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Abstract—This paper presents StopWatch, a system that  victim. The median can thus be viewed as “microaggregating
defends against timing-based side-channel attacks that e from the timings to confound inferences from them (c.f., [3])[4]
coresidency of victims and attackers in infrastructure-asa-service ) ) ] ] ]
clouds. StopWatch triplicates each cloud-resident guest virtual We detail the implementation &topWatchin Xen, specif-
machine (VM) and places replicas so that the three replicasfaa ically to intervene on all real-time clocks and, notably, to
guest VM are coresident with nonoverlapping sets of (replias of) enforce this median behavior on “clocks” available via th@ |
other VMs. StopWatch uses the timing of I/O events at a VM's  subsystem (e.g., network interrupts). Moreover, for unigss-
replicas collectively to determine the timings observed bgach one  gor VMs, StopWatchenforces deterministic execution across
or by an external observer, so that observable timing behaars )| of 4 VM’s replicas, making it impossible for an attackeviV
gre similarly likely in the absence of any other individual, coresi- "\ ijize other internally observable clocks and ensutiing

ent VM. We detail the design and implementation ofStopWatch . . .
in Xen, evaluate the factors that influence its performanceand Sa_me outputs from .the VM replicas. By applying the median
address the problem of placing VM replicas in a cloud under ~ Principle to the timing of these outputStopWatchfurther
the constraints of StopWatch so as to still enable adequate cloud interferes with inferences that an observer external takbied
utilization. could make on the basis of output timings.

We evaluate the performance of o8topWatchprototype
. INTRODUCTION for supporting web service (file downloads) and various $ype
of computations. Our analysis shows that the latency oaerhe
of StopWatchis less than2.8x even for network-intensive
applications. We also identify adaptations to a service tha
¥an vastly increase its performance when run &tepWatch
e.g., making file download ovestopWatchcompetitive with
file download over unmodified Xen. For computational bench-

Implicit timing-based information flows threaten the use of
clouds for very sensitive computations. In an “infrasturetas
a service” (laaS) cloud, such an attack could be mounted b
an attacker submitting a virtual machine (VM) to the cloud
that times the duration between events that it can obsewve,

make inferences aboutwvactim VM with which it is running marks, the latency induced bgtopWatchis less thar2.3x
simultaneously on the same host but otherwise cannot access g is,directly correlated with their amounts of disk II.O
Such “access-driven” attacks [1] were first studied in the '

context of timing-basedovert channels, in which the victim We also study the impact adtopWatchon cloud utiliza-
VM is infected with a Trojan horse that intentionally sigeal tion, i.e., how many guest VMs can be simultaneously execute
information to the attacker VM by manipulating the timings on an infrastructure oft machines, each with a capacity of
that the attacker VM observes. Of more significance in moderguest VMs, under the constraint that the three replicasdohe
cloud environments, however, are timing-basete channels,  guest VM coreside with nonoverlapping sets of (replicas of)
which leverage the same principles to attack an uninfeat¢d b other VMs. We show that for any < "T—l O(cn) guest VMs
oblivious victim VM (e.g., [2], [1]). (three replicas of each) can be simultaneously executed; we
also identify practical algorithms for placing replicasithieve
#his bound. This distinguisheStopWatchfrom the alternative
Obf simply running each guest VM on a separate computer,
which permits simultaneous execution of omlyguest VMs.

In this paper we propose an approach to defend again
timing attacks and a system that implements this method f
laaS clouds. Our system, calleBtopWatch alters timings
observed by the attacker VM to “match” those ofreplica
attacker VM that isnot coresident with the victim. Since To summarize, our contributions are as follows: First, we
StopWatch cannot identify attackers and victime priori, introduce a novel approach for defending against accegsrdr
realizing this intuition in practice requires replicatiegch VM  timing side-channel attacks in “infrastructure-as-asme”
on multiple hosts and enforcing that the replicas are cdeggi  (laaS) compute clouds that leverages replication of guéss V
with nonoverlapping sets of (replicas of) other VMs. Moregv  with the constraint that the replicas of each guest VM cdeesi
two replicas is not enough: one might be coresident withwith nonoverlapping sets of (replicas of) other VMs. The
its victim, and by symmetry, its timings would necessarily median timings of 1/0 events across the three guest VM
influence the timings imposed on the paBtopWatchthus replicas are then imposed on these replicas to interfere wit
uses three replicas that coreside with nonoverlappingdafets their use of event timings to extract information from a wict
(replicas of) other VMs and imposes the median timing of theVM with which one is coresident. Second, we detail the
three on all replicas. Even if the median timing of an eventimplementation of this strategy in Xen, yielding a system
is that which occurred at an attacker replica that is coesgid called StopWatch and evaluate the performance&tiopWatch
with a victim replica, timings both below and above the madia on a variety of workloads. This evaluation sheds light on
occurred at attacker replicas that do not coreside with théhe features of workloads that most impact the performance



of applications running onStopWatch and how they can to those we use here. For example, state-machine rephdatio

be adapted for best performance. Third, we show how tanask Byzantine faults [18] ensures that correct replicagme
place replicas under the constraintsStbpWatchto utilize a  the same response to each request so that this response can
cloud infrastructure more effectively than running eacleggu be identified by “vote” (a technique related to one employed
VM in isolation. Finally, in the Appendix we analyze the in StopWatch see Sec. Ill and Sec. VI). To ensure that
median as a microaggregation function and explain its bneficorrect replicas return the same responses, these systems
over the alternative of obscuring event timings with randomenforce the delivery of requests to replicas in the samerprde
noise (e.g., [5]). moreover, they typically assume that replicas are detéstign

and process requests in the order they are recekugfdrcing
replica determinism has also been a focus of research in
(both Byzantine and benignly) fault-tolerant systems; tmos
Timing channel defenses Defenses against information leak- (€.9., [19], [20], [21]), but not all (e.g., [22]), do so athefr

age via timing channels are diverse, taking numerous difer layers of the software stack tha&8topWatchdoes.

angles on the problem. Research on type systems and security
typed languages to eliminate timing attacks offers powerfu
solutions (e.g., [6], [7], [8]), but this work is not immetkdy
applicable to our goal here, namely adapting an existin
virtual machine monitor (VMM) to support practical mitiga

of timing channels today. Other research has focused oﬁ
tcr:)e;nillljrp;{:gggn (%f;mig]% 2;1 Zscgﬁgg?é?j Vgghlsr;):é%ﬁ:tohggffxarg gleans from the victim to the other replicas, enablingttha

Ihformation to then be leaked out of the cloud. Rather, by
ggmgfgﬁerlr:ii\(/z'g" [10], [11]), but we seek an approach shat Iforcing the timing of events to conform to the median timing

across three VM replicas, at most one of which is coresident
Askarov et al. [12] distinguish betweeimternal timing  with the victim, the enforced timing of each event is either
channels that involve the implicit or explicit measuremeft the timing of a replica not coresident with the victim or else
time from within the system, anedxternal timing channels between the timing of two replicas that are not coresidettt wi
that involve measuring the system from the point of view ofthe victim. This strategy is akin to ones used for Byzantine
an external observer. Defenses for both internal (e.g,[§3] fault-tolerant clock synchronization (e.g., see [23, Se@])
[7], [13]) and external (e.g., [14], [15], [12], [16], [17})m- or sensor replication (e.g., see [18, Sec. 5.1]), though see u
ing channels have received significant attention indiviigua it here for information hiding (versus integrity).

though to our knowledgeStopWatchis novel in addressing Aside from replication for fault tolerance, replicationsha

timing channels through a combination of both techniques ;
StopWatchincorporates internal defenses to interfere with an‘?’ﬁgs]ee);rz)lgrrce)ggﬁeie:)elﬁgziglsrepnewglec;[)r/a(gli?/gr[s?:]r’e[SIiS(]:;[%bas

attacker’s use of real-time clocks or “clocks” that it migla- . o
rive from the 1/O subsystem. In doing sStopWatchimposes or data representations so as to reduce the likelihood of a
. I:@'ngle exploit succeeding on multiple replicas. Divergent

determinism on uniprocessor VMs and then uses this featu A SE ; i
to additionally build an effective external defense agasush fep"cf”‘ behawor in these approaches is then indicativenof a
attacker VMs exploit succeeding on one but not others. In contrast toethes
' approachesStopWatchleverages (necessarilidentical guest
StopWatcfts internal and external defense strategies alsd/M replicas to address a different class of attacks (timidg s
differ individually from prior work, in interfering with tining ~ channels) than replica compromise.
channels by allowing replicas (in the internal defenseg) an .
external observers (in the external defenses) to obserye on _ Résearch on VM executiamplay (e.g., [28], [29]) focuses
median /O timings across the three replicas. The mediafn recording nQndetermlnlsnc events that alter VM exeaxuti
offers several benefits over the alternative of obfuscagirent and _then coercing these events to oceur th? Same way \_Nhen the
timings by adding random noise (without replicating VMsy: t VM is replayed. The replayed VM is a replica of the original,
implement random noise, a distribution from which to drae th &/Peit & temporally delayed one, and so this can also be diewe

noise must be chosen without reference to an execution in thi> & form of replication.StopWatchsimilarly coerces VM
absence of the victim—i.e.. how the execution “should have'eplicas to observe the same event timings, but again, einlik

looked—and so ensuring that the chosen noise distribugion {N€Se timings being determined by one replica (the original
sufficient to suppress all timing channels can be quite dific 1Y aré determined collectively using median calculajco

StopWatchuses replication and careful replica placement (in2S 10 interfere with one attacker VM replica that is coreside
with the victim from simply propagating its timings to all

terms of the other VMs with which each replica coresides) i Th id th i i1 M reol

exactly to provide such a reference. Moreover, in the Append '€P!Icas. at said, the state-of-the-art in replay (429])

we show that the median permits the delays incurred by th@ddresses multiprocessor VM execution, which our present
system to scale better than uniformly random noise allows fo!MPlementation ofStopWatchdoes not.StopWatchcould be

the same protection, as the distinctiveness of victim biehav extended to support _multlprocessor execution with teakesq
increases for deterministic multiprocessor scheduling (e.g., [30Jech-

' anisms for enforcing deterministic execution through @&l
Replication. To our knowledge,StopWatch is novel in  maodifications (e.g., [31]) are less relevant to our goalsheyg
utilizing replication for timing channel defense. Thatdsai are not easily used by an laaS cloud provider that accepts
replication has a long history that includes techniquesiaim arbitrary VMs to execute.

II. RELATED WORK

More fundamentally, to our knowledge all prior systems
that enforce timing determinism across replicas permit one
Egjeplica to dictate timing-related events for the othersjciwh
oes not suffice for our goals: that replica could be the one
oresident with the victim, and so permitting it to dictate
ming related events would simply “copy” the information



I1l. DESIGN nonoverlapping sets of (replicas of) other VMs. Then, when

L — determining the timing with which an event is made available
Our design is focu§ed on mfrastrgcture asa s‘farwce oaas, 0 each replica, the median timing value of the three is azthpt
clouds that accept virtual machine images, or “guest VMs, StopWatchaddresse&T clocks by replacing a VM's view of
from customers to execute. Amazon EC2 (http://aws.amaz

: OReal time with a virtual time that depends on the VM’s own
com/ec2/) a.nd Rackspac_e (http.//www.racks_,pace.com/e)&re rogress, an idea due to Popek and Kline [33].
ample providers of public l1aaS clouds. Given the concern§J
associated with side-channel attacks in cloud environsnent A side effect of howStopWatchaddressesO and RT
(e.g., [2], [1]), we seek to develop virtualization softear clocks is that it enforces deterministic execution of uagas-
that would enable a provider to construct a cloud that offersor attacker VM replicas, also disabling its ability to uBe
substantially stronger assurances against leakage viagtim or Mem clocks. These mechanisms thus deal effectively with
channels. This cloud might be a higher assurance offeriag th internal observations of time, but it remains possible trat
a provider runs alongside its normal cloud (while presumabl external observer could glean information from the realeti
charging more for the greater assurance it offers) or a fariva duration between the arrival of packets that the attacker VM
cloud with substantial assurance needs (e.g., run by arahfor sends. To interfere with this timing channel, we emit pasket
intelligence or military community). an external observer with timing dictated by, again, theiared

Threat model. Our threat model is a customer who submitstlmlng of the three VM replicas.

attacker VMs for execution that are designed to employ timing Justification for the median. Permitting only the median
side channels. We presume that the attacker VM is designed timing of anlO event to be observed limits the information that
extract information from a particular victim VM, versusiimg  an attacker VM can glean from being co-located with a victim
to learn general statistics about the cloud such as its geeraVM of interest, because the distribution of the median tigsin
utilization. We assume that access controls prevent thelat  substantially dampens the visibility of a victim’s actie#. We
VMs from accessing victim VMs directly or from escalating formally justify this assertion in the Appendix. Here we pim
their own privileges in a way that would permit them to accessrovide an example illustration of how the median does so.

victim VMs. The cloud’s virtualization software (in our @&gs . - . i
Xen and our extensions thereof) is trusted. Consider a victim VM that induces observable timings that

are exponentially distributed with rat¥, versus a baseline
According to Wray [32], to exploit a timing channel, the (i.e., non-victim) exponential distribution with rate > \'.
attacker VM measures the timing of observable events using Big. 1(a) plots example distributions of the attacker VMb- o
clock that is independent of the timings being measured. Whileervations undeStopWatchwhen an attacker VM is coresident
the most common such clock is real time, a clock can be anyith the victim (“Median of two baselines, one victim”) and
sequence of observable events. With this general definitfion when attacker VM is not (“Median of three baselines”). This
a “clock,” a timing attack simply involves measuring onealo figure shows that these median distributions are quite aimil
using another. Wray identified four possible clock sources i even when) is substantially larger thaw’; e.g.,A = 1 and
conventional computers [32]: A =1/2in the example in Fig. 1(a). In this case, to even reject
) _ the null hypothesis that the attacker VM is not coresideti wi
e TL: the “CPU instruction-cycle clock” (e.g., a clock con- the victim using ay-square test, the attacker can do so with

structed by executing a simple timing loop); ~ high confidence in the absence®tbpWatchwith only a single
e Mem: the memory subsystem (e.g., data/instructionppservation, but doing so und&topWatchrequires almost
fetches); _ two orders of magnitude more (Fig. 1(b)). This improvement
e 10: the I/O subsystem (e.g., network, disk, and DMA pecomes even more pronounced\ifand \' are closer; the
interrupts); and _ casel = 1, X' = 10/11 is shown in Fig. 1(c).
e RT: real-time clocks provided by the hardware platform )
(e.g., time-of-day registers). In terms of the number of observations needed to extract

meaningful information from the victim VM, this assessment
Defense strategy StopWatchis designed to interfere with is very conservative, since the attacker would face nunserou
the use oflO and RT clocks and, for uniprocessor VMs, pragmatic difficulties that we have not modeled here [1]. But
TL or Mem clocks, for timing attacks. (As discussed in even this simple example shows the power of disclosing only
Sec. Il, extension to multiprocessor VMs is a topic of futuremedian timings of three VM replicas, and in Sec. V-B we will
work.) 10 and RT (especiallyRT) clocks are an ingredient repeat this illustration using actual message tracesselsee
in every timing side-channel attack in the research litewat the Appendix for a formal analysis.
that we have found, undoubtedly because real time is the

most inf[uitive, independent anq reliablle reference cloak f . IV. RT cLocks
measuring another clock. So, intervening on these clocks is
of paramount importance. Moreover, the waopWatchdoes Real-time clocks provide reliable and intuitive reference

so forces the scheduler in a uniprocessor guest VM to behawdocks for measuring the timings of other events. In this
deterministically, interfering with attempts to u$& or Mem  section, we describe the high-level strategy takeStwpWatch
clocks. to interfere with their use for timing channels and detaé th

- . _ implementation of this strategy in Xen with hardware-assis
More specifically, to interfere withO clocks, StopWatch vty alization (HVM).

replicates each attacker VM (i.e., every VM, since we do
not presume to know which ones are attacker VMs) threefold 1t is not uncommon to model packet inter-arrival time, formple, using
so that the three replicas of a guest VM are coresident witlan exponential distribution (e.g., [34]).




the same. Of course, the smallBvalues are, the moreirt

1 T T L
08 1 Bi;fclt?; _______ i follows real time and so poses the risk of becoming useful in
z ' Median of three baselines —&— timing attacks. Sopirt should be adjusted only for tasks for
7 06 % Median of two baselines, ~ @+ ] which coarse synchronization with real time is importand an
S o4l N\& oo Omeviem then only with largel values.
= \\‘~~
= 02} g o
0 . S N B. Implementation in Xen
0 1 2 3 4 3 6 Real-time clocks on a typical x86 platform include timer
X interrupts and various hardware counters. Closely relé&bed
(a) Distribution of median)’ = 1/2 _these real-time_clocks is the_ time stamp counter registeichw
g o is accessed using thiedt sc instruction and stores a count of
Sopb oo os A s mp o8- e processor ticks since reset.
250 2 2 500 e ) ) ) i
S w o o R Timer interrupts . Operating systems typically measure the
5 2 e 5 200 passage of time by counting timer interrupts; i.e., the afieg
E ) E b—u s s = 1 system sets up a hardware device to interrupt periodically
Z 070 0.75 0.80 085 090 095 0.99 Z 070 0.75 0.80 085 09 095 0.99 .
confidence confidence at a known rate, such a0 times per second [35]. There
(b) Observations needed to detect (c) Observations needed to detect '€ various such hardware devices that can be used for this
victim; \ = 1/2 victim; ) = 10/11 purpose. Our current implementation 8topWatchassumes

the guest VM uses a Programmable Interval Timer (PIT) as
Fig. 1. Justification for median; baseline distributiixp(A), A = 1, and  jts timer interrupt source, but our implementation for othe
victim distribution Exp (") sources would be similar. Th&topWatchVMM generates

timer interrupts for a guest on a schedule dictated by that

guest'svirtual time virt as computed in Eqn. 1. To do so,
A. Srategy it is necessary for the VMM to be able to track the instruction

The strategy adopted iStopWatchto interfere with a  countinstr executed by the guest VM.
VM’s use of real-time clocks is to virtualize these real-
time clocks so that their values observed by a VM are 3y
deterministic function of the VM’s instructions executed s
far [33]. That is, after the VM executesastr instructions, the
virtual time observed from within the VM is

In our present implementatioigtopWatchuses the guest
anch count for instr, i.e., keeping track only of the number
of branches that the guest VM executes. Several architesctur
support hardware branch counters, but these are not sensiti
to the multiplexing of multiple guests onto a single hardsvar
processor and so continue to count branches regardless of
the guest that is currently executing. So, to track the branc
To determinestart at the beginning of VM replica execution, count for a guestStopWatchimplements avirtualized branch
the VMMs hosting the VM’s replicas exchange their currentcounter for each guest.
real times;start is initially set to the median of these values.
slope is initially set to a constant determined by the tick rate
of the machines on which the replicas reside.

virt (instr) < slope X instr + start 1)

A question is when to inject each timer interrupt. Intel
VT augments IA-32 with two new forms of CPU operations:
virtual machine extensions (VMX) root operation and VMX

Optionally, the VMMs can adjusttart and slope pe-  non-root operation [36]. While the VMM uses root operation,
riodically, e.g., after the replicas execute an “epoch”lof guest VMs use VMX non-root operation. In non-root oper-
instructions, to coarsely synchronizert and real time. For ation, certain instructions and events causeM exit to the
example, after the:-th epoch, each VMM can send to the VMM, so that the VMM can emulate those instructions or deal
others the duratioD;, over which its replica executed those with those events. Once completed, control is transfereatt b
I instructions and its real tim&, at the end of that duration. to the guest VM via aVM entry. The guest then continues
Then, the VMMs can select the median real tidg and the  running as if it had never been interrupted.

durationD;, from that same machine and reset L . - .
VM exits give the VMM the opportunity to inject timer

startgyq1 < virty (1) interrupts into the guest VM as the guest's virtual time
R} — virt,(I) + D; advances. However, so that guest VM replicas observe the
slopey,, < arg g&n] 7 —v same timer interrupts at the same points in their executions
v U

StopWatchinjects timer interrupts only after VM exits that
for a preconfigured constant ranffew], to yield the formula are caused by guest execution. Other VM exits can be induced
for virt,, 1.2 The use off andu ensures thatlope,,, , is not by event;. external_ to the VM, such as hardware interrgpts on
too extreme and, i > 0, that slope,,, is positive. In this  the physical machine; these would generally occur at differ
way, virty+1 should approach real time on the computer con-oints during the execution of the guest VM replicas but will
tributing the median real tim&; over the nextl instructions, not be visible to the guest [37, Sec. 29.3.2]. For VM exits

assuming that the machine and VM workloads stay roughlgaused by guest VM execution, the VMM injects any needed
timer interrupts on the next VM entry.

2In other words, if (R}, — virt,(I) + D;)/I € [¢,u] then this value
becomesslope,, ;. Otherwise, either or u does, whichever is closer to rdtsc calls and CMOS RTC values Another way for a

(R;, — virty(I) + D;)/1. guest VM to measure time is viadt sc calls. Xen already



emulates the return values to these calls. More specifjdally virtual time at least as large as this delivery time. The VMM
produce the return value forradt sc call, the Xen hypervisor then injects the interrupt prior to the next VM entry of the
computes the time passed since guest reset using its meal-ti guest. This interrupt injection also includes copying tlaad
clock, and then this time value is scaled by a constant factointo the address space of the guest, so as to prevent the guest
StopWatchreplaces this use of a real-time clock with the VM from polling for the data in advance of the interrupt to
guest’s virtual clock (Eqn. 1). create a form of clock (e.g., see [5, Sec 4.2.2]).

A virtualized real-time clock (RTC) is also provided to Network interrupts . Unlike the initiation of disk accesses and
HVM guests in Xen; this provides time to the nearest secondMA transfers, the activity giving rise to a network inteptu
for the guest to read. The virtual RTC gets updated by Xemamely the arrival of a network packet that is destined for
using its real-time clockStopWatchresponds to requests to the guest VM, is not synchronized in virtual time across the
read the RTC using the guest’s virtual time. three replicas of the guest VM. So, the VMMs on the three
machines hosting these replicas must coordinate to synizero
the delivery of each network interrupt to the guest VM reguic
TIO prevent the timing of one from dictating the delivery tiate
Al three, these VMMs exchange proposed delivery times and
select the median, as discussed in Sec. Ill. To solicit pgego
r'timings from the three, it is necessary, of course, that the
VMMs hosting the three replicas all observe each network
packet. SoStopWatchreplicates every network packet to all
three computers hosting replicas of the VM for which the

V. 10 crocks packet is intended. This is done by a logically separatertiss

10 clocks are typically network, disk and DMA interrupts. node” that we envision residing on a dedicated computeren th
(Other device interrupts, such as keyboards, mice, graphicloud. (Of course, there need not be only one such ingress for
cards, etc., are typically not relevant for guest VMs in ds)y ~ the whole cloud.)

We outline our strategy for mitigating their use to implemen  \yhen a VMM observes a network packet to be delivered

Reading counters The guest can also observe real time
from various hardware counters, e.g., the PIT counter, lvhic
repeatedly counts down to zero (at a pace dictated by re
time) starting from a constant. These counters, too, aeadjr
virtualized in modern VMMSs such as Xen. In Xen, these retur
values are calculated using a real-time cloSkgppWatchuses
the guest virtual time, instead.

timing channels in Sec. V-A, and then in Sec. V-B we describgq the guest, it sends its proposed virtual time — i.e., in the

our implementation of this strategy iitopWatch guest’s virtual time, see Sec. IV — for the delivery of that
interrupt to the VMMs on the other machines hosting replicas

A. Strategy of the same guest VM. (We stress that these proposals are not

visible to the guest VM replicas.) Each VMM generates its
d-Proposed delivery time by adding a constant offagt to the

dressing sources 6O clocks. A component of our strategy for Virtual time of the guest VM at its last VM exitA,, must
doing so is to synchronize I/O events across the three geplic P€ arge enough to ensure that once the three proposals have

of each guest VM in virtual time, so that every I/O interrupt P€€n collected and the median determined at all three eeplic
YMMs, the chosen median virtual time has not already been
things, this synchronization will force uniprocessor VMs t Passed by any of the guest VMs. The virtual-time offset
execute deterministically, but it alone will not be enough t IS thus determined using an assumed upper bound on the real
interfere with IO clocks; it is also necessary to prevent theime it takes for each VMM to observe the interrupt and to
timing behavior of one replica’s machine from imposing 1/0 Propagate its proposal to the othéras well as the maximum
interrupt synchronization points for the others, as disedsn ~ allowed difference between the fastest two replicas’ wairtu
Sec. II-1I1. This is simpler to accomplish for disk accesaad ~ times. This difference can be limited by slowing the exemuti

DMA transfers since replica VMs initiate these themselves®f the fastest replica.
and so we will discuss this case first. The more difficult case  Once the median proposed virtual time for a network

of network interrupts, where we explicitly employ median interrupt has been determined at a VMM, the VMM simply
calculations to dampen the influence of any one machine'gaits for the first VM exit caused by the guest VM (as in
timing behavior on the others, will then be addressed. Sec. IV-B) that occurs at a virtual time at least as large as th

Disk and DMA interrupts . The replication of each guest Median valué. The VMM then injects the interrupt prior to
VM at start time includes replicating its entire disk image, 1€ next VM entry of the guest. As with disk accesses and
and so any disk blocks available to one VM replica will be PMA transfers, this interrupt injection also includes comy
available to all. By virtue of the fact that (uniprocessoi¥/ the data into the ad_dress space of t_he guest, so as to_prbeentt
execute deterministically iStopWatch replicas will issue disk ~9u€st VM from polling for the data in advance of the interrupt
and DMA requests at the same virtual time. Upon receiving® create a form of clock (e.g., see [5, Sec. 4.2.2]).

such a request from a replica at tinig the VMM adds an The process of determining the delivery time of a network
offset A, to determine a “delivery time” for the interrupt, i.e.,
at virtual time V + Ay, and initiates the corresponding I/O  3in distributed computing parlance, we thus assunsgnahronous system,
activities (disk access or DMA transfer). The offsk®f must i.e., there are known bounds on processor execution ratemiassage delivery
be large enough to ensure that the data transfer completes 4Tfsihe median time determined by a VMM has already passed: the
the virtual dellvery time. ane the V":tual dehve.ry tlmeSha.‘ synchrony assumption was violated by the underlying systenthis case,
been determined, the VMM S'mply waits for the first VM exit that vMM's replica has diverged from the others and so musteevered
caused by the guest VM (as in Sec. IV-B) that occurs at ay, e.g., copying the state of another replica.

The method described in Sec. IV for dealing wiRT
clocks by introducing virtual time provides a basis for a
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Fig. 2. Delivering a packet to guest VM replicas.
Fig. 3. Emulation of network 1/O device iStopWatch

packet to a guest VM's replicas is pictured in Fig. 2. This fegu 1
depicts a real-time intervdlR,, R>] at the three machines at 0.9
which a guest VM is replicated, showing at each machine: the 2 o8
arrival of a packet at the VMM, the proposal made by each 2 o7l Median of three baselines = |
VMM, the arrival of proposals from other replica machinée t € ol O re it
selection of the median, and the delivery of the packet to the = st
guest replica. Each stepped diagonal line shows the preigres 0.4 ! ! !
of virtual time at that machine. 0 20000 40000 60000 80000
Inter-packet delivery times (virtual )
B. Implementation in Xen . (a) Distribution of median (CDF)
= 120 T T T T T

Xen presents to each HVM guest a virtualized platform that 2 0o o St‘ggwjgﬂ = -
resembles a classic PC/server platform with a network card, % L
disk, keyboard, mouse, graphics display, etc. This viitzedl S %
platform support is provided by virtual I/O devices (device T 40
models) in Dom0, a domain in Xen with special privileges. 5 20
QEMU (http://fabrice.bellard.free.frlgemu) is used topiet E 0
ment device models. One instance of the device models is run Z 070 075 080 085 090 095 0.99
in Dom0 per HVYM domain. confidence
Network card emulation. In the case of a network card, the (b) Observations needed to detect victim

device model running in DomO receives packets destined for. _ , , _ _
the guest VM. WithoutStopWatchmodification, the device 9. 4 Virtual inter-packet delivery times to attacker Vipiicas with

. . coresident victim (“two baselines, one victim”) and in a mthere no replica
model copies this packet to the guest address space aWis coresident with a victim (“three baselines”)
asserts a virtual network device interrupt via the virtued-P
grammable Interrupt Controller (vPIC) exposed by the VMM
for this guest. HVM guests cannot see real external hardwar Fig. 3) and asserts a virtual network interrupt on the vPIC
interrupts since the VMM controls the platform’s interrupt prior to the next VM entry (step 3).

controllers [37, Sec. 29.3.2].
[ ] Fig. 4(a) shows the CDF of virtual inter-packet delivery

In StopWatch we modify the network card device model times to replicas of an attacker VM in an actual run where
so as to place each packet destined for the guest VM into ane replica is coresident with a victim VM continuously
buffer hidden from the guest, rather than delivering it te th serving a file, in comparison to the virtual delivery timesthwi
guest. The device model then reads the current virtual tim@o victim present. This plot is directly analogous to that in
of the guest (as of the guest’s last VM exit), adds to  Fig. 1(a) but is generated from a regtopWatchrun and shows
this virtual time to create its proposed delivery (virtutithe  the distribution as a CDF for ease of readability. Fig. 4(b)
for this packet, and multicasts this proposal to the other tw shows the number of observations needed to distinguish the
replicas (step 1 in Fig. 3). A memory region shared betweewictim and no-victim distributions in Fig. 4(a) using g
DomO and the VMM allows device models in DomO to readsquared test, as a function of the desired confidence. This
guest virtual time. figure is analogous to Fig. 1(b) and confirms tistibpWatch

. . strengthens defense against timing attacks by an order of
_ Once the network device model receives the two proposalsagnitude in this scenario. Again, the absolute number of
in addition to its own, it takes the median proposal as th&pseryations needed to distinguish these distributiotisety

dﬁhvery t'lrﬂehan\?lvflt\?r?ri th\|/sMc|iv<TI|very time in the f“emlo.ry It yuite conservative, owing to numerous practical challerige
shares with the . The compares guest virtua t'me)gathering these observations [1].

to the delivery time stored in the shared memory upon ever
guest VM exit caused by guest VM execution. Once guesDisk and DMA emulation. The emulation of the IDE disk

virtual time has passed the delivery time, the network devicand DMA devices is similar to the network card emulation
model copies the packet into the guest address space (stemBove. StopWatchcontrols when the disk and DMA device



models complete requests and notify the guest. Instead dfiat impact performance in Sec. VII-A, our experimentalipet
copying data read to the guest address space, the devicé mode Sec. VII-B, and our tests and their results in Sec. VII-C—
in StopWatchprepares a buffer to receive this data. In addition,VII-D.

rather than asserting an appropriate interrupt via the uBIC

the guest as soon as the data is availableStopWatchdevice A, Selected implementation details

model reads the current guest virtual time from memory share ) o )

with the VMM, addsA,;, and stores this value as the interrupt _Our prototype is a modification of Xen version 4.0.2-
delivery time in the shared memory. Upon the first VM exit '¢1-pre, amounting to insertions or changes of roughly 1500
caused by guest execution at which the guest virtual time hagurce lines of code (SLOC) in the hypervisor. There were
passed this delivery time, the device model copies the trdfe /S0 about 2000 SLOC insertions and changes to the QEMU
data into the guest address space and asserts an interrinat on device models distributed with that Xen version. In additio
VPIC. Disk writes are handled similarly, in that the intgrru (0 these changes, we incorporated OpenPGM (http://code.
indicating write completion is delivered as dictated byiagd ~900gle.com/p/openpgmy) into the network device model in

A, to the virtual time at which the write was initiated. Dom0. OpenPGM is a high-performance reliable multicast
implementation, specifically of the Pragmatic General Mul-
VI. EXTERNAL OBSERVERS ticast (PGM) specification [39]. In PGM, reliable transniss

) ) ) ) is accomplished by receivers detecting loss and requesting
~ The mechanisms described in Sec. IV-V intervene on tWQetransmission of lost data. OpenPGM is usedStopWatch
significant sources of clocks; though VM replicas can measUrfor replicating packets destined to a guest VM to all of

the progress of one relative to the other, for example, theithat VM's replicas and for communication among the VMMs
measurements will be the same and will reflect the median ofosting guest VM replicas.

their timing behaviors. Moreover, by forcing each guest VM _

to execute (and, in particular, schedule its internal i) Recall from Sec. V that each VMM proposes (via an
on the basis of virtual time and by synchronizing /O eventsOPeNPGM multicast) a virtual delivery time for each network
across replicas in virtual time, uniprocessor guest VMsatee  interrupt, and the VMMs adopt the median proposal as the
deterministically, stripping them of the ability to levgeaTL  actual delivery time. As noted there, each VMM generates its
and Mem clocks, as well. (More specifically, the progress Proposal by adding a constant offsif, to the current virtual

of TL and Mem clocks are functionally determined by the time of the guest VMA,, must be large enough to ensure that
progress of virtual time and so are not independent of it.py the time each VMM selects the median, that virtual time
There nevertheless remains the possibility that an extern@as not already passed in the guest VM. However, subject to
observer, on whose real-time clock we cannot intervenddcou this constraintA,, should be minimized since the real time
discern information on the basis of the real-time behavior ot0 Which A, translates imposes a lower bound on the latency

his attacker VM. In this section we describe our approach t®f the interrupt delivery. (Note that because, is specified
addressing this form of timing channel. in virtual time and virtual time can vary in its relationship

) ) S real time, the exact real time to which,, translates can vary
_ Because guest VM replicas will run de_termlnlsncally, thEYduring execution.) We selectedl,, to accommodate timing
will output the same network packets in the same ordefgjfferences in the arrivals of packets destined to the guest
StopWatchuses this property to interfere with a VM's ability \/\ at its three replicas’ VMMs, the delays for delivering
to exfiltrate information on the basis of its real-time bebaas  q5ch VMM's proposed virtual delivery time to the others,
seen by an external observ&itopWatchdoes so by adopting ang the maximum allowed difference in progress between the
the median timing across the three guest VM replicas for eacllyq fastest guest VM replicas (whicBtopWatchenforces by
output packet. The median is selected at a separate “egresgwing the fastest replica, if necessary). For the platfor
node” that is dedicated for this purpose (c.f., [38]), agalos  ;sed in our experiments (see Sec. VII-B) and under diverse
to the “ingress node” that replicates every network paCkehetworking workloads, we found that a value &, that
destined to the guest VM to the VM's replicas (see Sec. V)ypically translates to a real-time delay in the vicinity Bf
Like the ingress node, there need not be only one egress no‘i?IQms sufficed to meet the above criteria. The analogoustoffse
for the whole cloud. A, for determining the virtual delivery time for disk and DMA
To imp'ement this scheme in Xen’ every packet sent by én_terrupts Wa..S determined based on the maximum Observed
guest VM replica is tunneled by the network device model ordisk access times and translates to roughly 8-15ms.
that machine to the egress node over TCP. The egress node
forwards an output packet to its destination after receitie ~ B. Experimental setup
second copy of that packet (i.e., the same packet from two
guest VM replicas). Since the second copy of the packet i
receives exhibits the median output timing of the threeicapl|
this strategy ensures that the timing of the output packet se
toward its destination is either the timing of a guest replic
not coresident with the victim VM or else a timing that falls
between those of guest replicas not coresident with th@éwict

Our “cloud” consisted of three machines with the same
F]ardware configuration: 4 Intel Core2 Quad Q9650 3.00GHz
CPUs, 8GB memory, and a 70GB rotating hard drive. DomO
was configured to run Linux kernel version 2.6.32.25. Each
HVM guest had one virtual CPU, 2GB memory and 16GB disk
space. Each guest ran Linux kernel 2.6.32.24 and was config-
ured to use the Programmable Interrupt Controller (PIC}sas i
interrupt controller and a Programmable Interrupt Timdi {P
of 250Hz as its clock source. The Advanced Programmable
In this section we evaluate the performance of @top- Interrupt Controller (APIC) was disabled. An emulated ATA
Watchprototype. We present additional implementation detailfQEMU disk and a QEMU Realtek RTL-8139/8139C/8139C+

VIl. PERFORMANCEEVALUATION
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HTTP Baseline -+ — ' l a_lck_nowledgments sent by the client. Enforcing a media_n
10000 HITD StopWatch =~ e timing on output packets (Sec. VI) adds modest overhead in
fg 1000 UDP StopWatch @ - comparison.
R - This combination of insights, namely the detriment of
- 10 §re inbound packets (mostly acknowledgmentsStopWatchfile
1 G download performance and the fact that these costs so out-
o1 . . . weigh disk access costs, raises the possibility of recogeri
1 10 100 1000 10000 file download performance using a transport protocol that
File size (KB) minimizes packets inbound to the web server, e.g., using
. _ _ negative acknowledgments or forward error correctionelt
Fig. 5. HTTP and UDP file-retrieval latency. natively, an unreliable transport protocol with no ackneuig-

ments, such as UDP, could be used; transmission reliability

were provided to the guest as its disk and network card. Ih eacCOUId then be enforced at a layer above UDP using negative
P theg o ) acknowledgments or forward error correction. Though TCP
of our tests, we installed an application (e.g., a web seover

. . . does not define negative acknowledgments, transport pistoc
other program) in the guest VM, as will be described later. that implement reliability using them are widely availgble

After the guest VM was configured, we copied it to our particularly formulticast where positive acknowledgments can
three machines and restored the VM at each. In this waygad to “ack implosion.” Indeed, recall that the PGM protoco
our three replicas started running from the same state. lapecification [39], and so the OpenPGM implementation that
addition, we copied the disk file to all three machines towe use, ensures reliability using negative acknowledgsient

provide identical disk state to the three replicas. To illustrate this point, in Fig. 5 we repeat the experiments

Once the guest VM replicas were started, inbound packetgsing UDP to transfer the file.The “UDP Baseline” curve
for this guest VM were replicated to all three machines forshows the performance using unmodified Xen; the “UB¥Bp-
delivery to their replicas as discussed in Sec. V. TheseethreWatch' curve shows the performance usi&jopWatch Not
machines were attached to a /24 subnet within the UNGurprisingly, baseline UDP shows performance comparable
campus network, and so broadcast traffic on the network, (e.gto (but slightly more efficient than, by less than a factor
ARP requests) was replicated for delivery as in Sec. V. Thesef two) baseline TCP, but rather than losing an order of
broadcasts averaged roughly 50-100 packets per second. Asagnitude, UDP oveiStopWatchis competitive with these
such, this background activity was present throughout oubaseline numbers for files of 100KB or more.

experiments and is reflected in our numbers. NFS. We also set up a Network File System (NFSv4) server
. in our guest VM. On our client machine, we installed an
C. Network Services NFSv4 client; remotely mounted the filesystem exported by
In this section we describe tests involving network sewice the NFS server; performed file operations manually; and then
deployed on the cloud. In all of our tests, our client thatran nf sstat on the NFS server to print its server-side
interacted with the cloud-resident service was a Lenova0T40statistics, including the mix of operations induced by our
laptop with a dual-core 2.8GHz CPU and 2GB memoryactivity. We then used thehf sst one benchmarking utility

attached to an 802.11 wireless network on the UNC campud0 evaluate the performance of the NFS server with and withou
StopWatch nhf sst one generates an artificial load with a

File_ downloads Our first _experiments tested the _performancespeciﬁed mix of NFS operations. The mix of NFS operations
of file download by the client from a web server in the cloud. ysed in our tests was the previously extracted mixfile each

The total times for the client to retrieve files of variousesiz. et the client machine ran five processes using the mounted
over HTTP are shown in Fig. 5. This figure shows tests infje system, making calls at a constant rate ranging from 25 to

which our guest VM ran Apache version 2.2.14, and the file400 per second in total across the five client processes.
retrieval was from a cold start (and so file-system caches

were empty). The “HTTP Baseline” curve in Fig. 5 shows The average latency per operation is shown in Fig. 6(a). In
the average latency for the client to retrieve a file from anthis figure, the horizontal axis is the rate at which operetio
unmodified Xen guest VM. The “HTTRStopWatch curve  were submitted to the server; note that this axis is logescal
shows the average cost of file retrieval from dstiopWatch Fig. 6(a) suggests that an NFS server o8émpWatchincurs
implementation. Every average is for ten runs. Note thahbota less than2.7x increase in latency over an NFS server
axes are log-scale. running over unmodified Xen. Since the NFS implementation
. _ .used TCP, in some sense this is unsurprising in light of the
Fig. 5 shows that for HTTP download, a service runninggje download results in Fig. 5. That said, it is also perhaps

on our currentStopWaichprototype loses less thah8x in g rprising thatStopWatcPs cost increased only roughly log-
download speed for files of00OKB or larger. Diagnosing this P g P y foughly fog

cost reveals that the bottleneck, by an order of magnitude or sye are not advocating UDP for file retrieval generally bubeatare simply

more, was the network transmission delay (vs. disk accessowing the advantages f@&topWatchof a protocol that minimizes client-to-

delay) in both the baseline and f@topWatch Moreover, the ~ server packets. We did not use OpenPGM in these tests siaceeh site (as

performance cost o§topWatchin comparison to the baseline the ‘multicast” originator) would need to initiate the camtion to the client;
. . . . this would have required more substantial modificationgs Téhirectionality

was dominated by the time fo_r del'very afibound packets issue is not fundamental to negative acknowledgments, v@we

to the web-server guest VM, i.e., the TCP SYN and ACK  6This mix was11.37% setattr, 24.07% | ookup, 11.92% write,

messages in the three-way handshake, and then additioma$3% getattr, 32.34% r ead and12.37% cr eat e.




2 g ‘ ‘ ; 8000 . : £
R S— N 7000 | o Baseline mummm ]
i S 10 S StopWatchazez 5754 5
z 15 o ol L s T - g 6000 E
% - - StopWatch --m-- S e ° £ 5000 %
E 10F Baseline - 2 6 B C e s 2 4000 B
- IO - s 4 . £ 3000} S
5 @ & 2000 - 2
e 21 Client to Server---o-- - E
0 L L L H 0 Server‘ to Cliem——‘l—— ) 1000 - 2

25 50 100 200 400 25 50 100 200 400 0

Load (Operations per second) Load (Operations per second)
(a) Average latency per op (b) Average packets per op

a) Average runtimes isk i
Fig. 6. Tests of NFS server usinthf sst one @ 9 (b) Disk interrupts

Fig. 7. Tests of PARSEC applications

arithmically as a function of the offered rate of operations

This modest growth is in part becauSéopWatchschedules imposes. If the computers in our experiments used solig-sta
packets for delivery to guest VM replicas independently -&- th dri\ees (v'ersus hardpdisks) we conpecture that their redluce
scheduling of one does not depend on the delivery of a previou : . J€ :

pccess times would permit us to shridk; and so improve

one, and so they can be “pipelined” — and because the numb o performance oStopWatchfor these aoplications
of TCP packets from the client to the server actually de@gas P p PP '

per operation, on average, as the offered load grows (Hij).6(

VIIl. REPLICAPLACEMENT IN THE CLOUD

D. Computations ) ]
StopWatchrequires that the three replicas of each guest

|I’I_thiS SeCtion we eVaIUate the performance Of Val‘iOUS ComVM are coresident with nonover'apping sets of (rep”cas Of)
putations onStopWatchthat may be representative of future gther VMs. This constrains how a cloud operator places guest
cloud workloads. For this purpose, we employ the PARSEGy\ replicas on its machines. In this section we clarify the
benchmarks [40]. PARSEC is a diverse set of benchmarks thafgnificance of these placement constraints in terms of the
covers a wide range of computations that are likely to becomgrovider's ability to best utilize its infrastructure. Aft all, if
important in the near future (see http:/parsec.cs.ptimcedu/  ynder these constraints, the provider were able to simestan
overview.htm). Here we take PARSEC as representative obysly run a number of guest VMs that scales, say, only ligearl
future cloud workloads. in the number of cloud nodes, then the provider should forgo

We utilized the following five applications from the PAR- StopWatchand simply run each guest VM (non-replicated)
SEC suite (version 2.1), providing each the “native” inputin isolation on a separate node. Here we show that the cloud
designated for itf er r et is representative of next-generation OPerator is not limited to such poor utilization of its mawés.

search engines for non-text document data types. In 08, teSt ¢ yhe cloud hasn machines, then consider the complete,
we configured the application for image similarity search. . qirected graph (cliquel,, onn vertices, one per machine.

bl ackschol es calculates option pricing with Black-Scholes £ eyery guest VM, the placement of its three replicas forms
partial differential equations and is representative ddrficial 5 triangle in K, consisting of the vertices for the machines

?‘”a'VSiS. applications:anne_al is representative of e'f‘gi_”eer' on which the replicas are placed and the edges between
ing applications and uses simulated annealing to optineiaé r e yertices. The placement constraintsSedpWatchcan
ing cost of a chip desigrdedup represents next-generation e eynressed by requiring that the triangles representiig V
backup storage systems _characterlzed by a combination ?éeplica placements be pairwissige-digoint. As such, the
global and local compressioat r eant| ust er is represen-  n mper of guest VMs that can simultaneously be run on a
tative of data mining algorithms for online clustering plIbS.  ¢15,q of,, machines is the same as the number of edge-disjoint
Each of these applications involves various activitiesluding triangles that can bpacked into K,,. A corollary of a result
initial configuration, creating a local directory for resyl 4 . to Horsley [41, Thm. 1.1] is:n
unpacking input files, performing its computation, and fiynal '
cleaning up temporary files. Theorem 1. A maximum packing of K,, with pairwise

: . dge-disjoint triangles has exacthly triangles, where: (i) if

We ran each benchmark ten times in one guest VM ovel : : n

unmodified Xen, and then ten more times with three gue ?n's odd, thenk 'Sf the 'afg‘?St 'F“eger such th;?k < (2) and
VM replicas over StopWatch Fig. 7(a) shows the average 2) — 3k & {1,2}; and (ii) if n is even, therk is the largest

runtimes of these applications in both cases. In this figemep ~ INtéger such thadk < (5) -5

application is described by two bars; the black bar on thie IefSo' a cloud ofn machines usingStopWatchcan simultane-
shows its performa_mce over unmodified Xen, and the gray ba(5usly executd: = ©(n?) guest VMs. The existence of such a
on the right shows its performance ov@opWaich StopWaich  hjacement, however, does not guarantee an efficient digorit
imposed an overhead of at mas8x (for bl ackschol es) i find it. Moreover, this theorem ignores machine capagitie

to the average running time of the applications. Owing to thegg|ow we address both of these shortcomings.
dearth of network traffic involved in these applicationsg th

overhead imposed b§topWatchis mostly due to the overhead Under the constraints ostopWatch one node in a cloud
involved in intervening on disk 1/0 (see Sec. V). As shownof n nodes can simultaneously execute upltgsl guest VMs,
in Fig. 7(b), there is a direct correlation between the numbesince the other replicas of the guest VMs that it executes
of disk interrupts to deliver during the application run and(two per VM) must occupy distinct nodes. If each node has
the performance penalty (in absolute terms) tB&pWatch resources to simultaneously executg "T‘l guest VMs, then



the following theorem provides for an algorithm to efficignt
place them subject to the per-machine capacity constraint

Theorem2: Let n = 3mod6 andc < 251 If ¢ =

0 or 1 mod 3, then there is an efficient algorithm to place

k< %cn guest VMs. Ifc = 2 mod 3, then there is an efficient
algorithm to placet < %(c — 1)n + 23 guest VMs.

Proof: Following Bose’s construction of a Steiner Triple

System [42], letn = 6v + 3 and let (Q,o) be a multi-
plicative idempotent commutative quasigroup of oréler- 1,
where @ = {ap,a1,...,a2,}. An idempotent commutative
quasigroup of siz&v + 1 has the property that its multi-

plication table is an idempotent, commutative matrix ofesiz

(2v+1) x (2v + 1), and each element @) appears exactly
once in each row and in each column. Igk {0, 1,2} denote
the n nodes, and consider the following sets, 0 < t < v,
of triangles:

Go = U {{(aivo)v(aivl)v(aivz)}}

0<i<2v

and forl <t <w,

Gt: U {{(aiag)a(ajag)a(aioajvé_F1mOd 3)}}
0<i<2v
0<i<2

wherej = ¢+t mod 2v + 1.

There ar&v+1 triangles inGy and(2v+1) x3 = 6v+3 =
n triangles inG; for eachl < ¢ < v. Moreover, all of these
triangles are edge-disjoint. Trianglesd@# visit each of then
nodes exactly once. Triangles in a@y, 1 <t < v, visit each
node (a*, ¢*) exactly three times: whea* = a; and¢* = ¢,
whena* = a; for j = i+t mod 2v+1 and¢* = ¢; and when
a* =a;oa; for j =i+t mod2v+1 andl* = £+ 1 mod 3.
So, collectively the triangles i, ..., G, visit each node
3v+1="271>ctimes.

2

So, if ¢ = 0 mod 3, then we can plack < %cn VMSs using
the Lcn triangles in groupssy,...,G./3. If ¢ = 1 mod 3,
then we can placé < %cn VMs by first using the2v +
1 = 2 triangles inGo and then thel(c — 1)n triangles in
Gi,...,G—1)/3. If ¢ = 2mod 3, then we can placé <
2(c—1)n+ =3 VMs by first using the2v 4+ 1 = % triangles
in Gy, theni (c—2)n triangles inG1, . . ., G (c—2)/3, and finally
anyv = % triangles fromG,, that visit each node at most
one time (e.g9.{(a;,0), (a;,0), (a;0a;,1)} for0 <i<wv-—1
andj =i+ o). [ |

IX. COLLABORATING ATTACKER VMS

of the replicas on B and C — which may well reflect timings
influenced by the victim.

Mounting such an attack, or any collaborative attack in-
volving multiple attacker VMs on one machine, appears to
be difficult, however. Just as the reasoning in Fig. 1 and its
confirmation in Fig. 4 suggest that an attacker VM detecting
its coresidence with a victim VM is made much harder
by StopWatch one attacker VM detecting coresidence with
another using timing covert channels would also be impeded
by StopWatch If the cloud takes measures to avoid disclosing
coresidence of one VM with another by other channels, it
should be difficult for the attacker to even detect when he
is in a position to mount such an attack or to interpret the
results of mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be made
harder still by increasing the number of replicas of each VM.
If the number were increased from three to, say, five, then
inducing sufficient load to marginalize one attacker replic
from its median calculations would not substantially irxge
the attacker’s ability to mount attacks on a victim. Rathiee,
attacker would need to marginalize multiple of its replicas
along with accomplishing the requisite setup to do so.

X. CONCLUSION

We proposed a new method to address timing side channels
in laaS compute clouds that employs three-way replication
of guest VMs and placement of these VM replicas so that
they are coresident with nonoverlapping sets of (replidas o
other VMs. By permitting these replicas to observe onlyuatt
(vs. real) time and the median timing of network events
across the three replicas, we suppress their ability tonglea
information from a victim VM with which one is coresident.
We described an implementation of this technique in Xen,
yielding a system calledStopWatch and we evaluated the
performance ofStopWatchon a variety of workloads. Though
the performance cost for our current prototype ranges up to
2.8x for networking applications, we used our evaluation to
identify the sources of costs and alternative applicatesighs
(e.g., reliable transmission using negative acknowleddse
to support serving files) that can enhance performance con-
siderably. We showed that clouds with machines capable
of each runninge < ”T‘l guest VMs simultaneously can
efficiently schedule®(cn) guest VMs under the constraints
of StopWatch a clear improvement over the alternative of
running guest VMs in isolation. Finally, in the Appendix
we analyze the median as a microaggregation function and
explain its benefits over the alternative of obscuring event
timings through the addition of random noise. We envision
StopWatchas a basis for a high-security cloud, e.g., suitable

Our discussion so far has not explicitly addressed thdor military, intelligence, or financial communities withign
possibility of attacker VMs collaborating to mount timing assurance needs.

attacks. The apparent risks of such collaboration can beisee
the following possibility: replicas of one attacker VM (“VM)
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reside on machines A, B, and C; one replica of another attacke-5r0lina State University, and a grant from VMWare.

VM (“VM2") resides on machine A; and a replica of the

victim VM resides on machine C. If VM2 induces significant
load on its machines, then this may slow the replica of VM1
on machine A to an extent that marginalizes its impact on [1] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,

median calculations among its replicas’ VMMs. The replicas “Cross-VM side channels and their use to extract private
of VM1 would then observe timings influenced by the larger keys,” in 19th ACM CCS, 2012.
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APPENDIX

Here we justify the use of the median as a microaggregatio

function in StopWatch Let X,..,,, denote the random variable
that takes on the value of theth smallest of then values
obtained by sampling random variabl&s ... X,,. Let F;(z)
denote the CDF ofX; (i.e., F;(z) = P(X; <x)) and let
F,..m(z) denote the CDF ofX,.,,.

Utility of the median. The security ofStopWatch (with
m = 3 replicas per VM) hinges on the distribution of the
median X,.3 of three random variableX;, X,, X5. In the
case of delivering a packet to the attacker VM (Sec. ),

|F(z) + F3(x) — 2F(z) F3(x)| < 1 and, moreover, equals
only if for somez, one of F5(z) and F3(z) is 1 and the other
5 0. This last case is precluded by the theorem.

In the limit, when the distributions oK, and X3 overlap
exactly, we get a much stronger result:

Theorem 4: If X, and X3 are identically distributed, then
D(Fys3, F3.3) < 3 D(Fy, FY).

Proof: In this case,; = F3 and so
|F2(2) + F3(x) — 2F5 () F3 ()|

X,, X3 correspond to the proposed virtual delivery times offéaches its maximum value of at the valuez yielding

the packet to the three replicas, less the actual virtualety!
time of the previous packet. In the case of the attacker V
sending a packet to an external observer (Sec.X1),X», X3

correspond to the emission (real) time of the packet fronm eac

attacker VM replica, less the emission time of the precedin
packet to the external observer. In either ca$e, X», X3 are
independent.

versary learns information due to the difference betwegthé
CDF F5.3(x) for random variables(;, X5, X5 corresponding
to attacker VM replicas that anaot coresident with a victim
VM of interest, and (ii) the CDH_;(x) for random variables
X1, X2, X3 where X corresponds to an attacker VM that
is coresident with the victim VM of interest. An example
measure of the distance between two CORs:) and F(x)

is their Kolmogorov-Smirnov distance [43, p. 179], defined

as D(F, ) = max, ‘F(a:) — F(z)|. The following theorem
shows that adopting the median microaggregation funct@on c
only interfere with the adversary’s goal:

Theorem 3: If the distributions ofX, and X5 are overlap-
ping (i.e., for nox is Fr(xz) =0 and F5(x) = 1, or Fa(z) =1
anng(ZC) = O), thenD(ngg,FQ/ﬁ) < D(Fl,Fll)

Proof: Due to well-known results in order statistics (e.qg.,
see Giingoor et al. [44, Result 2.4]):

Fan®) =20 (171) ¥ TR

l=r IC{1..m}: i€l
1|=¢
In particular,

F2;3(.%') = F (m)Fg(:v) + F (l‘)Fg(l‘) + Fg(l‘)Fg(‘T)
— 2F1(1‘)F2(1‘)F3($)

Fya(x) = F{(z)Fa(z) + Fi () F3(x) + Fa(x)Fs(x)
— 2F{(z) F2(z) F3(x)

where F (x) represents the CDF oX;. So,

D(Fy3, Fy3) =
max [[Fy(z) + Fy(x) — 2F3(z) Fs(2)][Fi (z) — Fi(2)]|

Noting that D(Fy, F|) = max, |Fi(x) — F{(z)|, it suffices
to show that|Fy(z) + F3(x) — 2F»(z)F5(x)| < 1 for all z.
However, sinceF;(z) € [0,1] and F3(x) € [0,1] for all z,

“This equation assumes eah(z) is continuous. See Giingor et al. [44]
for the case when somg; (z) is not continuous.

Fy(x) = Fs(x)
Nbomparison to uniformly random noise. An alternative to

1
=1

StopWatchis simply adding random noise (without replicating
VVMs) to confound timing attacks. For simplicity, supposatth

%, and X7 are exponentially distributed with rate parameters

A and X, respectively, as in the example of Fig. 1. For the
random variableXy representing added noise, assume that

The attack considered in this paper is one in which the adX~ is drawn uniformly from[0,0] (i.e., Xx ~ U(0,0)), a
common choice to mitigate timing channels (e.g., [5], [15])

450
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Fig. 8. Expected delay induced WytopWatchvs. by uniform noise, as a

function of confidence with which attacker distinguishes to distributions
(coresident victim or not) after the same number of obsEmsat baseline
distribution Exp(X), A = 1; victim distribution Exp()\’)

We calculated expected delay imposed $tppWatchand
by adding uniformly distributed noise. To make a fair com-
parison, we configured both approaches to provide the same
strength of defense against timing attacks. Specificaftgr a
calculating the number of observations the attacker requir
the case ofStopWatchto distinguish, for a fixed confidence
level, the distributionsXs.5 + A,, and X4.5 + A,, using ax-
squared test, we calculated the minimuitihat would give the
attacker the same confidence in distinguishxig+ Xy and
X| + Xy after that number of observations. Fig. 8 shows the
resulting expected delays in each case.

This figure indicates thaStopWatchscales much better
as the attacker’s required confidence and the distinctsgene
of the victim grows (as represented by dropping). The
delay of theStopWatchapproach is tied most directly t4,,,
which is added to ensure that the replicas of each VM remain
synchronized (see Section V-A); here we calculated it sb tha
Pr[| X1 — X7{] < A,] > 0.9999. That is, the probability of a
desynchronization at this event is less thag001. Note that
E[Xa.3+A,] andE[X}.5+ A,,] are nearly the same in Fig. 8,
since their difference is how the attacker differentiatestivo,
and similarly forE[X; + Xn| and E[X| + Xn].
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