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We investigate the role of education on worker productivity and firms' total factor productivity using a panel
of firm-level data from China. We estimate the returns to education by calculating the marginal productivity
of workers of different education levels based on estimates of the firm-level production function. We also
estimate how the education level of workers and CEO contributes to firms' total factor productivity.
Estimated marginal products are much higher than wages, and the gap is larger for highly educated workers.
Our estimate shows that an additional year of schooling raises marginal product by 30.1%, and that CEO's
education increases TFP for foreign-invested firms. Estimates vary substantially across ownership classes, the
effect of schooling on productivity being highest in foreign-invested firms. We infer that market mechanisms
contribute to a more efficient use of human capital within firms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Education is a central issue in China's long term strategy to promote
increased standards of living and to reduce inequality. Fleisher andChen
(1997) found that China's high and rising regional income inequality
reflected a wide, and perhaps growing, gap in labor and total factor
productivity which, in turn, they attribute to regional inequality of
investment inhigher education. Evidence of underinvestment inhuman
capital in China, particularly in higher-education end, has been
corroborated by Fleisher and Wang (2001, 2003, 2004). Heckman
(2005) shows that expenditure on higher education in China is
characterized by extreme regional inequality and that there is a serious
imbalance between investment in physical and human capital. The
Chinese government, recognizing this imbalance, has sharply increased
resources allocated to the development of new colleges and universities

(Li, in press; Wang et al., 2009). Sound policy requires knowledge of
how education affects production and productivity, especially in a
country like China,wherewagesmay not accurately reflect productivity
because the allocation of labor resources is significantly affected by
incompletely developed labor markets, and the transition from soft
budget constraints is incomplete.

There is considerable evidence from estimation ofMincerianmodels
that returns to schooling in China have increased in the past 15 years
from far below world averages and now approach those observed in
major market economies (Li, 2003; Li and Luo, 2004;Wang et al., 2009;
Yang, 2002; Zhang et al., 2005). However, we cannot infer that these
changes in relative wages by education level closely reflect changes in
relative marginal products associated with schooling, because there
remain many labor-market distortions inherited from the system of
central planning and rigid allocation of labor through the planning
process. Not only has the transition fromplanningvaried acrossfirmsby
ownership type, i.e., state-owned, foreign involved, domestic private
firms, but also by geography, with the coastal region having proceeded
much further toward uncontrolled markets than have the interior
and western regions. We address the question: as China's industry
has transformed from a planned- to market allocation of resources, do
the private returns to schooling as reflected in wage differentials
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accurately reflect differences in the true marginal product associated
with education?

We present estimates of the effects of human capital in production
using a panel of firm-level observations. This procedure allows us to
compare wage rates with the marginal products of the workers
receiving these wages. Our data permit us to exploit the advantages of
both differencing between different groups of workers within a firm
and fixed-effect (FE) estimation (differencing over time), helping to
reduce or eliminate potential sources of bias due to time-invariant
and even time-varying unobservables correlated with firm character-
istics. We also adopt the procedure of Olley and Pakes (OP) (1996),
extended by Levinsohn and Petrin (LP) (2003), in which we attempt
to control for firm-specific time-varying productivity shocks in
production function estimation. 1

Finally, we compare estimated productivity and the impact of
human capital on production across ownership types. These compar-
isons shed light on how the decline of the state sector and other
aspects of transition and economic development contribute to
productivity growth. While it is generally believed that transition to
a market system will raise productivity (e.g., Brown et al., 2006), the
mechanisms within firms that channel market forces to production
are not well known. In this study, we can provide some insight about
transformation of labor markets affecting the allocation of human
capital.

We proceed as follows. First we specify a value-added production
function in which labor is divided into highly educated and less
educated workers. Next we derive the marginal products of the two
types of workers from the estimated production function. Then we
use information on average schooling of highly educated and less
educated workers to estimate the impact of schooling on marginal
products and derive the rate of return to schooling in production. We
compare the rate of return in production to that reflected in relative
wages of workers with more or less schooling. We also estimate the
impact of worker- and CEO-schooling on firms' total factor produc-
tivity (TFP).

The rest of the paper is organized as follows. Section 2 discusses
methodology. Section 3 describes data and variables. In Section 4, we
discuss our estimates of the marginal products of highly educated and
less educated workers. In Section 5, we estimate the effect of
education on marginal product and on total factor productivity,
respectively. Section 6 concludes.

2. Methodology

We specify the following value-added production function

Yit = Ai K
βk
it L

βs
sit L

βp

pite
uit ð1Þ

where Y is output measured by value-added, K is capital, Ls is the
number of highly educated workers, Lp is the number of workers with
less education, and u is a disturbance term for firms i=1, 2, …, n and
from year t=1, 2, …, T. The parameters βk, βp, and βs are the output
elasticities of the corresponding inputs.2

This specification is based on overwhelming evidence in the human-
capital literature that earnings are affected by education, presumably
because education raises productivity. It also reflects our assumption
thatfirmsgroupworkers according to their acquired skills and schooling
into occupational categories that are not perfectly substitutable in

production. Similar specification can be found in the literature. For
example, Pavcnik (2002) includes the number of skilled labor and
unskilledworkers in the production function for Chileanmanufacturing
plants. Moretti (2004) specifies the production function to include
number of hours worked by skilled workers and unskilled workers in
investigating the spillover effects of human capital in the United States
using plant level data. In the production functions specified by
Hellerstein et al. (1999), workers are distinguished by different
demographic characteristics including education.

While we argue that it is appropriate to disaggregate labor by
schooling level inside the production function, it is also possible that
the educational level of workers may help to develop and adapt to
new technology, and then to increase firm TFP. Thus we investigate
both the direct effect of education on production and its indirect effect
through TFP. This is a way to gain some insight into the channels
through which schooling plays a role in TFP growth through the
spread of technology and management methods.

Taking the log of both sides of Eq. (1), we obtain our empirical
model. The estimated input elasticities lead directly to derivation of
the inputs' marginal products. The marginal products of highly
educated and less educated workers, respectively, for firm i in year t
are

MPsit = β̂s
Yit
Lsit

and MPpit = β̂p
Yit
Lpit

: ð2Þ

We quantify the effect of education on production by assuming
that less educated workers can be converted to highly educated
workers through giving them a sufficient number of years of
schooling. Suppose sw is the number of additional years of schooling
required to convert one worker with low education into a worker
with high education. Then, under the assumption that the difference
in marginal products between the two types of labor results only from
the difference in education, we have

MPsi = ð1 + riÞswiMPpi ; ð3Þ

or

MPsi
MPpi

= ð1 + riÞswi : ð4Þ

(The subscript t is suppressed here and forward.) Eq. (4) implicitly
defines a rate of return to schooling in production in each firm.

There are two problems in obtaining unbiased estimates of the
production elasticities in Eq. (1) and, from them, the rate of return
based on Eq. (4). The first problem is unobserved firm-specific effects
correlated with the regressors (Tybout, 2000). A related problem is
that unobserved technology shocks that can bias estimates of the
production elasticities in Eq. (1). The simplest method for dealing
with unobserved firm-specific effects is to estimate the production
function using a first-difference or firm-fixed-effects (FE) procedure.
The FE procedure can also control for firm-specific productivity shocks
that are constant over the time period covered by the panel. A
problem with the FE approach is that it assumes unobserved firm-
specific characteristics are fixed over time.

A preferred procedure would be to use the method of Olley and
Pakes (OP) (1996), extended by Levinsohn and Petrin (LP) (2003).
The OP/LP method uses intermediate-goods expenditure or invest-
ment expenditure as a proxy for time-varying firm-specific produc-
tivity shocks. The OP procedure requires information on investment as
a proxy for unobserved firm-specific productivity shocks. Their basic
assumption is that a firm's investment is a monotonic function of
firm-specific productivity shocks, given its capital stock. However,
since about 70% of our firms report no investment, we could not use
the OP method. Instead LP uses material or intermediate goods as a

1 Hellerstein et al. (1999) jointly estimate wage and production functions for a
sample of United States firms and are thus able to directly compare the effects of
schooling, gender, and other worker characteristics on marginal product and wages.
Unfortunately our data do not permit us to take this approach.

2 We use the Cobb–Douglas functional form for simplicity in exposition as is
common in the literature. In our empirical implementation, we also estimate a
translog specification and report the results in Section 4.
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proxy. In this case, we don't face the problem of have “zero”
observations as most firms use intermediate goods or material.
Therefore, we apply the LP procedure in our production function
estimation along with the FE procedure.

Following LP,we impose twoassumptions: (1) the useofmaterials is
a monotonic function of unobserved firm-specific productivity shocks
and capital, and (2) unobservedfirm-specific productivity shocks follow
an AR(1) process. Based on these assumptions, we construct a moment
condition to estimate coefficients of production function.3

An alternativemethod,whichmakes further demands on the data, is
developed in the dynamic-panel estimation literature (Chamberlain,
1982, Anderson and Hsiao, 1982, Arellano and Bond, 1991, Arellano and
Bover, 1995; Blundell and Bond, 1998, 2000). Most recently, Ackerberg
et al. (2006) provide a method to generalize the fixed-effects approach
in a dynamic framework. ACF criticize the approach of the OP and LP
procedures in that coefficients of variable inputs such as labor are not
identified in the first stage. In OP/LP, the essential assumption is that
firm-specific productivity shocks are a scalar function of investment (in
OP) or intermediate goods (in LP) and the given capital stock.With this
assumption, OP/LP identify coefficients of variable inputs (labor) in the
first stage and then identify a coefficient of capital. However, ACF argue
that the OP/LP approach's identification of variable inputs in the first
stage fails. To overcome this problem, ACF do not estimate labor
coefficients in the first stage. Instead, ACF impose additional assump-
tions: (i) capital is determined in period t−1; (ii) labor is chosen
between period t−1 and t, and the productivity shock is known in
period t. With these assumptions, they calculate firm-specific produc-
tivity shocks assuming an AR(1) process and then estimate coefficients
of labor and capital together. Assuming that labor is determinedbyfirm-
specific productivity and capital, they used the lagged value of labor to
estimate labor coefficients. Unfortunately, ACF's lag structure results in
the loss of a substantial proportion of our observations. Given our three-
year panel data, we must drop 1/3 of the observations in order to
implement ACF.

We report estimates of Eq. (1) and its variants using both a FE
approach and the LP approach. We also have attempted the ACF
approach and the results are not reasonable, probably because of the
small usable sample.

The second problem is in the influence of unobserved ability and
observed and unobserved factors other than education on worker
marginal products. Observable firm-specific factors include such
influences on relativemarginal products, as firms' location, ownership
type, and product characteristics. Such influences can also bias the
estimated effect of education on marginal products. There is
insufficient worker-specific information in our data for us to estimate
the possible extent of ability bias and/or worker heterogeneity in our
estimates of the return to providing workers with additional
schooling (Heckman and Li, 2004). However, our framework for
estimating the effect education presented below can also mitigate
such a bias.

Assume that the average effect of education in terms of annual
return based on marginal product is r; and inter-firm differences in
marginal product between highly educated and less educatedworkers
are caused by factors other than education. Then we transform Eq. (4)
into a stochastic specification,

MPsi
MPpi

= ð1 + rÞswi ⋅ei ð5Þ

where r is the expected return to schooling in production and ei is an
error term that captures factors other than schooling that may affect
the MP ratio. Taking logs, we obtain the following approximation of a

Mincer-type empirical model

log
MPsi
MPpi

 !
= αi + logð1 + rÞswi + e�i ; ð6Þ

Eq. (6) can be expanded to include additional human-capital variables
such as experience so that

log
MPsi
MPpi

 !
= ai + b⋅swi + c⋅exi + d⋅ex2i + e�i ; ð7Þ

where b is an estimate of r, and ex is the difference in average
experience between highly educated and less educated workers.4

The left-hand side of Eq. (7) is the log-difference inmarginal product
between highly educated and less educated workers. An advantage of
this specification is that it allows us to difference out time-invariant and
even time-varying unobservables within a firm that affect MP. More
specifically, suppose the marginal product of labor is affected by the
amount of human capital measured by education and experience, as
well as by many other observed/unobserved firm-specific character-
istics Zit, such as technology, capital, output type, etc. Thosefirm-specific
characteristicsmay be time-varying or invariant, and someof themmay
be correlatedwith education level of workers.5Within a particular firm,
Zit is invariant across worker groups, and thus will be differenced out.
Therefore, this empirical specification helps to mitigate the potential
omitted variable problem. Additionally, in this framework is that firm-
specific markups are also differenced out in estimating the effect of
education. This is a common problem when measuring a firm's
productivity based on the value of output rather than physical units of
the output as it is difficult to distinguish true productivity from firm-
specific markups. Moreover, this differencing also removes the effect of
wage differentials caused by local living costs.

Eq. (7) is estimated using fixed-effects (FE) regression. In this
setup, FE estimation can reduce or eliminate omitted ability bias. It is
well known that omitted ability bias is a big problem in estimating the
effect of schooling on individual earnings because of the possible
correlation between unobserved ability and schooling level. In our
Eq. (7), omitted ability bias may also be present for the same reason,
because marginal product may be affected by unobserved ability that
is correlated with education. In the Mincer earnings equation, the
omitted ability bias problem cannot be resolved with panel data using
FE estimation, because an individual's schooling normally does not
change after the person enters the labor market. Thus, schooling will
be perfectly collinear with individual fixed effects. In our procedure,
however, average education does change across years because of
worker turnover. Thus, in FE estimation, firm-specific ability will be
differenced out, assuming that the average ability difference between
highly educated and less educated workers stays constant over time.6

Therefore the combination of the log-difference specification plus the
panel nature of our data allows us to avoid many potential sources of
bias due to time-varying and -invariant omitted variables.7

The approach discussed above combines fixed-effects estimation
and within-firm productivity comparison. It relies on the observed

3 The LP method can be implemented by using Stata command (Petrin et al., 2004).

4 Strictly, the rate of return is r=eb−1.
5 For example, some firm-level unobservables may affect marginal productivity and

the firm's education requirement on hiring, and thus are correlated with education
level of the workers.

6 The ability bias will still be present if the ability difference between highly and less
educated workers varies across years. This will depend on whether the marginal
skilled and unskilled workers hired and dismissed as firms adjust their labor force over
time have higher or lower ability than the average workers of that quality.

7 In our case, we first difference out time-varying and invariant unobservables by
differencing the marginal products between two classes of workers and then
difference out the time-invariant unobservables from the time mean in the fixed-
effects estimation.
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changes in the schooling composition of the workers in firms in our
sample to identify the estimated productivity effects of schooling. As
shown in Table 1, both the average numbers of highly and less educated
workers changed by about 5% per year between 1998 and 2000. For
example, from 1998 to 2000, the average number of highly educated
workers changed from213 to200, and then to209; and averagenumber
of less educatedworkers changed from703 to 670, and then to 674. The
schooling gap between highly and less educated workers also varied
across those years, although by a smaller magnitude.

A related identification question is whether the year-to-year
adjustment of the educational composition of a firm's workforce is
exogenous or the result of a firm's response to changing technological
factors inside the firm. Clearly, work force changes that result from
mandated retirement are exogenous. Moreover, quits in response to
changes in workers' circumstances or outside offers can be considered
exogenous. In contrast, workforce changes that are due to layoffs and
new hires are more likely to be responses to changing productivity
conditions inside the firm as well as to market conditions. However,
many layoffs in China were largely in response to mandates received
from government ministries attempting to reduce perceived over-
employment and thus have a significant exogenous component. For
example, layoffs exceed 7 million workers in 1998 and 1999 and
5 million in 2000 (China Labor Statistical Yearbook, 2002, 2005). In
addition, labor adjustments that respond to changes in product
demand, relative wages or productivity shocks from outside a firm
should also be treated as exogenous. But skill adjustments in response
to technological changes within a firm (e.g. upgrading technologies,
introducing new products, etc.) should be considered endogenous in
the context of this study. For example, newly adopted technologymay
be more complementary to skilled than unskilled workers.

We hope that the impact of endogeneity of education difference is
small and that the FE estimation that takes care of time-invariant omitted
variables will also mitigate this endogeneity problem. The ultimate
solution for this issue is to find good instruments for education
differentials between worker groups. We tried to identify some possible
instruments in thedata to run InstrumentalVariable (IV)estimationof the
production function. The results are reported and discussed in Section 4.

The next step is to estimate the indirect effect of education, i.e., the
effect of education on total factor productivity (TFP).8 In the vast

literature on economic growth, human capital has generally been
recognized as a critical contributor to economic growth and the
growth of total factor productivity (Lucas, 1988). Education can
facilitate the development and adaptation of new technology
(Benhabib and Spiegel, 1994), the spillovers and endogenous skill-
based technical changes (Acemoglu, 1996, 1998). Additionally, the
sharing of knowledge and skills through formal and informal
interaction between educated and uneducated workers may generate
positive externalities across workers and thus makes the firm more
productive (Moretti, 2004). At the micro-level, however, little is
known about the indirect effect of education within a firm on its TFP
after its direct effect on production has been controlled for. We
investigate this issue by regressing firm TFP on the firm's education
measures, including average schooling of all workers and the years of
schooling of the CEO.

3. Data and variables

Our data are derived from a firm-level survey, the Productivity and
Investment Climate Survey (PICS) conducted by China's National
Bureau of Statistics for the World Bank. The sample covers 998
manufacturing firms selected in five cities and five manufacturing
industries. The survey obtained retrospective data for the period of
1998–2000. The five cities are Beijing, Shanghai, Guangzhou, and
Tianjin on the coast of China, and Chengdu, the provincial capital of
southwest Sichuan. The five industries are all in manufacturing:
apparel and leather goods, consumer goods (mainly household
appliances and consumer durables), electronic equipment, electronic
components, and vehicles and vehicle parts. The sample is randomly
selected from all firms in their respective cities/industries and
targeted size categories. The resulting size range is extreme, with
the reported number of production workers ranging from 1 to over
55,000. In order to reduce the influence of extreme outliers, we
confine our research to the sub-sample with at least 100 total
workers, at least five of whom have schooling at the level of bachelor's
degree or above. As a result, there remain 425 enterprises in our
sample.9

The data contains a broad variety of firm-level characteristics
pertaining to measures of output, workers' schooling level, age, and
wages. Detailed information on the variables is presented in Table 1.

Table 1
Summary statistics.

Variables Unit 1998 1999 2000

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Value-added 1000 RMB 106,784.300 771,063.900 165,940.800 1,194,563.000 154,414.400 764,583.500
Capital 1000 RMB 145,331.300 341,521.600 175,225.900 502,279.100 197,417.800 597,091.900
Employees

Highly educated workers Workers 213.221 316.398 200.021 324.698 209.474 370.374
Less educated workers Workers 702.698 969.714 670.518 929.093 673.686 924.386

Average schooling years
Highly educated workers Years 16.646 1.083 16.703 1.111 16.722 1.123
Less educated workers Years 10.832 1.436 10.799 1.441 10.844 1.436

Average annual earnings
Highly educated workers 1000 RMB 26.032 54.286
Less educated workers 1000 RMB 12.628 13.866

Average working experience
Highly educated workers Years 11.758 5.907 12.171 6.270 12.937 6.249
Less educated workers Years 13.575 6.957 13.881 7.215 14.630 7.240

Data are for the 425 firms in five cities in China. For some variables, the number of observations is slightly smaller due to missing values. Value-added is sales less intermediate goods
adjusted for final- and intermediate-goods inventory changes. Capital is the book value of total fixed assets. Workers with low education are defined to include occupations with
average schooling less than 16 years, which mainly consists of basic and auxiliary production workers. Workers with high education are defined to include those occupations with
average schooling 16 or more years, which consists of mainly engineering and technical personnel and managerial personnel (including sales). We exclude service personnel and
other workers in activities such as health care, food service, and other “service” not directly related to production. Wage data are only available for 2000.

8 An alternative approach is to incorporate the firm education measure in
technology term of the production function to do one-step estimation. We adopt
the two-step estimation here to avoid the collinearity between firm's education
measure and the number of workers in each education class.

9 While we cannot claim that the sample or our results are representative of all of
China, our empirical results are noteworthy and suggest important areas of further
research.
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Value-added is defined as sales less intermediate goods and adjusted
for final- and intermediate-goods inventory changes.10 Capital is the
book value of total fixed assets. Nominal variables are not deflated, but
year dummies are included in all regressions to act as deflators. As
implied above, the variance of output and inputs across the firms is
large.

The two employee categories are (i) highly educated (Ls) and (ii)
less educatedworkers (Lp). In the survey, each firm is asked to provide
information on the average education level for its full time employees
across different occupations.11 We average the workers' schooling
codes for each occupation and designate each occupation level as
either highly educated or less educated based on the average
schooling of workers in the occupation. The highly educated group
mainly consists of engineering, technical personnel, and managerial
personnel (including sales); and the less educated group mainly
consists of basic and auxiliary production workers.12 Our survey data
provides information on schooling and experience by occupation level
for 2000 and employment for the years 1998 and 2000. We impute
employment data for 1999 using the average employment of 1998
and 2000.13

In our sample, each firm has on average 207 highly educated
workers averaging 16.7 schooling years and 681 less educated
workers averaging 10.8 schooling years.14 Thus, for the average
firm, approximately 23% of the workers are in the highly educated
category. This proportion is above the average for China. For example,
in the year 2002, the proportion of workers in China with at least a
college degree (including three-year college) was about 15.8% in
urban areas (China Labor Statistical Yearbook, 2005). However, our
data include major cities, in which the education level should be
higher than all urban areas, which include small and middle-sized

cities. Another reason for the relatively high proportion of highly
educated workers is that we exclude those workers who contribute
negligibly to production (see footnote 12).

The survey also contains information on the total labor cost
(compensation) for each occupational group, but the information is
available for the year 2000 only. We estimate the annual earnings per
employee in 2000 for each occupational group, using the total labor
cost of that group divided by the number of workers in the group. The
estimated annual earnings include wages, bonus, subsidies and other
items. As shown in Table 1, the average annual earnings for the
workers with high and less education are 26,032, and 12,628 yuan
RMB, respectively.

Following the literature, we use job experience as a proxy for on-
the-job training. We construct a variable representing average
experience for the two educational groups, defined as the difference
between average age and average schooling less 6 years. The cross-
year sample average experience for highly educated and less educated
workers is 12.31 and 14.05 years, respectively. We group the firms
into three ownership categories: state-owned enterprises (SOE),
foreign-invested enterprises (Foreign-Involved Enterprises, FIE), and
non-SOE domestic enterprises.

4. Marginal product of highly educated and less educated workers

Table 2 presents estimates for the production function specified in
Eq. (1) based on two-way fixed effects using both firm- and year-
dummy variables to control for firm- and year-specific fixed effects
and based on the LP method for structural identification of the
production function. We tested the Cobb–Douglas (C–D) estimates
against the more general translog specification and were unable to
reject C–D. The F-value for this test is 1.41 and the p-value is 0.21.
Therefore, we report only the C–D estimation results. Column 1 shows
estimation results for the basic specification, and columns, 2, 3, and 4
show results including interaction terms between year dummies and
city dummies and/or ownership sector dummies in order to capture
omitted time-varying but city or sector specific factors the omission of
which could lead to biased estimation results. Column 5 reports the
estimation results based on the LP method of structural identification.

The results are very robust across specifications, including the LP
procedure. The estimated elasticities of capital and both labor inputs
are all statistically significant at conventional levels. The estimated
elasticities imply that the sample firms operate under increasing
returns to scale.15 The estimated coefficients of the year dummies
imply that total factor productivity increased over the sample period.
The capital elasticity and that of less educated workers are both in
the range of 0.20–0.39; while the elasticity of highly educatedworkers

Table 2
Estimation of production function.

Dependent variable: log (value-added)

(1) (2) (3) (4) (5)

Log (capital) 0.358*** (0.091) 0.347*** (0.091) 0.354*** (0.091) 0.342*** (0.092) 0.344*** (0.003)
Log (labor with high education) 0.538*** (0.160) 0.556*** (0.161) 0.477*** (0.162) 0.498*** (0.163) 0.422 (0.157)
Log (labor with low education) 0.344** (0.159) 0.346** (0.159) 0.381** (0.160) 0.386** (0.161) 0.202 (0.156)
Constant 1.639* (0.988) 1.652* (0.990) 1.725* (0.993) 1.734* (0.995)
Year dummies Yes Yes Yes Yes Yes
Interactive dummies of years and sectors No Yes No Yes Yes
Interactive dummies of years and cities No No Yes Yes Yes
Observations 1176 1176 1176 1176 740
Adjusted overall R-squared 0.488 0.487 0.496 0.494

***, **, and * represent significant level at the 1%, 5%, and 10% level, respectively.
The numbers in brackets are robust standard errors.
Columns (1) through (4) are estimated using standard FE estimation, with a dummy variable for each firm; column (5) uses the method by Levinsohn and Petrin method (2003).

10 It is unusual to have information on inventory changes in Chinese data, and we
cannot be sure of our data's accuracy in this regard. However, since it represents
measurement errors in the dependent variable, the impact should be small as long as
the measurement errors are random.
11 The education level is recorded from values 1 to 7, where 7 represents no
education, 6 is primary school, 5 is junior high school, 4 is senior high school, 3 is
university/college, 2 is master's degree and 1 is doctor's degree. Based on the Chinese
education system, we assume 6 years for primary school, 3 years for junior high
school, 3 years for senior high school, 4 years for college, and 3 years for graduate
school. We define highly educated workers to be those employees who typically have
a bachelor degree or above, that is, with 16 or more schooling years; while less
educated workers are those who typically have less than 16 schooling years.
12 We exclude those worker categories which we identify as engaged in activities
such as health care, food service, and other “service” not directly related to production,
because we believe that such workers would not be employed by conventional cost-
minimizing firms and that they contribute negligibly to production of measured
output.
13 We assume that the education requirement for each occupation is constant for all
three years.
14 The average year of schooling is calculated using average education of each
occupational group weighted by the share of workers in that group.

15 We test for constant returns to scale, and the null hypothesis of constant returns to
scale is rejected.
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is much larger, in the range of 0.42–0.56. The finding of higher
elasticity of highly educatedworkers relative to less educatedworkers
is consistent with other studies, for example, Pavcnik (2002), and
Moretti (2004).

In the estimation discussed above, we have controlled for firm-
specific omitted variables and for time-varying but sector- or city-
specific factors via FE and LP estimation. Yet, it is still possible that input
adjustments within a firm are endogenous, especially for labor
adjustments because of the relative flexibility in adjusting labor in a
short time period. Often, this problem is ignored in the literature due to
thedifficulty offinding instruments.16 In order to test for the influenceof
this possible endogeneity, we adopt an instrumental variable (IV)
estimation procedure. To be successful, we must identify variables that
may be correlated with firms' labor adjustment but not to firm-specific
heterogeneity. Such variables can come from supply-side influenced by
local labor-market conditions.17 There are four such potential variables
in our data: 1) the number of applicants for each high-education job; 2)
the number of applicants for each low-education job; 3) the average
number of weeks to fill the last high-education job; and 4) the average
number of weeks tofill the last the low-education job.18We believe that
these variables are mostly out of the control of a particular firm, and
represent exogenous influences, and are correlated with a firm's labor
adjustment.19 Given the possibility of reporting errors, we run IV
regression using a robust method which down-weights sample outliers
to make the estimation less sensitive to measurement errors.

Table 2a shows the results of IV estimation of Eq. (1). The results of
the first stage regression suggest that we are using reasonably
“strong” instruments. We also partially test the validity of the
instruments by the over-identifying restriction test of Davidson and
MacKinnon (1993) and do not reject the null that the over-identifying
instruments are valid assuming of a subset of the instruments is valid
and identifies the model. The IV results are generally consistent with
those in Table 2. We use the LP estimates column (5) of Table 2 in our
subsequent analysis.

The marginal products (MP) calculated from the LP estimates of
column (5) in Table 2 are shown in Table 3. The marginal product of
capital can be interpreted as the marginal rate of return to investment
in physical capital gross of depreciation. The mean marginal product
of capital across individual firms is 51%. It varies widely across
location and ownership type. SOEs show the lowest return to capital
investment with a rate of 15%, while non-SOE domestic firms show
the highest return of 83%. One explanation for this gap is that non-SOE
domestic firms face borrowing constraints, while SOEs have faced
softer budget constraints reflected in easier access to loanable funds.

The estimatedMP for capital in Shanghai is 76%, the highest among
all of the cities in our sample; while the lowest is that for Chengdu at
29%. If capital investment under the market mechanism goes to the
area that provides the highest MP, the less-developed western region
will not be attractive for investors. As a result, regional inequality is
probably aggravated as China moves to a more market-oriented

economy. This result is consistent with the finding in Fleisher et al.
(2010) based on provincial level data. An important policy of the
Chinese government to address growing regional inequality is its “Go-
West” program, which emphasizes capital investment in western
areas.20 Clearly, to implement the Go-West program, it is important to
raise the MP of capital through improving infrastructure and fostering
technology transfer to lagging regions. This is a topic worth further
investigation (Démurger et al., 2002, Démurger, 2001).

In Table 3 we see that the marginal product of highly educated
workers exceeds that of less educated workers by a large margin.
Among ownership groups, the foreign-invested sector has the highest
MP of both classes of workers, while the SOE group has the lowest. The
ratio of MP of highly educated workers in FIEs to that in SOEs is 4.95,
and the ratio is 9.5 for less educated workers. The relatively lowMP of
workers for SOEs probably reflects the over-staffing in this sector
persisting from the old command economy. In almost all cases,
workers are paid less than their marginal products. In Table 3, on
average, the year 2000 wage of highly educated workers is about 7.5%
of their MP; and the wage of less educated workers is about 19.2% of
their MP. Across ownership groups, the FIE sector has the highest gap,
and the SOE sector has the lowest for both types of workers.21

As discussed in the Introduction, given the transitional nature of the
Chinese economic system from the traditional command economy and
rigid labor allocation, the gap between value of marginal product and
wages is not unexpected. An excess of MP over wages in Chinese
enterprises has been noted in a large number of studies, including
Fleisher andWang (2004)who cite a significant body of earlier research
on both urban and rural collective enterprises. Those studies refer to
employermonopsonypower as onepossible explanation. Parker (1999)
reports evidence of employer monopsony in the state-ownedmachine-
building industry. Monopsony power is an appealing explanation of an

Table 2a
IV estimation of production function.

Dependent variable: log (value-added)

Log (capital) 0.280*** (0.096)
Log (labor with high education) 0.434*** (0.139)
Log (labor with low education) 0.291** (0.145)
Year dummies Yes
City dummies Yes
Ownership sector dummies Yes
Constant 3.152*** (0.506)
Observations 593

Instrumented: labor with high education, labor with low education.
Instruments: the number of applicants for high-education jobs, the number of
applicants for low-education jobs, and the average number of days the two types of
jobs are vacant.
***, **, and * represent significant level at the 1%, 5%, and 10% level, respectively.
The numbers in brackets are robust standard errors.

16 In a recent study, Pavcnik (2002) uses semi-parametric estimation developed in
Olley and Pakes (1996) to account for unobserved firm endogeneity in estimating firm
production functions.
17 Blundell and Bond (1998) propose a GMM type estimation using moment
conditions based on lagged difference of explanatory variables as instruments in
production function estimation.
18 These variables have been reported for one year only. Based on the phrase of the
question in the survey, it is unclear which year those instrument variables are referred
to. We simply assume that they are the same across years and run a pooled IV
estimation. Due to many missing values for instrumental variables, the sample size
becomes much smaller.
19 It is possible that these instrumental variables are still related to firms' recruiting
efforts. Unfortunately, based on data availability, these are the best instruments we
can use. It is our hope that the corruption of our supply-side instruments by demand
influences is weak due to the presence of frequently supply-side restrictions in China.
On the other hand, we view our IV estimation as an additional robustness check on our
LP and FE estimates.

20 The Chinese “Grand Western Development” Project launched in 2000 encom-
passes two million square miles and 300 million people spread across eleven
provinces and autonomous regions. China views it as a crucial plan for reducing
regional gap.
21 A referee suggests that our approach may neglect capital-skill complementarity
and the use of more sophisticated capital of highly educated workers. By neglecting
this relationship, we may have overestimated higher-schooled workers' marginal
product. We cannot observe the capital used by different workers within a firm, and
even if we had data on worker assignments to particular items of physical capital,
identifying the output uniquely associated with these relationships would be
extremely difficult. One albeit imperfect approach to this issue, however, is to test
for complementary between highly educated workers and capital in general through
estimation of a translog production function. The result shows that the cross-partial
derivative of highly educated workers with capital is negative but insignificant at any
reasonable level, while the marginal product for less educated workers is about the
same in both specifications of the production function. Thus, the less-restrictive
translog functional form does not provide evidence of a lower MP-wage gap for highly
educated workers. We believe, without more detailed data on capital, functional form
alone may not be able to control for the complementarity between capital and
different types of workers.
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excess of MP over wages in China, because of a number of market
imperfections and distortions, including obstacles to labor mobility.
Those distortions may also prevent the labor market from achieving an
approximation of a competitive equilibrium. Moreover, financial
intermediation is underdeveloped, leading to capital constraints that
limit firms' expansion to optimal size. Documented and anecdotal
evidence implies that borrowing, land-use, and electricity (power)
constraints preclude many enterprises from achieving their profit-
maximizing size, and there may also be unobserved risk premia
required for investment in additional capital. All of these constraints
are likely to be higher for non-SOE enterprises, and the existence of
larger MP-wage gaps in the non-SOE sector is consistent with the
constraint-plus-monopsony explanation.

5. Education, marginal product, and total factor productivity

In order to investigate the effect of education on worker marginal
products, we estimate the Mincer-type Eq. (7) with year- and firm-
fixed effects. The regressors are the firm-specific schooling difference
between the respective worker classes and firm-specific experience
gap. The education gap varies across cities and ownership sectors. For
the sample, Guangzhou has the largest education gap of 6.21 years,
while Beijing has the smallest with the gap of 5.64 years. FIEs have
6.23 years of difference between the two classes of workers; while
SOE sector has only 5.5 years. However, less educated workers have
more job experience, and on average have worked 1.7 more years
than highly educated workers. In the SOE sector, less educated
workers have the longest job experience compared to the highly
educated group, with the difference of 2.78 years; while the difference
for non-SOE domestic firms is only 0.93 year.

The estimation results are shown in Table 4. The estimated
coefficient of schooling equals 0.263 for the whole sample and is
highly significant, implying a rate of return to education in production
equal to about 30.1%. Since our estimate has controlled for omitted
ability bias, we compare it with the estimates based on earnings data
using IV estimation. There is a very short list of studies on returns to
education based on earnings or wages that control for ability bias
using Chinese data. Li and Luo (2004) estimate a rate of return of

15.0% using 1995 data in urban by generalized method of moments
(GMM) estimation. Heckman and Li (2004) estimate a rate of return
of 14% by IV estimation using data from 2000. Wang et al. (2009)
estimate a marginal return of about 15% for 2002. Clearly, our
estimated effect of education based on marginal productivity is much
larger than the estimates based on earnings reported in the
literature.22 This result is not surprising given that the wages are
much lower than the marginal revenue product for workers in China,
as discussed above.

The higher estimated return to education based on marginal
product compared to that based on earnings is also consistent with
the comparison of wage ratios to marginal product ratios between the
two skill groups. For year 2000, the overall ratio of MP between highly
and less educated workers is 5.3, while the ratio between their wages
is only 2.1. The largest wage compression was found in the SOE sector,
where the ratio of MP between two types of workers is 7.7 but their
correspondingwage ratio is merely 1.4. The smallest compression is in
the FIE sector with the ratio between MP and wages 5.1 and 2.5,
respectively. It appears that the largest wage compression between
highly educated- and less educatedworkers is found in the SOE sector.
For example, in the SOE sector, highly educated workers were paid
about 39% of their counterparts in the foreign-invested sector, while
less educated workers were paid 70% of the corresponding group in
foreign-invested firms. In contrast, the MP ratios for highly and less
educated workers between the two sectors are more nearly equal—
16% and 11%, respectively.

The estimation results for each ownership sector are also reported
in Table 4. The foreign-invested sector has the highest estimated
coefficient of schooling (0.91, implying a rate of return of 148%), and
the estimate is highly significant. In the SOE and non-SOE domestic
sectors, the estimated coefficient of schooling is much smaller with a
rate of return in the range of 7–9%, and it is statistically insignificant.

Table 3
Marginal product (MP) of inputs.

Variables All SOEs Foreign involved firms Non-SOE domestic firms

MP of capital 0.512 0.153 0.450 0.825
MP of highly educated workers 272.531 94.879 470.120 219.628
MP of less educated workers 48.508 17.062 90.701 32.568
MP of highly educated workers (year 2000) 350.728 99.564 625.095 252.971
MP of less educated workers (year 2000) 65.508 12.992 122.859 45.096
Earnings of highly educated workers (year 2000) 26.032 15.670 39.937 19.756
Earnings of less educated workers (year 2000) 12.628 11.209 15.904 10.449

Table 4
Fixed-effect estimation of the Mincer-type equation.

Dependent variable: log (MPs/MPp)

All SOEs Foreign involved firms Non-SOE domestic firms

Difference in schooling years 0.263*** (0.078) 0.084 (0.109) 0.910*** (0.174) 0.066 (0.159)
Difference in experience −0.001 (0.035) −0.027 (0.079) 0.153*** (0.052) −0.229*** (0.072)
Quadratic difference in experience 0.004* (0.002) 0.002 (0.005) 0.008* (0.004) 0.008* (0.005)
Constant 0.510 (0.444) 1.363** (0.592) −3.469*** (1.059) 1.018 (0.900)
Year dummies Yes Yes Yes Yes
Observations 1161 321 390 441
Number of firms 424 112 142 159
Adjusted overall R-squared 0.011 0.0002 0.015 0.002

***, **, and * represent significant level at the 1%, 5%, and 10% level, respectively.
The numbers in brackets are robust standard errors.
Fixed effects and the coefficients for year dummies are not reported.

22 The estimates of return to education using earnings data by the Ordinary Least
Squares (OLS) estimation suffer from the omitted ability bias (Card, 1999). Most
studies using IV estimation find an estimated return higher than that using the OLS
estimation because of the attenuation bias caused by measurement errors (Butcher
and Case, 1994, and Ashenfelter and Zimmerman, 1997).
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The lower return to education in production for the SOE sector
reported here is consistent with the findings based on earnings data in
China.23 We infer that the relatively large impact of education on
production in foreign-invested enterprises reflects a more advanced
stage of economic transition and economic development and a
concomitantly more efficient sorting of workers among firms and
more efficient allocation of factors within firms. Moreover, advanced
technology, which is more likely to be used in the foreign-invested
sector, is likely to increase the marginal product of educated relative
to less educated workers (Gibbons et al., 2005); or in other words,
education equipped them with the capacity to use more advanced
capital, both leading to a higher return to schooling in production.

For the overall sample, the estimated effect of experience is
statistically insignificant in the linear term but significant at the 10%
level at the quadratic term. Among sectors, the estimated coefficient
of experience for SOEs is statistically insignificant, but negative for
non-SOE domestic firms. The varying (even contradicting) results for
SOEs and non-SOE domestic firms are consistent with the specific
pattern for those firms during the course of economic transformation
in China. These enterprises are still not fully transformed to the
market mechanism in terms of their ownership structure, objectives,
and management. Foreign involved firms, however, show a pattern
comparable to firms in amarket economy, and the effect of experience
as measured by marginal product and the rate of return derived from
it is positive and significant, although smaller than that for education.
It is plausible that the difference in the effect of experience between
foreign firms and others is due to inefficient on-the-job training in
non-foreign firms.

Finally, we investigate the indirect effect of education by regressing
TFP on firms' education measures, including average schooling of all
workers and the years of schooling of the CEO. For the three-year period,
on average, TFPgrewby10.58%. FIEs had the fastest TFP growthof 13.9%,
while SOEs had the lowest growth of 7.3%. In Table 5, we report the
result of the TFP regressions. The estimated effect of average worker
education is statistically insignificant on TFP. 24 This is not surprising
given that the effect of education of workers has been controlled for in
theproduction function.25However, the coefficient of CEO's education is
positive and statistically significant at the 10% level. It shows that if
CEO's education increases by one year, TFP is expected to increase 3.6%.

The TFP regression across ownership sectors tells a similar story to
that for workermarginal products based on theMincer regressions. As

can be seen in Table 5, for SOE and non-SOE domestic firms neither
average education of workers nor CEO education has a significant
effect on TFP. However, in the FIE sector, although average education
of workers does not have a significant effect on TFP, CEO's education
does have a quite strong effect. If CEO's education increases by one
year, TFP increases by 8.4%.

6. Conclusions

We have investigated the role of human capital in production
using firm-level panel data from China. We first estimate themarginal
product of workers in different education classes and then estimate
the direct impact of difference in schooling on the difference in
marginal products between the two classes of workers. We also assess
the indirect effect of schooling on firms' total factor productivity. Our
approach avoids problems that arise when wages are used as a
measure of marginal product, as is likely to be the case in China, and it
also reduces unobserved-ability bias and other biases due to firm-
specific and both time-invariant and time-varying unobserved factors.
We also apply recent developments in production function estimation
techniques developed in the work of Olley and Pakes (1996),
Levinsohn and Petrin (2003), and Ackerberg et al. (2006) to control
for time-variant firm-specific productivity shocks. Additionally, by
stratifying across ownership types we assess the causes of produc-
tivity differentials associated with the economic transition of China.

Our major findings are as follows. First, estimated marginal
products are much higher than wages, and the gap is larger for highly
educated workers. Second, the marginal product difference between
highly educated workers and less educated workers is much higher
than their wage difference, and the return to education as measured
by contribution to production is greater than that is measured by
earnings. For the overall sample, we find that the return to schooling
in terms of marginal product is about 30.1%, while the return in terms
of wages reported in a large body of research on China is much lower.
Third, after controlling for the direct effect of education on marginal
product, we are unable to find a significant impact of workers' overall
schooling level on firm TFP, yet the education of the firms' CEOs has a
positive and significant effect on firm TFP. This latter effect applies
only to the foreign-invested sector.

We find that human capital works differently across ownership
sectors and regions. Advances of the market economy and technology
are positively related to the effect of education on production. In the
foreign involved sector, we find that the effect of education on worker
marginal product is the highest, as is the effect of CEO's education on
TFP. Among ownership groups, the SOE category displays the lowest
marginal products, and it also has the lowest rate of TFP growth, about
one half of that among foreign-invested firms.

Our results show that the return to education in production is
much higher in the more market-oriented sector. One implication is

Table 5
The effect of schooling on TFP.

Dependent variable: TFP

All SOE Foreign involved Non-SOE domestic

Average education of all workers 0.028 (0.190) 0.050 (0.044) 0.032 (0.027) 0.009 (0.033)
CEO education 0.036* (0.016) −0.017 (0.028) 0.084*** (0.028) 0.014 (0.021)
Constant 2.023*** (0.321) 2.476*** (0.614) 1.447** (0.594) 2.727*** (0.452)
Year dummies Yes Yes Yes Yes
Sector dummies Yes Yes Yes Yes
City dummies Yes Yes Yes Yes
Observations 1162 322 395 442
Adjusted R-squared 0.144 0.16 0.19 0.06

Regressors are the average education of workers including high- and low-educated workers.
***, **, and * represent significant level at 1%, 5%, and 10%, respectively.
Standard errors are in parenthesis.

23 In Li (2003), the estimated return to college in the private sector is about 29%
higher than that in the SOE sector.
24 Since we have only one year data on CEO's education, we cannot use fixed-effects
estimation. We assume it is the same for all three years to run a pooled regression.
25 The estimation results remain similar when we include separate variables for
average education of the two classes of workers.
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that foreign involved sectors and developed cities like Shanghai will
continue to attract relatively educated and talented workers,
exacerbating. As a cosequence, regional inequality in China. Therefore,
in order to reduce regional disparity, it should be beneficial to adopt
policies that increase marginal products to attract human capital and
physical capital into less-developed areas. Continued economic
reforms to speed the transition of state-owned and collectively
owned domestic enterprises into market-oriented firms should help
China move in this direction.
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