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More efficient estimation of nonparametric panel data
models with random effects ™

Liangjun Su®*, Aman Ullah '

* Guanghua School of Management, Peking University, Beijing, 100871, PR China
® Department of Economics, University of California, Riverside, CA 92521-0427, United States

Abstract
We propose a class of two-step estimators for nonparametric panel data models with random effects that are

more efficient than the conventional least squares estimators. We establish asymptotic normality for the proposed
estimators and derive the most efficient estimator in the class.

Keywords: Nonparametrics; Panel data models; Random effects; Efficiency

JEL classification: C1; C14; C33

1. Introduction

Recently nonparametric panel data models have become a research topic of much interest. This is
especially true for random effects nonparametric panel data models. See Li and Stengos (1996), Li and
Ullah (1998), Lin and Carroll (2000), Henderson and Ullah (2005), among others. In such models the
regression mean is generally estimated by the local linear least squares (LLLS) estimator. But this
estimator ignores the covariance structure in the disturbance term and thus is inefficient. To take into
account the covariance structure, Henderson and Ullah (2005) propose local linear weighted least squares
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estimation. Unfortunately, as Lin and Carroll (2000) demonstrate, one cannot achieve asymptotic
improvement over the LLLS estimator by this approach.

In this paper, we follow the idea of Ruckstuhl et al. (2000) and propose a class of two-step estimators that
employ the covariance structure to achieve asymptotic improvement over the LLLS estimator. In comparison
with their approach, our estimators are different in at least three aspects. First, we allow the regressor to be a
random vector. Second, we consider more efficient estimation of both the nonparametric regression mean
and its first order derivatives. Third, we use two different bandwidth sequences in the two steps that will
greatly facilitate the comparison of our estimator with the conventional LLLS estimator.

The paper is structured as follows. We introduce a class of two-step estimators in Section 2 and study
their asymptotic property in Section 3. We conduct Monte Carlo simulations in Section 4.

2. The estimator

We consider a two-step estimation of nonparametric panel data models with random effects:

YVie=m(ziy) +ui+ vy, i=1,2,...nt=12..T, (2.1)

where z;, is a g% 1 vector of exogenous variables, u; is i.i.d. (0, 02), vy, 1s 1.1.d. (0, af), u; and v;, are
uncorrelated for all i, j=1, 2,...n, and m () is an unknown smooth function. We are interested in
consistent estimation of m(z) and its first order derivatives #mi(z) at an interior point z. We establish the
asymptotic theory by letting #n approach infinity and holding 7 fixed.

Let ¢;,=u;+v;, and €,=(&;1, ...., &;7)'. Then X=E(¢g;¢]) takes the form S=¢2l;+0c2iri}, where Iy is a
T'x T identity matrix and iz is a 7% 1 vector of ones. Let K denote a kernel function on R? and H=diag
(hy, ..., hy), a matrix of bandwidth sequences. Set Ky(z)=|H |"'K(H ™ 'z) and Z,(z) = [1,{H Y(zi—2)}],
where |H| is the determinant of H. Further denote Ky (z)=diag(Ky(z11 —2), ..., Ku(zir—2), ..., Ky(z,1 —2), .-,
Ky(z,7—2)) and 7(2) = (Zl(z), s ZT(Z), sy Z,l(z), s ZT(Z))’. The LLLS estimator of M(z) = (m(z),
(Hm(z))') is obtained by

Mu(z) = ?Egg?(y—?(z)M)’KH @) (r-Zem). (2.2)

Where Y=(11, .o V175 - Vuls .- Yu7). That is, M(z)=S@)Y, where S(z) = [Z(2)Ku(2) Z(2)] ' Z(2) Ky (2)
is a smoothing operator. In particular, the estimator for m(z) is given by 7 ,(z)=s(z)' Y, where s(z) =¢’S(z), and
e=(1,0,..,0) isa(g+1)x1 vector.

The LLLS estimator /4,,(z) ignores the information contained in the variance matrix X and it is inefficient.
For this reason, Henderson and Ullah (2005) propose local linear weighted least squares estimation. However,
Lin and Carroll (2000) demonstrate that one cannot achieve asymptotic improvement over the LLLS estimator
by such an approach. Here, we follow the idea of Ruckstuhl et al. (2000) and propose a class of two-step
estimators that employ the covariance structure to achieve asymptotic improvement over the LLLS estimator.

For the moment, we assume that X is known. Let P=X"" and let P’ be its symmetric square root.
The procedure is as follows:

1. Choose bandwidth Hy=diag(ho, ..., ho,) and obtain the usual LLLS estimator of M(Z) as in Eq. (2.2)
and denote it by My (2) for Z=zyy, ..., z,r



2. Define Y; *=pl/ 2y, — (TP”2 —I7)my (z;) and denote its typlcal element as y;¥, where Y;=(yi1, ...., Vir)
and miy (z;)= (M (zi1). .., Mg, (z;7))'. Obtain the estimator M;/(z) by regressing y;¥'s on z, s:

My(z)=arg min (Y*—?’(Z)M) KH(Z)(Y*—f’(z)M), (2.3)
MeR!
where Y*=(Y#', ..., Y*')'. In particular, m(z) is estimated by iy (z)=e'My(2).

The intuition for the above estimator is simple. Write Y;=m(Z;)+ ¢;, multiply both sides by TP"* and
rearrange terms so that we have tP'?Y,— (tP"? — I)m(Z))=m(Z;)+tP"?¢;. Y* is a consistent estimator of
the left hand side expression but the disturbance terms on the right hand side are now i.i.d. We will show
that My(z) is more efficient than A%,(z) under weak conditions. Also, replacing X by its consistent
estimator does not affect the asymptotic relative efficiency of My, (z).

3. Asymptotic property

First, we make the following assumptions.

Al. (u, v, z), i=1,...,, n, are i.i.d., where v;=(v;1, ..., v;7)’ and z; is similarly defined. A2. z; has a continuous
density function f£;(-) with compact support Cron R?. f,(-) is bounded away from zero and infinity on C,for
t=1,..., T. A3. m() has bounded second partial derivatives on C. A4. K(-) is a product kernel of k(*) that is a
continuous density with compact support on R. All odd order moments of & vanish. AS. As n— oo, [|Hy|| — 0,
IEll— 0, n|Ho| —co, n|HI* — oo, ||H|*|H] ' —0, and n|H] IIHII —cE[0, ), where ||H]|= {tu(H'H)} .

To study the asymptotic property of My(2), let f(z)=Y.L, fi(z). Let p; and p, po be the diagonal and the
oft- dragonal elements of P2 respectlvely Define ¢;=pd Y % 7 ]hojﬁ m(z)/ 6zj ,and =pf (@) 'L S,
(Z)ZS¢,ZJ 1h0jE[82m(z] S)/@Z |21, z] Let vy, = fR ‘k )Y du. Then by Assumption A4,
Jro u'K (w)du = 311, [po K(u) du = v§,, and [p, uu'K( (u)? a’u =~y ol

Theorem 3.1. (i) Under Assumptions AI1-A5,

V/n|H| <MH(2)—M(Z)—<7 1 Z>h}0)—31—32> iN(O,r2Q‘1FQ_1), (3.1)
o
where B = ~ Y2 Tpd b Z h /82 0", By = —(v,,¢27/2,0"),

_ z *_Z 1 0’ Yoz 0’
— ) (T )

(ii) The optimal T to minimize the mean squared error of my(z) is given by

. 9%°m(z _ _ —-1 57!
w=(ertenY T (4 ) (et e +an G T @) (52)
=1 j

(iii) If ||Ho|| < ||H]|, then By and B, are asymptotically negligible in Eq. (3.1).

The proof is given in the Appendix. We make two remarks. (a) Theorem 3.1(i) says that the estimator
for m(z) is asymptotically independent of the estimator for ni(z), and they have different rates of



convergence. (b) As Theorem 3.1(iii) says, if we use undersmoothing in the first step, the asymptotic bias
of MH(Z) is_ equal to that of the conventional LLLS estimator MH(Z) Nevertheless, notlcmg that
var{\/n|H| M 1(2)} = (62 + 62)0 'I'Q™!, the asymptotic variance of M;(z) is smaller than that of My,(z)
as long as 12 <02 +op. Thls means that the 2 -step estimator is asymptotically more efﬁment than the LLLS
estimator. For example if one sets T—pd as in Martins-Filho and Yao (2005), then t°=¢2[1—{1—(1—
dp)'?}IT) *<og+ay, where dr=To,/(o; +Toy), and By vanishes.

Since MH(z) depends on the unknown parameters (o2, o2), it is infeasible. To provide a feasible
estimator of M(z), we need to estimate (o2, o2) consistently. This is done in Ruckstuhl et al. (2000) and
Martins-Filho and Yao (2005) Denote the resultant feasible estimator as M;(z)=(m " (2), (Hm " (2))') . It is
not difficult to show that My(z) has the asymptotic property as My(z).

4. Monte Carlo simulations

To illustrate the finite sample performance of Mj,(z) in comparison with the conventional LLLS
estimator My(z), we consider the following data generating process:

YVie=m(ziy) +ui+vp,i=1,...nt=1.,T, (4.1)

where z;,=z; 1(|z3]] <3), z, u; and v;, are independent i.i.d. N(0, 1) sequences, m(z)=z—0.5z>. We choose
H by the least-squares cross validation and set Ho=H>*. We use K(u)=0.75(1 —u®)1(Ju|<1). The
consistent estimators for o7 and o are obtained by using the formula in Ruckstuhl et al. (2000 p. 61).
For each estimator, we use (n, 7)=(100, 4) and consider 5000 repetitions. To save time, we only
consider the estimation of m(z) and mi(z) at z=0.5. Fig. 1 plots the estimated bias, standard error and root
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Fig. 1. Bias, standard deviation and root mean squared error (upper plot: m(0.5), lower plot: m?(0.5)).



mean square error (Rmse) (averaged over repetitions) for our two-step estimators along with & {0, 0.05,
0.1, ..., 2}. 7=0 corresponds to the conventional LLLS case. We find that: (a) As 7 increases from 0.05,
the bias also decreases in absolute value for m;,(z) and increases for 71,(z). (b) The standard deviation of
mjAz) only increases proportionally to 7 as 7>0.8 whereas that of 717,(z) increases as T increases. One
reasonable explanation is that for small value of 7, the asymptotically negligible term in the variance
expansion of m(z) also plays a significant role in finite samples. (c) When 7=0.05, the Rmse for our
estimator of ni1(z) is smallest whereas for intermediate value of 7 (around 1), the Rmse for our estimator of
m(z) is smallest. (d) For both estimators, we can achieve reduction in Rmse for a large range of 1< (0, 2).

Appendix A
Proof of Theorem 3.1. By constructlon Y#=m(Z)—(tP"*~1Iy) (i (Z;) —m(Z; ))+TP1/28 It is standard to
show that iy, (z) =m(2) +% 0Pm(z) 022+ 070 (2) Y ST 7 KHU 25—2)8s

uniformly in z, where a =~ b denote a= b(l +op(1)) Thus Y;* ~m(Z;)— TPI/ 2 —IT) (A11+A2,)+TP &;, where for

=1, 2,4;=(a; il,...;au7)", aiy = e Z h2 9%m(zi) /322 and az; = n"'e'0' (zy 271 Zs 1
— - 1
Zjs(2)Kn, (zis—zit ) &js. By Taylor expressmn m(z,,) =Zu(z))M(z )+2(z,, —z)hi(z)(zi—2) —|—0p(||H|| ).

—

Noticing [0 Z(2) Ky (2) Z(z)] ' =0, we have \/n[H|(My(z)~M (z)) = Bi1~B12~Bi3 + Bi4, where

B, :L;'H wlo Zo(2) K (zi—2) (z0-2) i (2) (z02),

i=1

~
—_

=

BIZ = \/ n]H nilQilz (Zl (Z)KH(ZI]_Z), veny ZT(Z)KH(ZiT_Z)> (TPI/Z_IT)AH,
i=1

By = il ' 0" (Z()Kn(anz), . Zir()Kn(zir—=) ) (P21 ) oy,
i=1

Biy = alHIn ' Q" (Zi()Kn G z), o Zir 2K (zir—z) ) <P e
i=1

It is easy to show By =(\/n|H|/2)(vy >0, h}0°m(zi)/02;,0") and By -HN(0,7°Q7'TO ™).
Noting that Bi3 can be written as a second order U statlstlc Wthh can easily be symmetrlzed By
direct calculation, Bi3 = O,(\/n ’H‘n_1’H0’—1/2’H|—1/2) op(1).

HIyy (th,~1) - 9*m(z;
Biy — | |Yz1(Pd nlo! ZZ (K (z2) S (z)hﬁj

2
t=1 j=1 BZ]-
nlH|Ytw, | 1% — L & 9Pm(zi
UL DD IFACTACEED Sl pra- v
=1 =1 sA =1 %
~—\/n|H|(Bl +Bz)

This completes the proof of part (i). The proofs of (ii) and (iii) are obvious and thus omitted. L]
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