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Defending against heap overflow by using

randomization in nested virtual clusters

Chee Meng Tey and Debin Gao

Singapore Management University, Singapore
{cmtey.2008,dbgao}@smu.edu.sg

Heap based buffer overflows are a dangerous class of vulnerability. One coun-
termeasure is randomizing the location of heap memory blocks. Existing tech-
niques segregate the address space into clusters, each of which is used exclusively
for one block size. This approach requires a large amount of address space reser-
vation, and results in lower location randomization for larger blocks.

In this paper, we explore the possibility of using a cluster for 2 or more block
sizes. We show that a naive implementation fails because attackers can easily
predict the relative location of 2 blocks with 50% probability. To overcome this
problem, we design a novel allocator algorithm based on virtual clusters. When
the cluster size is large, the randomization of larger blocks improves by 25%
compared to existing techniques while the size of the reserved area required
decreases by 37.5%.

1 Introduction

Randomization of heap memory location belongs to a larger class of anti-malware
techniques collectively known as address space layout randomization (ASLR).
These techniques attempt to defeat attackers by limiting their knowledge of
the absolute or relative location of particular memory objects, and have gained
widespread acceptance among mainstream OS [1–4]. There are also standalone
allocator projects [5–7] that provide ASLR for various OS.

One of the ways in which heap memory is randomized involves the location
of memory blocks returned by the C library function malloc. Existing techniques
segregate the address space into clusters, each of which is divided into equally
sized slots. Both the alignment and size of slots are power of 2 multiples of
the minimum (typically 16 bytes). To handle a memory allocation, the allocator
rounds up the requested block size to the next power of 2 multiple of the min-
imum, determines the cluster to use, randomly chooses an unused slot in that
cluster and returns its location.

An example of the memory layout of such an allocator is shown in Figure 1.
There are 2 salient features of such a method of allocation. Firstly, due to align-
ment restrictions, the larger the block size, the fewer the number of choices to
place the block. The relative and absolute location of large blocks are therefore
easier to guess. Secondly, a large area of the address space needs to be reserved.

In this paper, we study an alternative allocation algorithm where blocks
of different sizes can be allocated from the same cluster by first structuring
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Fig. 1. A heap memory snapshot for an application using a randomizing heap allocator.
Shaded blocks are allocated. In this snapshot, the application has allocated 5 blocks
of size 1, 3 blocks of size 2 and 1 block of size 4. In practice, allocators do not allocate
blocks of 1 byte. Instead, a minimum block size of 16 bytes is common. The block sizes
in this paper can be interpreted as either bytes or multiples of the minimum.

such a cluster as a set of nested virtual clusters. We name this ‘Virtual Cluster
Allocation’ (VCA). VCA improves both the randomness and space utilization.
When the number of block sizes allocated from each cluster is increased to 2, the
randomization of larger blocks improves by 25% compared to existing techniques
while the size of the reserved area required decreases by 37.5%.

In the rest of this paper, we first show why a naive implementation of mixed
block size allocations results in poor randomization. Next, we describe the in-
tuition and the algorithm for VCA. We derive and prove the reserved space
requirement for VCA. Finally, we describe the limitations and conclusions.

Related works Randomization is one of the major countermeasures against buffer
overflow attacks. Our paper focuses on the randomization of memory blocks
returned by the libc malloc function. Project similar in scope include the
OpenBSD [8] allocator and the Diehard series of randomized allocators [5, 6].
Randomization may also involve other parts of the memory structure such as
the location of stack or shared libraries [1–4, 7, 9], the instruction set encod-
ing [10–13], and even the data [14].

2 Naive implementation

In a naive implementation, when a block needs to be allocated, the corresponding
cluster is first identified. Next, all available slots meeting the alignment and size
constraints are identified. A slot is then chosen randomly to fulfil the allocation
request. We demonstrate in this section, through an example, the techniques
that an attacker can use to place blocks to ensure a high probability of achieving
a particular relative ordering. This attack requires an attacker who is able to
control the heap evolution. Scenarios where this is possible include Javascript
based malware [15].

For our example, there is a cluster of size 16 which is initially free. The
allocator handles requests for blocks of size 1, 2 and 4. The attacker is able to



Nested virtual cluster based allocator. 3

request allocation for 3 types of blocks: type A, type B and type C, each of size
1, 2 and 4 respectively. The steps used by the attacker are: (a) allocate three
type C objects: C1, C2, C3, (b) allocate one type B objects: B1, and (c) allocate
two type A objects: A1 and A2. Figure 2 illustrates a possible memory layout.

Fig. 2. Example showing how an attacker can control the sequence of allocations to
ensure a high probability of achieving a desired placement order.

Fig. 3. Possible permutations in the placement of B1, A1 and A2.

In step (a), there are 4 available slots to place C1, C2 and C3, given the
alignment restrictions. The allocator picks 3 of the slots randomly, leaving a
single free slot of size 4. A single size 4 free slot can be divided into 2 size 2 free
slots, each of which can in turn be divided into 2 size 1 free slots. To allocate
a block for B1, since there are only 2 availble size 2 slots, the allocator picks
1 of the 2 slots randomly, leaving only a single slot of size 2. In step (c), the
allocator places the objects A1 and A2 randomly into the remaining free area of
the cluster.

To calculate the probability that A1 will be followed by A2, we refer to
Figure 3. There are 4 possible permutations, each equiprobable. In 2 of the 4
permutations, A1 is followed by A2. The probability of this occurring is therefore
2/4 = 50%. Similarly, in 1 of the 4 permutations, B1 is followed by A2. The
probability of this occurring is therefore 1/4 = 25%. A naive implementation
of randomization where more than 1 block size can be allocated from a single
cluster therefore does not guarantee high entropy.

3 Intuition

In Figure 1, so long as the attacker’s total allocation size is limited to a maximum
quota of 16, all possible permutations of block locations are equally likely. This
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equiprobable property holds regardless of the order of allocation and deallocation
made by the attacker. Intuitively, the problem with the naive implementation of
Section 2 is that by varying the order of his allocation, an attacker can violate
the equiprobable property.

We illustrate our solution to this problem using a simple example which
involves only type A blocks (of size 1) and type B blocks (of size 2). To allocate
a type B block, the allocator picks a free type B slot randomly (similar to the
naive implementation). To handle allocations of type A blocks, the allocator
chooses available type B slots randomly and uses them to form a virtual cluster.
A free type A slot is then chosen randomly from the virtual cluster. Figure 4
shows the formation of a virtual cluster (of size 16) from an empty cluster (of
size 20) and the allocation of a type A block from this virtual cluster.

(a) Empty cluster of size 20.

(b) Choose 8 type B slots randomly.

(c) Form a virtual cluster with the chosen slots.

(d) Choose one type A slot randomly.

(e) Locate the corresponding slot in the parent cluster.

Fig. 4. Allocating type A blocks using a virtual cluster.

Note that a new virtual cluster is formed for every allocation. When there
are prior allocations of either type A or type B blocks, dummy type B slots may
be added to the virtual cluster. A cluster can therefore contain up to 5 different
types of type B slots (see Figure 5):

1. Dummy slots.

2. Type B slots from which 1 type B block has been allocated. We name them
type BB slots. The number of such slots is denoted by sB.

3. Type B slots from which 2 type A blocks has been allocated. We name them
type B2 slots. The number of such slots is denoted by s2.
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Fig. 5. Different types of type B slots. In this example, s0 = 4, s1 = 2, s2 = 1, sB = 3.

4. Type B slots from which exactly 1 type A block has been allocated. We name
them type B1 slots. The number of such slots is denoted by s1.

5. Free (unused) type B slots. We name them type B0 slots. The number of
such slots is denoted by s0.

Figure 6 shows the allocation process when there are prior allocations. From
the virtual cluster, one type A slot is chosen randomly from among the dummy
and available slots. If a dummy slot is chosen, the selection process is repeated.
However, the repeated selection can only be made from the B0 slots in the virtual
cluster and not from the B1 slots. The rest of the process is similar to that of
Figure 4.

The use of a virtual cluster within a cluster ensures that all possible permu-
tations of block locations are equiprobable, because the randomization within
each cluster is similar in principle to that of Figure 1. The random formation of
the virtual cluster from the slots of the parent cluster ensures that there is no
correlation between the location of slots of different sizes. The concept of nesting
a virtual cluster within a parent cluster can extended to more than 2 block sizes.

4 Computation of cluster size

In this section, we show how the cluster size c can be chosen when the total
amount of allocated memory is constrained by a quota q. The choice of c pri-
marily involves a space-randomness tradeoff. The smaller the reserved space, the
better the virtual and physical address space utilization efficiency; but it is also
easier for an attacker to guess the absolute and relative location of each block.
However, even if small space is desired, the reserved space cannot be as small as
q. That is because fragmentation may result in available space that cannot be
used. Figure 7 shows an example where c and q are 20 and 16 respectively. Even
though the total allocation is only 14, this cluster can not handle any further
request for type B blocks (type A blocks can still be allocated). A lower bound
therefore exists for c.

For VCA, the theoretical lower bound depends on how the size of the virtual
cluster, v, is chosen. Note that v must be even because the virtual cluster contains
type B slots which are of size 2. For simplicity, we also assume q is even. If v ≥ 2q,
c, in theory, must be at least 2q. Otherwise, there is at least 1 fragmentation
pattern which the allocator cannot handle. If v = q, c must be at least 1.5q.
The reason is because, in a problem involving only 2 block sizes, the worst
fragmentation occurs with B1 blocks. If v ≥ 2q, the worst fragmentation occurs
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(a) A cluster of size 20 with prior allocations.

(b) Include all B1 and B2 slots in the virtual cluster. B2 slots
cannot be used for allocation. However, their inclusion affects the
selection probabilities.

(c) Include all B0 slots. If there are more slots than available space,
a subset of B0 slots is chosen randomly for inclusion.

(d) If there are more space than B0 slots, dummy slots are added.

(e) Choose a new type A slot randomly from the free slots and
dummy slots.

(f) Locate the corresponding slot in the parent cluster.

Fig. 6. Allocating type A blocks when there are prior allocations.

when the cluster consists entirely of B1 blocks, resulting in a cluster size of 2q.
If v = q, the worst fragmentation occurs when the cluster contains a mix of B1

and BB blocks. Let a be the number of type A blocks that has been allocated.
Let b be the number of type B blocks that has been allocated. Figure 8 shows
the maximum number of B1, B2 and BB slots that can be created as a varies.
The maximum of 1.5q occurs when a = 0.5q and b = 0.25q.

When q is large, some fragmentation patterns are so rare that they are virtu-
ally impossible. This suggests that a probabilistic bound for c exists and can be
lower than 1.5q. In such a case, the tradeoff involves not just space and random-
ness, but also the chance of failure. If c is chosen carefully, the chance of failure
may be low enough that it is inconsequential. In the remainder of this section,
we show that this intuition is correct.

Let s be the total number of type B1 and B2 slots (that is, s = s1 + s2). For
ease of implementation, the procedure in Figure 6 can be simplified as follows:

1. Compute the ratio ra,s = (2s− a)/(v − a).
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Fig. 7. Fragmentation reduces usable space. For ease of analysis, VCA has a constraint
that adjacent free type A slots in neighbouring type B slots (such as A1 and A2) cannot
be merged and used for allocating type B blocks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
a

x
im

u
m

 p
o

s
s
ib

le
 s

p
a

c
e

 (
a

s
 a

 r
a

ti
o

 t
o

 q
)

a/q

B1, B2 slots
BB slots

B1, B2 and BB slots

Fig. 8. Maximum space usage due to fragmentation when v = q.

2. Compute a random number r′ between 0 and 1.

3. If r′ < ra,s choose a type A slot from among the B1 slots randomly.

4. If r′ >= ras
choose a B0 slot from the parent cluster randomly and choose

one of the two available type A slots (within the chosen B0 slot) randomly.

We now prove some allocator properties. Let pa,s be the probability that
when a type A blocks has been allocated, the total number of type B1 and B2

slots is s. Figure 9 shows an example of the distribution of pa,s when v = q = 10.
Note that pa,s does not depend on b, the number of type B blocks allocated.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9

s

a

1.000 0.111

0.889 0.333

0.667

0.048

0.571

0.381

0.238

0.635

0.127

0.048

0.571

0.381

0.333

0.667

0.111

0.889 1.000

1/9
8/9 8/8

2/8
6/8

1/7
6/7
3/7
4/7

6/6
2/6
4/6
4/6
2/6

1/5
4/5
3/5
2/5
5/5

4/4
2/4
2/4
4/4

1/3
2/3
3/3

2/2
2/2

Fig. 9. The value of pa,s (in shaded boxes) as a function of s and a when v = q = 10.
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In Figure 9, the labels on the horizontal arrows equal ra,s and indicate the
probability that s remains unchanged when a is incremented by 1 (because a B1

slot was used, resulting in a B2 slot). The labels on the diagonal arrows equal
1− ra,s and indicate the probability that s increases by 1 when a is incremented
by 1 (because a B0 slot was used, resulting in a B1 slot).

Let the most likely value of s be denoted by smax. We will show that the
probability density function of s is unimodal and the further s is from smax,
the lower the probabililty. Next, we show that the larger the quota q, the larger
the probability Pr[smax(1 − ǫ) < s < smax(1 + ǫ)] where ǫ is a small constant.
In other words, the larger q is, the less likely s differs significantly from smax.
Figure 10 illustrates this property. The lower probabilistic bound of c is then
given by the solution of an optimization problem.

 0
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Fig. 10. The larger q is, the more likely s is close to smax. Note that unlike a normal
distribution, the probability density function of s is asymmetrical about the mode. The
asymmetry generally diminishes as q becomes larger.

4.1 Computation of smax

Theorem 1. If pa,s 6= 0 and pa,s+1 6= 0, then the ratio between them is given

by:

ha,s =
pa,s+1

pa,s
=

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)
(1)

Proof. The proof is by induction. The base case can be shown to be true for p2,1
and p2,2. In the inductive step, it can be shown that Equation 1 holds for pa+1,s

and pa+1,s+1 whenever any of the following conditions are true:
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1. pa,s−1 = 0, pa,s 6= 0, pa,s+1 6= 0 and Equation 1 holds for pa,s and pa,s+1.

2. pa,s−1 6= 0, pa,s 6= 0, pa,s+1 = 0 and Equation 1 holds for pa,s−1 and pa,s.

3. pa,s−1 6= 0, pa,s 6= 0, pa,s+1 6= 0 and Equation 1 holds for pa,s−1 and pa,s as
well as for pa,s and pa,s+1.

Conditions 1 and 2 are corner cases while condition 3 is the general case. Con-
dition 1 occurs when a is odd, 1 < a < v − 1 and s = (a + 1)/2. Condition 2
occurs when 1 < a < v/2 and a = s. Due to brevity of space, we only provide
the proof for the general case:

pa+1,s = pa,s−1(1 − ra,s−1) + pa,sra,s

= pa,s−1

v − 2s+ 2

v − a
+ pa,s

2s− a

v − a

= pa,s
(2s− a− 1)(2s− a)

2(v − 2s+ 2)(a− s+ 1)

v − 2s+ 2

v − a
+ pa,s

2s− a

v − a

= pa,s
2s− a

v − a

(

2s− a− 1

2(a− s+ 1)
+ 1

)

= pa,s
2s− a

v − a

(

a+ 1

2(a− s+ 1)

)

(2)

pa+1,s+1 = pa,s(1− ra,s) + pa,s+1ra,s+1

= pa,s
v − 2s

v − a
+ pa,s+1

2s− a+ 2

v − a

= pa,s
v − 2s

v − a
+ pa,s

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)

2s− a+ 2

v − a

= pa,s
v − 2s

v − a

(

1 +
2(a− s)

2s− a+ 1

)

= pa,s
v − 2s

v − a

(

a+ 1

2s− a+ 1

)

(3)

Dividing (3) by (2) yields the desired result for ha+1,s. ⊓⊔

Theorem 2. There is exactly 1 turning point for the probability density function

of s within the problem domain.

Proof. A turning point occurs when the gradient equals 0. Since s is discrete,
the turning point occurs when pa,s equals pa,s+1, or equivalently, when ha,s = 1.
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From (1), we have

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)
= 1

2(v − 2s)(a− s) = (2s− a+ 1)(2s− a+ 2)

2(va− vs− 2sa+ 2s2) = 4s2 − 2sa+ 4s− 2sa+ a2 − 2a+ 2s− a+ 2

2va− 2vs = 6s+ a2 − 3a+ 2

−6s− 2vs = −2va+ a2 − 3a+ 2

s =
−2va+ a2 − 3a+ 2

−6− 2v

=
2a− a2

v
+ 3a

v
− 2

v
6

v
+ 2

(4)

Theorem 3. The turning point for the probability density function of s is a

maximum turning point.

Proof. We only need to show that ha,s+1 < ha,s for all s. Since ha,smax
= 1,

ha,s+1 < ha,s implies that when s < smax, ha,s > 1. Similarly, when s > smax,
ha,s < 1. In other words, the gradient is postive before the turning point and
negative after the turning point, implying a maximum turning point. From 1:

ha,s+1 =
2(v − 2s− 2)(a− s− 1)

(2s− a+ 3)(2s− a+ 4)

<
2(v − 2s)(a− s)

(2s− a+ 3)(2s− a+ 4)

<
2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)

= ha,s⊓⊔

The probability density function therefore has the shape of Figure 10.

Theorem 4. When q is large,

smax = a−
a2

2v
(5)

Proof. When q is large, v is also large. (5) is obtained from (4) by eliminating
the insignificant terms when v is large. ⊓⊔

4.2 Lower bound for c

The lower bound for the cluster size c depends on the worst case value of s1+s2+
sB for all possible attacker allocation1 strategies. We have shown that for large q

1 We need only consider the set of allocation only strategies because due to VCA’s
equiprobable property (see Section 3), each strategy that involves allocation and
deallocation can be mapped to an equivalent strategy involving only allocation.
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(and therefore v), smax is a good approximation for s, which equals s1+s2. Also,
since one BB slot is created whenever one type B block is allocated, b = sB. The
lower bound of c therefore corresponds to the upper bound of the worse case
value for smax + b. For a 2 block size problem, this can be obtained from the
following optimization problem:

Determine a, the number of type A blocks, and b, the number of
type B blocks, so as to maximize smax+b, subject to the constraints:
1. a ≥ 0
2. b ≥ 0
3. a+ b ≤ q

The solution to this problem is:

a =
v

2
(6)

b =
2q − v

4
(7)

Substituting (6) and (7) into (5), the lower probabilistic bound for c is given
by:

cmin = smax + sB

= a−
a2

2v
+ b

=
v

2
−

(v
2
)2

2v
+

2q − v

4

=
v

2
−

v

8
+

2q − v

4

=
3v

8
+

2q − v

4
(8)

If v is chosen to be the minimum possible (i.e. q), then (8) simplifies to:

cmin =
3q

8
+

2q − q

4
=

5q

8
(9)

Note that (9) is expressed in units of type B slots. Each type B slot has a size
of 2. So the minimum size is 5q/4. Compared to existing techniques, which reserve
1 cluster of size q each for type A and B blocks respectively, the randomization
of type B blocks improves by 25% (from q to 5q/4) while the size of the reserved
area required decreases by 37.5% (from 2q to 5q/4).

It should be noted that, in practice, a probabilistic allowance ǫ is needed
to ensure VCA has a low chance of failure even when the worst case allocation
strategy is used (see Equations 6 and 7). In such a case, the larger ǫ is, the less
likely s > cmin + ǫ. As q becomes larger, the required allowance increases in
absolute terms, but decreases relative to q. If the cluster size c is set at exactly
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cmin, then approximately 50% of the time, s will exceed c when the worst case
strategy is used.

In dynamic storage allocation parlance, the lower bound of c is also known as
the worst case external fragmentation (WCEF). Robson proved that, when only
2 block sizes are involved and without randomization, the WCEF will never
be better (lower) than 1.5q [16]. Our work in this section adds 2 interesting
contributions to the analysis of WCEF. Firstly, to the best of our knowledge,
we are the first to show that it is possible to have a probabilistic bound through
the use of randomness. Secondly, we show that, for problems involving large q,
the probabilistic bound (1.25q) is lower than Robson’s limit (1.5q).

4.3 Computation of pa,s

Generally, pa,s can be computed by applying the following formula recursively:

pa,s = pa−1,s−1(1− ra−1,s−1) + pa−1,sra−1,s (10)

Referring to Figure 9, it can be seen that calculating pa,s using this method
involves summing the probabilities along all possible paths starting from p1,1 and
ending with the desired pa,s. There are 2 observations which help in simplifying
the computation. Firstly, it can be observed in Figure 9, that there exists a
symmetry about the line a = v/2 = 5. Secondly, there is a repetitive structure
such that certain common numerator and denominator terms appear in all paths.
All numerator and denominator terms on the diagonal arrows are common, while
the denominator terms on the horizontal arrows are common. As an example,
for all paths leading to p4,3 in Figure 9, the common denominator terms are 9,
8 and 7, while the common numerator terms are 8 and 6.

In general, the common denominator terms on the paths to pa,s depend only
on a and v (but not s). They are:

v − 1, v − 2, . . . , v − a+ 1

On the other hand, the common numerators terms on the paths to pa,s depend
only on s and v (but not a). They are:

v − 2, v − 4, . . . , v − 2(s− 1)

As an example, if all common terms are removed from Figure 9, the re-
maining numerator terms are shown in Figure 11. The product of the remaining
numerator terms along each path can be characterised using a sequence T (x, y),
where:

1. Each term of T is formed from the multiplication of x sub-terms
2. All sub-terms are positive integers
3. The first sub-term never exceeds y and
4. Each sub-term never exceeds the preceding sub-term by more than 1.
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For example,

T2,4 =1·1, 1·2,

2·1, 2·2, 2·3,

3·1, 3·2, 3·3, 3·4,

4·1, 4·2, 4·3, 4·4, 4·5

=1, 2, 2, 4, 6, 3, 6, 9, 12, 4, 8, 12, 16, 20

T3,2 =1·1·1, 1·1·2,

1·2·1, 1·2·2, 1·2·3,

2·1·1, 2·1·2,

2·2·1, 2·2·2, 2·2·3,

2·3·1, 2·3·2, 2·3·3, 2·3·4

=1, 2, 2, 4, 6, 2, 4, 4, 8, 12, 6, 12, 18, 24

These sequence are unique and not found in the OEIS database of integer se-
quences [17]. Note that T0,y = 1, by definition. Let Sx,y be the summation of all
terms in Tx,y. Then pa,s can be computed from the product of Sa−s,2s−a+1 and
the common numerators divided by the common denominators:

pa,s = Sa−s,2s−a+1

(

[v − 2][v − 4][. . .][v − 2(s− 1)]

[v − 1][v − 2][. . .][v − a+ 1]

)

(11)

4.4 Alternative method for computing pa,s

There exists an alternative way to compute pa,s. From Equation 2, we have a
relation between pa+1,s and pa,s. We can rewrite this equation as:

pa,s = pa−1,s

(

2s− a+ 1

v − a+ 1

)(

a

2(a− s)

)

(12)

Similarly from Equation 3, we have a relation between pa+1,s+1 and pa,s. We
can rewrite this equation as:

pa,s = pa−1,s−1

(

v − 2s+ 2

v − a+ 1

)(

a

2s− a

)

(13)
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We also know that p1,1 = 1 for all v. To compute pa,s, we can choose any

path from p1,1 to the desired pa,s and apply Equations 12 and 13. If a = s, there
is only 1 path:

p1,1, p2,2, p3,3, . . . , ps,s (14)

The formulas for this path are:

p2,2 = p1,1

(

v − 2

v − 1

)(

2

2

)

=

(

v − 2

v − 1

)

p3,3 = p2,2

(

v − 4

v − 2

)(

3

3

)

=

(

v − 2

v − 1

)(

v − 4

v − 2

)

p4,4 = p3,3

(

v − 6

v − 3

)(

4

4

)

=

(

v − 2

v − 1

)(

v − 4

v − 2

)(

v − 6

v − 3

)

. . .

pn,n =

(

v − 2

v − 1

)(

v − 4

v − 2

)(

v − 6

v − 3

)

. . .

(

v − 2(n− 1)

v − (n− 1)

)

(15)

If a > s, for simplicity, we choose (14) for the first part of the path, then
continue with

ps+1,s, ps+2,2, . . . , pa,s (16)

We have:

pa,s = pa−1,s

(

2s− a+ 1

v − a+ 1

)(

a

2(a− s)

)

pa−1,s = pa−2,s

(

2s− a+ 2

v − a+ 2

)(

a− 1

2(a− s− 1)

)

pa−2,s = pa−3,s

(

2s− a+ 3

v − a+ 3

)(

a− 2

2(a− s− 2)

)

ps+1,s = ps,s

(

s

v − s

)(

s+ 1

2(1)

)

(17)

Together, Equations 15 and 17 provide an alternative method of computing
pa,s. Interestingly, Equations 15, 17 and 11 also allow us to derive an expression
for Sx,y. Substituting Equations 15 and 17 into 11 and simplifying, we get:

Sa−s,2s−a+1 =
(2s− a+ 1)(2s− a+ 2)(. . .)(a)

2a−s(a− s)!
(18)



Nested virtual cluster based allocator. 15

Substituting x = a− s and y = 2s− a+ 1, we get:

Sx,y =
(y)(y + 1)(. . .)(2x+ y − 1)

2xx!
(19)

5 Limitations

Randomly allocating blocks from a large cluster results in poor spatial local-
ity, which depending on the size of the cache and the application usage may
affect cache performance. This problem affects all randomized allocators includ-
ing VCA. This tradeoff however results in improved security against heap based
buffer overflow attacks.

In practice, a probabilistic allowance, ǫ needs to be added to the cluster size.
For a 2 block size problem, this increases the cluster size beyond the probabilistic
bound of 1.25q (but never beyond the theoretical bound of 1.5q). For a fixed
probability of failure, the lower q is, the greater the magnitude of this allowance
(relative to q).

To extend VCA to more than 2 block sizes, one way is to use multiple clusters
with power of 2 block sizes. For example, on a platform with a page size of 4096
bytes, VCA would use 4 types of clusters, each handling block sizes of (i) 16
bytes and 32 bytes, (ii) 64 bytes and 128 bytes, (iii) 256 bytes and 512 bytes
(iv) 1024 bytes and 2048 bytes. Requests greater than or equal to the page size
can be allocated from the system directly (e.g. using the mmap system call).
The rounding of allocation sizes to power of 2 may lead to wastage of storage
known as internal fragmentation. This weakness is however shared by existing
randomized allocators as well as the binary buddy allocator.

A second way of extending VCA to more than 2 block sizes is by nesting
virtual clusters recursively. This results in a multi-variable optimization problem.
It can be shown that a unique solution exists for the extended problem. The
analysis of this problem is however omitted due to brevity of space.

Yet another possible way of extending VCA is to consider nesting more than
1 virtual cluster within a single parent cluster. For example, if the size of the
parent cluster is a multiple of 6, then the cluster may support allocations of
block size 6 directly, and allocations of block sizes 1, 2 and 3 using 3 virtual
clusters. We have not analysed the feasibility of this approach and leave it as
future work.

6 Conclusions

In this paper, we show that it is possible to improve the randomization while
reducing the space requirement of randomized heap allocators by allocating more
than 1 block size from a single cluster. With 2 block sizes, compared to existing
randomized allocators, the randomization of larger blocks improves by 25% while
the size of the reserved area required decreases by 37.5%.



16 Chee Meng Tey, Debin Gao

References

1. The PaX Team: Homepage of the PaX Team http://pax.grsecurity.net.
2. Android community: Android security overview http://source.android.com/

tech/security/index.html.
3. Otto Moerbeek: A new malloc(3) for OpenBSD http://www.openbsd.org/

papers/eurobsdcon2009/otto-malloc.pdf.
4. Ollie Whitehouse: An Analysis of Address Space Layout Randomization on

Windows VistaâĎć http://www.symantec.com/avcenter/reference/Address_

Space_Layout_Randomization.pdf.
5. Berger, E.D., Zorn, B.G.: Diehard: probabilistic memory safety for unsafe lan-

guages. In: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation. PLDI ’06, New York, NY, USA, ACM (2006)
158–168

6. Novark, G., Berger, E.D.: Dieharder: securing the heap. In: Proceedings of the
17th ACM conference on Computer and communications security. CCS ’10, New
York, NY, USA, ACM (2010) 573–584

7. Li, L., Just, J.E., Sekar, R.: Address-space randomization for windows systems.
In: Proceedings of the 22nd Annual Computer Security Applications Conference.
(2006) 329–338

8. OpenBSD: The OpenBSD project http://www.openbsd.org.
9. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach

to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX security symposium. Volume 120., Washington, DC. (2003)

10. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Pro-
ceedings of the 10th ACM conference on Computer and communications security,
ACM (2003) 281–289

11. Barrantes, E.G., Ackley, D.H., Forrest, S., Stefanović, D.: Randomized instruction
set emulation. ACM Transactions on Information and System Security (TISSEC)
8(1) (2005) 3–40

12. Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D., Prevelakis, V.: On the gen-
eral applicability of instruction-set randomization. Dependable and Secure Com-
puting, IEEE Transactions on 7(3) (2010) 255–270

13. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM conference on
Computer and communications security, ACM (2003) 272–280

14. Cadar, C., Akritidis, P., Costa, M., Martin, J.P., Castro, M.: Data randomization.
Technical report, Microsoft Research (2008) Technical Report MSR-TR-2008-120.

15. Daniel, M., Honoroff, J., Miller, C.: Engineering heap overflow exploits with
javascript. In: Proceedings of the 2nd conference on USENIX Workshop on of-
fensive technologies. WOOT’08, Berkeley, CA, USA, USENIX Association (2008)
1:1–1:6

16. Robson, J.M.: An estimate of the store size necessary for dynamic storage alloca-
tion. J. ACM 18(3) (July 1971) 416–423

17. OEIS: The On-Line Encyclopedia of Integer Sequences (Aug 2013) http://oeis.

org/.


	Defending against heap overflow by using randomization in nested virtual clusters
	Citation

	../figures/transition_hide.eps

