (τP1/2− IT)m(Zi)=m(Zi)+τP1/2εi. Yi⁎ is a consistent estimator of
the left hand side expression but the disturbance terms on the right hand side are now i.i.d. We will show
that MbH(z) is more efficient than M~H(z) under weak conditions. Also, replacing Σ by its consistent
estimator does not affect the asymptotic relative efficiency of MbH(z).
3. Asymptotic property

First, we make the following assumptions.
A1. (ui, vi, zi), i=1,…, n, are i.i.d., where vi=(vi1,…, viT)′ and zi is similarly defined. A2. zit has a continuous

density function ft(·) with compact support Cf on ℝq. ft(·) is bounded away from zero and infinity on Cf for
t=1, …, T. A3.m(·) has bounded second partial derivatives on Cf. A4. K(·) is a product kernel of k(·) that is a
continuous density with compact support onℝ. All odd order moments of k vanish. A5. As n→∞, ||H0||→0,
||H||→0, n|H0|→∞, n|H|2→∞, ||H||4|H|−1→0, and n|H| ||H||4→c∈ [0, ∞), where ||H||={tr(H′H)}1/2.

To study the asymptotic property of MbH(z), let f̄ (z)=∑t=1
T ft(z). Let p̃d and p̃o be the diagonal and the

off-diagonal elements of P1/2, respectively. Define c1= p̃d∑ j=1
q h0j

2∂2m(z) /∂zj2, and c2= p̃0 f̄ (z)
−1∑t=1

T ft
(z)∑ s≠ t

T ∑ j=1
q h0 j

2 E[∂2m(z1 s) / ∂z j2 |z1 t = z]. Let gij ¼
R
ℝ uikðuÞ jdu. Then by Assumption A4,R

ℝq uu VKðuÞdu ¼ g21Iq;
R
ℝq KðuÞ2du ¼ gq02; and

R
ℝq uu VKðuÞ2du ¼ gq−102 g22Iq.

Theorem 3.1. (i) Under Assumptions A1–A5,ffiffiffiffiffiffiffiffiffi
njH j

p
MbHðzÞ−MðzÞ− g21

2

Xq
j¼1

A2mðzÞ
Az2j

h2j 0

 !
−B1−B2

 !
Y
d
Nð0; s2Q−1CQ−1Þ; ð3:1Þ

where B1 ¼ −
g21ðsepd−1Þ

2
ð
Xq

j¼1
h20jA

2mðzÞ=Az2j ; 0 VÞ V; B2 ¼ −ðg21c2s=2; 0 VÞ V,

Q ¼ QðzÞ ¼ f̄ ðzÞ 1 0 V
0 g21Iq

� �
; and C ¼ f̄ ðzÞ gq02 0 V

0 gq−102 g22Iq

� �
:

(ii) The optimal τ to minimize the mean squared error of mbH(z) is given by

s* ¼ ðc1 þ c2Þ
Xq
j¼1

A2mðzÞ
Az2j

h20j þ h2j

� �
ðc1 þ c2Þ2 þ 4n−1jH j−1gq02 f̄

−1ðzÞg−221
n o−1

: ð3:2Þ

(iii) If ||H0||≪ ||H||, then B1 and B2 are asymptotically negligible in Eq. (3.1).

The proof is given in the Appendix. We make two remarks. (a) Theorem 3.1(i) says that the estimator
for m(z) is asymptotically independent of the estimator for m˙(z), and they have different rates of
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convergence. (b) As Theorem 3.1(iii) says, if we use undersmoothing in the first step, the asymptotic bias
of MbH(z) is equal to that of the conventional LLLS estimator M

~
H(z). Nevertheless, noticing that

varf ffiffiffiffiffiffiffiffiffi
njH jp eMHðzÞg ¼ ðr2u þ r2υÞQ−1CQ−1, the asymptotic variance ofM~H(z) is smaller than that ofM~H(z)

as long as τ 2bσu
2 +συ

2. This means that the 2-step estimator is asymptotically more efficient than the LLLS
estimator. For example, if one sets τ= p̃d

−1 as in Martins-Filho and Yao (2005), then τ2 =συ
2[1−{1− (1−

dT)
1/2}/T ]−2bσu

2 +συ
2, where dT=Tσu

2/(συ
2 +Tσu

2), and B1 vanishes.
Since MbH(z) depends on the unknown parameters (σu

2, συ
2), it is infeasible. To provide a feasible

estimator of M(z), we need to estimate (σu
2, συ

2) consistently. This is done in Ruckstuhl et al. (2000) and
Martins-Filho and Yao (2005). Denote the resultant feasible estimator asMH

+(z)= (m+(z), (Hm˙+(z))′)′. It is
not difficult to show that MH

+(z) has the asymptotic property as MbH(z).
4. Monte Carlo simulations

To illustrate the finite sample performance of MH
+(z) in comparison with the conventional LLLS

estimator MbH(z), we consider the following data generating process:

yit ¼ mðzitÞ þ ui þ vit; i ¼ 1; N :n; t ¼ 1 N ; T ; ð4:1Þ
where zit=zit

+1(|zit
+|≤3), zit

+, ui and vit are independent i.i.d. N(0, 1) sequences, m(z)=z−0.5z2. We choose
H by the least-squares cross validation and set H0=H

5/4. We use K(u)=0.75(1−u2)1(|u|≤1). The
consistent estimators for σu

2 and συ
2 are obtained by using the formula in Ruckstuhl et al. (2000 p. 61).

For each estimator, we use (n, T )= (100, 4) and consider 5000 repetitions. To save time, we only
consider the estimation of m(z) and m˙(z) at z=0.5. Fig. 1 plots the estimated bias, standard error and root

Fig. 1. Bias, standard deviation and root mean squared error (upper plot: m(0.5), lower plot: m?(0.5)).
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mean square error (Rmse) (averaged over repetitions) for our two-step estimators along with τ∈{0, 0.05,
0.1, …, 2}. τ=0 corresponds to the conventional LLLS case. We find that: (a) As τ increases from 0.05,
the bias also decreases in absolute value for mH

+(z) and increases for m˙H
+(z). (b) The standard deviation of

mH
+(z) only increases proportionally to τ2 as τN0.8 whereas that of m˙H

+(z) increases as τ increases. One
reasonable explanation is that for small value of τ, the asymptotically negligible term in the variance
expansion of mH

+(z) also plays a significant role in finite samples. (c) When τ=0.05, the Rmse for our
estimator of m˙(z) is smallest whereas for intermediate value of τ (around 1), the Rmse for our estimator of
m(z) is smallest. (d) For both estimators, we can achieve reduction in Rmse for a large range of τ∈ (0, 2).

Appendix A

Proof of Theorem 3.1. By construction, Yi⁎=m(Zi)− (τP1/2−IT) (m̃H0
(Zi)−m(Zi))+τP1/2εi. It is standard to

show that emH0ðzÞcmðzÞ þ g21
2

Xq

j¼1
h20jA

2mðzitÞ=Az2j þ n−1e VQ−1ðzÞ
Xn

j¼1

XT

s¼1
YZjsðzÞKH0ðzjs−zÞejs

uniformly in z, where a≈b denote a=b(1+op(1)). Thus YI⁎≈m(Zi)−τP1/2−IT) (A1i+A2i)+τP1/2εi, where for

l ¼ 1; 2;Aliuðal i1; N ; aliTÞ V; a1it ¼ g21
2

Xq

j¼1
h20jA

2mðzitÞ=Az2j ; and a2it ¼ n−1e VQ−1ðzitÞ
Xn

j¼1

XT

s¼1YZjsðzÞKH0ðzjs−zitÞejs. By Taylor expression, mðzitÞ ¼ YZitðzÞ VMðzÞ þ 1
2
ðzit−zÞ Vm̈ðzÞðzit−zÞ þ oPðjjH jj2Þ.

Noticing ½n−1YZðzÞ VKHðzÞYZðzÞ�−1cQ−1, we have
ffiffiffiffiffiffiffiffiffi
njH jp ðMbHðzÞ−MðzÞÞcB11−B12−B13 þ B14, where

B11 ¼
ffiffiffiffiffiffiffiffiffi
njH jp
2

n−1Q−1
Xn
i¼1

XT
t¼1

YZitðzÞKHðzit−zÞðzit−zÞ Vm̈ðzÞðzit−zÞ;

B12 ¼
ffiffiffiffiffiffiffiffiffi
njH j

p
n−1Q−1

Xn
i¼1

YZi1ðzÞKHðzi1−zÞ; N ;YZiT ðzÞKHðziT−zÞ
� �

sP1=2−IT
� �

A1i;

B13 ¼
ffiffiffiffiffiffiffiffiffi
njH j

p
n−1Q−1

Xn
i¼1

YZi1ðzÞKHðzi1−zÞ; N ;YZiTðzÞKHðziT−zÞ
� �

sP1=2−IT
� �

A2i;

B14 ¼
ffiffiffiffiffiffiffiffiffi
njH j

p
n−1Q−1

Xn
i¼1

YZi1ðzÞKHðzi1−zÞ; N :;YZiTðzÞKHðziT−zÞ
� �

sP1=2ei

:

It is easy to show B11cð ffiffiffiffiffiffiffiffiffi
njH jp

=2Þðg21
Pq

j¼1 h
2
j A

2mðzitÞ=Az2j ; 0 VÞ V and B14Yd Nð0; s2Q−1CQ−1Þ.
Noting that B13 can be written as a second order U statistic which can easily be symmetrized. By
direct calculation, B13 ¼ Opð

ffiffiffiffiffiffiffiffiffi
njH jp

n−1jH0j−1=2jH j−1=2Þ ¼ opð1Þ.

B12 ¼
ffiffiffiffiffiffiffiffiffi
njH jp

g21ðsepd−1Þ
2

n−1Q−1
Xn
i¼1

XT
t¼1

YZitðzÞKHðzit−zÞ
Xq
j¼1

A2mðzitÞ
Az2j

h20j

þ
ffiffiffiffiffiffiffiffiffi
njH jp

g21sepo
2

n−1Q−1
Xn
i¼1

XT
t¼1

YZitðzÞKHðzit−zÞ
XT
spt

Xq
j¼1

A2mðzisÞ
Az2j

h20j

c−
ffiffiffiffiffiffiffiffiffi
njH j

p
ðB1 þ B2Þ:

This completes the proof of part (i). The proofs of (ii) and (iii) are obvious and thus omitted. □
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