
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2013

Mitigating Access-Driven Timing Channels in Clouds using Mitigating Access-Driven Timing Channels in Clouds using

StopWatch StopWatch

Peng LI

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

Michael K. Reiter

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
LI, Peng; GAO, Debin; and Reiter, Michael K.. Mitigating Access-Driven Timing Channels in Clouds using
StopWatch. (2013). 43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2013). 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2038

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2038&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mitigating Access-Driven Timing Channels in
Clouds using StopWatch

Peng Li
Department of Computer Science

University of North Carolina
Email: pengli@cs.unc.edu

Debin Gao
School of Information Systems

Singapore Management University
Email: dbgao@smu.edu.sg

Michael K. Reiter
Department of Computer Science

University of North Carolina
Email: reiter@cs.unc.edu

Abstract—This paper presents StopWatch, a system that
defends against timing-based side-channel attacks that arise from
coresidency of victims and attackers in infrastructure-as-a-service
clouds. StopWatch triplicates each cloud-resident guest virtual
machine (VM) and places replicas so that the three replicas of a
guest VM are coresident with nonoverlapping sets of (replicas of)
other VMs. StopWatch uses the timing of I/O events at a VM’s
replicas collectively to determine the timings observed byeach one
or by an external observer, so that observable timing behaviors
are similarly likely in the absence of any other individual, coresi-
dent VM. We detail the design and implementation ofStopWatch
in Xen, evaluate the factors that influence its performance,and
address the problem of placing VM replicas in a cloud under
the constraints of StopWatch so as to still enable adequate cloud
utilization.

I. I NTRODUCTION

Implicit timing-based information flows threaten the use of
clouds for very sensitive computations. In an “infrastructure as
a service” (IaaS) cloud, such an attack could be mounted by
an attacker submitting a virtual machine (VM) to the cloud
that times the duration between events that it can observe, to
make inferences about avictim VM with which it is running
simultaneously on the same host but otherwise cannot access.
Such “access-driven” attacks [1] were first studied in the
context of timing-basedcovert channels, in which the victim
VM is infected with a Trojan horse that intentionally signals
information to the attacker VM by manipulating the timings
that the attacker VM observes. Of more significance in modern
cloud environments, however, are timing-basedside channels,
which leverage the same principles to attack an uninfected but
oblivious victim VM (e.g., [2], [1]).

In this paper we propose an approach to defend against
timing attacks and a system that implements this method for
IaaS clouds. Our system, calledStopWatch, alters timings
observed by the attacker VM to “match” those of areplica
attacker VM that isnot coresident with the victim. Since
StopWatch cannot identify attackers and victimsa priori,
realizing this intuition in practice requires replicatingeach VM
on multiple hosts and enforcing that the replicas are coresident
with nonoverlapping sets of (replicas of) other VMs. Moreover,
two replicas is not enough: one might be coresident with
its victim, and by symmetry, its timings would necessarily
influence the timings imposed on the pair.StopWatch thus
uses three replicas that coreside with nonoverlapping setsof
(replicas of) other VMs and imposes the median timing of the
three on all replicas. Even if the median timing of an event
is that which occurred at an attacker replica that is coresident
with a victim replica, timings both below and above the median
occurred at attacker replicas that do not coreside with the

victim. The median can thus be viewed as “microaggregating”
the timings to confound inferences from them (c.f., [3], [4]).

We detail the implementation ofStopWatchin Xen, specif-
ically to intervene on all real-time clocks and, notably, to
enforce this median behavior on “clocks” available via the I/O
subsystem (e.g., network interrupts). Moreover, for uniproces-
sor VMs, StopWatchenforces deterministic execution across
all of a VM’s replicas, making it impossible for an attacker VM
to utilize other internally observable clocks and ensuringthe
same outputs from the VM replicas. By applying the median
principle to the timing of these outputs,StopWatch further
interferes with inferences that an observer external to thecloud
could make on the basis of output timings.

We evaluate the performance of ourStopWatchprototype
for supporting web service (file downloads) and various types
of computations. Our analysis shows that the latency overhead
of StopWatch is less than2.8× even for network-intensive
applications. We also identify adaptations to a service that
can vastly increase its performance when run overStopWatch,
e.g., making file download overStopWatchcompetitive with
file download over unmodified Xen. For computational bench-
marks, the latency induced byStopWatch is less than2.3×
and is directly correlated with their amounts of disk I/O.

We also study the impact ofStopWatchon cloud utiliza-
tion, i.e., how many guest VMs can be simultaneously executed
on an infrastructure ofn machines, each with a capacity ofc
guest VMs, under the constraint that the three replicas for each
guest VM coreside with nonoverlapping sets of (replicas of)
other VMs. We show that for anyc ≤ n−1

2 , Θ(cn) guest VMs
(three replicas of each) can be simultaneously executed; we
also identify practical algorithms for placing replicas toachieve
this bound. This distinguishesStopWatchfrom the alternative
of simply running each guest VM on a separate computer,
which permits simultaneous execution of onlyn guest VMs.

To summarize, our contributions are as follows: First, we
introduce a novel approach for defending against access-driven
timing side-channel attacks in “infrastructure-as-a-service”
(IaaS) compute clouds that leverages replication of guest VMs
with the constraint that the replicas of each guest VM coreside
with nonoverlapping sets of (replicas of) other VMs. The
median timings of I/O events across the three guest VM
replicas are then imposed on these replicas to interfere with
their use of event timings to extract information from a victim
VM with which one is coresident. Second, we detail the
implementation of this strategy in Xen, yielding a system
calledStopWatch, and evaluate the performance ofStopWatch
on a variety of workloads. This evaluation sheds light on
the features of workloads that most impact the performance

of applications running onStopWatch and how they can
be adapted for best performance. Third, we show how to
place replicas under the constraints ofStopWatchto utilize a
cloud infrastructure more effectively than running each guest
VM in isolation. Finally, in the Appendix we analyze the
median as a microaggregation function and explain its benefits
over the alternative of obscuring event timings with random
noise (e.g., [5]).

II. RELATED WORK

Timing channel defenses. Defenses against information leak-
age via timing channels are diverse, taking numerous different
angles on the problem. Research on type systems and security-
typed languages to eliminate timing attacks offers powerful
solutions (e.g., [6], [7], [8]), but this work is not immediately
applicable to our goal here, namely adapting an existing
virtual machine monitor (VMM) to support practical mitigation
of timing channels today. Other research has focused on
the elimination of timing side channels within cryptographic
computations (e.g., [9]) or as enabled by specific hardware
components (e.g., [10], [11]), but we seek an approach that is
comprehensive.

Askarov et al. [12] distinguish betweeninternal timing
channels that involve the implicit or explicit measurementof
time from within the system, andexternal timing channels
that involve measuring the system from the point of view of
an external observer. Defenses for both internal (e.g., [5], [6],
[7], [13]) and external (e.g., [14], [15], [12], [16], [17])tim-
ing channels have received significant attention individually,
though to our knowledge,StopWatch is novel in addressing
timing channels through a combination of both techniques.
StopWatchincorporates internal defenses to interfere with an
attacker’s use of real-time clocks or “clocks” that it mightde-
rive from the I/O subsystem. In doing so,StopWatchimposes
determinism on uniprocessor VMs and then uses this feature
to additionally build an effective external defense against such
attacker VMs.

StopWatch’s internal and external defense strategies also
differ individually from prior work, in interfering with timing
channels by allowing replicas (in the internal defenses) and
external observers (in the external defenses) to observe only
median I/O timings across the three replicas. The median
offers several benefits over the alternative of obfuscatingevent
timings by adding random noise (without replicating VMs): to
implement random noise, a distribution from which to draw the
noise must be chosen without reference to an execution in the
absence of the victim—i.e., how the execution “should have”
looked—and so ensuring that the chosen noise distribution is
sufficient to suppress all timing channels can be quite difficult.
StopWatchuses replication and careful replica placement (in
terms of the other VMs with which each replica coresides)
exactly to provide such a reference. Moreover, in the Appendix
we show that the median permits the delays incurred by the
system to scale better than uniformly random noise allows for
the same protection, as the distinctiveness of victim behavior
increases.

Replication. To our knowledge,StopWatch is novel in
utilizing replication for timing channel defense. That said,
replication has a long history that includes techniques similar

to those we use here. For example, state-machine replication to
mask Byzantine faults [18] ensures that correct replicas return
the same response to each request so that this response can
be identified by “vote” (a technique related to one employed
in StopWatch; see Sec. III and Sec. VI). To ensure that
correct replicas return the same responses, these systems
enforce the delivery of requests to replicas in the same order;
moreover, they typically assume that replicas are deterministic
and process requests in the order they are received.Enforcing
replica determinism has also been a focus of research in
(both Byzantine and benignly) fault-tolerant systems; most
(e.g., [19], [20], [21]), but not all (e.g., [22]), do so at other
layers of the software stack thanStopWatchdoes.

More fundamentally, to our knowledge all prior systems
that enforce timing determinism across replicas permit one
replica to dictate timing-related events for the others, which
does not suffice for our goals: that replica could be the one
coresident with the victim, and so permitting it to dictate
timing related events would simply “copy” the information
it gleans from the victim to the other replicas, enabling that
information to then be leaked out of the cloud. Rather, by
forcing the timing of events to conform to the median timing
across three VM replicas, at most one of which is coresident
with the victim, the enforced timing of each event is either
the timing of a replica not coresident with the victim or else
between the timing of two replicas that are not coresident with
the victim. This strategy is akin to ones used for Byzantine
fault-tolerant clock synchronization (e.g., see [23, Sec.5.2])
or sensor replication (e.g., see [18, Sec. 5.1]), though we use
it here for information hiding (versus integrity).

Aside from replication for fault tolerance, replication has
been explored to detect server penetration [24], [25], [26], [27].
These approaches purposely employ diverse replica codebases
or data representations so as to reduce the likelihood of a
single exploit succeeding on multiple replicas. Divergence of
replica behavior in these approaches is then indicative of an
exploit succeeding on one but not others. In contrast to these
approaches,StopWatchleverages (necessarily)identical guest
VM replicas to address a different class of attacks (timing side
channels) than replica compromise.

Research on VM executionreplay (e.g., [28], [29]) focuses
on recording nondeterministic events that alter VM execution
and then coercing these events to occur the same way when the
VM is replayed. The replayed VM is a replica of the original,
albeit a temporally delayed one, and so this can also be viewed
as a form of replication.StopWatch similarly coerces VM
replicas to observe the same event timings, but again, unlike
these timings being determined by one replica (the original),
they are determined collectively using median calculations, so
as to interfere with one attacker VM replica that is coresident
with the victim from simply propagating its timings to all
replicas. That said, the state-of-the-art in VM replay (e.g., [29])
addresses multiprocessor VM execution, which our present
implementation ofStopWatchdoes not.StopWatchcould be
extended to support multiprocessor execution with techniques
for deterministic multiprocessor scheduling (e.g., [30]). Mech-
anisms for enforcing deterministic execution through O/S-level
modifications (e.g., [31]) are less relevant to our goals, asthey
are not easily used by an IaaS cloud provider that accepts
arbitrary VMs to execute.

III. D ESIGN

Our design is focused on “infrastructure as a service” (IaaS)
clouds that accept virtual machine images, or “guest VMs,”
from customers to execute. Amazon EC2 (http://aws.amazon.
com/ec2/) and Rackspace (http://www.rackspace.com/) areex-
ample providers of public IaaS clouds. Given the concerns
associated with side-channel attacks in cloud environments
(e.g., [2], [1]), we seek to develop virtualization software
that would enable a provider to construct a cloud that offers
substantially stronger assurances against leakage via timing
channels. This cloud might be a higher assurance offering that
a provider runs alongside its normal cloud (while presumably
charging more for the greater assurance it offers) or a private
cloud with substantial assurance needs (e.g., run by and foran
intelligence or military community).

Threat model. Our threat model is a customer who submits
attacker VMs for execution that are designed to employ timing
side channels. We presume that the attacker VM is designed to
extract information from a particular victim VM, versus trying
to learn general statistics about the cloud such as its average
utilization. We assume that access controls prevent the attacker
VMs from accessing victim VMs directly or from escalating
their own privileges in a way that would permit them to access
victim VMs. The cloud’s virtualization software (in our case,
Xen and our extensions thereof) is trusted.

According to Wray [32], to exploit a timing channel, the
attacker VM measures the timing of observable events using a
clock that is independent of the timings being measured. While
the most common such clock is real time, a clock can be any
sequence of observable events. With this general definitionof
a “clock,” a timing attack simply involves measuring one clock
using another. Wray identified four possible clock sources in
conventional computers [32]:

• TL: the “CPU instruction-cycle clock” (e.g., a clock con-
structed by executing a simple timing loop);

• Mem: the memory subsystem (e.g., data/instruction
fetches);

• IO: the I/O subsystem (e.g., network, disk, and DMA
interrupts); and

• RT: real-time clocks provided by the hardware platform
(e.g., time-of-day registers).

Defense strategy. StopWatch is designed to interfere with
the use of IO and RT clocks and, for uniprocessor VMs,
TL or Mem clocks, for timing attacks. (As discussed in
Sec. II, extension to multiprocessor VMs is a topic of future
work.) IO and RT (especiallyRT) clocks are an ingredient
in every timing side-channel attack in the research literature
that we have found, undoubtedly because real time is the
most intuitive, independent and reliable reference clock for
measuring another clock. So, intervening on these clocks is
of paramount importance. Moreover, the wayStopWatchdoes
so forces the scheduler in a uniprocessor guest VM to behave
deterministically, interfering with attempts to useTL or Mem

clocks.

More specifically, to interfere withIO clocks, StopWatch
replicates each attacker VM (i.e., every VM, since we do
not presume to know which ones are attacker VMs) threefold
so that the three replicas of a guest VM are coresident with

nonoverlapping sets of (replicas of) other VMs. Then, when
determining the timing with which an event is made available
to each replica, the median timing value of the three is adopted.
StopWatchaddressesRT clocks by replacing a VM’s view of
real time with a virtual time that depends on the VM’s own
progress, an idea due to Popek and Kline [33].

A side effect of howStopWatch addressesIO and RT

clocks is that it enforces deterministic execution of uniproces-
sor attacker VM replicas, also disabling its ability to useTL

or Mem clocks. These mechanisms thus deal effectively with
internal observations of time, but it remains possible thatan
external observer could glean information from the real-time
duration between the arrival of packets that the attacker VM
sends. To interfere with this timing channel, we emit packets to
an external observer with timing dictated by, again, the median
timing of the three VM replicas.

Justification for the median. Permitting only the median
timing of anIO event to be observed limits the information that
an attacker VM can glean from being co-located with a victim
VM of interest, because the distribution of the median timings
substantially dampens the visibility of a victim’s activities. We
formally justify this assertion in the Appendix. Here we simply
provide an example illustration of how the median does so.

Consider a victim VM that induces observable timings that
are exponentially distributed with rateλ′, versus a baseline
(i.e., non-victim) exponential distribution with rateλ > λ′.1

Fig. 1(a) plots example distributions of the attacker VMs’ ob-
servations underStopWatchwhen an attacker VM is coresident
with the victim (“Median of two baselines, one victim”) and
when attacker VM is not (“Median of three baselines”). This
figure shows that these median distributions are quite similar,
even whenλ is substantially larger thanλ′; e.g.,λ = 1 and
λ′ = 1/2 in the example in Fig. 1(a). In this case, to even reject
the null hypothesis that the attacker VM is not coresident with
the victim using aχ-square test, the attacker can do so with
high confidence in the absence ofStopWatchwith only a single
observation, but doing so underStopWatch requires almost
two orders of magnitude more (Fig. 1(b)). This improvement
becomes even more pronounced ifλ and λ′ are closer; the
caseλ = 1, λ′ = 10/11 is shown in Fig. 1(c).

In terms of the number of observations needed to extract
meaningful information from the victim VM, this assessment
is very conservative, since the attacker would face numerous
pragmatic difficulties that we have not modeled here [1]. But
even this simple example shows the power of disclosing only
median timings of three VM replicas, and in Sec. V-B we will
repeat this illustration using actual message traces. Please see
the Appendix for a formal analysis.

IV. RT CLOCKS

Real-time clocks provide reliable and intuitive reference
clocks for measuring the timings of other events. In this
section, we describe the high-level strategy taken inStopWatch
to interfere with their use for timing channels and detail the
implementation of this strategy in Xen with hardware-assisted
virtualization (HVM).

1It is not uncommon to model packet inter-arrival time, for example, using
an exponential distribution (e.g., [34]).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

P
ro

b
ab

il
it

y

x

Baseline
Victim

Median of three baselines
Median of two baselines,

 one victim

(a) Distribution of median;λ′ = 1/2

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u
m

b
er

 o
f

O
b
se

rv
at

io
n
s

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect
victim; λ′ = 1/2

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u
m

b
er

 o
f

O
b
se

rv
at

io
n
s

confidence

w/ StopWatch
w/o StopWatch

(c) Observations needed to detect
victim; λ′ = 10/11

Fig. 1. Justification for median; baseline distributionExp(λ), λ = 1, and
victim distributionExp(λ′)

A. Strategy

The strategy adopted inStopWatch to interfere with a
VM’s use of real-time clocks is to virtualize these real-
time clocks so that their values observed by a VM are a
deterministic function of the VM’s instructions executed so
far [33]. That is, after the VM executesinstr instructions, the
virtual time observed from within the VM is

virt (instr) ← slope × instr + start (1)

To determinestart at the beginning of VM replica execution,
the VMMs hosting the VM’s replicas exchange their current
real times;start is initially set to the median of these values.
slope is initially set to a constant determined by the tick rate
of the machines on which the replicas reside.

Optionally, the VMMs can adjuststart and slope pe-
riodically, e.g., after the replicas execute an “epoch” ofI
instructions, to coarsely synchronizevirt and real time. For
example, after thek-th epoch, each VMM can send to the
others the durationDk over which its replica executed those
I instructions and its real timeRk at the end of that duration.
Then, the VMMs can select the median real timeR∗

k and the
durationD∗

k from that same machine and reset

startk+1 ← virtk(I)

slopek+1 ← arg min
v∈[ℓ,u]

∣

∣

∣

∣

R∗
k − virtk(I) +D∗

k

I
− v

∣

∣

∣

∣

for a preconfigured constant range[ℓ, u], to yield the formula
for virtk+1.2 The use ofℓ andu ensures thatslopek+1 is not
too extreme and, ifℓ > 0, that slopek+1 is positive. In this
way, virtk+1 should approach real time on the computer con-
tributing the median real timeR∗

k over the nextI instructions,
assuming that the machine and VM workloads stay roughly

2In other words, if(R∗

k
− virtk(I) + D∗

k
)/I ∈ [ℓ,u] then this value

becomesslopek+1. Otherwise, eitherℓ or u does, whichever is closer to
(R∗

k
− virtk(I) +D∗

k
)/I.

the same. Of course, the smallerI-values are, the morevirt
follows real time and so poses the risk of becoming useful in
timing attacks. So,virt should be adjusted only for tasks for
which coarse synchronization with real time is important and
then only with largeI values.

B. Implementation in Xen

Real-time clocks on a typical x86 platform include timer
interrupts and various hardware counters. Closely relatedto
these real-time clocks is the time stamp counter register, which
is accessed using therdtsc instruction and stores a count of
processor ticks since reset.

Timer interrupts . Operating systems typically measure the
passage of time by counting timer interrupts; i.e., the operating
system sets up a hardware device to interrupt periodically
at a known rate, such as100 times per second [35]. There
are various such hardware devices that can be used for this
purpose. Our current implementation ofStopWatchassumes
the guest VM uses a Programmable Interval Timer (PIT) as
its timer interrupt source, but our implementation for other
sources would be similar. TheStopWatch VMM generates
timer interrupts for a guest on a schedule dictated by that
guest’svirtual time virt as computed in Eqn. 1. To do so,
it is necessary for the VMM to be able to track the instruction
count instr executed by the guest VM.

In our present implementation,StopWatchuses the guest
branch count for instr , i.e., keeping track only of the number
of branches that the guest VM executes. Several architectures
support hardware branch counters, but these are not sensitive
to the multiplexing of multiple guests onto a single hardware
processor and so continue to count branches regardless of
the guest that is currently executing. So, to track the branch
count for a guest,StopWatchimplements avirtualized branch
counter for each guest.

A question is when to inject each timer interrupt. Intel
VT augments IA-32 with two new forms of CPU operations:
virtual machine extensions (VMX) root operation and VMX
non-root operation [36]. While the VMM uses root operation,
guest VMs use VMX non-root operation. In non-root oper-
ation, certain instructions and events cause aVM exit to the
VMM, so that the VMM can emulate those instructions or deal
with those events. Once completed, control is transferred back
to the guest VM via aVM entry. The guest then continues
running as if it had never been interrupted.

VM exits give the VMM the opportunity to inject timer
interrupts into the guest VM as the guest’s virtual time
advances. However, so that guest VM replicas observe the
same timer interrupts at the same points in their executions,
StopWatch injects timer interrupts only after VM exits that
are caused by guest execution. Other VM exits can be induced
by events external to the VM, such as hardware interrupts on
the physical machine; these would generally occur at different
points during the execution of the guest VM replicas but will
not be visible to the guest [37, Sec. 29.3.2]. For VM exits
caused by guest VM execution, the VMM injects any needed
timer interrupts on the next VM entry.

rdtsc calls and CMOS RTC values. Another way for a
guest VM to measure time is viardtsc calls. Xen already

emulates the return values to these calls. More specifically, to
produce the return value for ardtsc call, the Xen hypervisor
computes the time passed since guest reset using its real-time
clock, and then this time value is scaled by a constant factor.
StopWatch replaces this use of a real-time clock with the
guest’s virtual clock (Eqn. 1).

A virtualized real-time clock (RTC) is also provided to
HVM guests in Xen; this provides time to the nearest second
for the guest to read. The virtual RTC gets updated by Xen
using its real-time clock.StopWatchresponds to requests to
read the RTC using the guest’s virtual time.

Reading counters. The guest can also observe real time
from various hardware counters, e.g., the PIT counter, which
repeatedly counts down to zero (at a pace dictated by real
time) starting from a constant. These counters, too, are already
virtualized in modern VMMs such as Xen. In Xen, these return
values are calculated using a real-time clock;StopWatchuses
the guest virtual time, instead.

V. IO CLOCKS

IO clocks are typically network, disk and DMA interrupts.
(Other device interrupts, such as keyboards, mice, graphics
cards, etc., are typically not relevant for guest VMs in clouds.)
We outline our strategy for mitigating their use to implement
timing channels in Sec. V-A, and then in Sec. V-B we describe
our implementation of this strategy inStopWatch.

A. Strategy

The method described in Sec. IV for dealing withRT
clocks by introducing virtual time provides a basis for ad-
dressing sources ofIO clocks. A component of our strategy for
doing so is to synchronize I/O events across the three replicas
of each guest VM in virtual time, so that every I/O interrupt
occurs at the same virtual time at all replicas. Among other
things, this synchronization will force uniprocessor VMs to
execute deterministically, but it alone will not be enough to
interfere with IO clocks; it is also necessary to prevent the
timing behavior of one replica’s machine from imposing I/O
interrupt synchronization points for the others, as discussed in
Sec. II–III. This is simpler to accomplish for disk accessesand
DMA transfers since replica VMs initiate these themselves,
and so we will discuss this case first. The more difficult case
of network interrupts, where we explicitly employ median
calculations to dampen the influence of any one machine’s
timing behavior on the others, will then be addressed.

Disk and DMA interrupts . The replication of each guest
VM at start time includes replicating its entire disk image,
and so any disk blocks available to one VM replica will be
available to all. By virtue of the fact that (uniprocessor) VMs
execute deterministically inStopWatch, replicas will issue disk
and DMA requests at the same virtual time. Upon receiving
such a request from a replica at timeV , the VMM adds an
offset∆d to determine a “delivery time” for the interrupt, i.e.,
at virtual timeV + ∆d, and initiates the corresponding I/O
activities (disk access or DMA transfer). The offset∆d must
be large enough to ensure that the data transfer completes by
the virtual delivery time. Once the virtual delivery time has
been determined, the VMM simply waits for the first VM exit
caused by the guest VM (as in Sec. IV-B) that occurs at a

virtual time at least as large as this delivery time. The VMM
then injects the interrupt prior to the next VM entry of the
guest. This interrupt injection also includes copying the data
into the address space of the guest, so as to prevent the guest
VM from polling for the data in advance of the interrupt to
create a form of clock (e.g., see [5, Sec 4.2.2]).

Network interrupts . Unlike the initiation of disk accesses and
DMA transfers, the activity giving rise to a network interrupt,
namely the arrival of a network packet that is destined for
the guest VM, is not synchronized in virtual time across the
three replicas of the guest VM. So, the VMMs on the three
machines hosting these replicas must coordinate to synchronize
the delivery of each network interrupt to the guest VM replicas.
To prevent the timing of one from dictating the delivery timeat
all three, these VMMs exchange proposed delivery times and
select the median, as discussed in Sec. III. To solicit proposed
timings from the three, it is necessary, of course, that the
VMMs hosting the three replicas all observe each network
packet. So,StopWatchreplicates every network packet to all
three computers hosting replicas of the VM for which the
packet is intended. This is done by a logically separate “ingress
node” that we envision residing on a dedicated computer in the
cloud. (Of course, there need not be only one such ingress for
the whole cloud.)

When a VMM observes a network packet to be delivered
to the guest, it sends its proposed virtual time — i.e., in the
guest’s virtual time, see Sec. IV — for the delivery of that
interrupt to the VMMs on the other machines hosting replicas
of the same guest VM. (We stress that these proposals are not
visible to the guest VM replicas.) Each VMM generates its
proposed delivery time by adding a constant offset∆n to the
virtual time of the guest VM at its last VM exit.∆n must
be large enough to ensure that once the three proposals have
been collected and the median determined at all three replica
VMMs, the chosen median virtual time has not already been
passed by any of the guest VMs. The virtual-time offset∆n

is thus determined using an assumed upper bound on the real
time it takes for each VMM to observe the interrupt and to
propagate its proposal to the others,3 as well as the maximum
allowed difference between the fastest two replicas’ virtual
times. This difference can be limited by slowing the execution
of the fastest replica.

Once the median proposed virtual time for a network
interrupt has been determined at a VMM, the VMM simply
waits for the first VM exit caused by the guest VM (as in
Sec. IV-B) that occurs at a virtual time at least as large as that
median value.4 The VMM then injects the interrupt prior to
the next VM entry of the guest. As with disk accesses and
DMA transfers, this interrupt injection also includes copying
the data into the address space of the guest, so as to prevent the
guest VM from polling for the data in advance of the interrupt
to create a form of clock (e.g., see [5, Sec. 4.2.2]).

The process of determining the delivery time of a network

3In distributed computing parlance, we thus assume asynchronous system,
i.e., there are known bounds on processor execution rates and message delivery
times.

4If the median time determined by a VMM has already passed, then our
synchrony assumption was violated by the underlying system. In this case,
that VMM’s replica has diverged from the others and so must berecovered
by, e.g., copying the state of another replica.

Real �me

V
ir

tu
a

l �
m

e

R1

Replica A Replica B Replica C

B C A C A B

Arrival of packet at VMM

A’s proposal

Delivery of packet to guest

+∆n

+∆n

+∆n

B’s proposal
C’s proposal

Real �me Real �me
R1 R1R2 R2 R2

Arrival of proposal at VMM

Fig. 2. Delivering a packet to guest VM replicas.

packet to a guest VM’s replicas is pictured in Fig. 2. This figure
depicts a real-time interval[R1, R2] at the three machines at
which a guest VM is replicated, showing at each machine: the
arrival of a packet at the VMM, the proposal made by each
VMM, the arrival of proposals from other replica machines, the
selection of the median, and the delivery of the packet to the
guest replica. Each stepped diagonal line shows the progression
of virtual time at that machine.

B. Implementation in Xen

Xen presents to each HVM guest a virtualized platform that
resembles a classic PC/server platform with a network card,
disk, keyboard, mouse, graphics display, etc. This virtualized
platform support is provided by virtual I/O devices (device
models) in Dom0, a domain in Xen with special privileges.
QEMU (http://fabrice.bellard.free.fr/qemu) is used to imple-
ment device models. One instance of the device models is run
in Dom0 per HVM domain.

Network card emulation. In the case of a network card, the
device model running in Dom0 receives packets destined for
the guest VM. WithoutStopWatchmodification, the device
model copies this packet to the guest address space and
asserts a virtual network device interrupt via the virtual Pro-
grammable Interrupt Controller (vPIC) exposed by the VMM
for this guest. HVM guests cannot see real external hardware
interrupts since the VMM controls the platform’s interrupt
controllers [37, Sec. 29.3.2].

In StopWatch, we modify the network card device model
so as to place each packet destined for the guest VM into a
buffer hidden from the guest, rather than delivering it to the
guest. The device model then reads the current virtual time
of the guest (as of the guest’s last VM exit), adds∆n to
this virtual time to create its proposed delivery (virtual)time
for this packet, and multicasts this proposal to the other two
replicas (step 1 in Fig. 3). A memory region shared between
Dom0 and the VMM allows device models in Dom0 to read
guest virtual time.

Once the network device model receives the two proposals
in addition to its own, it takes the median proposal as the
delivery time and stores this delivery time in the memory it
shares with the VMM. The VMM compares guest virtual time
to the delivery time stored in the shared memory upon every
guest VM exit caused by guest VM execution. Once guest
virtual time has passed the delivery time, the network device
model copies the packet into the guest address space (step 2

Dom0
HVM Guest

Device

Model
VM

exit

VM

entry

(3) Request interrupt
vPIC

S
h

a
re

d

M
e

m
o

ry

(2) Copy data

VMM

(1) Proposals to/from

other replicas

Fig. 3. Emulation of network I/O device inStopWatch.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000

P
ro

b
ab

il
it

y

Inter-packet delivery times (virtual)

Median of three baselines
Median of two baselines,

one victim

(a) Distribution of median (CDF)

 0

 20

 40

 60

 80

 100

 120

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u
m

b
er

 o
f

o
b
se

rv
at

io
n
s

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect victim

Fig. 4. Virtual inter-packet delivery times to attacker VM replicas with
coresident victim (“two baselines, one victim”) and in a runwhere no replica
was coresident with a victim (“three baselines”)

in Fig. 3) and asserts a virtual network interrupt on the vPIC
prior to the next VM entry (step 3).

Fig. 4(a) shows the CDF of virtual inter-packet delivery
times to replicas of an attacker VM in an actual run where
one replica is coresident with a victim VM continuously
serving a file, in comparison to the virtual delivery times with
no victim present. This plot is directly analogous to that in
Fig. 1(a) but is generated from a realStopWatchrun and shows
the distribution as a CDF for ease of readability. Fig. 4(b)
shows the number of observations needed to distinguish the
victim and no-victim distributions in Fig. 4(a) using aχ-
squared test, as a function of the desired confidence. This
figure is analogous to Fig. 1(b) and confirms thatStopWatch
strengthens defense against timing attacks by an order of
magnitude in this scenario. Again, the absolute number of
observations needed to distinguish these distributions islikely
quite conservative, owing to numerous practical challenges to
gathering these observations [1].

Disk and DMA emulation. The emulation of the IDE disk
and DMA devices is similar to the network card emulation
above.StopWatchcontrols when the disk and DMA device

models complete requests and notify the guest. Instead of
copying data read to the guest address space, the device model
in StopWatchprepares a buffer to receive this data. In addition,
rather than asserting an appropriate interrupt via the vPICto
the guest as soon as the data is available, theStopWatchdevice
model reads the current guest virtual time from memory shared
with the VMM, adds∆d, and stores this value as the interrupt
delivery time in the shared memory. Upon the first VM exit
caused by guest execution at which the guest virtual time has
passed this delivery time, the device model copies the buffered
data into the guest address space and asserts an interrupt onthe
vPIC. Disk writes are handled similarly, in that the interrupt
indicating write completion is delivered as dictated by adding
∆d to the virtual time at which the write was initiated.

VI. EXTERNAL OBSERVERS

The mechanisms described in Sec. IV–V intervene on two
significant sources of clocks; though VM replicas can measure
the progress of one relative to the other, for example, their
measurements will be the same and will reflect the median of
their timing behaviors. Moreover, by forcing each guest VM
to execute (and, in particular, schedule its internal activities)
on the basis of virtual time and by synchronizing I/O events
across replicas in virtual time, uniprocessor guest VMs execute
deterministically, stripping them of the ability to leverageTL

and Mem clocks, as well. (More specifically, the progress
of TL and Mem clocks are functionally determined by the
progress of virtual time and so are not independent of it.)
There nevertheless remains the possibility that an external
observer, on whose real-time clock we cannot intervene, could
discern information on the basis of the real-time behavior of
his attacker VM. In this section we describe our approach to
addressing this form of timing channel.

Because guest VM replicas will run deterministically, they
will output the same network packets in the same order.
StopWatchuses this property to interfere with a VM’s ability
to exfiltrate information on the basis of its real-time behavior as
seen by an external observer.StopWatchdoes so by adopting
the median timing across the three guest VM replicas for each
output packet. The median is selected at a separate “egress
node” that is dedicated for this purpose (c.f., [38]), analogous
to the “ingress node” that replicates every network packet
destined to the guest VM to the VM’s replicas (see Sec. V).
Like the ingress node, there need not be only one egress node
for the whole cloud.

To implement this scheme in Xen, every packet sent by a
guest VM replica is tunneled by the network device model on
that machine to the egress node over TCP. The egress node
forwards an output packet to its destination after receiving the
second copy of that packet (i.e., the same packet from two
guest VM replicas). Since the second copy of the packet it
receives exhibits the median output timing of the three replicas,
this strategy ensures that the timing of the output packet sent
toward its destination is either the timing of a guest replica
not coresident with the victim VM or else a timing that falls
between those of guest replicas not coresident with the victim.

VII. PERFORMANCEEVALUATION

In this section we evaluate the performance of ourStop-
Watch prototype. We present additional implementation details

that impact performance in Sec. VII-A, our experimental setup
in Sec. VII-B, and our tests and their results in Sec. VII-C–
VII-D.

A. Selected implementation details

Our prototype is a modification of Xen version 4.0.2-
rc1-pre, amounting to insertions or changes of roughly 1500
source lines of code (SLOC) in the hypervisor. There were
also about 2000 SLOC insertions and changes to the QEMU
device models distributed with that Xen version. In addition
to these changes, we incorporated OpenPGM (http://code.
google.com/p/openpgm/) into the network device model in
Dom0. OpenPGM is a high-performance reliable multicast
implementation, specifically of the Pragmatic General Mul-
ticast (PGM) specification [39]. In PGM, reliable transmission
is accomplished by receivers detecting loss and requesting
retransmission of lost data. OpenPGM is used inStopWatch
for replicating packets destined to a guest VM to all of
that VM’s replicas and for communication among the VMMs
hosting guest VM replicas.

Recall from Sec. V that each VMM proposes (via an
OpenPGM multicast) a virtual delivery time for each network
interrupt, and the VMMs adopt the median proposal as the
actual delivery time. As noted there, each VMM generates its
proposal by adding a constant offset∆n to the current virtual
time of the guest VM.∆n must be large enough to ensure that
by the time each VMM selects the median, that virtual time
has not already passed in the guest VM. However, subject to
this constraint,∆n should be minimized since the real time
to which∆n translates imposes a lower bound on the latency
of the interrupt delivery. (Note that because∆n is specified
in virtual time and virtual time can vary in its relationshipto
real time, the exact real time to which∆n translates can vary
during execution.) We selected∆n to accommodate timing
differences in the arrivals of packets destined to the guest
VM at its three replicas’ VMMs, the delays for delivering
each VMM’s proposed virtual delivery time to the others,
and the maximum allowed difference in progress between the
two fastest guest VM replicas (whichStopWatchenforces by
slowing the fastest replica, if necessary). For the platform
used in our experiments (see Sec. VII-B) and under diverse
networking workloads, we found that a value of∆n that
typically translates to a real-time delay in the vicinity of7-
12ms sufficed to meet the above criteria. The analogous offset
∆d for determining the virtual delivery time for disk and DMA
interrupts was determined based on the maximum observed
disk access times and translates to roughly 8-15ms.

B. Experimental setup

Our “cloud” consisted of three machines with the same
hardware configuration: 4 Intel Core2 Quad Q9650 3.00GHz
CPUs, 8GB memory, and a 70GB rotating hard drive. Dom0
was configured to run Linux kernel version 2.6.32.25. Each
HVM guest had one virtual CPU, 2GB memory and 16GB disk
space. Each guest ran Linux kernel 2.6.32.24 and was config-
ured to use the Programmable Interrupt Controller (PIC) as its
interrupt controller and a Programmable Interrupt Timer (PIT)
of 250Hz as its clock source. The Advanced Programmable
Interrupt Controller (APIC) was disabled. An emulated ATA
QEMU disk and a QEMU Realtek RTL-8139/8139C/8139C+

 0.1

 1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

T
im

e(
m

s)

File size (KB)

HTTP Baseline
HTTP StopWatch
UDP Baseline
UDP StopWatch

Fig. 5. HTTP and UDP file-retrieval latency.

were provided to the guest as its disk and network card. In each
of our tests, we installed an application (e.g., a web serveror
other program) in the guest VM, as will be described later.

After the guest VM was configured, we copied it to our
three machines and restored the VM at each. In this way,
our three replicas started running from the same state. In
addition, we copied the disk file to all three machines to
provide identical disk state to the three replicas.

Once the guest VM replicas were started, inbound packets
for this guest VM were replicated to all three machines for
delivery to their replicas as discussed in Sec. V. These three
machines were attached to a /24 subnet within the UNC
campus network, and so broadcast traffic on the network (e.g.,
ARP requests) was replicated for delivery as in Sec. V. These
broadcasts averaged roughly 50-100 packets per second. As
such, this background activity was present throughout our
experiments and is reflected in our numbers.

C. Network Services

In this section we describe tests involving network services
deployed on the cloud. In all of our tests, our client that
interacted with the cloud-resident service was a Lenovo T400
laptop with a dual-core 2.8GHz CPU and 2GB memory
attached to an 802.11 wireless network on the UNC campus.

File downloads. Our first experiments tested the performance
of file download by the client from a web server in the cloud.
The total times for the client to retrieve files of various sizes
over HTTP are shown in Fig. 5. This figure shows tests in
which our guest VM ran Apache version 2.2.14, and the file
retrieval was from a cold start (and so file-system caches
were empty). The “HTTP Baseline” curve in Fig. 5 shows
the average latency for the client to retrieve a file from an
unmodified Xen guest VM. The “HTTPStopWatch” curve
shows the average cost of file retrieval from ourStopWatch
implementation. Every average is for ten runs. Note that both
axes are log-scale.

Fig. 5 shows that for HTTP download, a service running
on our currentStopWatchprototype loses less than2.8× in
download speed for files of100KB or larger. Diagnosing this
cost reveals that the bottleneck, by an order of magnitude or
more, was the network transmission delay (vs. disk access
delay) in both the baseline and forStopWatch. Moreover, the
performance cost ofStopWatchin comparison to the baseline
was dominated by the time for delivery ofinbound packets
to the web-server guest VM, i.e., the TCP SYN and ACK
messages in the three-way handshake, and then additional

acknowledgments sent by the client. Enforcing a median
timing on output packets (Sec. VI) adds modest overhead in
comparison.

This combination of insights, namely the detriment of
inbound packets (mostly acknowledgments) toStopWatchfile
download performance and the fact that these costs so out-
weigh disk access costs, raises the possibility of recovering
file download performance using a transport protocol that
minimizes packets inbound to the web server, e.g., using
negative acknowledgments or forward error correction. Alter-
natively, an unreliable transport protocol with no acknowledg-
ments, such as UDP, could be used; transmission reliability
could then be enforced at a layer above UDP using negative
acknowledgments or forward error correction. Though TCP
does not define negative acknowledgments, transport protocols
that implement reliability using them are widely available,
particularly formulticast where positive acknowledgments can
lead to “ack implosion.” Indeed, recall that the PGM protocol
specification [39], and so the OpenPGM implementation that
we use, ensures reliability using negative acknowledgments.

To illustrate this point, in Fig. 5 we repeat the experiments
using UDP to transfer the file.5 The “UDP Baseline” curve
shows the performance using unmodified Xen; the “UDPStop-
Watch” curve shows the performance usingStopWatch. Not
surprisingly, baseline UDP shows performance comparable
to (but slightly more efficient than, by less than a factor
of two) baseline TCP, but rather than losing an order of
magnitude, UDP overStopWatch is competitive with these
baseline numbers for files of 100KB or more.

NFS. We also set up a Network File System (NFSv4) server
in our guest VM. On our client machine, we installed an
NFSv4 client; remotely mounted the filesystem exported by
the NFS server; performed file operations manually; and then
ran nfsstat on the NFS server to print its server-side
statistics, including the mix of operations induced by our
activity. We then used thenhfsstone benchmarking utility
to evaluate the performance of the NFS server with and without
StopWatch. nhfsstone generates an artificial load with a
specified mix of NFS operations. The mix of NFS operations
used in our tests was the previously extracted mix file.6 In each
test, the client machine ran five processes using the mounted
file system, making calls at a constant rate ranging from 25 to
400 per second in total across the five client processes.

The average latency per operation is shown in Fig. 6(a). In
this figure, the horizontal axis is the rate at which operations
were submitted to the server; note that this axis is log-scale.
Fig. 6(a) suggests that an NFS server overStopWatchincurs
a less than2.7× increase in latency over an NFS server
running over unmodified Xen. Since the NFS implementation
used TCP, in some sense this is unsurprising in light of the
file download results in Fig. 5. That said, it is also perhaps
surprising thatStopWatch’s cost increased only roughly log-

5We are not advocating UDP for file retrieval generally but rather are simply
showing the advantages forStopWatchof a protocol that minimizes client-to-
server packets. We did not use OpenPGM in these tests since the web site (as
the “multicast” originator) would need to initiate the connection to the client;
this would have required more substantial modifications. This “directionality”
issue is not fundamental to negative acknowledgments, however.

6This mix was 11.37% setattr, 24.07% lookup, 11.92% write,
7.93% getattr, 32.34% read and12.37% create.

 0

 5

 10

 15

 20

25 50 100 200 400

T
im

e(
m

s)

Load (Operations per second)

StopWatch
Baseline

(a) Average latency per op

 0

 2

 4

 6

 8

 10

 12

25 50 100 200 400

T
C

P
 p

ac
k

et
s

p
er

 o
p

er
at

io
n

Load (Operations per second)

Client to Server
Server to Client

(b) Average packets per op

Fig. 6. Tests of NFS server usingnhfsstone

arithmically as a function of the offered rate of operations.
This modest growth is in part becauseStopWatchschedules
packets for delivery to guest VM replicas independently — the
scheduling of one does not depend on the delivery of a previous
one, and so they can be “pipelined” — and because the number
of TCP packets from the client to the server actually decreases
per operation, on average, as the offered load grows (Fig. 6(b)).

D. Computations

In this section we evaluate the performance of various com-
putations onStopWatchthat may be representative of future
cloud workloads. For this purpose, we employ the PARSEC
benchmarks [40]. PARSEC is a diverse set of benchmarks that
covers a wide range of computations that are likely to become
important in the near future (see http://parsec.cs.princeton.edu/
overview.htm). Here we take PARSEC as representative of
future cloud workloads.

We utilized the following five applications from the PAR-
SEC suite (version 2.1), providing each the “native” input
designated for it.ferret is representative of next-generation
search engines for non-text document data types. In our tests,
we configured the application for image similarity search.
blackscholes calculates option pricing with Black-Scholes
partial differential equations and is representative of financial
analysis applications.canneal is representative of engineer-
ing applications and uses simulated annealing to optimize rout-
ing cost of a chip design.dedup represents next-generation
backup storage systems characterized by a combination of
global and local compression.streamcluster is represen-
tative of data mining algorithms for online clustering problems.
Each of these applications involves various activities, including
initial configuration, creating a local directory for results,
unpacking input files, performing its computation, and finally
cleaning up temporary files.

We ran each benchmark ten times in one guest VM over
unmodified Xen, and then ten more times with three guest
VM replicas overStopWatch. Fig. 7(a) shows the average
runtimes of these applications in both cases. In this figure,each
application is described by two bars; the black bar on the left
shows its performance over unmodified Xen, and the gray bar
on the right shows its performance overStopWatch. StopWatch
imposed an overhead of at most2.3× (for blackscholes)
to the average running time of the applications. Owing to the
dearth of network traffic involved in these applications, the
overhead imposed byStopWatchis mostly due to the overhead
involved in intervening on disk I/O (see Sec. V). As shown
in Fig. 7(b), there is a direct correlation between the number
of disk interrupts to deliver during the application run and
the performance penalty (in absolute terms) thatStopWatch

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ferret

blackscholes

canneal

dedup

stream
cluster

T
im

e
(m

s)

Baseline

171 177

1530

3730

290

StopWatch

350 401

3230

5754

382

(a) Average runtimes

 0

 50

 100

 150

 200

 250

 300

 350

ferret

blackscholes

canneal

dedup

stream
cluster

N
u

m
b

er
 o

f
d

is
k

 i
n

te
rr

u
p

ts

31 38

183

293

27

(b) Disk interrupts

Fig. 7. Tests of PARSEC applications

imposes. If the computers in our experiments used solid-state
drives (versus hard disks), we conjecture that their reduced
access times would permit us to shrink∆d and so improve
the performance ofStopWatchfor these applications.

VIII. R EPLICA PLACEMENT IN THE CLOUD

StopWatch requires that the three replicas of each guest
VM are coresident with nonoverlapping sets of (replicas of)
other VMs. This constrains how a cloud operator places guest
VM replicas on its machines. In this section we clarify the
significance of these placement constraints in terms of the
provider’s ability to best utilize its infrastructure. After all, if
under these constraints, the provider were able to simultane-
ously run a number of guest VMs that scales, say, only linearly
in the number of cloud nodes, then the provider should forgo
StopWatch and simply run each guest VM (non-replicated)
in isolation on a separate node. Here we show that the cloud
operator is not limited to such poor utilization of its machines.

If the cloud hasn machines, then consider the complete,
undirected graph (clique)Kn on n vertices, one per machine.
For every guest VM, the placement of its three replicas forms
a triangle in Kn consisting of the vertices for the machines
on which the replicas are placed and the edges between
those vertices. The placement constraints ofStopWatchcan
be expressed by requiring that the triangles representing VM
replica placements be pairwiseedge-disjoint. As such, the
number of guest VMs that can simultaneously be run on a
cloud ofn machines is the same as the number of edge-disjoint
triangles that can bepacked into Kn. A corollary of a result
due to Horsley [41, Thm. 1.1] is:

Theorem 1: A maximum packing ofKn with pairwise
edge-disjoint triangles has exactlyk triangles, where: (i) if
n is odd, thenk is the largest integer such that3k ≤

(

n
2

)

and
(

n
2

)

− 3k 6∈ {1, 2}; and (ii) if n is even, thenk is the largest
integer such that3k ≤

(

n
2

)

− n
2 .

So, a cloud ofn machines usingStopWatchcan simultane-
ously executek = Θ(n2) guest VMs. The existence of such a
placement, however, does not guarantee an efficient algorithm
to find it. Moreover, this theorem ignores machine capacities.
Below we address both of these shortcomings.

Under the constraints ofStopWatch, one node in a cloud
of n nodes can simultaneously execute up ton−1

2 guest VMs,
since the other replicas of the guest VMs that it executes
(two per VM) must occupy distinct nodes. If each node has
resources to simultaneously executec ≤ n−1

2 guest VMs, then

the following theorem provides for an algorithm to efficiently
place them subject to the per-machine capacity constraintc:

Theorem 2: Let n ≡ 3 mod 6 and c ≤ n−1
2 . If c ≡

0 or 1 mod 3, then there is an efficient algorithm to place
k ≤ 1

3 cn guest VMs. Ifc ≡ 2 mod 3, then there is an efficient
algorithm to placek ≤ 1

3 (c− 1)n+ n−3
6 guest VMs.

Proof: Following Bose’s construction of a Steiner Triple
System [42], letn = 6v + 3 and let (Q, ◦) be a multi-
plicative idempotent commutative quasigroup of order2v+1,
where Q = {a0, a1, . . . , a2v}. An idempotent commutative
quasigroup of size2v + 1 has the property that its multi-
plication table is an idempotent, commutative matrix of size
(2v + 1) × (2v + 1), and each element ofQ appears exactly
once in each row and in each column. LetQ×{0, 1, 2} denote
the n nodes, and consider the following setsGt, 0 ≤ t ≤ v,
of triangles:

G0 =
⋃

0≤i≤2v

{{(ai, 0), (ai, 1), (ai, 2)}}

and for1 ≤ t ≤ v,

Gt =
⋃

0≤i≤2v
0≤ℓ≤2

{{(ai, ℓ), (aj , ℓ), (ai ◦ aj , ℓ+ 1 mod 3)}}

wherej = i+ t mod 2v + 1.

There are2v+1 triangles inG0 and(2v+1)×3 = 6v+3 =
n triangles inGt for each1 ≤ t ≤ v. Moreover, all of these
triangles are edge-disjoint. Triangles inG0 visit each of then
nodes exactly once. Triangles in anyGt, 1 ≤ t ≤ v, visit each
node(a∗, ℓ∗) exactly three times: whena∗ = ai and ℓ∗ = ℓ;
whena∗ = aj for j = i+ t mod 2v+1 andℓ∗ = ℓ; and when
a∗ = ai ◦ aj for j = i+ t mod 2v+1 andℓ∗ = ℓ+ 1 mod 3.
So, collectively the triangles inG0, . . . , Gv visit each node
3v + 1 = n−1

2 ≥ c times.

So, if c ≡ 0 mod 3, then we can placek ≤ 1
3cn VMs using

the 1
3cn triangles in groupsG1, . . . , Gc/3. If c ≡ 1 mod 3,

then we can placek ≤ 1
3cn VMs by first using the2v +

1 = n
3 triangles inG0 and then the13 (c − 1)n triangles in

G1, . . . , G(c−1)/3. If c ≡ 2 mod 3, then we can placek ≤
1
3 (c− 1)n+ n−3

6 VMs by first using the2v+1 = n
3 triangles

in G0, then1
3 (c−2)n triangles inG1, . . . , G(c−2)/3, and finally

any v = n−3
6 triangles fromGv that visit each node at most

one time (e.g.,{(ai, 0), (aj, 0), (ai ◦ aj , 1)} for 0 ≤ i ≤ v− 1
andj = i+ v).

IX. COLLABORATING ATTACKER VM S

Our discussion so far has not explicitly addressed the
possibility of attacker VMs collaborating to mount timing
attacks. The apparent risks of such collaboration can be seen in
the following possibility: replicas of one attacker VM (“VM1”)
reside on machines A, B, and C; one replica of another attacker
VM (“VM2”) resides on machine A; and a replica of the
victim VM resides on machine C. If VM2 induces significant
load on its machines, then this may slow the replica of VM1
on machine A to an extent that marginalizes its impact on
median calculations among its replicas’ VMMs. The replicas
of VM1 would then observe timings influenced by the larger

of the replicas on B and C — which may well reflect timings
influenced by the victim.

Mounting such an attack, or any collaborative attack in-
volving multiple attacker VMs on one machine, appears to
be difficult, however. Just as the reasoning in Fig. 1 and its
confirmation in Fig. 4 suggest that an attacker VM detecting
its coresidence with a victim VM is made much harder
by StopWatch, one attacker VM detecting coresidence with
another using timing covert channels would also be impeded
by StopWatch. If the cloud takes measures to avoid disclosing
coresidence of one VM with another by other channels, it
should be difficult for the attacker to even detect when he
is in a position to mount such an attack or to interpret the
results of mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be made
harder still by increasing the number of replicas of each VM.
If the number were increased from three to, say, five, then
inducing sufficient load to marginalize one attacker replica
from its median calculations would not substantially increase
the attacker’s ability to mount attacks on a victim. Rather,the
attacker would need to marginalize multiple of its replicas,
along with accomplishing the requisite setup to do so.

X. CONCLUSION

We proposed a new method to address timing side channels
in IaaS compute clouds that employs three-way replication
of guest VMs and placement of these VM replicas so that
they are coresident with nonoverlapping sets of (replicas of)
other VMs. By permitting these replicas to observe only virtual
(vs. real) time and the median timing of network events
across the three replicas, we suppress their ability to glean
information from a victim VM with which one is coresident.
We described an implementation of this technique in Xen,
yielding a system calledStopWatch, and we evaluated the
performance ofStopWatchon a variety of workloads. Though
the performance cost for our current prototype ranges up to
2.8× for networking applications, we used our evaluation to
identify the sources of costs and alternative application designs
(e.g., reliable transmission using negative acknowledgments,
to support serving files) that can enhance performance con-
siderably. We showed that clouds withn machines capable
of each runningc ≤ n−1

2 guest VMs simultaneously can
efficiently scheduleΘ(cn) guest VMs under the constraints
of StopWatch, a clear improvement over the alternative of
running guest VMs in isolation. Finally, in the Appendix
we analyze the median as a microaggregation function and
explain its benefits over the alternative of obscuring event
timings through the addition of random noise. We envision
StopWatchas a basis for a high-security cloud, e.g., suitable
for military, intelligence, or financial communities with high
assurance needs.

Acknowledgments. This work was supported in part by
NSF grant 0910483, the Science of Security Lablet at North
Carolina State University, and a grant from VMWare.

REFERENCES

[1] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM side channels and their use to extract private
keys,” in 19th ACM CCS, 2012.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in16th ACM
CCS, 2009.

[3] J. Domingo-Ferrer and V. Torra, “Median-based aggre-
gation operators for prototype construction in ordinal
scales,”Intern. J. Intel. Sys., vol. 18, no. 6, 2003.

[4] M. E. Kabir and H. Wang, “Microdata protection method
through microaggregation: A median-based approach,”
Information Security J.: A Global Perspective, vol. 20,
2011.

[5] W.-M. Hu, “Reducing timing channels with fuzzy time,”
in 1991 IEEE Symp. Security & Privacy, 1991.

[6] J. Agat, “Transforming out timing leaks,” in27th ACM
POPL, 2000.

[7] S. Zdancewic and A. C. Myers, “Observational deter-
minism for concurrent program security,” in16th IEEE
CSFW, 2003.

[8] D. Zhang, A. Askarov, and A. C. Myers, “Language-
based control and mitigation of timing channels,” in33rd
ACM PLDI, 2012.

[9] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache
attacks on AES, and countermeasures,”J. Cryptology,
vol. 23, no. 1, 2010.

[10] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource
management for isolation enhanced cloud services,” in
ACM CCSW, 2009.

[11] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTH-
MEM: System-level protection against cache-based side
channel attacks in the cloud,” in21st USENIX Security
Symp., 2012.

[12] A. Askarov, A. C. Myers, and D. Zhang, “Predictive
black-box mitigation of timing channels,” in17th ACM
CCS, 2010.

[13] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating
fine grained timers in Xen,” inACM CCSW, 2011.

[14] M. H. Kang and I. S. Moskowitz, “A pump for rapid,
reliable, secure communication,” inACM CCS, 1993.

[15] J. Giles and B. Hajek, “An information-theoretic and
game-theoretic study of timing channels,”IEEE TOIT,
vol. 48, no. 9, 2002.

[16] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential
privacy under fire,” in 20th USENIX Security Symp.,
2011.

[17] D. Zhang, A. Askarov, and A. C. Myers, “Predictive
mitigation of timing channels in interactive systems,” in
18th ACM CCS, 2011.

[18] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,”ACM
Comp. Surv., vol. 22, no. 4, 1990.

[19] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W. Oberle, “Fault tolerance under UNIX,”ACM TOCS,
vol. 7, no. 1, 1989.

[20] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith,
“Enforcing determinism for the consistent replication
of multithreaded CORBA applications,” inIEEE SRDS,
1999.

[21] C. Basile, Z. Kalbarczyk, and R. K. Iyer, “Active replica-
tion of multithreaded applications,”IEEE TPDS, vol. 17,
no. 5, 2006.

[22] T. C. Bressoud and F. B. Schneider, “Hypervisor-based
fault-tolerance,”ACM TOCS, vol. 14, no. 1, 1996.

[23] F. B. Schneider, “Understanding protocols for Byzantine
clock synchronization,” Department of Computer Sci-
ence, Cornell University, Tech. Rep. 87-859, 1987.

[24] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance
for intrusion detection,” in8th RAID, 2005.

[25] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser,
“N-variant systems: A secretless framework for security
through diversity,” in15th USENIX Security Symp., 2006.

[26] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox,
and J. W. Davidson, “Security through redundant data
diversity,” in 38th DSN, 2008.

[27] D. Gao, M. K. Reiter, and D. Song, “Beyond output
voting: Detecting compromised replicas using HMM-
based behavioral distance,”IEEE TDSC, vol. 6, no. 2,
2009.

[28] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman, “ReTrace: Collecting execution trace with
virtual machine deterministic replay,” in3rd Workshop
on Modeling, Benchmarking and Simulation, 2007.

[29] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and M. A.
Fetterman, “Execution replay of multiprocessor virtual
machines,” in4th ACM VEE, 2008.

[30] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP:
Deterministic shared memory multiprocessing,”IEEE
Micro, vol. 30, pp. 41–49, 2010.

[31] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Effi-
cient system-enforced deterministic parallelism,” in9th
USENIX OSDI, 2010.

[32] J. C. Wray, “An analysis of covert timing channels,” in
1991 IEEE Symp. Security & Privacy, 1991.

[33] G. Popek and C. Kline, “Verifiable secure operating
system software,” inAFIPS National Comp. Conf., 1974.

[34] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido,
“A nonstationary Poisson view of Internet traffic,” in
INFOCOM, 2004.

[35] Timekeeping in VMware Virtual Machines, VMWare Inc.,
2010.

[36] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M.
Martins, A. V. Anderson, S. M. Bennett, A. Kagi, F. H.
Leung, and L. Smith, “Intel virtualization technology,”
IEEE Comp., vol. 38, no. 3, 2005.

[37] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Intel Corporation, 2011.

[38] J. Yin, A. Venkataramani, J.-P. Martin, L.Alvisi, and
M. Dahlin, “Byzantine fault-tolerant confidentiality,” in
Inter. Workshop on Future Directions in Distributed Com-
puting, 2002.

[39] T. Speakman, et al., “PGM reliable transport protocol
specification,” Request for Comments 3208, Internet En-
gineering Task Force, 2001.

[40] C. Bienia, “Benchmarking modern multiprocessors,”
Ph.D. dissertation, Princeton University, 2011.

[41] D. Horsley, “Maximum packing of the complete graph
with uniform length cycles,”J. Graph Theory, vol. 68,
no. 1, 2011.

[42] C. C. Lindner and C. A. Rodger,Design Theory. CRC
Press, 2008, ch. 1.

[43] E. Deza and M. Deza,Dictionary of Distances. Elsevier,
2006.

[44] M. Güngör, Y. Bulut, and S. Çalık, “Distributions oforder
statistics,”Appl. Math. Sci., vol. 3, no. 16, 2009.

APPENDIX

Here we justify the use of the median as a microaggregation
function in StopWatch. Let Xr:m denote the random variable
that takes on the value of ther-th smallest of them values
obtained by sampling random variablesX1 . . .Xm. Let Fi(x)
denote the CDF ofXi (i.e., Fi(x) = P (Xi ≤ x)) and let
Fr:m(x) denote the CDF ofXr:m.

Utility of the median . The security ofStopWatch (with
m = 3 replicas per VM) hinges on the distribution of the
medianX2:3 of three random variablesX1, X2, X3. In the
case of delivering a packet to the attacker VM (Sec. V),X1,
X2, X3 correspond to the proposed virtual delivery times of
the packet to the three replicas, less the actual virtual delivery
time of the previous packet. In the case of the attacker VM
sending a packet to an external observer (Sec. VI),X1, X2, X3

correspond to the emission (real) time of the packet from each
attacker VM replica, less the emission time of the preceding
packet to the external observer. In either case,X1, X2, X3 are
independent.

The attack considered in this paper is one in which the ad-
versary learns information due to the difference between (i) the
CDF F2:3(x) for random variablesX1, X2, X3 corresponding
to attacker VM replicas that arenot coresident with a victim
VM of interest, and (ii) the CDFF ′

2:3(x) for random variables
X ′

1, X2, X3 whereX ′
1 corresponds to an attacker VM that

is coresident with the victim VM of interest. An example
measure of the distance between two CDFsF(x) and F̂(x)
is their Kolmogorov-Smirnov distance [43, p. 179], defined
asD(F, F̂) = maxx

∣

∣

∣
F(x) − F̂(x)

∣

∣

∣
. The following theorem

shows that adopting the median microaggregation function can
only interfere with the adversary’s goal:

Theorem 3: If the distributions ofX2 andX3 are overlap-
ping (i.e., for nox is F2(x) = 0 andF3(x) = 1, or F2(x) = 1
andF3(x) = 0), thenD(F2:3, F

′
2:3) < D(F1, F

′
1).

Proof: Due to well-known results in order statistics (e.g.,
see Güngoör et al. [44, Result 2.4]):7

Fr:m(x) =

m
∑

ℓ=r

(−1)ℓ−r

(

ℓ− 1

r − 1

)

∑

I⊆{1...m}:
|I|=ℓ

∏

i∈I

Fi(x)

In particular,

F2:3(x) = F1(x)F2(x) + F1(x)F3(x) + F2(x)F3(x)

− 2F1(x)F2(x)F3(x)

F ′
2:3(x) = F ′

1(x)F2(x) + F ′
1(x)F3(x) + F2(x)F3(x)

− 2F ′
1(x)F2(x)F3(x)

whereF ′
1(x) represents the CDF ofX ′

1. So,

D(F2:3, F
′
2:3) =

max
x

|[F2(x) + F3(x) − 2F2(x)F3(x)][F1(x) − F ′
1(x)]|

Noting thatD(F1, F
′
1) = maxx |F1(x) − F ′

1(x)|, it suffices
to show that|F2(x) + F3(x)− 2F2(x)F3(x)| < 1 for all x.
However, sinceF2(x) ∈ [0, 1] and F3(x) ∈ [0, 1] for all x,

7This equation assumes eachFi(x) is continuous. See Güngör et al. [44]
for the case when someFi(x) is not continuous.

|F2(x) + F3(x) − 2F2(x)F3(x)| ≤ 1 and, moreover, equals1
only if for somex, one ofF2(x) andF3(x) is 1 and the other
is 0. This last case is precluded by the theorem.

In the limit, when the distributions ofX2 andX3 overlap
exactly, we get a much stronger result:

Theorem 4: If X2 andX3 are identically distributed, then
D(F2:3, F

′
2:3) ≤

1
2D(F1, F

′
1).

Proof: In this case,F2 = F3 and so

|F2(x) + F3(x)− 2F2(x)F3(x)|

reaches its maximum value of12 at the valuex yielding
F2(x) = F3(x) =

1
2 .

Comparison to uniformly random noise. An alternative to
StopWatchis simply adding random noise (without replicating
VMs) to confound timing attacks. For simplicity, suppose that
X1 andX ′

1 are exponentially distributed with rate parameters
λ and λ′, respectively, as in the example of Fig. 1. For the
random variableXN representing added noise, assume that
XN is drawn uniformly from[0, b] (i.e., XN ∼ U(0, b)), a
common choice to mitigate timing channels (e.g., [5], [15]).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

0.7 0.8 0.9 0.99

D
el

ay
 i

n
 v

ir
tu

al
 t

im
e

Confidence

E[X1+XN]
E[X'1 +XN]
E[X2:3+Dn]

E[X'2:3 +Dn]

(a) λ′ = 1/2

 0

 50

 100

 150

 200

 250

 300

 350

0.7 0.8 0.9 0.99

D
el

ay
 i

n
 v

ir
tu

al
 t

im
e

Confidence

E[X1+XN]
E[X'1 +XN]
E[X2:3+Dn]

E[X'2:3 +Dn]

(b) λ′ = 10/11

Fig. 8. Expected delay induced byStopWatchvs. by uniform noise, as a
function of confidence with which attacker distinguishes the two distributions
(coresident victim or not) after the same number of observations; baseline
distributionExp(λ), λ = 1; victim distributionExp(λ′)

We calculated expected delay imposed byStopWatchand
by adding uniformly distributed noise. To make a fair com-
parison, we configured both approaches to provide the same
strength of defense against timing attacks. Specifically, after
calculating the number of observations the attacker requires in
the case ofStopWatchto distinguish, for a fixed confidence
level, the distributionsX2:3 +∆n andX ′

2:3 +∆n using aχ-
squared test, we calculated the minimumb that would give the
attacker the same confidence in distinguishingX1 +XN and
X ′

1 +XN after that number of observations. Fig. 8 shows the
resulting expected delays in each case.

This figure indicates thatStopWatchscales much better
as the attacker’s required confidence and the distinctiveness
of the victim grows (as represented byλ′ dropping). The
delay of theStopWatchapproach is tied most directly to∆n,
which is added to ensure that the replicas of each VM remain
synchronized (see Section V-A); here we calculated it so that
Pr[|X1 −X ′

1| ≤ ∆n] ≥ 0.9999. That is, the probability of a
desynchronization at this event is less than0.0001. Note that
E[X2:3+∆n] andE[X ′

2:3+∆n] are nearly the same in Fig. 8,
since their difference is how the attacker differentiates the two,
and similarly forE[X1 +XN] andE[X ′

1 +XN].

	Mitigating Access-Driven Timing Channels in Clouds using StopWatch
	Citation

	paper.dvi

