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Abstract—Since the day it was proposed, return-oriented
programming has shown to be an effective and powerful
attack technique against the write or execute only (W ⊕ X)
protection. However, a general belief in the previous research
is, systems deployed with address space randomization where
the executables are also randomized at run-time are able to
defend against return-oriented programming, as the addresses
of all instructions are randomized.

In this paper, we show that due to the weakness of current
address space randomization technique, there are still ways of
launching return-oriented programming attacks against those
well-protected systems efficiently. We demonstrate and evaluate
our attacks with existing typical web server applications and
discuss possible methods of mitigating such threats.

Keywords-return-oriented programming; address space ran-
domization; position independent executable;

I. INTRODUCTION

The write or execute only (W ⊕ X) policy, which is
also called data execution prevention (DEP), is a security
feature widely deployed in modern operating systems [1].
It ensures that no memory page is writable and executable
at the same time, in order to prevent executing code from
a non-executable memory region. It rules out code injection
but still allows return-into-libc attacks [2], which tries to
reuse the functionality provided by the exploited application.
In many cases, such an attack is not effective as the ability
of the adversary is restricted by pre-existing functions.

Return-oriented programming (ROP), proposed by
Shacham [19], is a general form of traditional return-
to-libc attacks. Attacks utilizing ROP chains together
existing sequences of instructions that have been previously
identified inside the program code or library code. It is
shown in previous research [7], [19] that an adversary is
able to execute arbitrary functionality and achieve Turing
completeness on both x86 and ARM architectures, without
injecting any new code inside the application.

A typical defense mechanism – address space layout
randomization (ASLR) [4], is believed to be one of the most
effective techniques that hamper return-oriented program-
ming [16], [19]. The general ASLR technique randomizes
the base addresses of stack, heap, and code segments of
a process memory space. As a result, an attacker has to

correctly guess the positions of these data structures in order
to mount a successful attack. Although prior research [18]
has demonstrated that attacks can be launched on address
space randomization assuming the base of the shared library
is randomized, their conclusion is that ASLR will still be
effective when used in combination with position indepen-
dent executables (PIE) [24], when the address space of both
shared objects and executables are randomized.

In this paper, we challenge such strongly protected sys-
tems where these three protection mechanisms – W ⊕ X ,
ASLR, and PIE – have all been deployed. We find that the
current implementations of ASLR (both on Linux [22] and
Windows [13]) have a common weakness – all the code
instructions are moving together in the program memory
space (i.e., only the base address of the code segment is
randomized). Thus, if we are able to obtain the address
of one instruction correctly (after the code is loaded into
memory), we will know the addresses of all the instructions
in this executable.

As demonstrated in our paper, there are at least two
possible ways of obtaining the randomized address of an
instruction under different assumptions. When a format
string vulnerability [23] is available in the application, the
attack code could be crafted to directly read the address of a
specific instruction. When such vulnerability does not exist,
one has to randomly guess one instruction address in the
code segment. This address can then be used to adjust the
addresses of prepared ROP code to efficiently exploit the
protected application.

Our paper makes the following contributions:
• We present new ROP attack vectors which are able

to successfully exploit systems protected by W ⊕ X ,
ASLR, and PIE.

• A detailed analysis is given on utilizing format string
vulnerability to obtain information on the stack, and the
statistical data on existing format string vulnerabilities
are also provided.

• We implement and evaluate our ROP attack with
Apache web server and explore the possibility of con-
structing similar attack code with other applications.

The rest of the paper is organized as follows. Section II



gives the background and the threat model of this paper.
Section III introduces the design of our ROP attack utilizing
format string vulnerabilities, while Section IV gives the ROP
guessing attack. The implementation and evaluation of our
attack is presented in Section V. Section VI discusses the
limitation of our current attack and also discusses possible
mitigation methods. Finally, the concluding remarks appear
in Section VII.

II. BACKGROUND AND THREAT MODEL

A. Return-Oriented Programming

Return-oriented programming (ROP) was proposed by
Shacham in 2007 [19] for the x86 architecture, and then
subsequently extended to the SPARC [6], Atmel AVR [12],
and other processors [8]. The main idea of ROP is to
construct the attack code purely utilizing instructions from
existing code (either inside the application or in the linked
libraries). These chosen instructions will be chained together
in an order designed by the attacker to perform the whole
malicious functionality. In the early stage of ROP develop-
ment, only the instruction sequences which end in a “return”
instruction will be chosen to form the ROP code – if the
attacker has control of the stack, this will allow control to
flow from one sequence to the next.

The way ROP code is constructed makes the instruction
stream executed during a ROP attack very different from the
instruction stream executed by legitimate programs – it will
contain a lot of return instructions, just a few instructions
apart and it will pop addresses out of the stack which are
not pushed by corresponding “call” instructions. According
to these characteristics of ROP attack, various approaches
have been proposed by the research community to detect
and defeat ROP attacks [9], [11], [15], [16]. However, a
recent advancement in ROP [7] has changed the strategy
of ROP by adopting different instructions to chain the
instruction sequences, thus making most of the existing
protection techniques ineffective. In addition, all of those
ROP defense mechanisms impose considerable performance
overheads and thus have not been widely adopted in modern
systems. The most effective and widely deployed technique
which is able to mitigate ROP attacks is address space layout
randomization [4], as suggested by the literature [18], [16].

B. Address Space Layout Randomization

Address space layout randomization (ASLR) is a set
of techniques [4], [5], [14], [22], [26] which introduce
randomness into addresses used by a protected process. This
will make a wide class of exploit techniques fail with a
quantifiable probability. In addition, the attempts of failed
attacks will crash the target task which eases the detection of
such attacks. A generic ASLR implementation will randomly
relocates the stack, heap, and shared library regions – the
base addresses of these memory regions will be randomly
changed each time the given program is launched.

The technique that randomly relocates the base of shared
libraries in the memory space, has already been wildly
deployed on modern operating systems to defend against
the return-to-libc attacks. Figure 1 shows the address space
layout of an Apache server process under Ubuntu. As shown
from line 4 to 9 in Figure 1, the addresses of shared libraries
are randomized under Ubuntu. However, the locations of
code and data segments (line 1 and line 2 in Figure 1) are
not randomized as default.

[1]  08048000-080c6000 r-xp   /usr/local/apache2/bin/httpd
[2]  080c6000-080c9000 rw-p   /usr/local/apache2/bin/httpd
[3]  080c9000-08198000 rw-p   [heap]
[4]  b7cd2000-b7cdb000 r-xp   /lib/tls/i686/cmov/libnss_files-2.7.so
[5]  b7cdb000-b7cdd000 rw-p   /lib/tls/i686/cmov/libnss_files-2.7.so

... ...

[6]  b7cff000-b7d06000 r-xp   /lib/tls/i686/cmov/libnss_compat-2.7.so
[7]  b7d06000-b7d08000 rw-p   /lib/tls/i686/cmov/libnss_compat-2.7.so
[8]  b7d09000-b7e52000 r-xp   /lib/tls/i686/cmov/libc-2.7.so
[9]  b7e52000-b7e53000 r--p   /lib/tls/i686/cmov/libc-2.7.so

... ...

Figure 1. Address space illustration of Apache2 under Ubuntu.

Traditionally, the application code itself does not support
randomization. The executable files are created by the linker
with the assumption that they will be loaded at a fixed
address – usually at 0x8048000 as shown in Figure 1.
In order to support the randomization of the application
code, many operating systems [24] have developed and
contributed to the GNU Compiler tool chain, a technique
called Position Independent Executable (PIE). Utilizing PIE,
binaries are compiled in a way that they could be freely
locatable throughout the entire address space of the program.
Thus, with the support from both ASLR and PIE, programs
are believed to be strongly protected against attacks utilizing
ROP [18], since not only addresses of the library code
are randomized, but also the instruction addresses of the
application itself.

Actually, some implementations of ASLR [5], [14], [22]
have also developed their own way of relocating the code
segment at run-time. In this paper, we represent PIE as
a general type of techniques which enables the system to
randomly relocate the program code segment at run-time,
instead of differentiating each detailed techniques.

C. Threat Model

In this work, our attack target is a remote web server
which is equipped with PIE technique, and is also protected
under both ASLR and W ⊕X . In the memory space of the
web server process, the base addresses of stack, heap, library
code and also the executable code of the server itself have
been randomized.

As needed in every attack technique in the literature,
we also assume there will be an exploitable vulnerability
in the web server program. In Section III, we assume
there is an exploitable format string vulnerability, which
is not uncommon as we will show with statistical data.
In Section IV, we only assume there is a common buffer



overflow vulnerability, which is the same assumption that
original ROP attacks have [6], [12], [19].

In this work, we focus on utilizing the binary code of the
application itself to construct ROP attacks. Existing ROP
attack papers [18], [25] do not consider the strong protection
condition where the base address of stack and the executable
are randomized (they only consider the base of shared library
is randomized), which is different from our work.

III. ROP FORMAT STRING ATTACK

In this section, we will first introduce how to use format
string vulnerability to obtain information on the run-time
stack. Then we will show how to further utilize such infor-
mation to launch a ROP attack towards systems protected
under ASLR.

A. Format String Vulnerability and Information Leakage

The format string vulnerability (FSV) occurs when
unchecked user input is used as the format string parameters
in functions that perform the formatting tasks, such as
printf() in C language. Format string vulnerabilities can
be exploited to execute malicious code or print data from the
stack or possibly other locations in memory. Although there
are various types of format string vulnerabilities and some of
them are quite complex, we use a simple illustrative example
to demonstrate how such vulnerability can be used to grab
the information on the stack, as shown in Figure 2.

void foo(char *buf)
{

printf(buf);
printf("\n");

}
int main(int argc, char* argv[])
{

foo(argv[1]);
return 0;

}

(a) An example program (format.c) which contains a format string
vulnerability.

(b) An illustrative attack string and the stack information printed.

(c) The return address of function foo() shown in the debugger.

Figure 2. FSV example code and attack

As illustrated in Figure 2(a), the example function foo()
directly uses user inputs as the format string. This makes it
possible for an adversary to utilize special string like %08x
to gain the information on the run-time stack (Figure 2(b)).
By utilizing GDB1, we are able to verify that the return
address when calling function foo() is exactly the same
address the attack has obtained, as shown in Figure 2(c).

Format string vulnerability is not uncommon in real-world
applications. According to our statistical results analyzed
from the CVE database2, there are considerable amount of
format string vulnerabilities which are discovered each year,
as shown in Table I. The percentage in the table is the ratio
between the number of format string vulnerabilities and the
total number of effective3 vulnerabilities recorded in CVE.

Table I
STATISTICAL DATA OF FORMAT STRING VULNERABILITIES IN CVE

2006 2007 2008 2009 2010

# of FSV 66 75 39 25 14

Total # 6976 6427 6969 4784 4401

of Vul. (7039-63) (6500-73) (7016-47) (4814-30) (4429-28)

Ratio (%) 0.9461 1.1670 0.5596 0.5226 0.3181

Further investigation shows that a wide range of programs
suffer from format string vulnerabilities, including: web
servers such as Apache (CVE-2006-4154, CVE-2006-0150)
and Oracle Application Server (CVE-2009-0993); operating
systems and virtual machines such as IBM AIX (CVE-
2010-1039), Mac OSX (CVE-2010-1376, CVE-2009-2191) and
VMware (CVE-2010-1139, CVE-2009-3732); database soft-
ware such as MySQL (CVE-2009-2446, CVE-2006-3469) and
Oracle Database (CVE-2008-5440); and even common li-
braries such as PHP (CVE-2010-2094, CVE-2007-0909), etc.

All these results indicate that it is reasonable to explore
how to effectively attack an application which is assumed
to contain a format string vulnerability.

B. ROP Attack Utilizing Format String Vulnerability

As shown from the demonstration in Figure 2, the benefit
of exploiting format string vulnerability is the possibility
to obtain the instruction address which has potentially been
randomized at run-time. Once one instruction address has
been revealed, the adversary is able to find out where
the base address of the code segment is located. Then
ROP attack code can be adjusted accordingly in order to
successfully exploit this application.

1GDB: The GNU Project Debugger, http://www.gnu.org/s/gdb/
2The Common Vulnerabilities and Exposures database (http://cve.mitre.

org/) is downloadable from National Vulnerability Database (http://nvd.nist.
gov/download.cfm).

3There are a number of CVE entries rejected each year, although they
are still recorded in the CVE database. Thus, as shown in Table I, the
total number of effective vulnerabilities equals to the total number of CVE
entries minus the number of rejected CVE entries each year.



Address1

Address2

Address3

Address4

(1) Constructing ROP code:

movl 64(%eax), %eax
ret

addl %eax, %edx
push %edi
retret

pop %edi
ret

(2) Format string attack to read AddressX,
compare with the original AddressC and
calculate Δ=AddressX-AddressC

(3) Update ROP code:

Address1+Δ

Address2+Δ

Address3+Δ

(4) Inject ROP into the application:

local variables

return address

parametersS
ta

ck
gr

ow
th

0x00000000

0xFFFFFFFF

Address2+Δ

Address1+Δ

parametersS
ta

ck
gr

ow
th

0x00000000

0xFFFFFFFF

......
... ...

Figure 3. The ROP attack flow for exploiting an application with format string vulnerability

The attack vector is given as follows, which is also
illustrated in Figure 3.

1) Constructing ROP attack code (the sequences of ROP
addresses) based on the binary code of the target
application. The instruction gadgets needed could be
found using the Galileo algorithm [19].

2) Exploiting the format string vulnerability to print
out one (randomized) return address which has been
pushed onto the stack.

3) Using the return address to calculate the difference
of the original address and randomized address, and
then update the ROP code prepared in the first step
accordingly.

4) Launch another format string exploit against the same
vulnerability to inject our customized ROP code.

Note that in order for this attack to take effect, the base
address of the code segment in Step 4 has to be the same
as what has been learned in Step 2. There are two real-
world scenarios which could satisfy this condition: a) The
attack at Step 2 crash the application’s process. However,
web servers like Apache may start another child process
which has exactly the same address space layout as the
previous one. Such a property has also been utilized in
existing attacks [20]. b) The format string can be crafted
to just exit the vulnerable function without crashing the
process. In this case, the same process will still accept the
following requests, which contains attack code in Step 4.
The second case is confirmed by our attack implementation
towards Apache server, which will be further described in
Section V.

IV. ROP GUESSING ATTACK

In many cases, the target web application does not have a
format string vulnerability. Since the randomized instruction
address cannot be directly obtained, the adversary has to
construct ROP code according to a guessed base address.
The attack vector is given as follows:

1) Constructing the ROP attack code with instructions in
the application binary by guessing a base address of
the code segment.

2) Send the attack code to the target web application and
wait for the response.

3) If a remote shell is obtained within specified time
threshold, then attack succeeds. Otherwise, repeat
Step 1 with another base address.

The efficiency of the guessing attack depends on the
entropy of the randomization. Due to the design and im-
plementation difference, each ASLR technique may have
different randomization entropy. We summarize the entropy
of existing ASLR techniques in Table II, based on 32-bit
platform setting. Note that although many memory regions
are listed in the table, the one that has the impact on our
attack is the entropy of the start address of code and data
(Bold in Table II). In our current ROP construction, we
only utilize the code of the application itself, this means
as long as the base address of the code segment is guessed
correctly, our ROP attack will succeed. The details of our
ROP construction are given in Section V.

According to Shacham et al. [20], PaX only randomize at
most 16 bits on a 32-bit Platform. Thus, the ROP guessing
attack has a worst success rate of 1/65536, an average
success rate of 1/32768. Such a success rate is not secure
enough for applications like web servers, which may receive
millions of requests each day. Many other attacks which also
target on web servers [5] have an even lower success rate
compared to ours. Also note that we use ROP code instead of
return-to-libc attack to accomplish our exploit tasks, which is
different from other proposed guessing attack (such as [20]).

V. IMPLEMENTATION AND EVALUATION

In this section, we will first give the ROP construction
based on Apache web server. We then verify that we
are able to exploit the web application with format string
vulnerability when the executable is randomized. Finally,
we explore the possibility of constructing such ROP attack
on other web applications.

A. ROP Construction

The goal of our attack is to launch a remote shell which
has the same privilege of the exploited web application.
Thus, we construct our ROP shellcode in a way that it will



Table II
THE RANDOMIZATION ENTROPY OF EXISTING ASLR IMPLEMENTATIONS

Base address Padding between Base address Padding between Base address Base address

of stack stack frames of heap malloc()s of code & data of GOT/PLT

USENIX’03 AO [4] 226 28 28 25% (28) 226

SRDS’03 TRR [26] 229 229 N/R

USENIX’05 [5] 226 N/R4 226 30% (28) N/R N/R

PLDI’06 DieHard [3] ≤ 23

PaX ASLR [22] 216 213 216

ACSAC’06 ASLP [14] 228 229 220 220

finally invoke the execve system call to launch \bin\sh.
Different from the ROP shellcode proposed in existing
works [6], [19], our shellcode is constructed by completely
utilizing the application’s own code, instead of utilizing
shared library code (such as glibc). It is very difficult to
utilize the shared library instructions under our assumption,
as our attack targets on systems where the base address of
code segment and shared library are both randomized. In
order to construct ROP code by using library instructions,
besides obtaining the base address of code segment, one
has to additionally manage to get the base address of shared
library. This would further complicate the attack code and
possibly lower down the success rate. Thus, we restrict
our ROP code to only include addresses of the instructions
within the application executable itself.

Figure 4 gives the details of our ROP code where Apache-
2.2.17 is used as the example web application. The base
addresses of the stack and code segment have not been
randomized in the figure (the code starts at 0x08065668,
and the stack starts at 0xbf9f7f28). There are 19 words
of ROP code in Figure 4: Word 1-5 (from the bottom) set the
second argument in agrv to be NULL; Word 6-8 set %edx
to the address of envp array; Word 9 and 10 set %ecx to
the address of the argv array; Word 11-14 set %eax to the
system call number 0x0b (0xffffffef+0x1c), and set
%ebx to the address of “/bin/sh\0” and finally, Word
15 calls the kernel interrupt.

Note that some instructions in the shellcode will cause
side effects. Such side effects are balanced by additional
instructions, which are not shown in Figure 4 (the complete
shellcode of Figure 4 is given in Appendix). Especially,
we utilize so-called boring instructions such as the “leave;
ret” instruction sequence in our ROP code. The “leave; ret”
sequence is ignored in the Galileo algorithm [19], because
such “instruction streams are actually generated by the
compiler”. However, Shacham [19] also mentions that such
“instruction sequences would be useful in crafting exploits”.
Thus, we modify the Galileo algorithm to also include such
instruction sequences when constructing our ROP code.

4N/R=Not Reported, i.e., it is mentioned that they carried out the
randomization of this region, but the entropy is not given in the paper.

/sh\0

/bin

word to zero

pop %eax; 
pop %ebx;
leave;
ret;

94 7f 9f bf

ef ff ff ff

8c 7f 9f bf

90 7f 9f bf

74 7f 9f bf

%esp

mov %eax, %edx;
mov %edx, %eax;
ret;

xor %eax, %eax;
leave; ret;

mov %eax, 0x1c(%edx);
leave; ret;

pop %eax; pop %ebx; 
leave; ret;

mov %eax, %edx; 
mov %edx, %eax;
ret;

pop %ecx; pop %ebx;
leave; ret;

pop %eax; pop %ebx;
leave; ret;

int 0x80;

+1c

add 0x1c, %eax;
leave; ret;

94 7f 9f bf

Figure 4. ROP shellcode for Apache-2.2.17

B. Format String Exploit

In order to verify that our ROP code is able to successfully
exploit a web application even when ASLR and PIE are
present, we install Apache-2.2.17 and PaX on Ubuntu 10.04
desktop and enable the PaX RANDEXEC5 feature which is
to introduce randomness into the main executable mapping

5PaX RANDEXEC, http://pax.grsecurity.net/docs/randexec.txt



addresses. Such settings will make the base addresses of
stack, shared library and also the executable code segment
change randomly each time when Apache server starts,
without the need to recompile Apache.

For the format string vulnerability, we construct a similar
one as CVE-2009-4769 in httpdx6 in Apache-2.2.17. We did
not use format string vulnerabilities from the old versions
of the Apache server (CVE-2006-4154, CVE-2006-0150) due
to insufficient online information.

Our first step attack – the format string exploit embeds
%08x characters into a GET request and sends it to Apache
server. Apache server replies with “Invalid URI in request
GET ...”, and logs the printed stack information into its
error_log. Our script reads the error_log7 and ob-
tains the randomized return address and save %eip address.
Based on these two addresses, our ROP code is updated
automatically and sent to the Apache server to exploit the
same format string vulnerability again. And our result shows
that we are able to obtain the command shell.

We rerun our experiments 10 times and draw the con-
clusion that each time our first step format string exploit
will not crash the server process and the stack organization
stays exactly the same when the second time our ROP code
exploits this format string vulnerability. This shows that our
attack is potentially practical – the robustness of the server
also makes it less secure in this situation.

C. Possibility on Other Applications

Using the way of constructing ROP code in Section V-A,
we investigate other applications to study the possibility of
constructing a similar attack. We search the binary code
of Apache-2.2.17 and other programs with our modified
Galileo algorithm to see if the instruction sequences needed
in the attack are available in these programs. The number of
instruction sequences found for the five necessary steps in
constructing a useful ROP shellcode is given in Table III.

Table III
THE NUMBER OF USEFUL INSTRUCTION SEQUENCES FOUND

Application
write write write write int 80

%eax %ebx %ecx %edx / lcall

apache-2.2.17 (1.3MB) 142 175 5 45 1

doxygen-1.5.8 (4.2MB) 731 897 18 98 2

smbtree-3.3.2 (3.7MB) 437 314 11 75 1

mplayer-1.0.r4 (3.9MB) 628 579 13 68 6

gzip-1.3.12 (56KB) 8 32 1 3 0

iconv-2.13 (50KB) 15 15 1 4 0

6Format string vulnerabilities in the tolog() function in httpdx 1.4, 1.4.5,
1.4.6, 1.4.6b, and 1.5 allow remote attackers to execute arbitrary code via
format string specifiers in a GET request to the HTTP server component
when logging is enabled. http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2009-4769.

7Here we assume that the adversary has a basic read permission on the
server machine so that he is able to open Apache’s error log.

Table III shows that it is possible to construct similar
ROP attack with programs that are as large as Apache.
However, in the executables of small programs, it is very
rare to find int 0x80 or trap-into-kernel instructions (such
as lcall %gs:0x10(,0) [19]). Thus, it is unlikely to
construct similar ROP code for small programs due to the
lack of critical instructions.

VI. DISCUSSIONS

A. Limitation of the Current Attack

Our current attack still has a number of limitations. Firstly,
we depends on the format string exploit to give us feedback
for not only the randomized base address of code segment,
but also the saved %ebp value to obtain the randomized
stack address, so as to update the corresponding addresses
in the ROP code. Shacham [19] suggests that such addresses
could be built at runtime by examining %esp and operating
on it, which would allow the shellcode to be placed at
various stack positions without needing retargeting. Such a
refinement of our shellcode is left for future work.

Secondly, our current attack requires the adversary to have
a basic account on the server machine in order to have the
read access to the web server log. This condition makes
sure that the adversary is able to get the feedback of the
stack information that has been printed out by the format
string exploit. However, there could be other ways which
the adversary can trick the server to send such information
back to client. Study of improving the feedback method of
the format string exploit is not within the scope of this paper.

Finally, it is not always able to find format string vulner-
ability in the target application, especially the vulnerability
has to be easily exploitable. Some applications only have
such vulnerability in its old versions, which are fixed in the
newer version.

Nevertheless, our attack proves that it is still possible to
efficiently break through the defense of a system deployed
with ASLR where the executable itself is also randomized.
However, our result does not mean that ASLR is useless. On
the contrary, since our attack has the above limitations, it
indicates that ASLR is still an effective defense mechanism
against ROP attack.

B. Possible Mitigation Techniques

Some existing techniques proposed can be used to mit-
igate our attacks. Specifically, approach in [5] permutes
all the functions in the code sections in a program at
compilation time. If the adversary is not able to access
the program executable file on the storage, it will be quite
impossible for him to construct ROP code since the positions
of required instructions are unknown.

Another defense mechanism towards ROP is G-Free [16].
G-Free is able to eliminate all unaligned free-branch instruc-
tions inside a binary executable, and to protect the aligned
free-branch instructions to prevent them from being misused



by an attacker. In this way, it is also very difficult to construct
ROP attack code as shown in this paper.

There are also a number of research works targeting on
automatically discovering format string vulnerabilities [21],
[17] or defending against format string exploits [10]. Despite
these efforts, it is still a practical problem to eliminate
format string vulnerabilities, and new vulnerabilities are
continuously being discovered and published every month.

VII. CONCLUSION

Address space layout randomization is considered to
be a strong defense towards return-oriented programming,
especially the executable code segment is also randomized
in the program memory space. And indeed it is, as confirmed
by our observation. However, in this paper, we have shown
that there are still ways of efficiently attack web applications
protected under these defense techniques. When a format
string vulnerability is available in the program, we can
exploit this vulnerability to get the address of the randomized
instructions, and then launch a ROP attack against the same
vulnerability to obtain the command shell. When only a
buffer overflow vulnerability is available, we have to guess
the correct base address of the randomized code segment.
We demonstrate the first attack with Apache web server and
explore the possibility of launching similar attacks on other
applications. Although our current attack still have a number
of limitations, we believe it can be further improved and be
more practical in real-world system scenarios.

ACKNOWLEDGMENT

This paper was partially supported by National Sci-
ence Foundation (NSF) China under the agreement
70890084/G021102, Knowledge Innovation Project of Chi-
nese Academy of Sciences under the agreement YYYJ-1013,
and National Technology Support Program(NTSP) China
under the agreements 2008BAH32B04 and 2009BAH43B03.

REFERENCES

[1] A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP
Tablet PC Edition 2005, and Windows Server 2003. Mi-
crosoft. 2006-09-26. http://support.microsoft.com/kb/875352/
EN-US/.

[2] Solar designer. “return-to-libc” attack. Bugtraq, August, 1997.

[3] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’06, pages 158–168, 2006.

[4] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address ob-
fuscation: an efficient approach to combat a board range of
memory error exploits. In Proceedings of the 12th conference
on USENIX Security Symposium, 2003.

[5] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error
exploits. In Proceedings of the 14th conference on USENIX
Security Symposium, 2005.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: generalizing return-oriented pro-
gramming to risc. In Proceedings of the 15th ACM conference
on Computer and communications security, CCS ’08, pages
27–38, 2008.

[7] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference
on Computer and communications security, CCS ’10, pages
559–572, 2010.

[8] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman,
E. W. Felten, and H. Shacham. Can dres provide long-
lasting security? the case of return-oriented programming and
the avc advantage. In Proceedings of the 2009 conference
on Electronic voting technology/workshop on trustworthy
elections, EVT/WOTE’09, 2009.

[9] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop:
Detecting return-oriented programming malicious code. In
Proceedings of the 5th International Conference on Informa-
tion Systems Security, ICISS ’09, pages 163–177, 2009.

[10] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman,
M. Frantzen, and J. Lokier. Formatguard: automatic protec-
tion from printf format string vulnerabilities. In Proceedings
of the 10th conference on USENIX Security Symposium, 2001.

[11] L. Davi, A.-R. Sadeghi, and M. Winandy. Ropdefender: a
detection tool to defend against return-oriented programming
attacks. In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS
’11, pages 40–51, 2011.

[12] A. Francillon and C. Castelluccia. Code injection attacks on
harvard-architecture devices. In Proceedings of the 15th ACM
conference on Computer and communications security, CCS
’08, pages 15–26, 2008.

[13] M. Howard. Address Space Layout Randomization in
Windows Vista. http://blogs.msdn.com/b/michael howard/
archive/2006/05/26/608315.aspx.

[14] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space
layout permutation (aslp): Towards fine-grained randomiza-
tion of commodity software. In Proceedings of the 22nd
Annual Computer Security Applications Conference, pages
339–348, 2006.

[15] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. De-
feating return-oriented rootkits with ”return-less” kernels. In
Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, pages 195–208, 2010.

[16] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: defeating return-oriented programming
through gadget-less binaries. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC
’10, pages 49–58, 2010.



[17] M. F. Ringenburg and D. Grossman. Preventing format-string
attacks via automatic and efficient dynamic checking. In
Proceedings of the 12th ACM conference on Computer and
communications security, CCS ’05, pages 354–363, 2005.

[18] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi.
Surgically returning to randomized lib(c). In Proceedings of
the 2009 Annual Computer Security Applications Conference,
ACSAC ’09, pages 60–69, 2009.

[19] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and
communications security, CCS ’07, pages 552–561, 2007.

[20] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space ran-
domization. In Proceedings of the 11th ACM conference on
Computer and communications security, CCS ’04, pages 298–
307, 2004.

[21] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In Proceed-
ings of the 10th conference on USENIX Security Symposium,
SSYM’01, 2001.

[22] T. P. Team. address space layout randomization. http://pax.
grsecurity.net/docs/aslr.txt.

[23] S. teso. Exploiting format string vulnerabilities. Technical
report, Stanford University, September 2001.

[24] A. van de Ven. New Security Enhancements in Red Hat
Enterprise Linux v.3, update 3, August 2004. http://www.
redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf.

[25] Z. Wang, R. Cheng, and D. Gao. Revisiting address space
randomization. In Proceedings of the 13th Annual Interna-
tional Conference on Information Security and Cryptology,
December 2010.

[26] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime
randomization for security. In Proceedings of the 22nd
Symposium on Reliable Distributed Systems, SRDS ’03, pages
260–269, 2003.

APPENDIX

The complete shellcode of our ROP attack is given as
follows:

00000000 94 56 06 08 74 7f 9f bf 90 7f 9f bf
0000000C 90 7f 9f bf d7 2c 07 08 b1 dc 06 08
00000018 90 7f 9f bf be 4a 07 08 90 7f 9f bf
00000024 94 56 06 08 90 7f 9f bf 90 7f 9f bf
00000030 90 7f 9f bf d7 2c 07 08 07 76 06 08
0000003C 8c 7f 9f bf 90 7f 9f bf 90 7f 9f bf
00000048 94 56 06 08 ef ff ff ff 94 7f 9f bf
00000054 90 7f 9f bf 3f e4 06 08 90 7f 9f bf
00000060 c0 f9 0a 08 94 7f 9f bf a2 1b f5 bf
0000006C 2f 62 69 6e 2f 73 68 00
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