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Towards Ground Truthing Observations
in Gray-Box Anomaly Detection

Jiang Ming
College of Information Sciences & Technology
Pennsylvania State University, USA
mingjiangpku @ gmail.com

Abstract—Anomaly detection has been attracting interests
from researchers due to its advantage of being able to detect
zero-day exploits. A gray-box anomaly detector first observes
benign executions of a computer program and then extracts
reliable rules that govern the normal execution of the program.
However, such observations from benign executions are not
necessarily frue evidences supporting the rules learned. For
example, the observation that a file descriptor being equal to
a socket descriptor should not be considered supporting a rule
governing the two values to be the same.

Ground truthing such observations is a difficult problem since
it is not practical to analyze the semantics of every instruction
in every program to be protected. In this paper, we propose
using taint analysis to automatically help the ground truthing.
Intuitively, the same taint source of two values provides ground
truth of the data dependence. We implement a host-based
anomaly detector with our proposed taint tracking and evaluate
the accuracy of rules learned. Results show that we not only
manage to filter out incorrect rules that would otherwise be
learned (with high support and confidence), but manage recover
good rules that are previously believed to be unreliable. We also
present overheads of our system and time needed for training.

Keywords: anomaly detection, taint analysis, system call mon-
itor, ground truthing

I. INTRODUCTION

Anomaly-based detectors construct a model of normal be-
haviors of a program and detect deviations from such a
model. Unlike signature-based detectors, anomaly detectors
could detect zero-day exploits since the vulnerable program
will behave differently even if the exploit is new and unknown.
Many anomaly detectors have been proposed to monitor
system calls of a program. Some of them focus on control
flow information [1], [2], [3], [4], [5], [6], [7], [8] while
others investigate how data flows among arguments and returns
of system calls [9], [10], [11], [12], or a combination of
them [13].

Unlike white-box anomaly detectors which construct the
normal behavior from static analysis of the code or binary [6],
gray-box anomaly detectors first subject the program to a set
of benign inputs and observe its execution. Such observations
serve as training data from which the normal execution of
the program is learned. For example, if the return value of
a system call is the same as the argument of another system
call in many observations, a rule can be formed to govern the
execution of these two system calls. This forms the basis of
data-flow analysis in gray-box anomaly detection.
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However, observations from benign executions are not nec-
essarily frue evidences supporting the rules learned. Fig 1
shows the source code of a sequence of system calls with some
of the arguments and returns replaced by their observed values.
In this example, a number of arguments and returns have
the value of 5. An anomaly detector seeing a large number
of observations like this would learn a rule that all these
arguments and returns have to have the same value. However, a
simple analysis into the semantics of the program reveals that
the value 5 in the first three system calls (the value of a file
descriptor) and the value 5 in the other system calls (the value
of a socket descriptor) are completed unrelated. Therefore, this
observation is not a true evidence supporting the rule learned.

Note that setting a higher threshold to the support and con-
fidence in learning the observations cannot solve this problem.
The problem is not about the lack of supportive observations
or the existence of conflicting observations. The observations
might have a high support and even 100% confidence, but the
observations might not be true evidence to begin with.

Ground truthing the observations is hard, because, in gen-
eral, it requires knowledge of the semantics of each argu-
ment/return of each instruction in each program to be pro-
tected. It is not practical to manually analyze such program
semantics. Most data dependency analysis techniques would
not help unless we turn to a white-box anomaly detector to
analyze the source or binary of the program, which might not
be an option at all in many scenarios.

In this paper, we propose using taint analysis to automat-
ically help the ground truthing. Dynamic taint analysis runs
a program and observes which computations are affected by
predefined taint sources such as user input [14], [15], [16],
[17], [18]. Intuitively, the same taint source of two system
call arguments or returns provides ground truth of their data
dependency. In the observation shown in Fig 1, taint analysis
could tell us that the value 5 in the first three system calls are
of the same taint source while the value 5 in the other system
calls are tainted differently. Armed with the taint information,
we are a big step further in ground truthing the observations
support on the rules learned.

We implement our proposed system based on a state-of-the-
art anomaly detector that learns three sets of rules from data-
flow and control-flow analysis [13]. Trace-driven evaluations
on two different programs show that our proposed anomaly
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Fig. 1: Source code and its observed arguments and returns

detector not only manages to filter incorrect rules that would
otherwise be learned (with high support and confidence) by
a previously proposed state-of-the-art anomaly detector, but
to recover good rules that are previously believed to be
unreliable. We also present the overhead of our system in both
the learning phase and the online monitoring phase. Results
show that although there is a significant overhead of 5 times
of the (offline) training overhead, online monitoring with our
system is even faster than existing systems.

II. RELATED WORK

There has been a huge amount of work on anomaly detec-
tion using system calls. Gao et al. systematically categorized
them into white-box, gray-box, and black-box approaches [4]
depending on the information the detector uses. In this paper,
we focus on gray-box (and black-box) detectors that do not
analyze the source or binary of the program but observe benign
executions of it to build the anomaly detection model.

Among the gray-box anomaly detectors, many capture the
control-flow information of system calls in order to detect
code-injection attacks [1], [2], [3], [4], [5], [7], [8]. Obser-
vations in these detectors contain system call sequence infor-
mation but not values of arguments or returns, and are very
much reliable in the sense that the observed order of system
calls is always true (in benign executions). Therefore, the
ground truthing in these observations concerns only whether
a system call immediately follows another or there could be
other system calls made between them. This paper does not
discuss the ground truthing of this type of observations due to
its relative simplicity.

Other detectors focus more on the data flow [9], [10], [11],
[12], [13] by monitoring the arguments and returns of system
calls. In one of the latest and most sophisticated anomaly
detectors, Peng et al. [13] leverage the results from control
flow analysis to learn more accurate and useful rules governing
data flows among system call arguments and returns. However,
even in this latest and most sophisticated work, the anomaly
model does not investigate whether the observations (training
data) truly support the rules learned. For example, when an
observation shows that two system call arguments equal to
one another, is it possible that they are, in fact, unrelated and
simply equal to one another by chance? Could many of such
observations lead to bad rules learned? It is clear that ground
truthing these observations is difficult as it cannot be achieved
by comparing values in the observation or calculating support
or confidence. More work needs to be done.

Taint tracking has been proposed to deal with a broad range
of security problems [19], [20], [21]. For example, James et
al. [22] propose using taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity
software. TEMU [23], which is built upon a whole-system
emulator, QEMU, is proposed to do dynamic taint analysis.
Our proposed ground truthing system obtains taint information
of system call arguments and returns with a modified version
of TEMU.

Perhaps the closest work to our proposed ground truthing
system is the anomalous taint detection proposed by Lorenzo
et al. [24], since both our ground truthing system and the
anomalous taint detection make use of taint information for
anomaly detection. However, the purposes of monitoring the
taint propagation in the two systems are entirely different.
Anomalous taint detection aims at lowering the false positives
of the detector by focusing on only system calls that are tainted
with external inputs. The idea was that untainted system calls
could not be exploited by attackers, and therefore do not have
to be part of the detection model. Our work on ground truthing
goes one step further to investigate whether observations (on
tainted system calls) truly support rules learned by the anomaly
detector, regardless of its taint source being external inputs or
not.

III. GROUND TRUTHING OBSERVATIONS AND ANOMALY
DETECTION MODEL

In this section, we first present the details of our proposal
on ground truthing observations with taint information from
dynamic monitoring of the program execution. We then show
how the proposed ground truthing technique is applied on
one of the latest anomaly detectors that learns data flow
among system call arguments and returns. Implementation
and evaluation on the proposed system are shown in the next
section.

A. Ground truthing observations with taint analysis

Revisiting the source code shown in Fig 1, we find that the
cause of the misleading observation is that some arguments
and returns have the same value although they are independent
of one another. This shows that equality (or other relations)
does not necessarily reveal data dependency. On the other
hand, reliable data dependency can be obtained by dynamic
taint analysis. The same taint source of two values provides
ground truth of the data dependency.



Our anomaly detector therefore needs to assign taint tags
to system call arguments and returns and monitor their prop-
agation. Note that this is different from most previous work
involving taint analysis (e.g., in [17], [18]). In most previous
work on taint analysis, taint sources are data sources that are
not trusted and include keyboard, network, and hard disk. In
our work, we don’t care if the data source is trusted or not,
but how data flows among system call arguments and returns.
Therefore, we label out-arguments and returns as taint sources
(with different taint tags) even if they are trusted.

Assuming that the system calls shown in Fig 1 are the only
system calls observed. When we see the first system call, none
of the arguments or returns has a taint tag associated yet.
We therefore assign a unique taint tag to each of them, as
shown in the first row in the table in Fig 2. The program
continues executing and the taint tags travel together with the
corresponding values in memory. When the second system
call request is observed, we realized some of its arguments
carry taint tags, e.g., the first argument carries a taint tag of
1000, which is the same taint tag assigned to the return of
the first system call. With this, our ground truthing system
finds that the return of open and the first argument of read
not only have the same value but depend on each other.
Therefore, this observation can be used reliably for anomaly
model construction.

System call | Return value Argument 1 Argument 2 Argument 3
open 5 configure 0x1 OOOOO
read 32768 5 0x8091 DCO 32768
close 0 5
socket 5 1 1 0
fentl64 0 5 4 2
connect _1 5 0><8079520 16
close 0 5

Fig. 2: Taint tags propagating with system call arguments and
returns

When system call read is about to return, our system finds
that the second and the third arguments are not tainted yet,
and therefore assigns two new taint tags to them. Again, the
program continues to execute and we monitor the propagation
of the taint tags together with the corresponding values in
memory. When the fourth system call socket returns, our
system realizes that although its return has the same value as
some arguments and returns of the previous system calls (value
equals 5), it does not come with a taint tag (1006 is the taint
tag assigned to it later). Therefore, our ground truthing system
concludes that this observation cannot be used for anomaly
model construction.

B. Constructing an anomaly detection model

After explaining how our ground truthing system analyzes
an observation to determine if it can be used for anomaly
model construction, we now explain how it can be used in
conjunction with an existing anomaly detector to construct a
more accurate anomaly detection model. Here we pick one
of the most sophisticated and latest anomaly detector that
leverages control-flow information to learn data-flow rules
among system call arguments and returns [13], although our
ground truthing system could be applied to other anomaly
detectors, too.

a) System call patterns: System call patterns are learned
from control-flow information in observations without ground
truthing. A system call pattern is a sub-sequence of sys-
tem calls (without considering arguments or returns) that
are observed frequently. Intuitively, each pattern extracted
corresponds to an atomic task performed by the program. For
example, the following system call pattern P; consists of four
system calls, open, fstat64, mmap, and close.

P, = (005,197,192, 006)

We represent each system call in this pattern with the
notation P;S; where i € [1,4] in this example.

b) Relations mining for rule sets A, B, and C: Each rela-
tion to be mined governs two pieces of information to follow
certain rules. For example, the two pieces of information could
be two system call arguments or one system call argument
and one system call return. The rule to follow could be that
the two values equal to one another, or one is always greater
than the other. For example, a particular rule for P; governing
the equality of the return of the first system call and the first
argument of the second system call could be represented as

P S1 Ay = P1S2 Ay

where Ay denotes the return and A;,7 > 1 denotes an
argument of the corresponding system call. Peng et al. has
more detailed descriptions on the various relations that can be
learned in their proposed anomaly detector [13].

After system call patterns are found, rules are learned
among system call arguments and returns within each pattern
(rule set A), on repeating patterns (rule set B), and across
different patterns (rule set C).

Not every equality of arguments or returns is a rule. We
perform the mining by calculating support and confidence of
each rule, where support and confidence are calculated on
observations that have passed the ground truthing mechanism.
Unlike the previous work by Peng et al. where support is in-
creased by one for any observations in which, e.g., two system
call arguments have the same value, we increase support by
one only if the two arguments have the same taint tag. This
additional requirement is the ground truth that the observation
truly supports the rule to be learned. Rules with support
and confidence lower than thresholds minsupp or minconf,
respectively, are filtered out due to their inconsistency.



IV. IMPLEMENTATION AND EVALUATION

In this section, we first present the implementation of
our ground truthing system (Section IV-A). To evaluate the
effectiveness of the ground truthing, we apply the ground
truthing algorithm on the training of two popular programs
(see Section IV-B) and compare the anomaly detection models
built from our system with those built by one of the latest
and most sophisticated anomaly detectors (see Section IV-C
and Section IV-D). In the end, we show the overhead of our
system by looking at the speed of convergence, time needed
for training, and performance overhead in online monitoring
in Section IV-E.

A. Implementation details

As shown in Fig 3, there are many steps involved in apply-
ing our ground truthing system to anomaly model construction.
Here we concentrate on the implementation of the ground
truthing sub-system with taint analysis as other components
are similar to existing anomaly detectors, e.g., that proposed
by Peng et al. [13].

We extend TEMU [23], a whole-system dynamic binary
analysis platform, to perform taint analysis on system calls.
As discussed in Section III-A, our system differs from other
systems for taint analysis in that we have to assign taint
tags to all system call arguments and returns even if they
are trusted. To do that, we intercept system calls in TEMU’s
instrumentation to obtain real-time system call information
including the system call numbers, arguments, and returns.
We then label the return values and out-arguments of all
system calls as taint sources if they are not tainted yet. Taint
sources are differentiated by labeling them with different taint
tags. To track taint propagating among system calls, we also
enable TEMU to trace all kernel instructions in addition to
user instructions. The implementation of all these translate to
3,500 lines of code added/modified in TEMU.

The output of our taint analysis for ground truthing ob-
servations is a system call execution trace augmented with
taint information. The trace lists all system calls and values
of the corresponding arguments and returns. Each system call
argument and return also comes with a taint tag indicating its
data dependency with other arguments and returns.

Other parts of the system are very similar to the anomaly
detector proposed by Peng et al. [13]. We manage to obtain the
source code of the anomaly detector proposed by Peng et al.,
and integrate our ground truthing system with it with small
modifications. The original source code of Peng’s anomaly
detector also enables us to do a fair comparison between the
two systems in their effectiveness, which is shown in the next
subsections.

B. Training

We perform our evaluation (ground truthing observations,
training, and online monitoring) with the same desktop com-
puter (running Linux kernel 2.6.27 on a 2.66-GHz dual core
CPU and 4 GB of memory). Two popular programs from GNU
utilities, cmp and gzip are used in our evaluation.

1) cmp: cmp is used to compare two files byte by byte.
When difference between two files are found, cmp returns
the position at which the difference occurs. Training of cmp
consists of running it 100 times with files to be compared of
different types (e.g., txt, doc, jpg, mp3 and cpp) and different
sizes (e.g., from 1 KB to 7 MB).

2) gzip: For the purpose of demonstrating the effectiveness
of our ground truthing system, we focus the training of gzip
on its decompressing functionality. To do that, we first have
to prepare for some compressed files. We pick 25 files of
different types (e.g., txt, doc, jpg, mp3, tar, and ppt) and
different sizes (e.g., from 6 KB to 7 MB) and compress them
in two different ways, one in which the compressed file and
the original file share the same prefix in their names (e.g.,
abc.mp3 is compressed into abc.mp3.gz), and one where
files have unrelated names (e.g., abc . mp3 is compressed into
filel.gz). This gives us 50 compressed files.

Training is then performed by decompressing these 50
files with two different command line options —d and —dN.
The latter restores the original filename (e.g., filel.gz
decompresses into abc.mp3), while the former does not
(e.g., filel.gz decompresses into £ilel). This training is
designed specifically to show the effectiveness of our ground
truthing technique in which the taint tags tell us how the output
filename is derived. Table I gives an example of the resulting
decompressed file under four different scenarios.

Source file abc.mp3 abc.mp3
Compressed file abc.mp3.gz | filel.gz

- -d abc.mp3 filel
Decompressed file I Zbe.mp3 3bc.mp3

TABLE I: Decompressed file of gzip under different settings

We perform the training on two anomaly detectors with
various settings of minsupp and minconf. DF denotes one
of the latest and most sophisticated anomaly detectors that
leverage control-flow information to learn data-flow relations
among system call arguments and returns [13], and GT denotes
our ground truthing technique. Table II summaries the number
of rules learned by the two detectors.

minsupp 0 10 15 20
minconf 0.0 0.75 0.8 0.99

rule set A DF 987 885 885 885

GT 56 54 54 54

DF 110 107 107 107

cmp | rule set B GT 0% 0% 93 93
le set C DF 1611 1611 1585 1585

fule se GT || 118 | 118 | 93 93

rule set A DF 1710 592 566 551

4 GT || 145 | 28 27 26

. DF 75 63 60 47
gzip | rule set B GT ) 33 30 57
rule set C DF 5692 1065 931 893

) GT 1754 17 7 0

TABLE II: Number of rules learned
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C. Filtering out bad rules

Table II shows that there are big differences between the
number of rules learned by the two detectors. Upon further
investigation, we realize that almost all rules learned by GT
exist in rules learned by DF, with only a very small number
of exceptions (see Section IV-D for discussion on good rules
recovered by GT). In other words, the effectiveness of ground
truthing is huge. A very large amount of rules learned by DF
are not truly supported by observations.

Further more, we see that these large differences exist in all
four settings of minsupp and minconf. In other words, having
higher settings of minsupp and minconf in DF does not help
filtering out the rules that violate the ground truthing check.
Our ground truthing mechanism is a necessary step whose
effectiveness cannot be achieved by manipulating the settings
of minsupp and minconf.

We now turn our attention to these large number of rules
filtered out by our ground truthing mechanism and analyze
them in detail. After investigating into them, we find that most
of these rules fall into one of the following two categories.

o The values of two system call attributes are the same, but

they carry different meanings.

o Two system call attributes have the same meaning and

value, but the two system calls are not related at all.

1) Same value but different meanings: This usually happens
in arguments and returns where constants are used. These
constants for different system calls might have the same value
when they carry completely different meanings. For example,
0 in a return value may indicate success of the call, while 0 in
an argument might be used to specify a particular action to be
performed. Observations might show the same value of these
constants, which in turn confuse DF to learn a rule; on the
other hand, GT checks the taint tags of them to find out that
they are unrelated, and therefore filters out the observations.

Here is one system call pattern learned in the training of
gzip

P, = (rt_sigaction,open, fstat64, read,
rt_sigprocmask, open, rt_sigprocmask,brk,brk)
and its rule from DF with a support 64 and confidence 1.0

P,S3A0 = PoSgAq

It says that the return of fstat64 equals to the first
argument of brk. fstat64 returns 0 when it succeeds in
checking information of a file. brk is usually used to change
the size of the data segment. With an argument of 0, it finds the
current location of the program break. It’s apparent that these
two values have different meanings and no data dependency.
GT correctly identifies the ground truth of the observations
and filters them out.

By the same token, another rule learned by DF says that
the third argument of rt_sigaction equals to the third
argument of rt_sigprocmask, which is NULL in the
observations. GT, again, correctly performs ground truthing
on the observations and filters them out since they don’t share
the same taint tag.

2) Same value, same meaning, but unrelated system calls:
Here is a system call pattern from the training of cmp

Ps; = (read, read, read)

and its rule learned in DF with a support of 9,420 and
confidence of 1.0

P551A0 = P5SQA0

where the return value of read indicates the number of bytes
read.

By analyzing the source code that leads to these system
calls, we find that they correspond to reading different files
(files for comparison in executing cmp). In most cases, the
returns of read are 4,096 even when reading different files.
Without ground truthing, DF finds such a rule with very large
support and excellent confidence. However, the two system
calls involved are actually unrelated.

We also see similar examples where the rule governs argu-
ments of read, where the observations also fail the ground
truthing test.

D. Recovering good rules

Ground truthing helps filter out observations that do not
truly support a rule from the rule mining process. However,
ground truthing does not generate new observations from
which rules are learned. That said, the filtering out of noisy
observations could potentially make a rule that is previously
believed to be unreliable (with low confidence) stand out. An



example appears in P» in training gzip (see Section IV-C),
where both DF and GT learns a rule that the first arguments
of the two open system calls share the same prefix.

The two open system calls correspond to the opening
of the compressed file and the decompressed (output) file,
respectively. As shown in Table I, these two files may or
may not share the same prefix, depending on the option used
(=d or —dN) and the filename of the compressed file. In our
particular way of training, 25% of the time (when the source
and compressed file do not share the same prefix and —dN is
used) they do not share the same prefix. Therefore, DF finds
a confidence of 0.75 for this rule.

On the other hand, GT checks for the taint tags on the two
arguments as well, and realizes that the two arguments only
share the same taint tag when option —d is used. When —dN
is used, the name of the decompressed file is derived from
the content of the compressed file instead of the name of the
compressed file. Interestingly, when option —-d is used, the
two arguments of open always share the same prefix, and
therefore the corresponding rule has a confidence of 1.0. GT
manages to recover such a good rule, unlike DF in which the
rule could have been filtered out due to its low confidence.

Note that these rules recovered might not be enforceable by
the online monitoring, which is further discussed in Section V.

E. Overhead

We perform our experiment to evaluate the overhead of
our ground truthing system from three aspects — speed of
convergence, time required for training, and overhead in online
monitoring. To make a fair comparison between our ground
truthing system and DF [13], we replicate the evaluation
system setting in DF as much as possible.

Evaluation is performed on a system that tries to protect
an apache?2 web server. Training of the anomaly detection
model is performed by subjecting the server to 30 hours of logs
of a university website in which there are a total of 148, 370
(benign) http requests. We perform this experiment on both
DF and GT in order to make a fair comparison.

1) Speed of convergence: We have all http requests in a
log file and replay them to the web server to perform training.
Fig 4 shows the number of rules learned in the process of
replaying the requests in the log file when maxdist = 10,
minsupp = 100, and minconf = 1.0 for both DF and GT. It
shows that the speed of convergence on the two techniques is
similar to one another. It needs to consume roughly 25 hours
of the http requests before learning converges.

2) Training time: Training is performed on a desktop
computer with a 2.66-GHz dual core processor and 4 GB
of memory. Training takes roughly 10 hours for DF while
50 hours for GT. This is mainly due to the taint propagation
required in the training of GT. However, since training can be
performed offline and potentially paralleled, we do not believe
that the longer training time makes our ground truthing system
impractical.

3) Overhead in online monitoring: The same machine used
in training the anomaly detector is now used to host the web
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server for online monitoring. The computer is running Linux
with kernel 2.6.27, which is instrumented to have all system
calls intercepted. Arguments and returns of each system call
are checked for consistency with the rules learned in training.
Note that the online monitoring system does not perform taint
analysis. Therefore, the difference between DF and GT in this
step is merely on the different rules used for consistency check.
We discuss the limitation of this approach in Section V.

Just like what Peng et al. did in their evaluation of DF, we
use a program to simulate (multiple) clients accessing the web
server. Each client is configured to send a (valid) request to
the web server every 10 milliseconds. When we simulate more
and more concurrent clients, the web server becomes more and
more heavily loaded.

Each experiment lasts for 60 seconds. We measure the



latency experienced by each client as an indication of the
overhead of the system. This latency is measured as the
difference between the time an http request is sent and the
time the corresponding response is received by the client. Fig 5
shows the result when the number of concurrent clients (who
are located in the same LAN as the web server) increases
from 1 to 64. It also shows the latency when the server is not
instrumented for online monitoring at all.
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Fig. 5: Average latency experienced

Results show that GT constantly leads DF by a few mil-
liseconds. The difference ranges from 2 to 3 milliseconds
when there are fewer than 8 concurrent clients to about
20 milliseconds when there are 64 concurrent clients. As
discussed earlier, GT and DF capture the same amount of
information during online monitoring. The only difference
between them is the number of rules to be checked. Since
GT learns a significant smaller number of rules (due to the
ground truthing filtering out many noisy observations), it has
a better performance than DF. Comparing GT and a web server
that is not configured for anomaly detection, GT adds roughly
4 to 40 milliseconds of latency.

V. LIMITATIONS AND CONCLUSION

There are some limitations to the ground truthing system we
propose in this paper. First, the ground truthing of observations
is done by monitoring the propagation of taint tags. Therefore,
some limitations of existing taint analysis, e.g., undertainting
and overtainting [16] are inherited to our ground truthing
system. Such imprecision introduced in tainting system call
arguments and returns could potentially introduce errors into
the rule mining process.

Second, although our ground truthing system makes a
large step towards ground truthing observations by monitoring
the taint propagation of system call arguments and returns
which indicates data dependency, there is still subtle difference
between that and the ultimate ground truth. For example, the
fact that a system call argument is derived from the value of
the return of another system call, and the fact that they equal to

one another in many observations do not necessarily guarantee
that they equal to one another in all future executions.

Third, our online monitoring does not perform taint analysis,
which makes it impossible to enforce some rules learned. For
example, the rule that we manage to recover from the training
of gzip discussed in Section IV-D could only be enforced if
taint analysis is performed in online monitoring. We choose
not to do so because the large overhead taint analysis has on
the system. We leave it our future work to make taint analysis
in online monitoring more practical.

Last, though not intuitively true, some observations filtered
out by our ground truthing system could actually contribute
positively to the training of rules. One example is when the
intrusion detector learns the relation of two data sources that
appear to be unrelated (in the sense of data propagation).
Such relations might not be supported by taint analysis and
the corresponding observations will be filtered out, but they
may nevertheless good rules capturing normal execution of a
program.

In conclusion, we propose using taint analysis to automat-
ically perform ground truthing of observations in an anomaly
detector that tries to learn rules governing system call argu-
ments and returns. Our experiments show that our ground
truthing system manages to detect and filter out many observa-
tions that do not truly support rules learned. It is a significant
improvement to the latest and most sophisticated anomaly
detectors in that many bad rules are filtered out and good rules
are restored. A trace-driven evaluation shows that although
(offline) training takes significant longer time, convergence
of the training exhibits about the same characteristics as in
existing anomaly detectors, and online monitoring is even a
little more efficient than existing ones.
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