
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2013 

Automatic Recommendation of API Methods from Feature Automatic Recommendation of API Methods from Feature 

Requests Requests 

Ferdian THUNG 
Singapore Management University, ferdiant.2013@smu.edu.sg 

Shaowei WANG 
Singapore Management University, shaoweiwang.2010@phdis.smu.edu.sg 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Julia LAWALL 
Inria/Lip6 Regal, France 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
THUNG, Ferdian; WANG, Shaowei; LO, David; and LAWALL, Julia. Automatic Recommendation of API 
Methods from Feature Requests. (2013). 2013 28th IEEE/ACM International Conference on Automated 
Software Engineering (ASE) Proceedings: 11-15 November 2013, Silicon Valley, CA. 290-300. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2030 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2013

Automatic Recommendation of API Methods
from Feature Requests
Ferdian THUNG
Singapore Management University, ferdiant.2013@smu.edu.sg

Shaowei WANG
Singapore Management University, shaoweiwang.2010@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Julia LAWALL
Inria/Lip6 Regal, France

Follow this and additional works at: http://ink.library.smu.edu.sg/sis_research

Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
THUNG, Ferdian; WANG, Shaowei; LO, David; and LAWALL, Julia. Automatic Recommendation of API Methods from Feature
Requests. (2013). 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE) Proceedings: 11-15
November 2013, Silicon Valley, CA. 290-300. Research Collection School Of Information Systems.
Available at: http://ink.library.smu.edu.sg/sis_research/2030

http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Automatic Recommendation of API Methods
from Feature Requests

Ferdian Thung1, Shaowei Wang1, David Lo1, and Julia Lawall2
1Singapore Management University, Singapore

2Inria/Lip6 Regal, France
{ferdiant.2013,shaoweiwang.2010,davidlo}@smu.edu.sg, julia.lawall@lip6.fr

Abstract—Developers often receive many feature requests.
To implement these features, developers can leverage various
methods from third party libraries. In this work, we propose
an automated approach that takes as input a textual description
of a feature request. It then recommends methods in library
APIs that developers can use to implement the feature. Our
recommendation approach learns from records of other changes
made to software systems, and compares the textual description
of the requested feature with the textual descriptions of various
API methods. We have evaluated our approach on more than 500
feature requests of Axis2/Java, CXF, Hadoop Common, HBase,
and Struts 2. Our experiments show that our approach is able to
recommend the right methods from 10 libraries with an average
recall-rate@5 of 0.690 and recall-rate@10 of 0.779 respectively.
We also show that the state-of-the-art approach by Chan et al.,
that recommends API methods based on precise text phrases, is
unable to handle feature requests.

I. INTRODUCTION

Developers often receive requests for new features sub-
mitted via systems such as JIRA1. Given the requirements
expressed in these feature requests, developers need to locate
code units that should be changed and then implement the
required changes. While a number of concern localization
techniques have been proposed for locating code units of
interest [8], [23], [24], [32], [36], [37], there is still little
automated support to help developers implement the changes
required to satisfy a feature request.

Many software systems rely on a variety of external libraries
for various functionalities. Accordingly, developers often use
external libraries to implement required changes. However,
using these libraries effectively, requires knowledge of the
relevant methods and classes that they provide. Given the large
number of libraries, and the large number of methods and
classes that they provide, it can be a challenge for developers
to identify the methods and classes of interest, given a target
requirement document expressed as a feature request.

Considering the above issues and opportunities, there is a
need for an automated approach that could help developers to
better harness the power of libraries. The automated approach
should be able to recommend library methods given a feature
request. We refer to our problem as method recommendation
from feature requests.

A number of techniques have been proposed to recommend
code units given a requirement. Mandelin et al. [20] and

1https://www.atlassian.com/software/jira

Thummalapenta and Xie [31] propose a technique to generate
code snippets that can convert an object of a particular type
to another object of a different type. While this technique is
useful for a number of situations, it requires the information
about the desired functionality to be expressed at code level.
Chan et al. propose a code search technique that takes in text
phrases and returns a graph of API methods that best match
the phrases [5]. Their approach requires precise text phrases
that match some words in the API methods. These techniques
are not sufficient to automatically process feature requests,
which typically describe high-level requirements, written in
natural language. In this work, we propose a complementary
approach that recommends relevant library methods directly
from feature requests.

Our proposed approach learns from a training dataset of
changes made to a software system recorded in repositories
(i.e., issue management systems, and version control systems).
Each change in the dataset has three parts: the textual descrip-
tion describing the change (text), the code before the change
(pre-change), and the code after the change (post-change). Our
approach takes as input a new textual description (text) and
then recommends methods from a set of libraries to be used
in the post-change code.

To recover methods that can be used to construct the post-
change code, our approach performs a two-pronged approach
to rank relevant methods. First, it searches for similar closed
or resolved feature requests in the training data. A closed or
resolved feature request is one that has been addressed by
developers and where appropriate changes have been made to
the software system. It then looks into the API methods that
are used to implement these feature requests and measures
the relevance of various methods based on the number of
similar closed requests which use them. Second, our approach
measures relevance by looking into the similarity between the
textual description of the feature request and the descriptions
of the API methods. Our approach then learns an integrated
ranking function that is used to recover a list of potentially
relevant library methods that are then recommended to the
developers.

We have evaluated our solution on feature requests stored
in the JIRA issue management systems of 5 Java applications:
Axis2/Java, CXF, Hadoop Common, HBase, and Struts 2.
Each feature request in JIRA can be linked to the commits
in the corresponding version control system that implement
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the requested feature. We recommend methods from 10 third
party libraries: commons-codec, commons-io, commons-lang,
commons-logging, junit, servlet-api, easymock, log4j, slf4j-
api, and slf4j-log4j12. These are the most popular libraries
used by Java applications developed under the Apache Founda-
tion. These libraries provide various functionalities including
testing, logging, I/O, etc. The accuracy of our proposed
approach is measured using recall-rate@5 and recall-rate@10;
these measures have also been used to evaluate past studies
on bug report analysis [11], [22], [30], [34]. Our experiments
show that we can achieve a recall-rate@5 and recall-rate@10
of 0.690 and 0.779 respectively. On the other hand, we show
that the state-of-the-art code search approach by Chan et al. [5]
that recommends API methods from precise textual phrases is
not effective to directly process feature requests, which often
contain high level requirements. Indeed, we find that their
approach returns no relevant methods.

Our contributions are as follows:
1) We propose a new problem of method recommendation

from feature requests.
2) We propose a technique that leverages information from

past similar closed or resolved feature requests and com-
pares the textual description of a feature request with
those of library methods. Our technique learns an inte-
grated ranking function that is then used to recommend
library methods to be used in the post-change code.

3) We evaluate our approach on change requests of 5
applications and recommend methods from 10 libraries.
We show that our approach achieves a recall-rate@5 and
recall-rate@10 of 0.690 and 0.779, respectively.

The structure of this paper is as follows. In Section II,
we describe some preliminary concepts. In Section III, we
present an overview of our proposed approach. We elaborate
the three processing components of our approach in Sec-
tions IV, V, & VI. We highlight our experimental methodology
and results in Section VII and describe related studies in
Section VIII. Finally, we conclude and mention future work
in Section IX.

II. PRELIMINARIES

In this section, we describe some preliminary materials that
are needed for latter sections. We first describe the issue man-
agement system JIRA and show how it stores feature requests.
We then describe some text pre-processing techniques and the
vector space model.

A. Feature Requests and JIRA

JIRA is an issue management system developed by Al-
tassian.2 It is used in many software projects to capture
and store issues that are reported by users and developers.
Among its users are the many projects developed by the
Apache Software Foundation. Figure 1 shows a sample issue
stored in the JIRA repository of an Apache project. An issue
contains a number of fields including: summary, description,

2http://www.atlassian.com/software/jira/overview

type, priority, component, etc. For our work, we are especially
interested in the fields listed in Table I.

TABLE I
FIELDS IN A JIRA ISSUE

Name Description
Summary the summary/title of the issue
Description the detailed description of the issue
Component the component affected by the issue
Reporter the name of the person who submitted the issue report
Priority the urgency of the issue to be addressed

Each issue in JIRA can be categorized into one of these
types: “Bug”, “New Feature”, “Task”, etc. In this study, we
are interested in feature requests reported in JIRA. A feature
request in JIRA can be seen as an issue of type: “New
Feature”, “Improvement”, or “Wish”. Each issue also has a
priority. The priority indicates the urgency of the issue to be
addressed. Table II lists the priorities available in JIRA along
with their descriptions.

TABLE II
PRIORITY IN JIRA

Name Description
Blocker Blocks development and/or testing, produc-

tion could not run
Critical Crash, loss of data, severe memory leak
Major Major loss of functionality
Minor Minor loss of functionality, or other problem

where an easy workaround is present
Trivial Cosmetic problem like misspelled words or

misaligned text

An issue can be assigned various status labels: “open”, “in
progress”, “resolved”, “closed”, etc. A new issue is typically
given the status “open”. An issue that has been addressed
to completion by developers is given the status: “resolved”
or “closed”. Each issue report in JIRA has a unique issue
identifier (id) used to identify the report. The format of this
identifier is typically a short name for the project followed
by the issue number in the project (e.g., HBASE-3850). JIRA
can be integrated with version control systems like svn, git,
etc. Each issue in JIRA can then be linked to the commits
in the version control system that address the issue. The
issue identifier is added to the log messages of the commits
that address the issue. This provides an easy identification of
changes made to address the issue. We show an example of
this link in Figure 2. We can see that it is easy to identify
the commits in the version control system that address the
HBASE-3850 issue.

B. Text Pre-processing

Text pre-processing is an important task in text mining [21].
Its purpose is to convert a piece of text into a common
representation easily processed by a text mining algorithm
and to remove certain noise. Widely used text pre-processing
strategies include tokenization and stemming.
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Fig. 1. A Sample JIRA Issue

Fig. 2. Sample Link Between A JIRA Issue And A Commit in A Version Control System

Tokenization refers to the process that breaks a document
into word tokens. Delimiters are used to demarcate one token
from another. Typically, space and punctuation are used as
delimiters. After tokenization, a document is converted to a
bag (i.e., a multiset) of word tokens. This is often referred to
as the bag of words representation.

Stemming is the process of converting a word to its base
form. This base form is usually called the stem word. For
example, word “argue”, “argues”, “argued”, and “arguing”
have a common stem word “argu”. Even though word “argu”
is not a dictionary word, the conversion assures that we can
identify a word in its different forms and link these word
forms together. Without stemming, the multiple forms would
be treated as different words altogether, which is not desirable
in many cases. In our work, we use the Porter stemmer3 to
stem the words. It employs several rule based heuristics to
convert a word to its stem word by stripping a suffix of the
word. The Porter stemmer has been used in many past software
engineering studies, e.g., [9], [10].

C. Vector Space Model
After the text pre-processing step, the document is now

represented as a bag of words. The vector space model
represents a bag of words as a vector of weights. Each word in
the bag becomes an element in the vector. The weight of each
word indicates its importance. Term frequency and inverse
document frequency are often used to compute the weight of
a word and thus quantify its importance in a document.

3http://tartarus.org/martin/PorterStemmer/

Term frequency (TF) refers to the number of times a term
(i.e., a word, or a token) appears in a document. The more
times a term appears in a document, the more important that
term is considered to be. Inverse document frequency (IDF) is
the reciprocal of the document frequency (DF). The document
frequency of a term is the number of documents in the corpus
(i.e., a set of documents or a document collection under
consideration, e.g., all feature requests, all method descriptions
in the API documentation) that contain the term. The higher
the inverse document frequency is, the more important is the
term, as it can better differentiate one document from another.
TF-IDF is often used to compute the weight of a term i in a
document D considering a corpus C in the following way:

wi,D,C = TF i,D × IDF i,C

IDF i,C = 1
DF i,C

(1)

TF i,D refers to the number of times a word i appears in a
document D. DF i,C refers to the number of documents in C
that contains the word i.

From the above, given a bag of words representing a docu-
ment D in a corpus C, we can convert it to its corresponding
term vector by computing the weight of each word in C
and putting them into a vector. The weight of a word in
C, but not in D, would be 0. We denote the term vector
representation of document D considering a corpus C as
V SMC(D). Implementation-wise, a sparse vector represen-
tation is typically used (i.e., only the non-zero entries of the
vector are stored).
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Given two documents, we can compute the similarity be-
tween them by comparing their representative vectors. Cosine
similarity is often used to measure the similarity between two
vectors. Let V1 and V2 denotes two vectors of weights of size
N , then the cosine similarity of these two vectors is given by
the following equation:

Cosine(V1, V2) =
∑N

i=1 wi,V1
×wi,V2√∑N

i=1 w2
i,V1

√∑N
i=1 w2

i,V2

(2)

wi,V refers to the ith weight in vector V .

III. OVERALL FRAMEWORK

The overall framework of our approach is shown in Figure 3.
Our framework consists of three important components: His-
tory Based Recommender, Description Based Recommender,
and Integrator.

History Based Recommender takes as input the description
of the new feature request (Textual Description) and a his-
torical database containing old “closed” or “resolved” feature
requests (Historical Feature Request Database (HDB)). The
recommender compares the new feature request with those
in the historical database and finds the closest ones. It then
recommends relevant methods based on the methods that were
used to implement those closest feature requests.

Description Based Recommender takes as input the descrip-
tion of the new feature request (Textual Description) and the
documentation of API libraries (API Documentations (ADoc)).
The recommender computes the similarity of the textual
description of the new feature request with the description
of each method in the API documentations of the libraries.
It recommends methods whose textual descriptions have the
highest similarity with the textual description of the new
feature request.

Integrator combines the recommendations from History
Based Recommender and Description Based Recommender. It
takes as inputs recommendation scores from the two compo-
nents and outputs a final list of methods to be recommended
to the user.

IV. HISTORY-BASED RECOMMENDATION

In the history-based recommender component, we first find
the nearest neighbors of a new feature request from the
historical database of “closed” or “resolved” feature requests
that we have. We compare two feature requests based on the
contents of their summary, description, component, reporter,
and priority fields (see Table I). We compute a similarity score
for each field and combine the scores into an aggregate score
that specifies the similarity between two feature requests. We
define the similarity score for each field as follows.

1) Summary and Description. The contents of these fields
are free-form texts. We pick only alphanumeric terms
from these texts. We employ standard text preprocessing
(tokenization and stemming) and convert the terms into
a bag of word and its corresponding term vector (see
Section II). We have 3 options: we can take all terms in
the summary field, we can take all terms in the description

field, and we can take all terms in both summary and
description fields. We compute the following 3 similarity
scores between the new feature request F1 and a historical
feature request F2 in terms of their summary/description
fields using cosine similarity:

SimSum(F1, F2) =
Cosine(VSMHDB (F

S
1 ),VSMHDB (F

S
2 ))

SimDesc(F1, F2) =
Cosine(VSMHDB (F

D
1 ),VSMHDB (F

D
2 ))

SimSumDesc(F1, F2) =
Cosine(VSMHDB (F

SD
1 ),VSMHDB (F

SD
2 ))

(3)
In the above equations, FS

1 denotes the content of the
summary field of F1. FD

1 denotes the content of the
description field of F1. FSD

1 denotes the contents of
the summary and description fields of F1. HDB is the
Historical Feature Request Database (see Figure 3).

2) Component. A feature request, if implemented, can affect
multiple components in the system. Thus, the content of
the component field of a feature request is a set of values.
We compute the similarity score SimComp between a
new feature request F1 and a historical feature request
F2 in terms of their components as follows:

SimComp(F1, F2) =
|NcF1

∩NcF2
|√

|NcF1
| ∗

√
|NcF2

|
NcF denotes the set of components of feature request F .

3) Reporter. The similarity score SimReport between a
new feature request F1 and a historical feature request
F2 in terms of their reporters is 1 if both of them have
the same reporter and 0 otherwise.

4) Priority. Each priority in JIRA can be assigned an ordinal
value to quantify its level of urgency. We assign value
1 for “Blocker”, 2 for “Critical”, 3 for “Major”, 4 for
“Minor”, and 5 for “Trivial”. A lower value means a
higher priority or level of urgency. We compute the
similarity score SimPrio between a new feature request
F1 and a historical feature request F2 in terms of their
priority based on these values. The formula is as follows:

SimPrio(F1, F2) =
1

1 + |PrioF1
− PrioF2

|
PrioF denotes the ordinal value corresponding to the
priority of feature request F .

Example. Consider the example feature request shown in
Figure 1 as a historical feature request and a new feature
request having values as shown in Table III. We can compute
the similarity between these two feature requests for each field
as follows.

1) Summary and Description. Since the computation steps
for both summary and description are basically the same,
in this example, we only compute the similarity score
for the summary. We convert a summary to a vector
of TF − IDF weights of its stemmed alphanumerical
words. Each word has a term frequency TF equal to 1.
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Fig. 3. Our Recommendation Framework

Assuming that the IDF of each word is 1, which means
the word only appears in one document in the historical
database of feature requests (HDB ), the similarity score
for the summaries of the historical and new feature
request (i.e., SimSum) is 1/(

√
8 ∗
√
6) = 0.144.

2) Component. The historical feature request and the new
feature request do not share any component. Thus, the
SimComp score is 0.

3) Reporter. The feature requests are reported by different
reporters so the SimReport score is 0.

4) Priority. The historical feature request has “Critical”
priority which corresponds to the ordinal value 2, while
the new feature request has “Minor” priority which
corresponds to the ordinal value 4. The denominator of
SimPrio is equal to 1+ |2− 4| = 3. Thus, the SimPrio
score is 1/3 = 0.333.

TABLE III
EXAMPLE OF A NEW FEATURE REQUEST

Field Values
ID HBASE-6372
Summary Add scanner batching to Export job
Description When a single row is too large for the RS heap then

an OOME can take out the entire RS. Setting scanner
batching in custom scans helps avoiding this scenario,
but for the supplied Export job this is not set. Similar to
HBASE-3421 we can set the batching to a low number
- or if needed make it a command line option.

Components mapreduce
Reporter Lars George
Priority Minor

Finally, to compute the final similarity score between
two feature requests, we aggregate the similarity scores
of their constituent fields. We compute the final similarity
SimHISTORY between a new feature request F1 and a
historical feature request F2 in the historical database using
the following formula:

SimHISTORY (F1, F2) =
α1 ∗ SimSum(F1, F2) + α2 ∗ SimDesc(F1, F2) +
α3 ∗ SimSumDesc(F1, F2) + α4 ∗ SimReport(F1, F2) +
α5 ∗ SimComp(F1, F2) + α6 ∗ SimPrio(F1, F2)

(4)

SimSum(F1, F2), SimDesc(F1, F2), SimSumDesc(F1, F2),
SimReport(F1, F2), SimComp(F1, F2), and
SimPrio(F1, F2) denote the similarity scores between F1’s
and F2’s summary, description, combination of summary and
description, reporter, components, and priority respectively.
α1-α6 denotes the weights of each field contributing to the
SimHISTORY score.

Given a new feature request, we rank the historical feature
requests in the Historical Feature Request Database based on
their SimHISTORY scores when compared to the new feature
request. The higher the score is, the more similar a historical
feature request is to the new feature request. We then pick the
top-k feature requests with the highest SimHISTORY scores.
If there are feature requests with rank greater than k that have
the same score as the k-th feature request, we group the feature
requests having this score. We then randomly select feature
requests from this group until we have k nearest neighbors
(i.e., ties are randomly broken).

Next, we compute the recommendation scores for each
method based on these top-k nearest neighbors. We collect
the methods that are used to implement the feature requests
in the top-k nearest neighbors and compute a score for each
method. Given a method m, the history based recommendation
score of API method m for feature request F , denoted as
RecScoreHISTORY (F,m) is computed as follows:

RecScoreHISTORY (F,m) =
NNCountMethod(F,m)

k
(5)

NNCountMethod(m) denotes the number of nearest neighbors
of feature request F that use API method m, and k denotes
the total number of nearest neighbors. By default, we set the
number of nearest neighbors k to be 5. The API method with
the highest RecScoreHISTORY score is the most suitable API
method based on our history-based recommender.

Example. Consider a top-2 nearest neighbor list containing N1

and N2. Feature request N1 was implemented using method
m1 and m2 while feature request N2 was implemented using
method m2. Thus, the value of NNCountMethod is 1 for m1

and 2 for m2. We can then compute RecScoreHISTORY score
of m1 and m2 which are 0.5 and 1.0 respectively.
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V. DESCRIPTION-BASED RECOMMENDATION

When adding a new feature to an application, developers
often look at the API documentation to see which methods
they can use to help them implement the feature. The API
documentation contains textual descriptions that explain each
method in the library. By looking at the documentation, devel-
opers can find out which API methods to use for implementing
a feature. Our description-based recommender component
mimics this process to find relevant methods given the textual
description of a feature request. Given a new feature request
F , it proceeds in the following steps:

1) Feature Request Preprocessing. We extract the contents
of the summary and description fields of the input feature
request F . We again perform standard text preprocessing
steps to convert them into a bag of words. This bag
of word is then converted into its corresponding term
vector representation VSMADoc(F ) where each token
(i.e., term) in the bag is represented by its TF-IDF weight4

and ADoc is API Documentation (see Figure 3).
2) API Method Preprocessing. For each API method m

that we consider, we extract its method signature and
its corresponding description in the API documentation.
We extract the method descriptions from the Javadoc
comments in the code base of the APIs. We make use
of Eclipse Java Development Tools (JDT) to extract
these Javadoc comments. Javadoc has tags which serve
as metadata. Examples include @param indicating the
start of the description of a method parameter, @return
indicating the start of the description of the return value
of a method, etc. Since these tags only serve as metadata
and are not specific to the API, we remove them from
the extracted Javadoc comments. Additionally, developers
sometimes add HTML tags in the documentation to
improve its readability when it is viewed in e.g., a web
browser. Since these tags are only meant to improve the
look and feel of the API documentation and are again not
specific to the API, we also remove all HTML tags. Next,
we perform standard text preprocessing (i.e., tokenization
and stemming) to convert the cleaned method descriptions
in the Javadoc comments into bags of words. We then
convert each bag of words into its corresponding term
vector representation, VSMADoc(m).

3) Similarity Computation. Next, for each method m,
we compute the similarity between V SMADoc(F ) and
V SMADoc(m). We use the cosine similarity to com-
pute the similarity between these two vectors (see
Section II). We refer to this similarity score as the
description based recommendation score between fea-
ture request F and API method m and denote it as
RecScoreDESCRIPTION (F,m):

RecScoreDESCRIPTION (F,m) =
Cosine(VSMADoc(F ),VSMADoc(m))

(6)

4The description of text preprocessing and vector space model is given in
Section II.

After the above steps, we have the RecScoreDESCRIPTION

scores of various API methods. The method with the high-
est score is the most relevant API method based on the
description-based recommender.

VI. UNIFYING HISTORY- AND DESCRIPTION-BASED
RECOMMENDATION

The last component in our framework is the In-
tegrator, which combines the scores from the previ-
ous components. We compute the final recommendation
score RecScore between feature request F and API
method m by combining RecScoreHISTORY (F,m) and
RecScoreDESCRIPTION (F,m), as follows:

RecScore(F,m) = α ∗RecScoreHISTORY (F,m)+
β ∗RecScoreDESCRIPTION (F,m)

(7)
α and β are the weights for RecScoreHISTORY and
RecScoreDESCRIPTION , respectively.

To set the appropriate values for α and β of RecScore
(see Equation 7) and the appropriate values for α1-α6 of
RecScoreHISTORY (see Equation 5), we heuristically find the
best set of weights that maximizes an evaluation metric based
on a training dataset We employ a greedy approach based on
Gibbs sampling [4] that iteratively refines the set of weights.
At each iteration, each weight is optimized independently. Sev-
eral iterations are performed to further optimize the weights.
The pseudocode of our approach to tune the set of weights is
shown in Figure 4.

Our algorithm takes the input historical feature requests, a
set of API documentations, and the number of iterations to
perform Gibbs sampling numIter. It then outputs the set of
best weights. Initially all weights (α1, α2, α3, α4, α5, α6, α, β)
are set to 1.0 (Line 8). We then iterate numIter times
(Lines 11-23). For each iteration, we try to estimate the best
α1, α2, α3, α4, α5, α6, α, β weights independently (Lines 12-
22). We go through each of the eight weights and for each
weight we investigate 11 settings (i.e., 0.0, 0.1, 0.2, . . . , 1.0)
(Lines 13-21). We pick the setting that give the best result
(Lines 16-19,21). Method eval evaluates how good a particular
weight setting is with respect to an evaluation criteria (Line
16). In this study, we make use of recall-rate@k [22], [26],
[29], [30], [34] as the evaluation criteria (see Section VII). At
the end of the above process, we would have estimated the
best weights.

In the end, we want to get the top-k methods based on
RecScore. To do this, we first get the set of methods with
non-zero RecScoreHISTORY scores. For all these methods,
we compute their RecScore scores. We then return the top-k
methods based on the RecScore scores. If there are methods
having the same score as the k-th method, we group the
methods having this score and randomly select methods from
this group until we have k top methods (i.e., ties are randomly
broken).
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1: Input:
2: FReqs = list of historical closed or resolved feature

requests
3: Docs = the documentation of APIs
4: numIter = number of iteration
5: Output:
6: Estimated best weights: {α1, α2, α3, α4, α5, α6, α, β}
7: Method:
8: Let weights = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}
9: Let maxEvalScore = 0

10: Let valForMax = 0
11: for i = 0 to numIter do
12: for j = 0 to weights.Length do
13: for k = 1.0 to 0.0 by 0.1 do
14: weights[j] = k
15: evalScore = eval(FReqs,Docs, weights)
16: if maxEvalScore > evalScore then
17: maxEvalScore = evalScore
18: valForMax = k
19: end if
20: end for
21: weights[j] = valForMax
22: end for
23: end for
24: return weights

Fig. 4. Pseudocode for our Weight Tuning Algorithm

VII. EXPERIMENTS & ANALYSIS

In this section, we first describe our dataset. We then outline
our experimental methodology and research questions. Next,
we present the answers to the research questions and describe
some threats to validity.

A. Dataset

We first describe how we select libraries of interest and
the projects that we investigate. Next, we describe the feature
requests that we use to evaluate our approach.

1) Library Selection: We pick libraries that are frequently
used by many projects of the Apache Foundation. We choose
Apache projects that use Maven as their project management
tool. Maven includes a dependency management feature which
helps us resolve the libraries used by the projects. These
libraries have standard names in Maven, so it is easy to reliably
match the libraries that are used across different projects. We
first download Apache projects that use Java as their main
programming language. We then filter these projects based
on the existence of the pom.xml file in their root directory.
This pom.xml file indicates the use of Maven as the project
management tool. After this filtering process, we have 207
Apache projects. For each project, we extract the libraries
it depends on and count the number of projects using each
library. We then rank the libraries based on the number of
projects using it. We list the top-10 libraries in Table IV. These
are the target libraries for our study – we recommend methods
from these libraries.

TABLE IV
TOP-10 MOST POPULAR LIBRARIES IN 207 APACHE PROJECTS

Name Description
commons-codec common encoder and decoder library for string,

URL, etc
commons-io common library for input/output functionality
commons-lang common library providing extra methods for ma-

nipulating Java core classes
commons-logging common library which encapsulates the logging

process for different logging implementations
easymock a library that provides easy way to use mock objects

in unit testing
junit unit testing framework
log4j logging library
servlet-api library providing contracts between a servlet and

the runtime environment
slf4j-api an abstraction library for various logging frame-

work
slf4j-log4j12 a binding library for slf4j and log4j

2) Project Selection: Next, we want to pick large projects
(> 100,000 lines of code) from the 207 Apache Founda-
tion projects whose feature requests we use to evaluate our
approach. We omit “toy” and small projects. We filter out
projects that only use a few of the 10 selected libraries.
We choose these projects as we only recommend methods
from the 10 libraries. We also filter out projects that do
not use JIRA issue management system. We choose these
projects as we need reliable links between bug reports and
corresponding commits in the version controls system. These
links are well maintained in JIRA issue management systems,
c.f., [1]. Table V lists the projects that we use in this study
and their descriptions.

TABLE V
SELECTED APACHE PROJECTS

Name Description
Axis2/Java server-client web service engine
CXF open source web service framework
Hadoop Common common utilities used in other Hadoop modules
Hbase scalable distributed database based on Big Table [6]
Struts 2 enterprise-ready web application framework

3) Feature Request Selection and Gold Standard Extrac-
tion: We pick feature requests from the JIRA issue manage-
ment system of the selected projects. We pick only issues in
JIRA that are of relevant types. As mentioned in Section II-A,
there are 3 issue types in JIRA that correspond to a feature
request, namely “New Feature”, “Improvement”, and “Wish”.
For these three issue types, we pick issues that are either
“closed” or “resolved”.

JIRA contains explicit links between issue reports and
repository commits. Using these links, we find the changed
files for each commit that addresses an issue. These files have a
pre-change and a post-change version. We extract the methods
from the libraries shown in Table IV that are invoked in the
post-change version of the file as the evaluation benchmark
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or gold standard (c.f. [21]). A good recommendation system
should be able to recommend these methods. There are three
cases that we need to consider when extracting method calls
for gold standard:

1) File is added in the post-change version. If the file
does not exist in the pre-change version, we take all the
methods from the 10 libraries that are invoked in the
post-change version as members of the gold standard.

2) File is changed in the post-change version. If the file
exists in both pre-change and post-change versions, we
take as the gold standard all the methods from the 10
libraries that are invoked in the post-change version, but
not invoked in the pre-change version.

3) File is deleted in the post-change version. If the file is
deleted, the file does not contribute any API method to
the gold standard.

Since we only recommend methods from the top-10 li-
braries, we only take feature requests whose gold standard set
contains at least one method from the 10 libraries. We ignore
very rare methods that are only used in one feature request.
Our history-based approach requires a method to be used in at
least 2 feature requests. Table VI shows the number of feature
requests for each of the projects that we use in this study.

TABLE VI
NUMBER OF FEATURE REQUESTS IN OUR DATASET

Project #Feature Request
Axis2/Java 108
CXF 106
Hadoop Common 79
Hbase 161
Struts 2 53

Total 507

B. Methodology & Research Questions

In order to measure the effectiveness of our approach, we
use a commonly used evaluation measure namely average
recall-rate@k [26]. Recall-rate@k has a value of either 1 or 0
where k is the number of the returned items. It has value 1 if at
least one of the k returned items (i.e., recommended method)
is a member of the gold standard and 0 otherwise. We use
recall-rate@k as it has also been used in many past studies
that also analyze entries in issue management systems [22],
[26], [29], [30], [34].

For each project, we perform stratified ten-fold cross valida-
tions to evaluate the effectiveness of our approach. We divide
the feature requests of a project randomly into ten groups of
roughly equal sizes (±1) and then perform ten iterations. For
each iteration, one group is used as the test data (i.e., they
form the set of new feature requests) and the remaining nine
groups are combined to be the training data (i.e., they form the
historical feature request database (HDB)). The test data is
used to evaluate the effectiveness of our approach. We report
the average effectiveness over the ten iterations.

We consider the following research questions:
RQ1 What is the effectiveness of our proposed approach?
RQ2 What are the relative contributions of the various

components of our approach?
RQ3 How effective is our approach compared to a state-

of-the-art code search based approach in recom-
mending relevant methods for a feature request?

C. Experimental Results

We describe the answers to each of the research questions
below.

1) RQ1: Effectiveness of the Proposed Approach: Table VII
shows the effectiveness of our approach. The average recall-
rate@5 and recall-rate@10 are 0.690 and 0.779 respectively.
We show that, by only returning 5 methods, our approach can
correctly recommend relevant methods for 57.1% to 80.5%
of the feature requests in a project. In other words, our
approach can put relevant methods in high ranking positions.
If we increase the recommendation size to be 10 methods,
our approach can correctly recommend at least one relevant
method for 70.9% to 90.8% of the feature requests.

TABLE VII
EFFECTIVENESS OF OUR APPROACH

Project Recall-Rate@5 Recall-Rate@10
Axis2/Java 0.805 0.908
CXF 0.628 0.725
Hadoop Common 0.571 0.709
HBase 0.789 0.839
Struts 2 0.657 0.713

Overall 0.690 0.779

2) RQ2: Relative Contributions: Our proposed approach
has two main components: the history-based recommender
and the description-based recommender. Our history-based
recommender computes the similarity between two feature
requests by aggregating 6 similarity scores (based on summary,
description, summary + description, reporter, component and
priority). In this research question, we want to investigate
the relative contributions of the various components and sub-
components of our approach.

We employ Gibbs sampling to tune 8 weights to yield
a semi optimal setting. Thus, we can estimate the contri-
butions of the various components and sub-components of
our approach from their corresponding weights. The average
values of the 8 weights across the ten fold cross validation
performed for computing recall-rate@5 and recall-rate@10 are
shown in Figure 4. We find that all components and sub-
components of our approach are important as none of them
is given a weight of zero. For both k = 5 and k = 10,
α1 has the lowest weight compared to the other parameters,
suggesting that it is less useful than the other information
leveraged by our approach. In our approach, each recom-
mended method needs to have a non-zero RecScoreHISTORY

score (see Section VI). However, this does not mean that
the RecScoreDESCRIPTION score is not useful. Indeed, we
note that the weight of our description-based recommendation

297



score (Description) is higher than that of our history-based
recommendation score (Historical). This indicates that among
methods with non-zero RecScoreHISTORY score, we can use
RecScoreDESCRIPTION scores to rank them.

3) RQ3: Comparison with a Code Search Based Approach:
Code search can also be used to recommend relevant API
methods. Chan et al. propose a graph-based approach that
can search an API library for relevant methods given a set
of text phrases [5]. To the best of our knowledge, this is
the closest study to our work. Their approach processes the
text queries and returns a connected graph whose nodes are
methods. They have evaluated their approach on a set of
precise text queries that contain keywords that match desired
methods. For example, for input queries containing phrases:
store, folder, open, and search, they output several rele-
vant methods including: javax.mail.Store:getDefaultFolder(),
javax.mail.Folder:open(int mode), etc. Note that the input
queries contain keywords that must appear in the signatures of
the relevant methods. We want to investigate if their approach
can also handle feature requests.

To do this, we preprocess a feature request into text phrases.
We treat each word that appears in the summary and de-
scription fields of a feature request as a text phrase. We
then run their tool on our processed data. Table IX show the
average number of methods that are returned in the connected
graphs outputted by their tool. Even though the tool returns a
number of methods, unfortunately none of them are relevant
for each of the 507 feature requests (i.e., their recall-rate@5
and recall-rate@10 are both 0). This shows that approaches
that process precise text queries cannot handle feature requests.
Indeed, feature requests often contain high level requirements
while methods contain low level requirements. Our proposed
approach tackles this problem by leveraging historical feature
requests.

TABLE IX
AVERAGE # OF RETURNED METHODS BY CHAN ET AL.’S APPROACH

Project Average # of Returned Methods
Axis2/Java 2.2
CXF 1.8
Hadoop Common 1.7
HBase 1.8
Struts 2 1.7

Average 1.84

D. Threats to Validity

Threats to internal validity refers to experimental bias and
errors. We have checked our code and data for errors. Still
there could be errors that we have not noticed. We also
ensure that we do not mix training and test data in our cross
validation.

Threats to external validity refers to the generalizability of
our proposed approach. In this study, to address this threat,
we have considered a few hundred feature requests from 5
software systems. We have also recommended methods from

10 libraries. In the future, we plan to reduce this threat further
by analyzing more feature requests from additional software
systems and recommend methods from more libraries. We
have also performed cross validation, which is the standard
approach to assess how a proposed approach would perform
on an independent dataset.

Threats to construct validity refers to the suitability of our
evaluation metrics. We make use of recall-rate@k which is a
commonly used metric in many past studies [22], [26], [29],
[30], [34]. Thus, we believe there is little threat to construct
validity.

VIII. RELATED WORK

Mandelin et al. propose the tool Prospector, which recom-
mends objects and method calls, referred to as jungloids, to
convert an object of a particular type, to an object of another
type [20]. Prospector takes as input a query consisting of a
pair of the input type and the output type. It then analyzes
signatures of API methods and constructs a signature graph
to recommend jungloids based on the query. A jungloid is
ranked based on the number of methods it contains and the
output type. Thummalapenta and Xie investigate the same
problem [31]. However, the make use of a code search engine
to solve the problem. The code search engine is used to
collect code examples which are then analyzed to recover
the method sequences. While the approach by Mandelin et
al. analyzes library code, the approach by Thummalapenta
et al. analyzes client code retrieved by code search engines.
Our work differs in several respects: we consider different
problems (method recommendation given a feature request vs.
method recommendation given an input-output type pair), and
we leverage different resources (historical feature requests +
API documentation vs. library code or client code returned by
code search engine).

Bruch et al. propose a code completion system that recom-
mends method calls by looking for code snippets in existing
code repositories that share a similar context as the context
that a developer is working on [3]. They propose three code
completion systems based on frequency of method call usage,
an association rule mining algorithm, and a k-nearest neighbor
algorithm. The k-nearest neighbor algorithm performs the best.
Our work differs in several respects: we consider different
problems (method recommendation given a feature request
vs. method recommendation given a code context), and we
leverage different resources (historical feature requests + API
documentation vs. code repositories).

Robillard proposes a technique, Suade, that recommends
methods or other program elements of interest to help devel-
opers perform a software maintenance task [25]. Suade takes
as input a set of program elements, and outputs other program
elements that potentially interest developers. It works by
investigating the structural dependencies of program elements
and considers two criteria: specificity and reinforcement. A
program element of interest needs to be specific enough to
the input set and its relationship to the input set is reinforced
by existing relationships among program elements in the input
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TABLE VIII
AVERAGE WEIGHTS FOR K = 5 AND 10

Project k Weight

α1 α2 α3 α4 α5 α6 α β

Axis2/Java

@5

0.40 0.43 0.59 0.31 0.44 0.70 0.61 0.70
CXF 0.60 0.61 0.72 0.87 0.74 0.82 0.72 0.81
Hadoop Common 0.70 0.61 0.56 0.35 0.63 0.70 0.51 0.60
HBase 0.38 0.29 0.36 0.20 0.23 0.60 0.52 0.70
Struts 2 0.58 0.10 0.49 0.18 0.05 0.61 0.42 0.71

Average 0.532 0.408 0.544 0.382 0.418 0.686 0.556 0.704
Axis2/Java

@10

0.54 0.59 0.45 0.19 0.27 0.42 0.71 0.80
CXF 0.50 0.51 0.51 0.63 0.54 0.68 0.77 0.60
Hadoop Common 0.52 0.65 0.58 0.51 0.64 0.54 0.52 0.51
HBase 0.35 0.54 0.36 0.31 0.42 0.15 0.10 0.10
Struts 2 0.77 0.62 0.73 0.36 0.79 0.70 0.73 1.00

Average 0.536 0.582 0.526 0.400 0.532 0.498 0.566 0.602

set. Saul et al. addresses a similar problem [27]. Their goal
is to recommend a set of methods that are related to a target
method. To achieve this goal, structural information in a call
graph is analyzed. They propose a new algorithm named
FRAN which performs random walk on the callgraph. Several
other approaches recommend methods related to a target
method using static analysis [19], [35]. Long et al. propose
Altair that recommends method based on variables that are
shared among related methods [19]. Zhang et al. enhance a
call graph with control flow information and use it for method
recommendation [35]. In this work, we consider a different
problem (method recommendation given a feature request vs.
method recommendation given a set of methods of interest),
and leverage a different set of resources (historical feature
requests + API documentation vs. structural dependencies).

The closest work to ours is that of Chan et al., which
recommends API methods given textual phrases [5]. Given
a query expressed as a set of textual phrases, their approach
returns a connected API subgraph. For this, they create an
API graph, which is an undirected graph with nodes corre-
sponding to classes and methods and edges corresponding to
relationships between them (e.g., inheritance, input, output,
and membership). Each node of the graph contains words that
appear in the corresponding method. Based on this API graph
and an input query, they mine a subgraph that maximizes a
particular objective function. The approach is evaluated on
a small number of short text phrases. As we have found in
Section VII, Chan et al.’s approach performs poorly on feature
requests, which are both longer than the phrases considered by
Chan et al. and are less closely related to the actual code. Our
approach is able to treat feature requests due to the inclusion
of information about historical feature requests, in the history-
based recommendation component.

IX. CONCLUSION AND FUTURE WORK

In this work, we have proposed a new method recommen-
dation approach that takes as input a feature request and
recommends methods from a set of libraries. In contrast to
previous approaches, our approach does not require precise
input information, such as precise input or output types, or

precise matching textual descriptions. Thus, it is suitable for
directly processing feature requests stored in bug repositories,
which often do not precisely specify relevant code elements.
Our approach is a hybrid approach, combining history-based
recommendation and description-based recommendation. on
10 libraries and 507 feature requests from 5 software systems
we achieve an average recall-rate@5 and recall-rate@10 of
0.690 and 0.779 respectively. We have also compared our
approach to the latest method recommendation technique that
requires precise textual descriptions from end users and show
that it is not useful for recommending methods from feature
requests.

In the future, we plan to improve our solution further
to achieve even higher recall-rate@k scores. Some possible
directions include using state-of-the-art natural language pro-
cessing [2], [33], taking the information stored in the code
base into account, and specification mining e.g., [7], [12], [13],
[14], [15], [16], [17], [18], [28]. We also plan to experiment
with a larger number of feature requests from more software
systems and to perform a more thorough investigation of the
factors that affect the effectiveness of the different components
of our approach in contributing towards the effectiveness of the
proposed solution. Finally, to improve the practical usefulness
of our approach, we plan to integrate our proposed solution
into an IDE (e.g., Eclipse) and evaluate the resulting tool
by means of a user study. We also want to investigate the
effectiveness of our approach under different experimental
settings, e.g., evaluating on projects with limited number of
feature requests, cross-validating across projects, etc.

To extend our approach, we would like to consider how
to enable users to specify some constraints to be taken into
consideration in the recommendation process. We will also
consider whether our proposed approach can be effective for
bug reports in addition to feature requests.
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