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Abstract—Nowadays, software engineers use a variety of online
media to search and become informed of new and interesting
technologies, and to learn from and help one another. We refer
to these kinds of online media which help software engineers im-
prove their performance in software development, maintenance
and test processes as software information sites. It is common to
see tags in software information sites and many sites allow users
to tag various objects with their own words. Users increasingly
use tags to describe the most important features of their posted
contents or projects.

In this paper, we propose TagCombine, an automatic tag
recommendation method which analyzes objects in software in-
formation sites. TagCombine has 3 different components: 1. multi-
label ranking component which considers tag recommendation
as a multi-label learning problem; 2. similarity based ranking
component which recommends tags from similar objects; 3. tag-
term based ranking component which considers the relationship
between different terms and tags, and recommends tags after
analyzing the terms in the objects. We evaluate TagCombine
on 2 software information sites, StackOverflow and Freecode,
which contain 47,668 and 39,231 text documents, respectively, and
437 and 243 tags, respectively. Experiment results show that for
StackOverflow, our TagCombine achieves recall@5 and recall@10
scores of 0.5964 and 0.7239, respectively; For Freecode, it achieves
recall@5 and recall@10 scores of 0.6391 and 0.7773, respectively.
Moreover, averaging over StackOverflow and Freecode results,
we improve TagRec proposed by Al-Kofahi et al. by 22.65%
and 14.95%, and the tag recommendation method proposed by
Zangerle et al. by 18.5% and 7.35% for recall@5 and recall@10
scores.

Index Terms—Software Information Sites, Online Media, Tag
Recommendation, TagCombine

I. INTRODUCTION

Online media has changed the way people communicate,
collaborate, and share information with one another. Online
media is playing a more and more important role in the whole
life cycle of software engineering [1], [2]. There are various
online media that are regularly used by software engineers.
StackOverflow1 is a popular Q&A site which focuses on
technical questions about software development. SourceForge2

and Freecode3 are two popular project information sites which
allow users to share information about their projects. We refer
to these kinds of online media which help software engineers

‡The work was done while the author was visiting Singapore Management
University.

§Corresponding author.
1http://stackoverflow.com/
2http://sourceforge.net/
3http://freecode.com/

to improve their performance in software development, main-
tenance and test processes as software information sites.

In software information sites, tags are popular. They pro-
vide a form of metadata applied to software objects such
as questions in StackOverflow, projects in SourceForge and
Freecode. They can be used to search, describe, identify, and
bookmark various software objects. For software development,
tags also helps to bridge the gap between social and technical
aspects [3], [4]. Most software information sites allow users
to tag various objects with their own words, and users increas-
ingly use tags to describe the most important features of their
posted contents or projects. The flexibility of tags make them
easy to use and tagging becomes popular among users. How-
ever, we noticed not all objects are well tagged. Some objects
are not sufficiently tagged with descriptive words. Also, as
tagging inherently is a distributed and uncoordinated process,
some similar objects are tagged differently. For example, in
StackOverflow, we noticed tags “zombie” and “zombies” both
describe the zombie process in Unix; Tags “xmlparser”, “xml-
parser”, and “xmlparsing” all describe a parser of an xml file;
Tag “xsltproc” is an abbreviation of tag “xsltprocessor”. We
refer to this phenomenon as tag synonyms.

Some software information sites require users to add tags
after they post an object. For example, in StackOverflow, users
are requested to add at least 3 tags after they submit a question.
Selecting appropriate tags is not an easy task if users are not
familiar with the site. If we could have a method which would
recommend some tags according to the object a user posts
and the previous tags of objects that other users have already
posted, then the user could add the appropriate tags easier, and
the tag synonyms problem can also be avoided.

In this paper, we address the following research questions:
how to recommend appropriate tags for objects in software
information sites? We propose TagCombine, which analyzes
software objects in software information sites to improve the
performance of tag recommendation. We mainly consider the
text information in these software objects. TagCombine is a
composite method, which has 3 different components: multi-
label ranking component, similarity based ranking component,
and tag-term based ranking component. In multi-label ranking
component, we consider the tag recommendation problem
as a multi-label learning problem [5], where each tag maps
to a label. We infer the appropriate label sets (tags) using
multi-label learning algorithms, and rank the tags according to
their likelihood scores. In similarity based ranking component,

978-1-4673-2936-1/13/$31.00 c© 2013 IEEE MSR 2013, San Francisco, CA, USA287



we search similar software objects of the untagged objects,
and recommend tags from the similar objects. In tag-term
based ranking component, we first compute the affinity scores
between tags and terms based on the historical tagged software
objects. For an untagged object, we compute the ranking
scores of various tags using the terms in the object and the
pre-computed affinity scores.

We evaluate our solution on 2 software information sites,
StackOverflow and Freecode, which contain 47,668 and
39,231 text documents, respectively, and 437 and 243 tags,
respectively. Experiment results show that for StackOverflow,
our TagCombine achieves recall@5 and recall@10 scores of
0.5964 and 0.7239, respectively; For Freecode, it achieves
recall@5 and recall@10 scores of 0.6391 and 0.7773, re-
spectively. We compare our work with two similar work in
the literature: Al-Kofahi et al. propose a tag recommendation
system for software work item system such as IBM Jazz,
which is based on fuzzy set theory. Zangerle et al. propose
a tag recommendation system for Twitter short messages,
which recommend tags according to the tags of similar short
messages. We apply their tag recommendation systems to our
problem. Averaging over StackOverflow and Freecode results,
we improve TagRec proposed by Al-Kofahi et al. [6] by
22.65% and 14.95%, and the tag recommendation method
proposed by Zangerle et al. [7] by 18.5% and 7.35% for
recall@5 and recall@10 scores.

The main contributions of this paper are as follows:

1) There are limited studies on tag recommendation in the
software engineering literature, especially for software
information sites. Our research fills this gap.

2) We propose TagCombine, an accurate, automatic tag
recommendation algorithm which analyzes tag recom-
mendation problem from 3 different views, using 3
different components.

3) We evaluate TagCombine on 2 popular software informa-
tion sites, StackOverflow and Freecode. The experiment
results show that TagCombine achieves the best per-
formance compared with other state-of-the-art methods,
i.e., TagRec and Zangerle et al.’s methods.

The remainder of the paper is organized as follows: In Sec-
tion II, we present the background and elaborate the motivation
of our work. In Section III, we propose TagCombine, which
contains 3 different components, to automatically recommend
tags in software information sites. In Section IV, we report the
results of our experiment which compares TagCombine with
the algorithms proposed by Al-Kofahi et al. and Zangerle et al..
In Section V, we present related studies. Finally, in Section VI,
we conclude and mention future work.

II. BACKGROUND AND MOTIVATION

In this section, we first briefly introduce tags in software
information sites, then we elaborate the motivation of tag
recommendation.

Fig. 1. A question (ID=14,688,802) posted in StackOverflow about string
conversion in ASP.Net.

Fig. 2. A project named “actionpoll ” in Freecode.

A. Tags in Software Information Sites

Tags are popular in software information sites. They are
used as a form of metadata to describe the most important
features of various software objects. Figures 1 and 2 present
2 software objects from 2 software information sites, Stack-
Overflow and Freecode, respectively.

In Figure 1, a user posts a question about string conversion
in ASP.Net, which has 3 tags, i.e., “c#”, “asp.net”, and “null”.
These 3 tags describe the question in the following ways:
“c#” and “asp.net” inform that the question is about the
programming language C# and ASP.Net; “null” informs that
the question is related to null. “c#” and “null” terms both
appear in the description of the question, while “asp.net” does
not appear in the description of the question, but developers
who are familiar with C# can infer that the question is about
ASP.Net.

In Figure 2, a user posts a project called “actionpoll”, a
simple PHP script which provides support for online voting.
Four tags are given for this project, i.e., “Internet”, “Web”,
“Dynamic Content”, and “CGI Tools/Libraries”. “Internet”
and “Web” describe the environment that this project can be
used; “Dynamic Content” describes the functionality of this
project: it will capture dynamic content, and analyze them;
“CGI Tools/Libraries” describes the project type: it is a CGI
tool and can also be used as a library. We notice that all of
the 4 tags do not appear in the description of the project.

From the above 2 examples, we conclude that tags help
users to understand the software objects. They summarize the
features of objects from different views, and users can search
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Fig. 3. Tag synonyms in StackOverflow.

for appropriate objects more easily by using these tags. Tags
are different from traditional keywords. Traditional keywords
must appear in the object descriptions, but tags can either
appear or not appear in the object descriptions.

B. Motivation

In this section, we present the motivation for automated tag
recommendation in software information sites in 3 aspects: tag
synonyms, easier posting, and better organization and search.

1) Tag Synonyms: Tag synonyms refer to tags which are
syntactically different (i.e., they are different strings of sym-
bols) but are semantically the same (i.e., they have the same
meaning). Since there is no pre-defined tag vocabulary, and
users can add tags arbitrarily, tag synonyms become an un-
avoidable phenomenon in software information sites. Figure 3
presents the tag synonym page in StackOverflow. We notice
that this tag synonym list is currently maintained manually,
which takes a lot of human resources.

Tag recommendation can help to avoid tag synonym phe-
nomenon. For a new software object, tag recommendation will
first learn the tags from historical objects. For synonymous
tags, there will be a master tag (the tag which more users
would like to use). Tag recommendation will likely to rec-
ommend this tag since it is supported by more training data.
With the tag recommendation method employed, tag synonyms
could be better avoided.

2) Easier Posting: Some software information sites require
users to add tags after they post an object. For example, in
StackOverflow, users are requested to add at least 3 tags after
they submit a question. Choosing suitable tags is not an easy
task, especially for new users. Some users just select terms
in the object descriptions as the tags, but these terms might
not represent the most important features of the object. There
might be some latent tags which can better describe the object.
From Figures 1 and 2, we note that some tags do not appear
in the object descriptions. Tag recommendation makes the

question posting process easier as it would recommend tags
by mining historical software objects. The recommended tags
could either be some of the terms in the object descriptions
or some other latent terms.

3) Better Organization and Search: Software information
sites use tags to organize the objects and help users to
search for related objects in the community. For example,
in StackOverflow, users can search from the tags to see
whether their question has already been posted and solved.
However, the flexibility of tags (i.e., the fact that users can
enter arbitrary tags) may negatively affect the organization of
the information sites. For example, synonymous tags, or non-
human-understandable tags are some causes of the problem.
Different users would use different tags to describe a single
thing. Some of the tags are much better than the others. If we
could recommend high quality tags, then the organization of
the sites can be better, which would result in easier information
search for end users.

III. TagCombine: A COMPOSITE METHOD

In this section, we first present the overall framework of
our TagCombine method. Then we analyze the 3 components
of TagCombine, i.e., multi-label ranking component, similarity
based ranking component, and tag-term based ranking com-
ponent. Finally, we describe how these 3 components are
combined.

A. Overall Framework

Figure 4 presents the overall framework of TagCombine.
The whole framework contains two phases: model building
phase and tag prediction phase. In the model building phase,
our goal is to build a model from historical software objects
which have known tags. In the tag prediction phase, this model
would be used to predict tags for untagged software objects.

Our framework first collects historical software objects and
their tags from software information sites. Then we pre-
process the text information in these objects – tokenizing
the text, removing stop words (e.g., “a”, “the”, “and”, and
“we”, etc), stemming the terms, and filtering terms if their
frequencies are less then a threshold (in this paper, by default,
we remove terms which appear less than 20 times) (Step
1). We represent these text contents of objects as “bags of
words” [8].

Then we build the 3 components of TagCombine: multi-
label ranking component, similarity based ranking component,
and tag-term based ranking component. To construct the multi-
label ranking component, we first use a multi-label learning
algorithm to build a multi-label classifier (Step 2), then we
modify the classifier to output ranking scores for the tags
given an unlabeled software object4 (Step 3). To construct
the similarity based ranking component, we first transform
the “bags of words” into TF.IDF (term frequency, inverse
document frequency) vectors [8] (Step 4). We calculate the
similarity between 2 software objects by computing cosine

4More description is available in Section III-B
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similarity of their TF.IDF vector representations5(Step 5).
Next, we compute the tag-term affinity scores using historical
tagged objects (Step 6). We then use these affinity scores to
rank tags for a given unlabeled software object6 (Step 7).
Finally, TagCombine uses these 3 components (Step 8). It
ranks tags based on the scores outputted by the 3 components.

After TagCombine is constructed, in the prediction phase
it is then used to recommend tags for a software object
with unknown tags. For each such object, we first compute
its multi-label ranking score, similarity based ranking score,
and tag-term based ranking score (Steps 9, 10, and 11). We
compute these scores using the 3 trained ranking components
constructed at steps 3, 5, and 7. Then we input these scores
into TagCombine to get the final ranking score for each tag
(Step 12). Finally, top-N ranked tags with highest scores are
recommended for the object (Step 13).

B. Multi-label Ranking Component

Formally, multi-label learning [5], [9] can be defined as
follows. Let χ denote the input space and let L denote the
set of labels. Given the multi-label training dataset D =
{(Xi, Yi)}ni=1 where Xi ∈ χ and Yi = {−1, 1}|L| (Yi = 1
indicates that the instance is assigned the ith label and
Yi = −1 indicates otherwise), the goal of multi-label learning
is to learn a hypothesis h : χ→ 2|L| which is used to predict
the label set for a new instance.

There are various multi-label learning algorithms, which
can be divided into 2 categories: problem transformation
methods and algorithm adaptation methods [5], [9]. The prob-
lem transformation methods transform the multi-label learning
task into multiple traditional classification tasks. Two popular

5More description is available in Section III-C
6More description is available in Section III-D

problem transformation methods are Binary Relevance (BR)
and Label Powerset (LP). The algorithm adaptation methods
extend specific learning algorithms in order to handle multi-
label data directly.

To adapt multi-label learning to our tag recommendation
problem, we use the pre-processed term spaces in software
objects as the input space χ, and the tags as the set of
labels L. Multi-label learning predicts the proper label set
for a new instance. We modify it such that our multi-label
ranking component outputs the ranking scores for each tag,
and these scores represent the confidence that a tag should
be assigned to the object. Given an instance whose labels
are to be predicted, multi-label learning algorithms compute
likelihood scores for all the labels. If a label’s likelihood
score is higher than a threshold, then the multi-label learning
algorithms would predict that this label belongs to the instance.
We modify multi-label learning algorithms to directly output
the likelihood scores. We then normalize the scores.

Due to the large tag and term spaces, we use Binary
Relevance (BR) for the multi-label ranking component. Binary
Relevance (BR) method creates |L| binary datasets from the
input dataset. Each of the |L| binary datasets represents one
label from L [5], [9]. It assumes the tags in software objects
are independent with one another; thus it is efficient enough
for large tag and term spaces. We use multinomial Naive Bayes
as the base classifier for BR since it shows good performance
for text classification and its computational complexity is low
compared to other classification algorithms, c.f., [10]. We
modify the implementation of Binary Relevance (BR) method
in Mulan7 [11] to construct the multi-label ranking component.

Definition 1: (Multi-label Ranking Scores. ) Consider a
historical software object collection SE, and its corresponding

7http://mulan.sourceforge.net/datasets.html
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tag space TAGS, we build a multi-label learning classifier
MultiLabel to train SE. For a new software object se, we use
MultiLabel to get the ranking score for each tag. We denote
this ranking score as MultiLabelse(tag) for tag ∈ TAGS.

C. Similarity Based Ranking Component

We represent the tags of the i-th software object as
tagSeti = {ti,1, ti,2, ...ti,l}. The value of ti,j is either 0
or 1; ti,j = 1 denotes that the j-th tag belongs to the i-
th object, and ti,j = 0 denotes otherwise. Following vec-
tor space modeling [8], we represent the text in the i-th
software object as a vector of term weights denoted by
sei = 〈wi,1, wi,2...wi,v〉. The weight wi,j denotes the TF.IDF
(i.e., term frequency.inverse document frequency) score for the
j-th term in the i-th object, which is computed as follows:

wi,j =
tfi,j

Num of Terms in Obji
× log(Num of Objects

dfj
)

(1)
In the above equation, Obji denotes the i-th object in

the collection, tfi,j denotes the term frequency of the j-th
term in the i-th object, dfi denotes the document frequency
of the j-th term. Term frequency tfi,j refers to the number
of times the j-th term appears in the i-th object. Document
frequency of the j-th term refers to the number of objects the
j-th term appears in. We measure the similarity between two
objects by computing the cosine similarity [8] of their vector
representations sem and sen as follows:

SimScore(sem, sen) =
sem · sen
|sem||sen|

(2)

More concretely, let sem = 〈wm,1, wm,2, ...wm,v〉, and
sen = 〈wn,1, wn,2, ...wn,v〉. The numerator of Equation 2
which is the dot product of the two vectors is computed as
follows:

sem ·sen = wm,1×wn,1+wm,2×wn,2+...+wm,v×wn,v (3)

The |sen| and |sem| in the denominator of Equation 2,
denote the sizes of the two vectors. The size of a vector sem
is computed as follows:

|sem| =
√
w2

m,1 + w2
m,2 + ...+ w2

m,v (4)

The tag recommendation steps in similarity based ranking
component are as follows:

1) Represent each software object as a TF.IDF score vector;
2) For a new untagged software object se, use Equation 2

to compute the similarity scores between se and other
software objects sehistory in historical data;

3) Retrieve the top-K objects with the highest similarity
scores. By default, we set K=50. Extract the tags that
appear in the top-K objects. For each of such tags,
compute the number of objects in the top-K list that are
tagged by it; let’s denote this count for tag t as votet.

The likelihood of tag t, in tag space TAGS, to belong
to se is then computed as follows:

votet∑
t′∈TAGS(votet′)

(5)

Definition 2: (Similarity Based Ranking Scores. ) Con-
sider a historical software object collection SE, and its corre-
sponding tag space TAGS, we build a similarity based ranking
classifier SimRank. For a new software object se, we use
SimRank to get the ranking score for each tag. We denote
this ranking score as SimRankse(tag) for tag ∈ TAGS.

D. Tag-term Based Ranking Component

In tag-term based ranking component, we first consider the
relationship between tags and terms. For each term and tag,
the number of co-occurrences of the tag and term represents
the importance of the term with respect to the tag.

Definition 3: (Tag-term Affinity Score. ) Consider a histor-
ical engineering object collection SE, and its corresponding
tag space TAGS. For each tag tag ∈ TAGS, and term
t ∈ SE, the tag-term affinity score of tag and t, denoted
as Aff(tag, t), is computed as follows:

Aff(tag, t) =
nt,tag
ntag

(6)

where nt,tag denotes the number of software objects where
term t and tag tag both appear, and ntag denotes the number
of objects that tag appears.

Definition 4: (Tag-term Based Ranking Scores. ) Consider
a historical software object collection SE, and its correspond-
ing tag space TAGS. For a new software object se, we
compute the tag-term based ranking score of tag ∈ TAGS,
denoted as TagTermse(tag), as follows:

TagTermse(tag) = 1−
∏
t∈se

(1−Aff(tag, t)) (7)

E. TagCombine

As shown in previous sections, we can get the multi-label
ranking scores, similarity based ranking scores, and tag-term
based ranking scores for a new software object se. In this
section, we propose TagCombine, which is a method that
combines all of the 3 components. A linear combination of
the scores of 3 components is used to compute the final
TagCombine scores.

Definition 5: (TagCombine Scores. ) Consider a new soft-
ware object se, and a tag tag ∈ TAGS. The TagCombine
score TagCombinese(tag) of tag tag with respect to object
se is given by:

TagCombinese(tag) = α×MultiLabelse(tag) +

β × SimRankse(tag) + γ × TagTermse(tag) (8)

where α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1] represent the
different contribution weights of multi-label ranking score,
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similarity based ranking score, and tag-term based ranking
score to the overall TagCombine score of tag, respectively.

To automatically produce good α, β, and γ weights for
TagCombine, we propose a sample-based greedy method.
Figure 5 presents the detailed algorithm to estimate good α,
β, and γ weights. Due to the large size of historical software
object collection SE, we do not use the whole collection to
estimate α, β, and γ weights, instead, we randomly sample a
small subset of SE. In this paper, by default, we set the the
sample size as 10% of SE.

The algorithm described in Figure 5 accepts input criterion
EC as an input. We can set this input criterion EC as
example-based Recall@k [5], [9] defined in Definition 6.

Definition 6: (Example-based Recall@k.) Suppose there
are m software objects. For each object sei, let the actual tags
be Tagi. We recommend the top-k ranked tags Ranki for sei
according to our method. The example-based recall@k for the
m software objects is given by:

Recall@k =
1

m

m∑
i=1

|Ranki ∩ Tagi|
|Tagi|

(9)

For example, suppose there are 2 software objects, and 3
tags are given to the objects. For object 1, the actual tags
are {1,2,3}, and for object 2, the actual tags are {1}. The
top-2 ranked tags are {1,2} and {1,3} for objects 1 and 2,
respectively. Then the example-based recall@2 is:

Recall@2 =
1

2
(
|{1, 2} ∩ {1, 2, 3}|
|{1, 2, 3}|

+
|{1, 3} ∩ {1}|
|{1}|

)

=
1

2
(
2

3
+

1

1
) =

5

6

IV. EXPERIMENTS AND RESULTS

We evaluate our TagCombine method on the StackOverflow
and Freecode. We compare our method with TagRec proposed
by Al-Kofahi et al. [6], and the tag recommendation method
proposed by Zangerle et al. [7]. The experimental environment
is a Windows 7 64-bit, Intel(R) Xeon(R) 2.53GHz server with
24GB RAM.

A. Experiment Setup

Table I presents the statistics of the two datasets. For the
StackOverflow dataset, we parse the challenge data published
in MSR 2013 mining challenge site8 [12]. MSR challenge
data contains StackOverflow data from 2008 to 2012, and it
is 12GB in size. We extract the first 50,000 questions and
their corresponding tags. These questions are originally posted
between July 2008 and December 2008. We intentionally pick
questions that have been published for a long time to ensure
that the set of tags assigned to the questions have stabilized
(i.e., no new tags are likely to be added). For the Freecode
dataset, we use the same dataset used by Wang et al. [13].

We use WVTool9 [14] to extract terms from these soft-
ware objects. WVTool is a flexible Java library for statistical

8http://2013.msrconf.org/challenge.php
9http://sourceforge.net/projects/wvtool/

language modeling, which is used to create word vector
representations of text documents in the vector space model.
We use WVTool to remove stop words, do stemming, and
produce “bags of words” from the objects. We remove the
terms which appear less than 20 times since we consider
these terms do not have significantly contributions for tag
recommendation. Moreover, we remove tags which appear
less than 50 times in the collections since these tags are
rare. Rare tags are less important and less useful to serve as
representative tags to be recommended to users. There are not
many people that use rare tags and thus recommending these
tags do not help much in mitigating the synonym problem that
is addressed in this paper. After we filter terms and tags, we get
47,668 objects, 437 tags, and 4,007 terms for StackOverflow,
and 39,231 objects, 243 tags and 2,995 terms for Freecode.

Stratified 10-fold cross validation is used to evaluate Tag-
Combine, i.e., we randomly divide the dataset into 10 folds,
and 9 folds are use to train the model, while the remaining 1
fold is used to evaluate the performance. We repeat the process
ten times and compute the mean and standard deviation. The
distribution of tags in the training and test folds are the same as
the original dataset. For the evaluation metric, we use recall@k
described in Definition 6.

We reimplement the TagRec method proposed by Al-Kofahi
et al. [6], and use it to recommend tags in tag space. For
Zangerle et al.’s method [7], we implement their method
with similarity metric called “SimRank”, which was shown
to achieve the best performance. We set the number of most
similar objects to 50 which is the same setting as the similarity
based ranking component of TagCombine.

We are interested to answer the following research ques-
tions:

RQ1 How recall@5 and recall@10 of TagCombine com-
pare to those of TagRec and Zangerle et al.’s method ?
RQ2 What is the effect of varying the number K in
similarity based ranking component to the performance
of TagCombine?

The first research question is the most important one. The
answer would shed light on the effectiveness of our approach
as compared to existing state-of-the-art solutions. In the second
research question, we would like to investigate the effect of
varying a parameter of TagCombine namely the parameter K
of the similarity based ranking component.

B. RQ1: Recall@k of TagCombine

Table II and III present the experiment results comparing
TagCombine with TagRec and Zangerle et al.’s method. For
StackOverflow and Freecode, recall@5 of TagCombine are
0.5946, and 0.6391, respectively. Recall@10 are 0.7239 and
0.7773, respectively.

From Table II, the improvement of TagCombine over
TagRec is significant. Averaging over information sites con-
sidered, TagCombine outperforms TagRec by 22.65% and
14.95% for recall@5 and recall@10 values, respectively. For
Freecode, TagCombine achieves the highest improvements of
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1: EstimateWeights(SE, TAGS, SampleSize, EC)
2: Inputs:
3: SE: Historical Software Object Collection
4: TAGS: Tags Space for SE
5: SampleSize: Sample Size
6: EC: Evaluation Criterion
7: Outputs: α, β, and γ
8: Method:
9: α = 0, β = 0, γ = 0;

10: Build multi-label ranking component using SE;
11: Build similarity based ranking component using SE;
12: Build tag-term based ranking component using SE;
13: Sample a small subset SampSE of SE of size SampleSize;
14: for all object se ∈ SampSE do
15: for all tag tag ∈ TAGS do
16: Compute MultiLabelse(tag)according to Definition 1;
17: Compute SimRankse(tag) according to Definition 2;
18: Compute TagTermse(tag) according to Definition 4;
19: end for
20: end for
21: for all α from 0 to 1, every time increase α by 0.1 do
22: for all β from 0 to 1, every time increase β by 0.1 do
23: for all γ from 0 to 1, every time increase γ by 0.1 do
24: for all object se in SampSE do
25: Compute TagCombinese(tag) according to Definition 5 ;
26: end for
27: Evaluate the effectiveness of the combined model based on EC;
28: end for
29: end for
30: end for
31: Return α, β, and γ which give the best result according to EC

Fig. 5. EstimateWeights: Estimation of α, β, and γ in TagCombine

TABLE I
STATISTICS OF COLLECTED SOFTWARE OBJECTS IN 2 INFORMATION SITES, STACKOVERFLOW AND FREECODE: THE NUMBER OF OBJECTS COLLECTED
(# OBJECTS), TAGS EXTRACTED FROM THESE OBJECTS (# TAGS), AND TERMS EXTRACTED FROM THESE OBJECTS (# TERMS). AFTER FILTERING THE
TAGS APPEARING LESS THAN 50 TIMES, AND TERMS APPEARING LESS THAN 20 TIMES, WE GET THE FINAL NUMBER OF OBJECT (# FINAL OBJECTS),
FINAL TAGS EXTRACTED FROM THE OBJECTS (# FINAL TAGS), AND FINAL TERMS EXTRACTED FROM THE OBJECTS (#FINAL TERMS) WHICH WILL BE

USED TO EVALUATE OUR TagCombine METHOD.

Community # Objects # Tags # Terms # Final Objects # Final Tags # Final Terms
StackOverflow 50,000 9,616 28,456 47,668 437 4,007

Freecode 45,470 7,163 23,146 39,231 243 2,995

TABLE II
EXAMPLE-BASED RECALL@5 AND RECALL@10 FOR TagCombine, TagRec, AND THE IMPROVEMENT OF TagCombine OVER TagRec. THE RESULT IS

RECORDED WITH FORMAT: MEAN±STANDARD DEVIATION. THESE ARE THE MEANS AND STANDARD DEVIATIONS OF THE 10 ITERATION RESULTS OF
10-FOLD CROSS-VALIDATION.

StackOverflow Freecode
Algorithms Recall@5 Recall@10 Recall@5 Recall@10

TagCombine 0.5946± 0.0034 0.7239± 0.0033 0.6391± 0.0060 0.7773± 0.0050

TagRec 0.5251± 0.0039 0.6453± 0.0050 0.4840± 0.0042 0.6603± 0.0032

Improvement Over TagRec 13.24% 12.18% 32.05% 17.72%
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TABLE III
EXAMPLE-BASED RECALL@5 AND RECALL@10 FOR TagCombine, ZANGERLE ET AL.’S METHOD, AND THE IMPROVEMENT OF TagCombine OVER

ZANGERLE ET AL.’S METHOD. THE RESULT IS RECORDED WITH FORMAT: MEAN±STANDARD DEVIATION. THESE ARE THE MEANS AND STANDARD
DEVIATIONS OF THE 10 ITERATION RESULTS OF 10-FOLD CROSS-VALIDATION.

StackOverflow Freecode
Algorithms Recall@5 Recall@10 Recall@5 Recall@10

TagCombine 0.5946± 0.0034 0.7239± 0.0033 0.6391± 0.0060 0.7773± 0.0050

Zangerle et al. 0.4560± 0.0260 0.6654± 0.0060 0.5995± 0.0048 0.7339± 0.0056

Improvement Over Zangerle 30.39% 8.79% 6.61% 5.91%

32.05% and 17.72% over TagRec for recall@5 and recall@10,
respectively.

From Table III, the improvement of TagCombine over
Zangerle et al.’s method is significant. Averaging over infor-
mation sites considered, TagCombine outperforms Zangerle et
al.’s method by 18.5% and 7.35% for recall@5 and recall@10,
respectively. For StackOverflow, TagCombine achieves the
highest improvements of 30.39%, 8.79% over Zangerle et al.’s
method for recall@5 and recall@10, respectively. From these
results, we conclude that our TagCombine improves TagRec
more than Zangerle et al.’s method.

Another interesting conclusion is TagCombine improves
recall@5 more than recall@10. Averaging over techniques
compared, the improvement on recall@5 are 21.82% and
19.33% for StackOverflow and Freecode, respectively, while
the improvement on recall@10 are 10.49% and 11.82%,
respectively.

C. RQ2: Effect of Varying of K
The similarity based ranking component of TagCombine

chooses K most similar objects. We would like to investi-
gate how the performance of TagCombine varies for various
K values. In this section, we choose K ∈ {5, 25, 50, 75}
and compute recall@5 and recall@10 of TagCombine for
StackOverflow and Freecode datasets. Table IV presents the
experiment results of varying K in the similarity based rank-
ing component. For StackOverflow, recall@5 and recall@10
vary from 0.5697-0.5978, and 0.6952-0.7285, respectively. For
Freecode, recall@5 and recall@10 vary from 0.5781-0.6416,
and 0.7353-0.7773, respectively.

We notice that the performance of TagCombine with K=5
achieves the worst performance. Since the collections is large
(i.e., it contains about 40,000 objects), and the tags are
imbalanced (i.e., for a particular tag, the ratio of the number
of objects with the tag and the number of objects without
the tag is small) [15], if we choose K values which are too
small (e.g., K=5), then the selected K most similar objects can
not represent the true distribution of tags in the information
site. For other K values (e.g., K ∈ {25, 50, 75}), TagCombine
exhibits stable performance – the differences among different
K values are small. For this reason, we should choose a K
value which is big enough.

D. Threats to Validity
There are several threats that may potentially affect the va-

lidity of our study. Threats to internal validity relates to errors

in our experiments. We have double checked our experiments
and datasets, still there could be errors that we did not notice.

Threats to external validity relates to the generalizability of
our results. We have analyzed 2 popular software information
sites and more than 80,000 software objects. In the future,
we plan to reduce this threat further by analyzing even more
software objects from more software information sites, e.g.,
sites with a different type of user base (such as Twitter), and
sites in other languages or cultures.

Threats to construct validity refers to the suitability of our
evaluation measures. We use recall@5 and recall@10 as our
evaluation measures. These are also used by past studies to
evaluate the effectiveness of tag recommendation [6], [7].
Thus, we believe there is little threat to construct validity.

V. RELATED WORK

In this section, we briefly review related studies. We first
review TagRec and Zangerle et al.’s work which are most
related to our paper. We then describe studies on software
information sites. Finally, we review studies on tagging in the
software engineering literature.

A. Tag Recommendation

To our best knowledge, there is limited research on tag
recommendation in the software engineering literature. TagRec
is one of the most recent studies; it recommends tags in work
item systems such as IBM Jazz [6]. The core technology of
TagRec is based on fuzzy set theory. In this work, we consider
a different problem setting namely tag recommendation in
software information sites. We have also applied TagRec in
our setting and showed that we could outperform it.

There are many tag recommendation studies in the social
network and data mining fields [7], [16], [17]. They analyze
social media sites such as Flickr, Delicious, and Twitter. The
work by Zangerle et al. is one of the latest studies that
recommends tags for short messages (aka. microblogs) in
Twitter [7]. In this work, we consider a different setting namely
the recommendation of tags in software information sites. We
have applied Zangerle et al.’s method to our setting and shown
that we can outperform it.

B. Studies on Software Information Sites

A number of research studies have been performed on
software information sites and social media for software engi-
neering. Storey et al. [1] and Begel et al. [2] write two position
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TABLE IV
EXAMPLE-BASED RECALL@5 AND RECALL@10 FOR TagCombine WITH DIFFERENT K VALUES (K ∈ {5, 25, 50, 75}) IN SIMILARITY BASED RANKING

COMPONENT.THE DATA IS RECORDED WITH FORMAT OF MEAN±STANDARD DEVIATION OF THE RESULTS OF THE 10 ITERATIONS USING 10-FOLD
CROSS-VALIDATION. THE BEST RESULTS IS IN BOLD.

StackOverflow Freecode
TagCombine K Recall@5 Recall@10 Recall@5 Recall@10

5 0.5697±0.0025 0.7053±0.0037 0.5781±0.0215 0.7353±0.0098

25 0.5801±0.0035 0.6952±0.0073 0.6416±0.0066 0.7752±0.0044

50 0.5946±0.0034 0.7239±0.0033 0.6391±0.0060 0.7773±0.0050
75 0.5978±0.0033 0.7285±0.0030 0.6275±0.0058 0.7703±0.0046

papers to describe the outlook of research in social media for
software engineering. They propose a set of research questions
around the impact of social media for software engineering
at team, project and community levels. Hong et al. compare
developer social networks and general social networks and
examine how developer social networks evolve over time [18].
Surian et al. employ graph mining and graph matching to
find collaboration patterns in SourceForge.Net [19]. Surian
et al. collect information in SourceForge.Net, and build a
large-scale developer collaboration network to recommend
suitable developers, using random walk with restart (RWR)
method [20].

Bougie et al., and Tian et al. analyze microblogs related
to software engineering activities to understand what soft-
ware engineers do in Twitter [21], [22]. They analyze the
contents of relevant short messages in Twitter, categorize the
types of tweets, and find that Twitter is used by the soft-
ware engineering community for conversation and information
sharing. Palakorn et al. create an observatory of software-
related microblogs [23]. They create a web-based interface
for people to browse many software-related microblogs and
visually identify patterns. Prasetyo et al. propose an automated
technique to classify software related microblogs into several
categories [24]. Barua et al. use LDA to automatically detect
the main topics in StackOverflow [25]. Pagano and Maalej
analyze the blogging behaviors of software developers in four
large communities [26]. Gottipati et al. develop a semantic
search engine to find relevant posts in software forums [27].
Henβ et al. extract frequently asked questions from mailing
lists and internet forums [28].

C. Tagging in Software Engineering Field

Treude et al. analyze tags in work item systems such as IBM
Jazz, and they find that tags help to bridge the gap between
social and technical aspects of software development [3], [4].
In their study, the impact of tagging is investigated in a
large project team with 175 developers over 2 years. They
find that lightweight informal tool support such as tags, plays
an important role in helping to improve team-based software
development practices [3], [4]. Wang et al. infer semantically
related software terms and their taxonomy by analyzing 45,470
projects along with their tags in Freecode [13]. They use a term
taxonomy construction method which is based on k-medoids
clustering algorithm. Thung et al. show that tags are useful

to detect similar applications [29]. In their study, they collect
tags from SourceForge.Net, and perform weight inference to
detect similar applications. A user study and three different
metrics (i.e., success rate, confidence, and precision) are used
to evaluate their proposed method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose TagCombine, to recommend tags
in software information sites. We first investigate the tags
in software information sites, and consider the benefits of
tag recommendation. Next, we propose a framework named
TagCombine, which contains 3 different components: multi-
label ranking component, similarity based ranking component,
and tag-terms based ranking component. In the multi-label
ranking component, we infer suitable tags for untagged objects
using a multi-label learning algorithm. In the similarity based
ranking component, we recommend tags for untagged objects
from the tags of similar objects. In the tag-term based ranking
component, we first consider the affinity scores between tags
and terms from historical data (i.e., existing tagged objects);
for an untagged object, we recommend suitable tags based
on the terms in the objects and the affinity scores. Finally, we
propose a sample-based method to combine the 3 components.
We evaluate our method on 2 popular software information
sites, StackOverflow and Freecode. Experiment results show
that for StackOverflow, our TagCombine achieves recall@5
and recall@10 scores of 0.5964 and 0.7239, respectively; For
Freecode, it achieves recall@5 and recall@10 scores of 0.6391
and 0.7773, respectively. For recommending tags in software
information sites, averaging over information sites considered,
we improve TagRec proposed by Al-Kofahi et al. by 22.65%
and 14.95%, and the tag recommendation method proposed
by Zangerle et al. by 18.5% and 7.35% for recall@5 and
recall@10 scores, respectively.

In the future, we plan to investigate more software in-
formation sites to evaluate the effectiveness of our method,
develop a better technique which could achieve a higher
recall@5 and recall@10 scores, and consider more tags in tag
space. We also plan to experiment with different algorithms
to replace the various components of our framework. For our
multi-label ranking component, various multi-label learning
algorithms can be used to replace our BR+MultiNaiveBayes
method, for example, ML.kNN [30], LEAD [31], Random
K-labelsets [32], class chain method [33], etc, could also be
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used. In the similarity based ranking component, we can use
different similarity metrics, for example, we can use Euclidean
distance, Minkowski distance [34], etc. We can also use Latent
Semantic Indexing (LSI) [35], [36] instead of vector space
model to cluster tags and terms to reduce tag synonymity in the
similarity based ranking component. In tag-term based ranking
component, we can use other methods which consider the
relationships between tags and terms to replace our proposed
method. We use linear combination to tune parameters in the
3 components in this paper, we can use other combination
ways, e.g., we can perform a Principal Component Analysis
(PCA) [37] to determine the relative contributions of each
component. We plan to investigate these options as future
work.
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