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Abstract

Y is conditionally independent of Z given X if Pr{f(y|X,Z) = f(y|X)} = 1 for all y on its support,
where f(.|.) denotes the conditional density of Y given (X,Z) or X. This paper proposes a nonparametric

test of conditional independence based on the notion that two conditional distributions are equal if and

only if the corresponding conditional characteristic functions are equal. We extend the test of Su and

White (2005) in two directions: (1) our test is less sensitive to the choice of bandwidth sequences; (2) our

test has power against deviations on the full support of the density of (X,Y,Z). We establish asymptotic

normality for our test statistic under weak data dependence conditions. Simulation results suggest that

the test is well behaved in finite samples. Applications to stock market data indicate that our test can

reveal some interesting nonlinear dependence that a traditional linear Granger causality test fails to

detect.
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1 Introduction

In this paper, we investigate a nonparametric test of conditional independence. Let X, Y and Z be

random variables. As in Su and White (2005, “SW”), we write

Y ⊥ Z | X (1.1)

to denote that Y is independent of Z given X, i.e., Pr{f(y|X,Z) = f(y|X)} = 1 for all y on its support,
where f(y|x, z) is the conditional density of Y given (X,Z) = (x, z) and f(y|x) is that of Y given X = x.

In comparison with the number of nonparametric tests of independence or serial independence in the

literature, there are few nonparametric tests for conditional independence of continuous variables. Tests

previously given include those of Linton and Gozalo (1997, “LG”), Fernandes and Flores (1999), and

Delgado and González-Manteiga (2001, “DG”). More recently, SW have proposed a test for conditional

independence based on a weighted version of the Hellinger distance between the two conditional densities

f(y|x, z) and f(y|x), and they show that the asymptotic null distribution of their test statistic is nor-
mal. Although this test is straightforward to implement, it has two limitations. First, it uses the same

bandwidth sequence in estimating all required joint and marginal densities nonparametrically; this is un-

satisfactory when the dimension of (X,Y,Z) exceeds three. Second, their test can only detect deviations

from conditional independence on a compact subset of the support of the joint density of (X,Y,Z).

Here we study the use of conditional characteristic functions (CCFs) to test for conditional indepen-

dence, motivated by the following considerations: (1) the ability of CCFs to characterize conditional

independence, based on the fact that two conditional distributions are identical if and only if their re-

spective CCFs are equal; (2) the demonstrated ability of empirical characteristic functions (ECFs) to

yield well-behaved, powerful tests for other important distributional hypotheses, such as goodness-of-fit,

symmetry, homogeneity, independence, and serial independence (see Hong (1999) for a brief account); (3)

the appeal of obtaining a test with power complementary to that of previous tests; (4) the desirability of

obtaining a computationally convenient test, based on limiting normal or chi-squared distributions, as in

Hong (1999) or Brett and Pinkse (1997) and Pinkse (1998, 2000), who use characteristic function-based

approaches to test for independence, serial independence, and spatial independence; and (5) the appeal

of obtaining a test statistic whose limiting distribution does not depend on the presence of estimated

parameters.

Concerning our last three motivations, we began with only a strong suspicion, based on the previously

cited work, that a CCF approach would yield tests with these appealing properties. As we prove, how-

ever, this approach does indeed deliver the desired properties. The extreme generality of the alternative

hypothesis here makes it correspondingly difficult to study the global efficiency (e.g., rate-optimality or

minimaxity) of any particular test. Indeed, as an Associate Editor has noted, it is possible to construct

a large variety of different tests by employing sample analogs of characterizations of conditional indepen-

dence (e.g., integral transforms) other than CCF. Nevertheless, because each such test necessarily exploits

certain features of the data generating process at the expense of others, complementarities between tests

can easily arise. For example, DG’s test effectively uses only certain low-frequency information, as it is

based on the empirical distribution function; in contrast, our test is more powerful against high frequency

2

https://www.researchgate.net/publication/254287768_Hypothesis_Testing_in_Time_Series_via_the_Empirical_Characteristic_Function_A_Generalized_Spectral_Density_Approach?el=1_x_8&enrichId=rgreq-b77e519bf1e05ed33711108b06fcabdd-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY4NDk0MjtBUzo5OTM3MTMxMTk2MDA4MkAxNDAwNzAzMzc2MjE4
https://www.researchgate.net/publication/243766550_Those_Taxes_are_all_over_the_Map_A_Test_for_Spatial_Independence_of_Municipal_Tax_Rates_in_British_Columbia?el=1_x_8&enrichId=rgreq-b77e519bf1e05ed33711108b06fcabdd-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY4NDk0MjtBUzo5OTM3MTMxMTk2MDA4MkAxNDAwNzAzMzc2MjE4
https://www.researchgate.net/publication/222353601_Consistent_Nonparametric_Testing_for_Serial_Independence?el=1_x_8&enrichId=rgreq-b77e519bf1e05ed33711108b06fcabdd-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY4NDk0MjtBUzo5OTM3MTMxMTk2MDA4MkAxNDAwNzAzMzc2MjE4


alternatives. This validates our third motivation.

We achieve the goal of our fourth motivation by exploiting ideas from the approaches of Hong (1999)

and Pinkse (1998, 2000). Like them, we base our test upon the properties of characteristic functions and

use a weighted integral approach. Unlike them, we test for conditional independence instead of (serial

or spatial) independence; the conditioning significantly complicates matters. We also exploit ideas from

Bierens (1982, 1990) on consistent specification testing; our test is thus consistent against all deviations

from conditional independence on the full support of the density of (X,Y,Z). Unlike Bierens’ tests and

those of LG, Fernandez-Florez (1999), and DG, and like the test of SW, our test statistic has a normal

null distribution asymptotically.

Finally, we prove that the asymptotic null distribution of our CCF-based statistic is not affected

by
√
n-consistent estimation of unknown parameters. In contrast, DG’s test yields a statistic whose

asymptotic null distribution typically is affected, as it is based on the Cramér-von Mises criterion. This

validates our fifth motivation.

Our paper offers a convenient approach to testing for distributional hypotheses via an infinite number

of conditional moment regressions, and by relying on the properties of CCFs, it unifies the two branches

of the literature in an insightful way. A variety of interesting and important hypotheses other than

conditional independence in economics and finance, including conditional goodness-of-fit, conditional

homogeneity, conditional quantile restrictions, and conditional symmetry, can also be studied using our

approach. These tests are naturally suited to answering such questions as “Are the distributions of

assets, consumption, or income implied by a particular dynamic macroeconomic model close to the

actual distributions in the data?” “Is there any significant difference in wage distributions between blacks

and whites (or any two of the ethnics) conditional on their characteristics such as age, education and

experience?” or “Does the stock market react symmetrically to positive and negative shocks after taking

into account the influence of all fundamentals?”

It is well known that distributional Granger non-causality (Granger, 1980) is a particular case of

conditional independence. Our test can be directly applied to test for Granger non-causality without

the need to specify a particular linear or non-linear model. Additionally, our test can be applied to the

situation where not all variables of interest are continuously valued or observable. In particular, our test

applies to situations where limited dependent variables or discrete conditioning variables are involved.

Further, it is common in econometrics that conditional independence tests would be conducted using

estimated residuals or other estimated random variables, which are a function of the observed data and

some parameter estimators. It is straightforward to show that parameter estimation error has no effect

on the asymptotic null distribution of our test statistic. For other motivational examples and potential

applications of our test, see LG and SW.

The remainder of this paper is organized as follows. In Section 2, we describe the basic framework

for our nonparametric test for conditional independence when there is no parameter estimation involved

and all random variables are continuously valued. In section 3 we study the asymptotic null distribution

of the test statistic and discuss the local power properties of our test. We examine the finite sample

performance of our test via Monte Carlo simulation in Section 4. We apply our test to stock market data

in Section 5. Final remarks are contained in Section 6. All technical details are relegated to Appendices
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A through C.

2 Basic Framework

In this paper, we are interested in the question of whether Y and Z are independent conditional on X,

where X, Y and Z are vectors of dimension d1, d2 and d3, respectively. The data consist of n identically

distributed but weakly dependent observations (Xt, Yt, Zt), t = 1, ..., n.

The joint density (cumulative distribution function) of (Xt, Yt, Zt) is denoted by f (F ). Below we

make reference to several marginal densities from f(x, y, z) which we denote simply using the list of their

arguments — for example f(x, y) =
R
f(x, y, z)dz, f(x, z) =

R
f(x, y, z)dy and f(x) =

R
f(x, y, z)dydz

where
R
denotes integration on the full range of the argument of integration. This notation is compact,

and, we hope, sufficiently unambiguous.

Further, let f(.|.) denote the conditional density of one random vector given another. The null of

interest is that conditional on X, the random vectors Y and Z are independent, i.e.,

H0 : Pr{f(y|X,Z) = f(y|X)} = 1 ∀y ∈ Rd2 . (2.1)

The alternative hypothesis is

H1 : Pr{f(y|X,Z) = f(y|X)} < 1 for some y ∈ Rd2 . (2.2)

The proposed test is based on CCFs. It is well known that two conditional distribution functions

are equal almost everywhere (a.e.) if and only if their respective conditional characteristic functions are

equal a.e.. To state this precisely, let ψ be the difference between the CCF φY |X,Z of Y conditional on

(X,Z) and the CCF φY |X of Y conditional on X, i.e.,

ψ(u;x, z) ≡ φY |X,Z(u;x, z)− φY |X(u;x)

= E[exp(iu0Y )|X = x,Z = z]−E[exp(iu0Y )|X = x],

where i =
√−1 and u ∈ Rd2 is a real-valued vector. Y and Z are independent conditional on X if and

only if ψ(u;x, z) = 0 a.e.-(x, z) for every u ∈ Rd2 .
Consider the following smooth functional

Γ ≡
Z
S

Z
A

¯̄̄̄Z
ψ(u;x, z)eiτ

0udG0(u)

¯̄̄̄2
a(x, z)dF (x, z)dG(τ), (2.3)

where a(x, z) is a given known nonnegative weighting function with full support on Rd1+d3 ; and dG0(u) =
g0(u)du and dG(τ) = g(τ)dτ, where we choose g0 to be a density function with full support on Rd2 and
the choice for g is arbitrary except that it must be nonnegative, integrable, and bounded with full support

on Rd2 .
The choice of the above functional is intuitive. Under the null, ψ(u;x, z) = 0 a.e.-(x, z) for every

u ∈ Rd2 , and consequently Γ = 0. The following lemma says that the converse is also true.
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Lemma 2.1
R
ψ(u;x, z)eiτ

0udG0(u) = 0 a.e.-F on Rd1+d3 for every τ ∈ Rd2 if and only if ψ(u;x, z) = 0
a.e.-G0 × F on Rd2 ×Rd1+d3 .
The proof is given in Appendix A. It is an extension of the proof of Theorem 1 in Bierens (1982).

Bierens (1982, 1990) proposes consistent tests for functional form of nonlinear regression models based

on a Fourier transform of conditional expectations. Consider a generic regression Y = g(X)+ ε, where Y

is the dependent variable (with d2 = 1), X is the independent variable and ε is the error term. Suppose

one has specified the regression function g(x) as f(x, θ0), where f(x, θ) defines a known real-valued Borel

measurable function on Rd2 × Θ and Θ is a parameter space containing the unknown “true” parameter
θ0 if the specification is correct. Under the null of correct specification, i.e., Pr[g(X) = f(X, θ0)] = 1 for

some θ0 ∈ Θ, Bierens (1982) shows that the test based on the sample analogue of E[(Y − f(X, θ0))e
iτ 0X ]

(which is 0 for every τ ∈ Rd1 under the null) is consistent. The test function eiτ
0X depends on the

nuisance parameter τ . Stinchcombe and White (1998) generalize this idea to allow the test function to

be any non-polynomial analytic function.

An important point concerning (2.3) is that it is straightforward to develop asymptotic theory

for the resulting test statistic. Under some regularity conditions (to allow the change of order of

integration), one can write
R
ψ(u;x, z)eiτ

0udG0(u) =
R R

eiu
0(y+τ)[f(y|x, z) − f(y|x)]dG0(u)dy. Define

H(y) ≡ R eiu0ydG0(u), the characteristic function of the probability measure dG0(u). Then one can write
Γ =

Z Z
|E[H(Y + τ)|x, z]−E[H(Y + τ)|x]|2 a(x, z)dF (x, z)dG(τ). (2.4)

This integral facilitates application of the convenient asymptotic distribution theory for U -statistics.

To introduce the test statistic of interest, we first introduce kernel estimators for the unknown condi-

tional expectations above. For a kernel function K and bandwidth h ≡ h(n), we define

Kh(u) ≡ h−dK(u/h),

where d is the dimension of the vector u. Let m(x, z; τ) ≡ E[H(Y + τ)|X = x,Z = z] and m(x; τ) ≡
E[H(Y + τ)|X = x]. We estimate the latter two conditional expectations by the standard Nadaraya-

Watson (NW) leave-one-out kernel regression technique:

bmh1(Xt, Zt; τ) ≡
⎧⎨⎩(n− 1)−1

nX
s=1,s 6=t

Kh1(Xt −Xs, Zt − Zs)H(Ys + τ)

⎫⎬⎭ / bfh1(Xt, Zt),

and

bmh2(Xt; τ) ≡
⎧⎨⎩(n− 1)−1

nX
s=1,s 6=t

Kh2(Xt −Xs)H(Ys + τ)

⎫⎬⎭ / bfh2(Xt),

where bfh1(Xt, Zt) ≡ (n−1)−1
Pn

s=1,s 6=tKh1(Xt−Xs, Zt−Zs), and bfh2(Xt) ≡ (n−1)−1
Pn

s=1,s 6=tKh1(Xt−
Xs, Zt−Zs). Note that we have used different bandwidths in estimating the two conditional expectations.
In the sequel we will refer to bmh1(x, z; τ) as the unrestricted regression estimator and bmh2(x; τ) as the

restricted regression estimator. A natural test statistic immediately follows as

Γ1n ≡ 1

n

nX
t=1

Z
|bmh1(Xt, Zt; τ)− bmh2(Xt; τ)|2a(Xt, Zt)dG(τ). (2.5)
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Three main issues arise in analyzing Γ1n: (1) bias reduction, (2) the random denominator, and (3)

the choice of a(.). The latter two are closely tied to each other. For the first issue, as demonstrated

in an earlier version of this paper, there are three bias terms to be corrected when using Γ1n as a test

statistic, two of which can be removed by appealing to the clever centering device of Härdle and Mammen

(1993). Given bmh2(x; τ) , we can compute a smoothed version, csmh1(x, z; τ), of bmh2(x; τ) by regressingbmh2(Xt; τ) on (Xt, Zt) , and basing the test on the difference between bmh1(x, z; τ) and csmh1(x, z; τ). For

the moment, assume the data are i.i.d. We are thus led to replace bmh2(Xt; τ) in (2.5) with

csmh1(Xt, Zt; τ) ≡
⎧⎨⎩(n− 1)−1

nX
s=1,s6=t

Kh1(Xt −Xs, Zt − Zs)bmh2(Xs; τ)

⎫⎬⎭ / bfh1(Xt, Zt) (2.6)

to form

Γ2n ≡ 1

n

nX
t=1

Z
[bmh1(Xt, Zt; τ)− csmh1(Xt, Zt; τ)]

2 a(Xt, Zt)dG(τ). (2.7)

In principle, one can choose any positive weighting function a that has support on Rd1+d3 . Never-
theless, we would like to choose a so that we can avoid the random denominator issue. If we were to

choose a(Xt, Zt) to be bf2h1(Xt, Zt), after multiplication by bfh1(Xt, Zt) the random denominators in bothbmh1(Xt, Zt; τ) and csmh1(Xt, Zt; τ) would disappear. But we still have the third random denominator

built into bmh2(Xs; τ), which is used to form csmh1(Xt, Zt; τ) (see (2.6)). There seems to be no choice of

a that would enable us to avoid this.

Note that we can rewrite (2.4) as

Γ =

Z Z
|E[H(Y + τ)f(X)|x, z]−E[H(Y + τ)f(X)|x]|2 ea(x, z)dF (x, z)dG(τ), (2.8)

where ea(x, z) ≡ a(x, z)/f2(x). We then consider the functional

Γ3n =
1

n

nX
t=1

Z
|emh1(Xt, Zt; τ)− fsmh1(Xt, Zt; τ)|2 bf2h1(Xt, Zt)dG(τ), (2.9)

where

emh1(Xt, Zt; τ) ≡
⎧⎨⎩(n− 1)−1

nX
s=1,s 6=t

Kh1(Xt −Xs, Zt − Zs)H(Ys + τ) bfh2(Xs)

⎫⎬⎭ / bfh1(Xt, Zt), (2.10)

and

fsmh1(Xt, Zt; τ) ≡
⎧⎨⎩(n− 1)−1

nX
s=1,s 6=t

Kh1(Xt −Xs, Zt − Zs)bmh2(Xs; τ) bfh2(Xs)

⎫⎬⎭ / bfh1(Xt, Zt). (2.11)

In other words, emh1(x, z; τ) is an estimator of E[H(Y + τ)f(X)|x, z] and fsmh1(x, z; τ) is a smoother

version of the usual kernel estimator of E[H(Y + τ)f(X)|x]. Due to the use of the clever device of Härdle
and Mammen (1993), a simple “outer” weighting function a will not suffice for our purpose. We need to

use both an “outer” weighting function ea = bf2h1 and an “inner” weighting function bfh2 in forming (2.9).
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After some simple algebra, we have

Γ3n =
1

n (n− 1)2
nX

t1=1

Z ⎡⎣X
t2 6=t1

K1t1t2

bf2,t2 {H(Yt2 + τ)− bmh2(Xt2 ; τ)}
⎤⎦2 dG(τ)

=
1

n (n− 1)2
nX

t1=1

X
t2 6=t1

X
t3 6=t1

Z
K1t1t2

K
1t1t3

bf2,t2 bf2,t3 [H(Yt2 + τ)− bmh2(Xt2 ; τ)]

× [H(Yt3 + τ)− bmh2(Xt3 ; τ)] dG(τ). (2.12)

where K
1ts
≡ Kh1(Xt −Xs, Zt − Zs) and bf2,s ≡ bfh2(Xs). The above statistic is simple to compute and

offers a natural way to test H0. Nevertheless, we propose a bias-adjusted test statistic, namely

Γn ≡ n− 1
n− 2 (Γ3n −Bn) , (2.13)

where Bn ≡ n−1 (n− 1)−2Pn
t1=1

P
t2 6=t1

R
K2

1t1t2

bf22,t2 [H(Yt2 + τ)− bmh2(Xt2 ; τ)]
2
dG(τ). In effect, our

test statistic Γn removes all the “diagonal” (t2 = t3) terms from Γ3n in (2.12), thus reducing the bias of

the statistic. A similar idea has been used in Lavergne and Vuong (2000).

We will show that after being appropriately scaled, Γn is asymptotically normally distributed under

suitable assumptions.

3 The Asymptotic Distribution of the Test Statistic

In this section we first focus on the case of a stochastic process that has an observable series of continuously-

valued realizations. Cases for which a subset of the random vector (X 0, Y 0, Z0)0 is discretely valued or
unobserved are discussed at the end of this section.

3.1 Asymptotic Null Distribution

We work with the dependence notion of β-mixing. Let {Vt, t ≥ 0} be a strictly stationary stochastic
process and F t

s denote the sigma algebra generated by (Vs, ..., Vt) for s ≤ t. The process is called β-mixing

or absolutely regular, if as k →∞,

β(k) ≡ sup
s∈N

E

"
sup

A�F∞s+k
|P (A|Fs

−∞)− P (A)|
#
→ 0.

Our assumptions are as follows.

Assumption A.1 (Data Generating Process (DGP))
(i) {Wt ≡ (X 0

t, Y
0
t , Z

0
t)
0, t ≥ 1} is a strictly stationary absolutely regular process on Rd1+d2+d3 ≡ Rd

with mixing coefficients β(k) that satisfy
P∞

k=1 k
2βδ/(1+δ)(k) <∞ for some 0 < δ ≤ 1/3.

(ii) f(.,. ,. ) ∈ G∞v−1, m(.; τ) ∈ G2(1+δ)v , and m(.,. ; τ) ∈ G2(1+δ)v for each τ ∈ Rd2 , where v ≥ 2 is an
integer and Gαµ is a class of functions defined in Robinson (1988, p. 939). Furthermore, f and the

m0s satisfy global Lipschitz conditions: |f(w0 + w)− f(w0)| ≤ Df (w0)||w||, |m(u0 + u; τ)−m(u0; τ)| ≤
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Dm(u0; τ)||u|| for u = (x, z) or x, where
R |Df (w)|2(1+δ)dF (w) <∞,

R |Dm(u; τ)|2(1+δ)dF (u)dG(τ) <∞,

and ||.|| is the Euclidean norm.
(iii) For 1 ≤ l ≤ 10, the probability density function (pdf) ft1,...,tl of (Wt1 , ...,Wtl) is bounded and

satisfies a Lipschitz condition: |ft1,...,tl(w1+u1,
... , wl+ul)−ft1,...,tl(w1,... , wl)| ≤ Dt1,...,tl(w1, ..., wl)||u||,

where u ≡ (u1, ..., ul) and Dt1,...,tl
is integrable and satisfies the conditions that

R
Rdl Dt1,...,tl(w1, ..., wl)

||w||2(1+δ)dw < M <∞, and
R
Rdl Dt1,...,tl(w1, ..., wl) ft1,...,tl(w1,

... , wl)dw < M <∞.
Assumption A.2 (Kernel and bandwidth)
(i) The kernel K is a product of a univariate kernel k : R → R such that k(.),

R
R u

ik(u)du = δi0

(i = 0, 1, ..., r − 1), and k(u) = O((1 + |u|r+1+�)−1) for some � > 0, where δij is Kronecker’s delta.
(ii) As n→∞, the bandwidth sequences h1 and h2 are such that nh

(d1+d3)/2
1 h2r2 → 0, nh

2(d1+d3)
1 →∞,

and h
(d1+d3)
1 ¿ hd12 ¿ hd11 .

Assumption A.3 (Weight functions )
(i) The weight function g

0 has full support on Rd2 ; is bounded, even, integrable, and everywhere
positive; and is chosen such that its corresponding characteristic function H is real-valued and boundedly

(r + 1)- differentiable.

(ii) The weight function g is uniformly bounded, integrable, and nonnegative everywhere on Rd2 .
Remarks. Assumption A.1(i) requires that {Wt} be a stationary absolutely regular process with

algebraic decay rate. This is standard for application of a central limit theorem for U -statistics for

weakly dependent data (e.g., Tenreiro, 1997). A.1(ii) imposes smoothness and moment conditions on f

and the m0s. For instance, if µ is a positive integer, then g ∈ Gαµ means that g is differentiable up to order
µ, has Taylor expansion with the remainder satisfying a local Lipschitz condition, and g has finite αth

moment. A.1(iii) imposes smoothness and moment conditions on ft1,...,tl . Similar conditions are imposed

in Li (1999). Assumption A.2(i) requires that the kernel be of second order or higher and it impliesR
R u

rk(u)du < ∞. Unless d1 + d3 = 2, a higher order kernel is needed, which is nevertheless common

in the literature (e.g., Robinson (1988), Li (1999), Fan and Li (1999)). Assumption A.2(ii) specifies

conditions on the choice of bandwidth sequences. Assumption A.3(i) is not as strict as it appears. The

uniform boundedness of H comes free as one important property of characteristic functions. That H is

real-valued and boundedly (r+1)- differentiable is also easily met in practice by choosing g0 appropriately.

For example, g0 can be either a normal density function on Rd2 , or a double exponential density function.
A potential opportunity created by Assumption A.3 is to choose g0 and g in applications so that any

numerical integration can be done quickly or one can work out the integration analytically. We return to

this point in Section 4.

Now let V (x, z; τ , τ 0) ≡ cov(H(Y+τ), H(Y+τ 0) |X = x,Z = z).Define σ2 ≡ 2C(d1+d3)3

R R R
V 2(x, z; τ , τ 0)

f4(x)f4(x, z)dG(τ)dG(τ 0)d(x, z), where C3 ≡
R
R
£R
R k(u+ v)k(u)du

¤2
dv. Our main result is

Theorem 3.1 Under Assumptions A.1-A.3 and under H0, nh
(d1+d3)/2
1 Γn

d→ N(0, σ2).

The proof is tedious and is relegated to Appendix A. To implement the test, we require a consis-

tent estimate of the variance σ2. Let bσ2 ≡ 2C(d1+d3)3 n−2
Pn

t=1

Pn
s=1

R R bfh1(Xt, Zt) bfh1(Xs, Zs) bf2h2(Xt)bf2h2(Xs)bεt (τ)bεt (τ 0)bεs (τ)bεs (τ 0) dG(τ)dG(τ 0), where bεt (τ) ≡ H(Yt + τ)− bmh2(Xt; τ). It is easy to show
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that bσ2 is consistent for σ2 under H0. We then compare

Tn ≡ nh
(d1+d3)/2
1 Γn/

pbσ2 (3.1)

with the one-sided critical value zα from the standard normal distribution, and reject the null when

Tn > zα.

3.2 Asymptotic Local Power Properties

To examine the asymptotic local power property of our test, we let f [n](x, y, z) denote a sequence of

densities, f [n](x, y) ≡ R
f [n](x, y, z)dz, f [n](x, z) ≡ R

f [n](x, y, z)dy, and f [n](x) ≡ R
f [n](x, y, z)dydz.

Assume that ||f [n](x, y, z) − f(x, y, z)||∞ → 0 as n → ∞. Let αn → 0 as n → ∞. Let En denote

expectation under the law associated with f [n]. Define m[n](x, z; τ) ≡ En[H(Y + τ)|X = x,Z = z] and

m[n](x; τ) ≡ En[H(Y + τ)|X = x]. Given our setup, local alternatives can be specified as

H1(αn) : m
[n](x, z; τ) = m[n](x; τ) + αn∆(x, z; τ), (3.2)

where ∆(x, z; τ) satisfies

γ ≡
Z Z

4(x, z; τ)2f2(x)f3(x, z)d(x, z)dG(τ) <∞.

The following proposition shows that our test can distinguish local alternatives H1(αn) at rate αn =

n−1/2h−(d1+d3)/41 while maintaining a constant level of asymptotic power.

Proposition 3.2 Under Assumptions A.1—A.3, suppose that αn = n−1/2h−(d1+d3)/41 in H1(αn). Then,

the power of the test satisfies Pr(Tn ≥ zα|H1( αn))→ 1− Φ(zα − γ/σ).

3.3 Remarks

Theorem 3.1 covers the asymptotic null distribution of the test statistic when the null hypothesis involves

a stochastic process that has observed continuously-valued realizations. While this case suffices for many

empirical applications (e.g., a nonparametric test of Granger non-causality), our testing procedure is

potentially applicable to a much wider range of situations. We now discuss several of these.

1. Conditional independence test with unobservables. When W = (X 0, Y 0, Z 0)0 has to be
estimated from the data, two cases are possible. First, if W is estimated by using a finite-dimensional√
n-consistent parameter estimator, one can show straightforwardly that the results in Theorem 3.1 and

Proposition 3.2 continue to hold, and we say our test is “free of parameter estimation error”. Second,

when W is estimated nonparametrically, say by cW , a sufficiently fast convergence rate is required. For

brevity, we leave this for future research.

2. Limited dependent variables and discrete conditioning variables. As mentioned in the
introduction, our test is also applicable to situations where not all variables in (X,Y,Z) are continuously

valued. Although we have made reference to the joint density f(x, y, z) to facilitate the presentation,

there is no explicit use of the continuity of the random variable Y in our derivations. In particular,
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the joint density f(x, y, z) can be replaced everywhere by f(x, z)dF (y|x, z) without changing any of
the derivations. This is more than a superficial change, as it allows the application of our test to any

situation involving discretely distributed variables. For example, Y may be a discrete response, or a

more complicated censored or truncated version of a continuous (latent) variable. Also, one can treat a

mixture of continuous and discrete conditioning variables with more complicated notation.

3. Testing for independence. It is possible to extend our procedure to the case where d1 = 0, i.e.,
testing for independence between Y and Z. In this case, the null hypothesis reduces to

H∗0 : Pr{f(y|Z) = f(y)} = 1 ∀y ∈ Rd2 .

To test H∗0 , we can replace bmh2(Xt; τ) in equations (2.12) and (2.13) by H(τ) = n−1
Pn

s=1H(Ys+τ). One

can readily modify the other assumptions in Section 3 and show easily that Theorem 3.1 and Proposition

3.2 continue to hold. For brevity, we don’t repeat the argument.

4 Monte Carlo Experiments

In this section we report results of some Monte Carlo simulation experiments designed to examine the

finite sample performance of our nonparametric conditional independence test. Specifically, we conduct

simulation experiments focused on testing the order of nonlinear autoregressive (NLAR) processes. For

each DGP under study, we standardize the data {(Xt, Yt, Zt), t = 1, ...n} before implementing our test
so that each variable has mean zero and variance one.

4.1 Motivation

During the last two decades, interest in nonlinear models in economics, econometrics and statistics has

increased significantly. One area of wide interest is nonlinear time series model identification, and more

specifically, lag selection. See Auestad and Tjostheim (1990), Cheng and Tong (1992), Tjostheim and

Auestad (1994), Tschernig and Yang (2000), Finkenstädt et al. (2001), Lobato (2003), among others.

These methods investigate the order d of a strictly stationary β-mixing univariate autoregressive time

series model of the form

Yt = g(Yt−1, Yt−2, ..., Yt−d, εt), (4.1)

where the function g is unknown and {εt} is a noise process.
In contrast, our theory pertains to the entire conditional distribution, not just the conditional location

or conditional standard deviation. As before, let f(.|.) be the conditional density of one random variable

given another. The null of interest is

H0(d) : f(Yt|Yt−1, ..., Yt−d−1) = f(Yt|Yt−1, ..., Yt−d), (4.2)

i.e., conditioning on (Yt−1, ..., Yt−d), the random variable Yt−d−1 has no explanatory power for Yt. If d∗ is
the minimum of d such that (4.2) is true, we say the nonlinear time series is of order d∗. In the following,
we write H0(d) : d

∗ = d to represent (4.2). In the special case when d = 0, the test reduces to a test of

serial independence of first order: H0(0) : f(Yt|Yt−1) = f(Yt).
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4.2 Simulation Design and Practical Issues

We consider the following DGPs in our Monte Carlo study.

DGP1: Yt = 0.3Yt−1 + εt;

DGP2: Yt = (−0.5Yt−1 + εt)1(Yt−1 ≤ 1) + (0.4Yt−1 + εt)1(Yt−1 > 1);
DGP3: Yt = 0.8|Yt−1|0.5 + εt;

DGP4: Yt = 0.6Φ(Yt−1)Yt−1+εt, where Φ represents the cumulative distribution of a standard normal
distribution;

DGP5: Yt = −0.5Yt−1 + 0.5Yt−2 {1 + exp(−0.5Yt−1)}−1 + εt;

DGP6: Yt = 0.1 log(Y 2
t−1) +

q
0.1 + 0.9Y 2

t−2εt;
DGP7: Yt = exp(−Y 2

t−1) + |0.1Yt−2(16− Yt−2)|εt;
DGP8: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.125Yt−3 +

p
0.3 + |Yt−3|εt;

DGP9: Yt =
√
htε1,t, ht = 0.01 + 0.8Y

2
t−1 + 0.64Y 2

t−2 + 0.512Y 2
t−3;

DGP10: Yt =
√
htεt, ht = 0.01 + 0.8ht−1 + 0.15Y 2

t−1;
where {εt} are i.i.d. N(0, 1) in DGPs 1-5 and 8-10, they are the i.i.d. sum of 30 uniformly independently

distributed random variables each over the range [-0.1, 0.1] in DGP 6, and the i.i.d. sum of 10 uniformly

independently distributed random variables each over the range [-1/7, 1/7] in DGP 7. DGPs 1 through

3 are studied in Hong and White (2005) in testing for serial independence. DGPs 4 and 5 are studied in

Lobato (2003) in testing for nonlinear autoregression. DGPs 6-7 are used in Finkenstädt et al. (2001) in

determining the order of nonlinear time series. Clearly, DGPs 1-4 are of order 1, DGPs 5-7 are of order

2, and DGPs 8—10 are of order 3 or higher. Note that all DGPs except DGP 1 are nonlinear in the mean

or in the variance or in both.

We test for H0(d) : d
∗ = d, where d = 1 or 2. We use a fourth order kernel in estimating all required

quantities: k(u) = (3 − u2)ϕ(u)/2, where ϕ(u) is the pdf of the standard normal distribution. We

choose both g0(
.) and g(.) (see Assumption A.3) to be a standard normal pdf. For this particular g0,

the corresponding characteristic function H(y) ≡ R eiuydG0(u) has the simple form H(y) = exp(−y2/2).
Given our choice of g0 and g, we can work out the integration analytically so that no numerical integration

over dG(τ) is required.

Since we have two bandwidth parameters to choose, h1 and h2, and it is difficult to pin down the

optimal bandwidth sequences, we choose h1 and h2 separately by cross validation in our simulation.

Specifically, we set

h1 = h∗1n
1

8+d13 n−
1

4+d13 and h2 = h∗2n
1

8+d1 n−
1

4+d1 , (4.3)

where h∗1 and h∗2 are the least-squares cross-validated bandwidths for estimating the conditional expecta-
tion of Yt given (Xt, Zt) and Xt, respectively. Note that given the fourth order kernel we use, h∗1 and h∗2
converge at rates n−1/(8+d13) and n−1/(8+d1), respectively. Undersmoothing is required for our test. We
use Lee (2003, p. 16) to adjust h∗1 and h∗2 appropriately in (4.3) to make sure Assumption A2 is met.
It is well known that a nonparametric test that relies on the asymptotic normal approximation may

perform poorly in finite samples. An alternative approach is to use bootstrap approximation. Based

upon Paparoditis and Politis’s (2000) local bootstrap procedure, SW propose a smoothed local bootstrap

procedure to obtain the bootstrap data {X∗t , Y ∗t , Z∗t }. In the following we follow SW’s method to obtain
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Table 1: Empirical rejection frequency of the tests
DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9 DGP10

H0 (1)

n=100
5% 0.050 0.065 0.060 0.055 0.305 0.300 0.160 0.410 0.865 0.230
10% 0.095 0.120 0.095 0.090 0.405 0.465 0.240 0.600 0.910 0.310
n=200
5% 0.070 0.060 0.055 0.045 0.450 0.400 0.210 0.765 0.910 0.275
10% 0.115 0.105 0.110 0.100 0.600 0.610 0.385 0.910 0.945 0.410
H0 (2)

n=100

5% 0.040 0.050 0.060 0.035 0.055 0.065 0.030 0.395 0.655 0.230
10% 0.105 0.110 0.095 0.075 0.115 0.125 0.050 0.615 0.750 0.300
n=200
5% 0.045 0.050 0.055 0.030 0.045 0.070 0.035 0.700 0.780 0.325
10% 0.100 0.120 0.100 0.070 0.120 0.125 0.065 0.875 0.830 0.485

Note: DGPs 1-4 satisfy H0 (1) and DGPs 1-7 satisfy H0 (2) , whereas the other DGPs satisfy
neither H0 (1) nor H0 (2) .

the bootstrap resamples. One can follow SW to verify the validity of their bootstrap method in our

framework.

4.3 Results

Table 1 reports the empirical rejection frequency of the 5% and 10% test for H0 (1) and H0 (2). For

brevity we only study sample sizes n = 100 and 200; we use 200 Monte Carlo replications for each

experiment. The number of bootstrap resamples is also set to 200 for each scenario. From Table 1 we

see that the size of our test is well behaved in that most of the empirical frequencies are close to the

nominal significance level when the null hypothesis is true. The test has reasonable power when the null

hypothesis is not true. For example, in testing H0 (1) , the 10% test powers for both DGP8 and DGP9

are above 0.90 for as small a sample as 200. Similarly, in testing H0 (2) , the 10% test powers for both

DGP8 and DGP9 are above 0.80 for as small a sample as 200. We view a sample of 200 as small, given

the fact that densities of dimension two or three must be estimated in constructing the test.

5 Application to Stock Market Data

Although many studies conducted during the 1980s and 1990s report that financial time series such as

exchange rates and stock prices exhibit nonlinear dependence (e.g., Hsieh, 1989; Sheedy 1998), researchers
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often neglect this when they test for possible dependence. As documented by Hiemstra and Jones (1994),

all prior studies of causal relationship rely exclusively on the traditional linear Granger causality test,

which unfortunately may have little power in detecting nonlinear relationships. In this section, we use

both our test and a traditional linear Granger causality test to study the dynamic linkage between three

US stock market price indices (Dow Jones 65 composite, Nasdaq, and S&P 500) and the trading volumes

on the New York Stock Exchange (NYSE), Nasdaq, and NYSE markets, respectively.

We obtain daily data for the three major stock market price indices and trading volumes from Yahoo

Finance for the sample period from January 3rd, 2000 to January 10th, 2003. After excluding weekends

and holidays, the total numbers of observations are 759 for the Dow Jones 65 composite and Nasdaq

series and 761 for the S&P 500 series. Following the literature, we let Pt and Vt stand for the natural

logarithm of stock price indices and volumes multiplied by 100, respectively.

We first employ the augmented Dickey-Fuller test to check for stationarity of {Pt} and {Vt}. The test

results indicate that there is a unit root in all level series but not in the first differenced series. Therefore,

both Granger causality tests will be conducted on the first differenced data, which we denote as ∆Pt
and ∆Vt below. Next, we employ Johansen’s likelihood ratio method to examine whether Pt and Vt are

cointegrated or not. We find no evidence of cointegration. Consequently, we include no error correction

term in our linear Granger causality test.

For the linear Granger non-causality tests, we are interested in whether ∆Pt and ∆Vt Granger-cause

each other linearly. For example, in testing whether ∆Pt Granger causes ∆Vt linearly, one would typically

check if the null hypothesis H0,L : β1 = ... = βLx = 0 holds with

∆Vt = α0 + α1∆Vt−1 + ...+ αLv∆Vt−Lv + β1∆Pt−1 + ...βLp∆Pt−Lp + �t, (5.1)

where �t ∼ i.i.d.(0, σ2) under H0,L. Nevertheless, to permit a direct comparison with our nonparametric

test for nonlinear Granger causality, we focus on testing H∗0,L : β = 0 in

∆Vt = α0 + α1∆Vt−1 + ...+ αLv∆Vt−Lv + β∆Pt−i + �t, i = 1, ..., Lp. (5.2)

To implement our nonparametric test, we set all smoothing parameters according to those used in the

simulations in the last section. To mitigate the curse of dimensionality, we focus on testing

H∗0,NL : Pr(f(∆Vt|∆Vt−1, ...,∆Vt−Lv ;∆Pt−i) = f(∆Vt|∆Vt−1, ...,∆Vt−Lv)) = 1, i = 1, ..., Lp. (5.3)

in checking the Granger causal direction from ∆Pt to ∆Vt, and similarly for the reverse direction.

The results of linear and nonlinear Granger causality tests between ∆Pt and ∆Vt are given in Table

2, where we choose Lv and Lp to be 1, 2 or 3. For example, when Lv is 1, we also choose Lp to be 1 so

that we only check whether ∆Pt−1 should enter (5.2) or not. This corresponds to the first row in each
panel of Table 2. When Lv is 2, we choose Lp to be 2. In this case, we check whether ∆Pt−1 or ∆Pt−2
(but not both) should enter (5.2) or not, which corresponds to the second and third rows in each panel

of Table 2. The case for Lv = 3 is done analogously, corresponding to the fourth to sixth rows in each

panel of Table 2. The case for testing whether ∆Vt Granger causes ∆Pt is done similarly.

The results of the linear Granger causality test between stock prices and volumes are given in Panel

A of Table 2. At all levels of Lv, we find causal links from stock prices to trading volumes for the Nasdaq
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Table 2: Granger non-causality tests between stock prices and trading volumes
Panel A: Linear Granger non-causality test between 4P and 4V

H0 : 4P does not Granger cause 4V H0 : 4V does not Granger cause 4P

Dow Jones Nasdaq S&P 500

Lv=1,∆Pt−1 0.910 0.001 0.007

Lv=2,∆Pt−1 0.504 0.002 0.005

Lv=2,∆Pt−2 0.369 0.011 0.018

Lv=3,∆Pt−1 0.374 0.004 0.004

Lv=3,∆Pt−2 0.201 0.008 0.008

Lv=3,∆Pt−3 0.231 0.719 0.241

Dow Jones Nasdaq S&P 500

Lp=1,∆Vt−1 0.211 0.953 0.979

Lp=2,∆Vt−1 0.209 0.812 0.871

Lp=2,∆Vt−2 0.957 0.564 0.758

Lp=3,∆Vt−1 0.210 0.816 0.855

Lp=3,∆Vt−2 0.970 0.591 0.789

Lp=3,∆Vt−3 0.969 0.662 0.983

Panel B: Nonlinear Granger non-causality test between 4P and 4V

H0 : 4P does not Granger cause 4V H0 : 4V does not Granger cause 4P

Dow Jones Nasdaq S&P 500

Lv=1,∆Pt−1 0.045 0 0.015

Lv=2,∆Pt−1 0 0 0

Lv=2,∆Pt−2 0 0 0

Lv=3,∆Pt−1 0.020 0.010 0.020

Lv=3,∆Pt−2 0.005 0.025 0.015

Lv=3,∆Pt−3 0.020 0.005 0.030

Dow Jones Nasdaq S&P 500

Lp=1,∆Vt−1 0.125 0.370 0.380

Lp=2,∆Vt−1 0.060 0.340 0.420

Lp=2,∆Vt−2 0.055 0.355 0.665

Lp=3,∆Vt−1 0.280 0.490 0.545

Lp=3,∆Vt−2 0.240 0.460 0.605

Lp=3,∆Vt−3 0.205 0.475 0.550

Note: Numbers in the main entries are the p-values. For the nonlinear Granger non-causality test, the number

of bootstrap resamples is B = 200 in each case.
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and S&P 500 data but not for the Dow Jones at the 5% nominal significance level. Unambiguously, we

find no Granger causality from trading volume to stock price using the linear causality test.

The results for our nonparametric test are reported in Panel B of Table 2. From Panel B, we see that

at the 5% nominal significance level, stock prices lead trading volumes for all three datasets and this is

true at all lags of our study. Further, like the linear Granger causality test results, our nonparametric

test results find no evidence of Granger causality from trading volumes to stock prices.

6 Concluding remarks

This paper develops asymptotic distribution theory for a consistent nonparametric conditional indepen-

dence test. It is based upon properties of the conditional characteristic functions and transforms the

notion of conditional independence into the equivalence of two infinite collections of conditional moment

restrictions. Together with the previous work of SW, this addresses the long standing need in econometrics

for an asymptotic theory for a practical and powerful nonparametric test for conditional independence.

We extend the test of SW in two directions: our test is less sensitive to the choice of bandwidth, and it

has power in detecting deviations from conditional independence in the full support of the density.

To improve the asymptotic approximation to the finite sample distribution of the test statistic, one

could consider higher order refinements, which may offer a solution to the choice of optimal bandwidth.

However, it is well known that estimation of higher order refinements is tedious and may not necessarily

provide a sufficiently good approximation in finite samples. Another topic not addressed here, and a

suitable subject for future research, is the optimality of the test.
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Appendix
Throughout this appendix, C is a generic constant that may vary from case to case. Denote Wt ≡

(X 0
t, Yt, Z

0
t)
0, f1t ≡ f(Xt, Zt), bf1t ≡ bfh1(Xt, Zt), f2t ≡ f(Xt), bf2t ≡ bfh2(Xt), K1ts ≡ Kh1(Xt−Xs, Zt−Zs),

K2ts ≡ Kh2(Xt −Xs), K(x,z),t ≡ Kh1(x−Xt, z − Zt), Kx,t ≡ Kh2(x−Xt), and d13 ≡ d1 + d3. Let

X
t6=s

=
nX

s=1

nX
t=1,t6=s

,
X

t1 6=t2 6=t3
≡

nX
t1=1

nX
t2=1,t2 6=t1

nX
t3=1,t3 6=t1,t3 6=t2

,

X
t1 6=t2 6=t3,t4 6=t2

≡
X

t1 6=t2 6=t3

nX
t4=1,t4 6=t2

, and
X

t1 6=t2 6=t3,t4 6=t2,t5 6=t3
≡

X
t1 6=t2 6=t3

nX
t4=1,t4 6=t2

nX
t5=1,t5 6=t3

.
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Let n3 ≡ n(n− 1)(n− 2), n4 = n3(n− 1), and n5 = n3(n− 1)2. Let Es [K2ts
] ≡ R Kh2(Xt − xs)dF (xs).

Further, let the bar notation denote an i.i.d. process. For example, {W t, t ≥ 0} is an i.i.d. sequence

having the same marginal distributions as {Wt, t ≥ 0}.

A Proofs

Proof of Lemma 2.1. The “if” part is trivial. Now suppose that
R
ψ(u;x, z)eiτ

0udG0(u) = 0 a.e.-F

on Rd13 for every τ ∈ Rd2 ; we follow Bierens (1982) closely to show that ψ(u;x, z) = 0 a.e.-G0 × F on

Rd2 ×Rd13 .
Denote Re(ψ) and Im(ψ) as the real and imaginary part of ψ respectively. Put ψ1(

.) = max(Re(ψ(.)), 0),

ψ2(
.) = max(−Re(ψ(.)), 0), ψ3(.) = max(Im(ψ(.)), 0), and ψ4(

.) = max(− Im(ψ(.)), 0). Then obviously
ψj , j = 1, ..., 4, are nonnegative Borel measurable real functions on Rd satisfying Re(ψ) = ψ1 − ψ2 and

Im(ψ) = ψ3 − ψ4.

Now assume for the moment that cj =
R
ψj(u;x, z)dG0(u) > 0 for j = 1, ..., 4. We define four

conditional probability measures

υj(B;x, z) =

Z
B

ψj(u;x, z)dG0(u)/cj , j = 1, ..., 4, where B is a Borel set on Rd2 . (A.1)

Writing dvj(u;x, z) ≡ vj(du;x, z) for j = 1, 2, 3, and 4, we haveR
ψ(u;x, z)eiτ

0udG0(u)

=
hR

ψ1(u;x, z)e
iτ 0udG0(u)−

R
ψ2(u;x, z)e

iτ 0udG0(u)
i
+ i [

R
ψ3(u;x, z)e

iτ 0udG0(u)−
R
ψ4(u;x, z)

×eiτ 0udG0(u)]
=
h
c1
R
eiτ

0udv1(u;x, z)− c2
R
eiτ

0udv2(u;x, z)
i
+ i

h
c3
R
eiτ

0udv3(u;x, z)− c4
R
eiτ

0udv4(u;x, z)
i

= [c1η1(τ ;x, z)− c2η2(τ ;x, z)] + i [c3η3(τ ;x, z)− c4η4(τ ;x, z)],

where ηj(τ ;x, z) ≡
R
eiτ

0udvj(u;x, z), j = 1, ..., 4, are conditional characteristic functions of the condi-

tional probability measures vj respectively.

If
R

ψ(u;x, z)eiτ
0udG0(u) = 0 a.e.-F on Rd13 for every τ ∈ Rd2 , c1η1(τ ;x, z) = c2η2(τ ;x, z) and

c3η3(τ ;x, z) = c4η4(τ ;x, z) a.e.-(x, z) for every τ ∈ Rd2 . Note that η1(0;x, z) = η2(0;x, z) = η3(0;x, z) =

η4(0;x, z) = 1, so

c1 = c2, c3 = c4, (A.2)

and

η1(τ ;x, z) = η2(τ ;x, z) and η3(τ ;x, z) = η4(τ ;x, z) a.e.-F on Rd13 for every τ ∈ Rd2 . (A.3)

Consequently, for every Borel set B on Rd2 , we have

v1(B;x, z) = v2(B;x, z) and v3(B;x, z) = v4(B;x, z) a.e.-F on Rd13 .

From (A.1), (A.2) and (A.3), we obtain that for every Borel set B on Rd2 ,Z
B

ψ1(u;x, z)dG0(u) =

Z
B

ψ2(u;x, z)dG0(u),
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Z
B

ψ3(u;x, z)dG0(u) =

Z
B

ψ4(u;x, z)dG0(u),

and consequently, Z
B

ψ(u;x, z)dG0(u) = 0.

Note that B1 ≡ {u ∈ Rd2 : Re( ψ(u;x, z)) > 0} is a Borel set, and R
B1
Re( ψ(u;x, z))dG0(u) = 0,

which is only possible if B1 is a null set with respect to dG0(u) a.e.-F on Rd13 . Similarly, one concludes
that the Borel sets B2 ≡ {u ∈ Rd2 : Re(ψ(u;x, z)) < 0}, B3 ≡ {u ∈ Rd2 : Im(ψ(u;x, z)) > 0} and
B4 ≡ {u ∈ Rd2 : Im(ψ(u;x, z)) < 0} are all null sets with respect to dG0(u) a.e.-F on Rd13 . Hence,
∪4i=1Bi = {u ∈ Rd2 : ψ(u;x, z) 6= 0} is a null set with respect to dG0(u) a.e.−F on Rd13 . This means
ψ(u;x, z) = 0 a.e.−G0 × F on Rd2 × Rd13 . If cj =

R
ψj(u;x, z)dG0(u) = 0 for some j ∈ {1, 2, 3, 4}, our

conclusion still holds as an easy exercise. This completes the “only if” part of Lemma 2.1.

Proof of Theorem 3.1. Let εt(τ) ≡ H(Yt + τ)−m(Xt, Zt; τ), and bet(τ) ≡ m(Xt; τ)− bmh2(Xt; τ).

Under H0, H(Yt + τ)− bmh2(Xt; τ) = εt(τ) + bet(τ), and from equations (2.12) and (2.13), we have

Γn =
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

bf2,t2 bf2,t3 [H(Yt2 + τ)− bmh2(Xt2 ; τ)]

× [H(Yt3 + τ)− bmh2(Xt3 ; τ)] dG(τ)

=
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

bf2,t2 bf2,t3 {εt2(τ)εt3(τ) + 2εt2(τ)bet3(τ) + bet2(τ)bet3(τ)} dG(τ)
≡ Γn1 + 2Γn2 + Γn3.

We complete the proof of Theorem 3.1 by showing that nhd13/21 Γn1
d→ N(0, σ2), and Γni = op(n

−1h−d13/21 )

for i = 2, and 3. These results are established in Lemmas A.1 to A.3.

Lemma A.1 nh
d13/2
1 Γn1

d→ N(0, σ2).

Proof. First, write

Γn1 =
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K
1t1t3

f2t2f2t3εt2(τ)εt3(τ)dG(τ)

+
2

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

³ bf2,t2 − f2t2

´
f2t3εt2(τ)εt3(τ)dG(τ)

+
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

³ bf2,t2 − f2t2

´³ bf2,t3 − f2t3

´
εt2(τ)εt3(τ)dG(τ)

≡ Γn11 + 2Bn1 +Bn2.

By Lemma B.1, Bn1 = op(n
−1h−d13/21 ). By Lemma B.2, Bn2 = op(n

−1h−d13/21 ). RecallWt = (X
0
t, Y

0
t , Z

0
t)
0
.

Let φts ≡ φ(Wt,Ws) ≡ h
d13/2
1

R R
K(x,z)tK(x,z)sf2tf2sεt(τ)εs(τ)dG(τ)dF (x, z), and nh

d13/2
1

eΓn11 ≡ 2(n−
1)−1

P
1≤t<s≤n φts. By Lemma B.5, Γn11 = eΓn11+ op(n

−1h−d13/21 ). So it suffices to show nh
d13/2
1

eΓn11 d→
N(0, σ2).

Clearly, φ is symmetric in its argument, and E [φ(w,Ws)] = E [φ(Ws, w)] = 0. Now nh
d13/2
1

eΓn11 is a
second order degenerate U-statistic. As in the proof of Lemma B.4 of Su and White (2005), it is easy
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to verify that Conditions (iii)-(vii) in Theorem 1 of Tenreiro (1997) are satisfied, so that a central limit

theorem applies to nhd13/21
eΓn11. The asymptotic variance is given by σ2 ≡ p lim

n→∞
2E
£
φ(W 1,W 2)

2
¤
= 2Cd13

3R R R
V 2(x, z; τ , τ 0)f4(x, z)f4(x)dG(τ)dG(τ 0)d(x, z), where C3 ≡

R
R
£R
R k(u+ v)k(u)du

¤2
dv. The proof

of Lemma A.1 is complete.

Lemma A.2 Γn2 = op(n
−1h−d13/21 ).

Proof. Write

Γn2 =
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3
f2t2εt2(τ)

bf2,t3bet3(τ)dG(τ)
+
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

³ bf2t2 − f2t2

´
εt2(τ)

bf2,t3bet3(τ)dG(τ)
≡ Bn3 +Bn4.

By Lemmas B.3 and B.4, Bni = op(n
−1h−d13/21 ), i = 3 and 4.

Lemma A.3 Γn3 = op(n
−1h−d13/21 ).

Proof. Noting that bf2,tbet(τ) = (n− 1)−1Pn
s=1,s 6=tK2ts [m(Xt; τ)−H(Ys + τ)] , we have

Γn3 =
1

n5

X
t1 6=t2 6=t3,
t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5
[H(Yt4 + τ)−m(Xt2 ; τ)] [H(Yt5 + τ)−m(Xt3 ; τ)] dG(τ)

= Bn5 + 2Bn6 +Bn7,

where

Bn5 =
1

n5

X
t1 6=t2 6=t3,
t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5
[H(Yt4 + τ)−m(Xt4 ; τ)] [H(Yt5 + τ)−m(Xt5 ; τ)] dG(τ),

Bn6 =
1

n5

X
t1 6=t2 6=t3,
t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5
[H(Yt4 + τ)−m(Xt4 ; τ)] [m(Xt5 ; τ)−m(Xt3 ; τ)] dG(τ),

and

Bn7 =
1

n5

X
t1 6=t2 6=t3,
t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5
[m(Xt4 ; τ)−m(Xt2 ; τ)] [m(Xt5 ; τ)−m(Xt3 ; τ)] dG(τ).

Noting that E [H (Yt + τ) |Xt] = m (Xt; τ) , one can follow the proof of Lemma B.2 to get Bni =

op(n
−1h−d13/21 ), i = 5, 6, and 7.

Proof of Proposition 3.2. Let4t(τ) ≡ 4(Xt, Zt; τ). Using the fact thatH(Yt2+τ)− bmh2(Xt2 ; τ) =

εt(τ) + αn4t (τ) + bet(τ) under H1(αn), we have from equations (2.12) and (2.13) that

Γn =
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

bf2,t2 bf2,t3 {εt2(τ)εt3(τ) + 2εt2(τ)bet3(τ) + bet2(τ)bet3(τ)
+α2n4t2 (τ)4t3 (τ) + 2αnεt2(τ)4t3 (τ) + 2αn4t2 (τ)bet3(τ)ª dG(τ)

≡ Γn1 + 2Γn2 + Γn3 + Γn4 + 2Γn5 + 2Γn6,
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where Γni, i = 1, 2, 3, are as defined in the proof of Theorem 3.1. It is straightforward to show that for

αn = n−1/2h−d13/41 , nhd131 Γn4 →p γ ≡ R R 4(x, z; τ)2f2(x)f3(x, z)d(x, z)dG(τ), Γni = op(n
−1h−d13/21 ),

i = 5 and 6. Also, bσ2 p

→ σ2 under H1(n
−1/2h−d13/41 ). Consequently, Pr(Tn ≥ zα|H1(αn)) → 1− Φ(zα −

γ/σ)).

B Some Useful Lemmas

Let 0 < δ ≤ 1/3 be as defined in Assumption A.1(i). Below we frequently use the facts that (1)

δ/(1 + δ) ≤ 1/4 and (2 + 4δ)/(1 + δ) ≤ 5/2; and (2) |E[Kh2(x−Xt)− f(x)]| ≤ hr2Gf (x) by Lemma 4 of

Robinson (1988). To save space, we denote vt ≡ (X 0
t, Yt, Z

0
t)
0.

Lemma B.1 Bn1 ≡ 1
n3

P
t1 6=t2 6=t3

R
K

1t1t2
K

1t1t3

³ bf2,t2 − f2t2

´
f2t3εt2(τ)εt3(τ)dG(τ) = op(n

−1h−d13/21 ).

Proof. Write Bn1 = Bn11 +Bn12, where

Bn11 =
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

¡
Et0

£
K2t2t0

¤− f2t2
¢
f2t3εt2(τ)εt3(τ)dG(τ),

and

Bn12 =
1

n4

X
t1 6=t2 6=t3,t4 6=t2

Z
K1t1t2

K1t1t3

¡
K2t2t4

−Et4

£
K2t2t4

¤¢
f2t3εt2(τ)εt3(τ)dG(τ).

First, we want to show

Bn11 = op(n
−1h−d13/21 ). (B.1)

Let ϕ0(vt1 , vt2 , vt3) ≡
R
K1t1t2

K1t1t3

¡
Et0

£
K2t2t0

¤− f2t2
¢
f2t3εt2(τ)εt3(τ)dG(τ). Because ϕ0 is not sym-

metric in its arguments, we need to symmetrize it in order to apply Lemmas C.1 and C.2. A symmetrized

version of ϕ0 is ϕ(vt1 , vt2 , vt3) = (1/3){ϕ0(vt1 , vt2 , vt3) + ϕ0(vt2 , vt1 , vt3) + ϕ0(vt3 , vt1 , vt2)}. Noting that
ϕ is of the same order as ϕ0, we will apply Lemmas C.1 and C.2 directly to ϕ0 to simplify the proofs.

This simplification is applied throughout this appendix.

Let M1 be as defined in Lemma C.1, then M
1/(1+δ)
1 = O(h

−2δd13/(1+δ)
1 h

r)
2 ). So by Lemma C.1 and

Assumptions A.1-A.3, E [Bn11] = O(n−1h−2δd13/(1+δ)1 hr2) = o(n−1h−d13/21 ). Let M2, R24, R25, and

R26 be as defined in Lemma C.2. Then M
1/(1+δ)
2 = O(h

−(2+4δ)d13/(1+δ)
1 h2r2 ), R24 = O(n5h−2d131 h2r2 ),

R25 = O(n4h−d131 h2r2 ), and R26 = O(n4h−2d131 h2r2 ). So by Lemma C.2, Assumptions A.1-A.3, E [Bn11]
2
=

n−6(O(n3M1/(1+δ)
4 ) + O(

P6
s=4R2s)) = o(n−2h−d131 ). Consequently, Bn11 = op(n

−1h−d13/21 ) by the

Chebyshev inequality.

Next, we show

Bn12 = op(n
−1h−d13/21 ). (B.2)

It is easy to show that the summation of the t4 = t1 or t4 = t3 terms in Bn12 is of order op(n−1h
−d13/2
1 )

by applying Lemmas C.1 and C.2, and Bn12 vp 24 eBn12, where

eBn12 ≡
X

1≤t1<...<t4≤n

Z
K1t1t2

K1t1t3

¡
K2t2t4

−Et4

£
K2t2t4

¤¢
f2t3εt2(τ)εt3(τ)dG(τ),
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and A vp B means A = B{1 + op(1)}.
Now let ϕ(vt1 , vt2 , vt3 , vt4) ≡

R
K

1t1t2
K

1t1t3
(K

2t2t4
− Et4 [K2t2t4

])f
2t3εt2(τ)εt3(τ)dG(τ). Let M3 be

as defined in Lemma C.3. Then M
1/(1+δ)
3 = O(h

−2δd13/(1+δ)
1 h

−2δd1/(1+δ)
2 ). So by Lemma C.3 and As-

sumptions A.1-A.3, E
h eBn12

i
= O(n−2h−2δd13/(1+δ)1 h

−2δd1/(1+δ)
2 ) = o(n−1h−d13/21 ). Let M4, M44, R46,

and R47 be as defined in Lemma C.4. Then M
1/(1+δ)
4 = O(h

−(2+4δ)d13/(1+δ)
1 h

−2δd1/(1+δ)
2 ), M

1/(1+δ)
44 =

O(h
−(2+4δ)d13/(1+δ)
1 h

−(1+2δ)d1/(1+δ)
2 ), R46 = O(n5h−2d131 h−d12 ), and R47 = O(n4h−2d131 h−d12 ). So by

Lemma C.4 and Assumptions A.1-A.3, E
h eBn12

i2
= n−8(O(n5M1/(1+δ)

4 ) +O(n4M
1/(1+δ)
44 )+O(

P7
s=6R4s)) =

o(n−2h−d131 ). Consequently, Bn12 = op(n
−1h−d13/21 ) by the Chebyshev inequality.

Lemma B.2 Bn2 ≡ 1
n3

P
t1 6=t2 6=t3

R
K

1t1t2
K

1t1t3

³ bf2,t2 − f2t2

´³ bf2,t3 − f2t3

´
εt2(τ)εt3(τ)dG(τ)

= op(n
−1h−d13/21 ).

Proof. Write Bn2

=
1

n5

X
t1 6=t2 6=t3,t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3

£
K2t2t4

−Et4 [K2t2t4
]
¤ £
K2t3t5

−Et5 [K2t3t5
]
¤
εt2(τ)εt3(τ)dG(τ)

+
2

n4

X
t1 6=t2 6=t3,t4 6=t2

Z
K1t1t2

K1t1t3

£
K2t2t4

−Et4 [K2t2t4
]
¤ £
Et0 [K2t3t0

]− f2t3
¤
εt2(τ)εt3(τ)dG(τ)

+
1

n3

X
t1 6=t2 6=t3

Z
K1t1t2

K1t1t3

£
Et0 [K2t2t0

]− f2t2
¤ £
Et0 [K2t3t0

]− f2t3
¤
εt2(τ)εt3(τ)dG(τ)

≡ Bn21 + 2Bn22 +Bn23.

The proofs of Bn22 = op(n
−1h−d13/21 ) and Bn23 = op(n

−1h−d13/21 ) are analogous to those of (B.2) and

(B.1), respectively. Note that Bn21 vp 120 eBn21, where eBn21 is defined as Bn21 but with summationP
1≤t1<...<t5≤n in place of

P
t1 6=t2 6=t3,t4 6=t2,t5 6=t3 . We are left to showeBn21 = op(n

−1h−d13/21 ). (B.3)

Let ϕ(vt1 , vt2 , vt3 , vt4 , vt5) ≡
R
K1t1t2

K1t1t3
(K2t2t4

−Et4 [K2t2t4
])
£
K2t3t5

−Et5 [K2t3t5
]
¤
εt2(τ)εt3(τ)dG(τ).

Let M5 be as defined in Lemma C.5. Then M
1/(1+δ)
5 = O(h

−2δd13/(1+δ)
1 h

−2δd1/(1+δ)
2 ). So by Lemma C.5

and Assumptions A.1-A.3, E
h eBn21

i
= O(n−3M1/(1+δ)

5 ) = o(n−1h−d13/21 ). Let M6, M64, M65 R67,

and R68 be as defined in Lemma C.6. Then M
1/(1+δ)
6 = O(h

−(2+4δ)d13/(1+δ)
1 h

−2δd1/(1+δ)
2 ), M

1/(1+δ)
64 =

O(h
−(2+4δ)d13/(1+δ)
1 h

−(1+2δ)d1/(1+δ)
2 ), M

1/(1+δ)
65 = O(h

−(2+4δ)d13/(1+δ)
1 h

−(2+2δ)d1/(1+δ)
2 ), R67 = O(n6h−2d131

h−2d12 ), and R68 = O(n5h−2d131 h−2d12 ). So by Lemma C.6 and Assumptions A.1-A.3, E
h eBn21

i2
=

n−10 (O(n7M1/(1+δ)
6 ) +O(n6M

1/(1+δ)
64 ) +O(n5M

1/(1+δ)
65 )+ O(

P8
s=7R6s)) = o(n−2h−d131 ). Consequently,

Bn22 = op(n
−1h−d13/21 ) by the Chebyshev inequality.

Lemma B.3 Bn3 ≡ 1
n3

P
t1 6=t2 6=t3

R
K1t1t2

K1t1t3
f2t2εt2(τ)

bf2,t3bet3(τ)dG(τ) = op(n
−1h−d13/21 ).

20



Proof. Write

Bn3 =
1

n4

X
t1 6=t2 6=t3,t4 6=t2

Z
K1t1t2

K1t1t3
K2t3t4

f2t2εt2(τ) [m (Xt3 ; τ)−m (Xt4 ; τ)] dG(τ)

+
1

n4

X
t1 6=t2 6=t3,t4 6=t2

Z
K1t1t2

K1t1t3
K2t3t4

f2t2εt2(τ) [m (Xt4 ; τ)−H (Yt4 + τ)] dG(τ)

≡ Bn31 +Bn32.

Noting that E [H (Yt + τ) |Xt] = m (Xt; τ) and |m(x; τ)−m(x0; τ)| ≤ Dm(x; τ) kx− x0k with R Dm(x;

τ)2(1+δ)dF (x)dG(τ)<∞, we can modify the proof of (B.2) in Lemma B.1 and showBn3i = op(n
−1h−d13/21 ),

i = 1 and 2.

Lemma B.4 Bn4 ≡ 1
n3

P
t1 6=t2 6=t3

R
K1t1t2

K1t1t3

³ bf2t2 − f2t2

´
εt2(τ)

bf2t3bet3(τ)dG(τ) = op(n
−1h−d13/21 ).

Proof. Write Bn4

=
1

n5

X
t1 6=t2 6=t3,t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5

£
K2t2t4

− f2t2
¤
[H(Yt5 + τ)−m(Xt3 ; τ)] dG(τ)

=
1

n5

X
t1 6=t2 6=t3,t4 6=t2,t5 6=t3

Z
K1t1t2

K1t1t3
K2t2t4

K2t3t5

©£
K2t2t4

−Et4 [K2t2t4
]
¤
[H(Yt5 + τ)−m(Xt5 ; τ)] )

+
£
K2t2t4

−Et4 [K2t2t4
]
¤
[m(Xt5 ; τ)−m(Xt3 ; τ)] +

£
Et4 [K2t2t4

]− f2t2
¤
[H(Yt5 + τ)−m(Xt5 ; τ)]

+
£
Et4 [K2t2t4

]− f2t2
¤
[m(Xt5 ; τ)−m(Xt3 ; τ)]

ª
dG(τ)

≡ Bn41 +Bn42 +Bn43 +Bn44.

As in Lemmas B.1 and B.2, we can show that each of Bn4i, i = 1, ..., 4, is op(n−1h
−d13/2
1 ).

Lemma B.5 Γn11 ≡ 1
n3

P
t1 6=t2 6=t3

R
K

1t1t2
K

1t1t3
f
2t2f2t3εt2(τ)εt3(τ)dG(τ) =

eΓn11 + op(n
−1h−d13/21 ),

where eΓn11 ≡ 2
n(n−1)

P
1≤t<s≤n

R R
K(x,z)tK(x,z)sf2tf2sεt(τ)εs(τ)dG(τ)dF (x, z).

Proof. This lemma is an analog of Lemma B.6 in Su and White (2005). We simplify their proof
by applying a technical lemma given in Appendix C. Let ∆n ≡ Γn11 − eΓn11. Let ψ(vt1 , vt2 , vt3) ≡R
K1t1t2

K1t1t3
f2t2 f2t3εt2(τ)εt3(τ)dG(τ). Then eΓn11 = Evt1

[ψ(vt1 , vt2 , vt3)] and

∆n =
1

n3

X
t1 6=t2 6=t3

n
ψ(vt1 , vt2 , vt3)−Evt1

[ψ(vt1 , vt2 , vt3)]
o

=
6

n3

X
1≤t1<t2<t3≤n

n
E [ψ(vt1 , vt2 , vt3)|vt2 , vt3 ]−Evt1

[ψ(vt1 , vt2 , vt3)]
o

+
6

n3

X
1≤t1<t2<t3≤n

{ψ(vt1 , vt2 , vt3)−E [ψ(vt1 , vt2 , vt3)|vt2 , vt3 ]}

≡ 6∆n1 + 6∆n2.
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It suffices to show ∆ni = op(n
−1h−d13/21 ), i = 1, 2. By the triangle inequality,

E|∆n1| ≤ 1

n3

X
1≤t1<t2<t3≤n
t2−t1≥t3−t2

E
¯̄̄
E [ψ(vt1 , vt2 , vt3)|vt2 , vt3 ]−Evt1

[ψ(vt1 , vt2 , vt3)]
¯̄̄

+
1

n3

X
1≤t1<t2<t3≤n
t3−t2≥t2−t1

E
¯̄̄
E [ψ(vt1 , vt2 , vt3)|vt2 , vt3 ]−Evt1

[ψ(vt1 , vt2 , vt3)]
¯̄̄

≡ ∆11 +∆12.

By Assumption A.1(i) and Yoshihara (1989),

∆11 ≤ 1

n3

n−2X
t1=1

n−1X
t2=2

t2+(t2−t1)X
t3=t2+1

4h
−2d13δ/(1+δ)
1 βδ/(1+δ)(t2 − t1)

≤ 4nh
−2d13δ/(1+δ)
1

n3

nX
k=1

kβδ/(1+δ)(k) = o(n−1h−d13/21 ).

Similarly, we can show ∆12 = o(n−1h−d13/21 ). Consequently, ∆n1 = op(n
−1h−d13/21 ) by the Markov

inequality.

Now let ϕt1t2t3 ≡ ϕ(vt1 , vt2 , vt3) ≡ ψ(vt1 , vt2 , vt3)−E [ψ(vt1 , vt2 , vt3)|vt2 , vt3 ] . Then ∆n2 = n−13P
1≤t1<t2<t3≤n ϕt1t2t3 . Clearly, E(∆n2) = 0. By the Chebyshev inequality, it suffices to show E(∆n2)

2 =

o(n−2h−d13)1 ). This follows by an application of Lemma C.2. The conclusion thus follows.

C Some Technical Lemmas

Let {Vt, t ≥ 1} be a d-dimensional stationary absolutely regular process satisfying Assumption A.1(i) in
the main text. Let P (V ) denote the probability law of a random variable V. Let 1 ≤ i1, i2, ..., ik ≤ n be

arbitrary positive integers. For any j (1 ≤ j ≤ k), define a collection of probability measures Pk
j by

Pk
j (Vi1 , ..., Vik) ≡

n
P k
j (Vi1 , ..., Vik) ≡ Πjs=1P (V s) : V s is a subset of {Vi1 , ..., Vik} ,

∪js=1V s = {Vi1 , ..., Vik} , and V t ∩ V s = ∅ for all 1 ≤ t 6= s ≤ j
o
.

In the following, we frequently suppress the arguments of P k
j and Pk

j when no confusion can arise. For

example, when k = 3, we use max
1≤j≤3

max
P 3
j ∈P3

j

R
R3d
¯̄
ϕ
¡
vi1 , vi2 , vi3

¢¯̄1+δ
dP 3j to denote

max

½Z
R3d
{|ϕ (v1 , v2 , v3)|1+δ dFi1i2i3(v1, v2, v3),

Z
R3d
|ϕ (v1 , v2 , v3)|1+δ dF (v1)dFi2i3(v2, v3),Z

R3d
|ϕ (v1 , v2 , v3)|1+δ dF (v2)dFi1i3(v1, v3),

Z
R3d
|ϕ (v1 , v2 , v3)|1+δ dF (v3)dFi1i2(v1, v2),Z

R3d
|ϕ (v1 , v2 , v3)|1+δ Π3i=1dF (vi)

¾
where, e.g., Fi1i2i3 is the joint distribution of (Vi1 , Vi2 , Vi3).
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Below we assume ϕ is symmetric in its arguments, and state the lemmas without presenting detailed

proofs. Note that Lemma C.1 is implied by Lemma B.2 in Fan and Li (1999), and Lemma C.2 is an

extension of Lemma A of Hjellvik et. al. (1998). In comparison with Hjellvik et. al. (1998), we don’t

assume Eϕ (Vi1 , vi2 , ..., vik) = 0, and hence our results are not as succinct as theirs. All lemmas can be

proved by using Lemma 1 of Yoshihara (1976) repeatedly.

Lemma C.1 S1 ≡E
£P

i1<i2<i3
ϕ (Vi1 , Vi2 , Vi3)

¤
= O(n3E

£
ϕ
¡
V i1 , V i2 , V i3

¢¤
) +O(n2M

1
1+δ

1 ), where

M1 ≡ max
1<i1<i2≤n

max
1≤j≤3

max
P3
j ∈P3

j

Z
R3d

¯̄
ϕ
¡
v1 , vi1 , vi2

¢¯̄1+δ
dP 3j .

Lemma C.2 S2 ≡E
£P

i1<i2<i3
ϕ (Vi1 , Vi2 , Vi3)

¤2
= O(n3M

1
1+δ

2 ) +O(
P6

s=1R2s), where M2 ≡ max{M21,

M22,M23},

M21 ≡ max
1≤i1<...<i6≤n

max
1≤j≤3

max
P6
j ∈P6

j

Z
R6d

¯̄
ϕ
¡
vi1 , vi2 , vi3

¢
ϕ
¡
vi4 , vi5 , vi6

¢¯̄1+δ
dP 6j ,

M22 ≡ max
1≤i1<...<i5≤n

max
1≤j≤3

max
P5
j ∈P5

j

Z
R5d

¯̄
ϕ
¡
vi1 , vi2 , vi3

¢
ϕ
¡
vi1 , vi4 , vi5

¢¯̄1+δ
dP 5j ,

M23 ≡ max
1≤i1<...<i4≤n

max
1≤j≤3

max
P4
j ∈P4

j

Z
R4d

¯̄
ϕ
¡
vi1 , vi2 , vi3

¢
ϕ
¡
vi1 , vi2 , vi4

¢¯̄1+δ
dP 4j ,

R21 ≡ n6 max
i3<i5<i6

Z
R3d

E
£
ϕ
¡
vi1 , vi2 , Vi3

¢
ϕ
¡
vi4 , Vi5 , Vi6

¢¤
dF (vi1 )dF (vi2 )dF (vi4 ),

R22 ≡ n5max
i4<i5

Z
R3d

E
£
ϕ
¡
v
i1
, v

i2
, v

i3

¢
ϕ
¡
vi1 , Vi4 , Vi5

¢¤
Π3s=1dF (vis ),

R23 ≡ n5max
i1<i5

Z
R3d

E
£
ϕ
¡
Vi1 , vi2 , vi3

¢
ϕ
¡
Vi1 , vi4 , Vi5

¢¤
Π4s=2dF (vis ),

R24 ≡ n5max
i3<i5

Z
R3d

E
£
ϕ
¡
vi1 , vi2 , Vi3

¢
ϕ
¡
vi1 , vi4 , Vi5

¢¤
dF (vi1 )dF (vi2 )dF (vi4 ),

R25 ≡ n4E
£
ϕ
¡
V 1 , V 2, V 3

¢
ϕ
¡
V 1 , V 2, V 4

¢¤
,

and
R26 ≡ n3 max

1<i1<i2≤n
E
£
ϕ
¡
V1, Vi1 , Vi2

¢¤2
.

Remark. In certain cases, the above results can be simplified: (1) if
R
R2d ϕ (v1, v2 , v3)Π

2
s=1dF (vs) = 0,

S2 = O(n3M
1

1+δ

2 ) +O(
P6

s=4R2s), and (2) if
R
Rd ϕ (v1, v2 , v3) dF (v1) = 0, S2 = O(n3M

1
1+δ

2 ) +O(R26).

Lemma C.3 S3 ≡E
£P

i1<i2<i3<i4
ϕ (Vi1 , Vi2 , Vi3 , Vi4)

¤
= O(n4E

£
ϕ
¡
V i1 , V i2 , V i3 , V i4

¢¤
) +O(n3M

1
1+δ

33 )

+O(n2M
1

1+δ

32 ) +O(nM
1

1+δ

31 ), where

M31 ≡ max
1≤i1<...<i4≤n

max

½Z
R4d
|ϕ (v1, v2 , v3, v4)|1+δ dFi1i2i3i4 (v1, v2 , v3, v4) ,Z

R4d
|ϕ (v1, v2 , v3, v4)|1+δ dF (v1) dFi2i3i4 (v2 , v3, v4)

¾
,
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M32 ≡ max
2≤i2<...<i4≤n

max

½Z
R4d
|ϕ (v1, v2 , v3, v4)|1+δ dF (v1) dFi2i3i4 (v2 , v3, v4) ,Z

R4d
|ϕ (v1, v2 , v3, v4)|1+δ dF (v1) dF (v2)dFi3i4 (v3, v4)

¾
, and

M33 ≡ max
3≤i3<i4≤n

max

½Z
R4d
|ϕ (v1, v2 , v3, v4)|1+δ dF (v1) dF (v2)dFi3i4 (v3, v4) ,Z

R4d
|ϕ (v1, v2 , v3, v4)|1+δ Π4s=1dF (vs)

¾
.

Remark. In certain cases, the above results can be simplified: (1) if
R
R4d ϕ (v1, ..., v4)Π

4
s=1dF (vs) =

0, S3 = O(n3M
1

1+δ

33 ) + O(n2M
1

1+δ

32 ) + O(nM
1

1+δ

31 ); (2) if
R
R2d ϕ (v1, ..., v4) dF (v1)dF (v2) = 0, S3 =

O(n2M
1

1+δ

32 ) +O(nM
1

1+δ

31 ); and (3) if
R
Rd ϕ (v1, ..., v4) dF (v1) = 0, S3 = O(nM

1
1+δ

31 ).

Lemma C.4 S4 ≡E
£P

i1<i2<i3<i4
ϕ (Vi1 , Vi2 , Vi3 , Vi4)

¤2
= O(n5M

1
1+δ

4 ) + O(n4M
1

1+δ

44 ) + O(
P7

s=1R4s),

where M4 ≡ max {M41,M42,M43} ,

M41 ≡ max
1≤i1<...<i8≤n

max
1≤j≤5

max
P8
j ∈P8

j

Z
R8d

¯̄
ϕ
¡
v
i1
, v

i2
, v

i3
, v

i4

¢
ϕ
¡
v
i5
, v

i6
, v

i7
, v

i8

¢¯̄1+δ
dP 8j ,

M42 ≡ max
1≤i1<...<i7≤n

max
1≤j≤5

max
P7
j ∈P7

j

Z
R7d

¯̄
ϕ
¡
v
i1
, vi2 , vi3 , vi4

¢
ϕ
¡
vi1 , vi5 , vi6 , vi7

¢¯̄1+δ
dP 7j ,

M43 ≡ max
1≤i1<...<i6≤n

max
1≤j≤5

max
P6
j ∈P6

j

Z
R6d

¯̄
ϕ
¡
vi1 , vi2 , vi3 , vi4

¢
ϕ
¡
vi1 , vi2 , vi5 , vi6

¢¯̄1+δ
dP 6j ,

M44 ≡ max
1≤i1<...<i5≤n

max
1≤j≤4

max
P5
j ∈P5

j

Z
R5d

¯̄
ϕ
¡
vi1 , vi2 , vi3 , vi4

¢
ϕ
¡
vi1 , vi2 , vi3 , vi5

¢¯̄1+δ
dP 5j ,

R41 ≡ n8 max
i4<i7<i8

Z
R5d

E
£
ϕ
¡
v
i1
, v

i2
, v

i3
, V

i4

¢
ϕ
¡
vi5 , vi6 , Vi7 , Vi8

¢¤
Π3s=1dF (vis )Π

6
t=5dF (vit ),

R42 ≡ n7max
i6<i7

Z
R5d

E
£
ϕ
¡
vi1 , vi2 , vi3 , vi4

¢
ϕ
¡
vi1 , vi5 , Vi6 , Vi7

¢¤
Π5s=1dF (vis ),

R43 ≡ n7max
i1<i7

Z
R5d

E
£
ϕ
¡
Vi1 , vi2 , vi3 , vi4

¢
ϕ
¡
Vi1 , vi5 , vi6 , Vi7

¢¤
Π6s=2dF (vis ),

R44 ≡ n7max
i4<i7

Z
R5d

E
£
ϕ
¡
vi1 , vi2 , vi3 , Vi4

¢
ϕ
¡
vi1 , vi5 , vi6 , Vi7

¢¤
Π3s=1dF (vis )Π

6
t=5dF (vit ),

R45 ≡ n6E
£
ϕ
¡
V 1 , V 2, V 3 , V 4

¢
ϕ
¡
V 1, V 2, V 5 , V 6

¢¤
,

R46 ≡ n5E
£
ϕ
¡
V

1
, V 2, V 3

, V
4

¢
ϕ
¡
V

1
, V

2
, V

3
, V

5

¢¤
,

and
R47 ≡ n4 max

1<i1<i2<i3≤n
E
£
ϕ
¡
V1, Vi1 , Vi2 , Vi3

¢¤2
.

Remark. In certain cases, the above results can be simplified: (1) if
R
R3d ϕ (v1, ..., v4)Π

3
s=1dF (vs) =

0, S4 = O(n5M
1

1+δ

4 ) + O(n4M
1

1+δ

44 ) + O(
P7

s=4R4s); (2) if
R
R2d ϕ (v1, ..., v4) dF (v1)dF (v2) = 0, S4 =

O(n5M
1

1+δ

4 ) + O(n4M
1

1+δ

44 ) + O(
P7

s=6R4s); and (3) if
R
Rd ϕ (v1, ..., v4) dF (v1) = 0, S4 = O(n5M

1
1+δ

4 ) +

O(n4M
1

1+δ

44 ) +O(R47).

24



Lemma C.5 S5 ≡E
£P

i1<i2<i3<i4<i5
ϕ (Vi1 , Vi2 , Vi3 , Vi4 , Vi5)

¤
= O(n5E

£
ϕ
¡
V i1 , V i2 , V i3 , V i4 , V i5

¢¤
)+

O(n4M
1

1+δ

54 ) +O(n3M
1

1+δ

53 ) +O(n2M
1

1+δ

52 ) +O(nM
1

1+δ

51 ), where

M51 ≡ max
1≤i1<...<i5≤n

max

½Z
R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ dFi1i2i3i4i5 (v1, v2 , v3, v4, v5) ,Z

R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ dF (v1) dFi2i3i4i5 (v2 , v3, v4)

¾
,

M52 ≡ max
2≤i2<...<i5≤n

max

½Z
R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ dF (v1) dFi2i3i4i5 (v2 , v3, v4, v5) ,Z

R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ dF (v1) dF (v2)dFi3i4i5 (v3, v4, v5)

¾
,

M53 ≡ max
3≤i3<...<i5≤n

max

½Z
R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ dF (v1) dF (v2)dFi3i4i5 (v3, v4, v5) ,Z

R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ Π3s=1dF (vs) dFi4i5 (v4, v5)

¾
,

and

M54 ≡ max
4≤i4<i5≤n

max

½Z
R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ Π3s=1dF (vs) dFi4i5 (v4, v5) ,Z

R5d
|ϕ (v1, v2 , v3, v4, v5)|1+δ Π5s=1dF (vs)

¾
.

Remark. In certain cases, the above results can be simplified: (1) if
R
R5d ϕ (v1, ..., v5)Π

5
s=1dF (vs) = 0,

S5 = O(n4M
1

1+δ

54 )+O(n3M
1

1+δ

53 )+O(n2M
1

1+δ

52 )+O(nM
1

1+δ

51 ); (2) if
R
R3d ϕ (v1, ..., v5)Π

3
s=1dF (vs) = 0, S5 =

O(n3M
1

1+δ

53 ) + O(n2M
1

1+δ

52 ) + O(nM
1

1+δ

51 ); (3) if
R
R2d ϕ (v1, ..., v5) dF (v1)dF (v2) = 0, S5 = O(n2M

1
1+δ

52 ) +

O(nM
1

1+δ

51 ); and (4) if
R
Rd ϕ (v1, ..., v5) dF (v1) = 0, S5 = O(nM

1
1+δ

51 ).

Lemma C.6 S6 ≡E
£P

i1<i2<i3<i4<i5
ϕ (Vi1 , Vi2 , Vi3 , Vi4 , Vi5)

¤2
= O(n7M

1
1+δ

6 )+O(n6M
1

1+δ

64 )+O(n5M
1

1+δ

65 )

+O(
P8

s=1R6s), where M6 ≡ max {M61,M62,M63} ,

M61 ≡ max
1≤i1<...<i10≤n

max
1≤j≤7

max
P10
j ∈P10

j

Z
R10d

¯̄
ϕ
¡
vi1 , vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi6 , vi7 , vi8 , vi9 , vi10

¢¯̄1+δ
dP 10j ,

M62 ≡ max
1≤i1<...<i9≤n

max
1≤j≤7

max
P9
j ∈P9

j

Z
R9d

¯̄
ϕ
¡
v
i1
, vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi1 , vi6 , vi7 , vi8 , vi9

¢¯̄1+δ
dP 9j ,

M63 ≡ max
1≤i1<...<i8≤n

max
1≤j≤7

max
P8
j ∈P8

j

Z
R8d

¯̄
ϕ
¡
v
i1
, vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi1 , vi2 , vi6 , vi7 , vi8

¢¯̄1+δ
dP 8j ,

M64 ≡ max
1≤i1<...<i7≤n

max
1≤j≤7

max
P7
j ∈P7

j

Z
R7d

¯̄
ϕ
¡
vi1 , vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi1 , vi2 , vi3 , vi6 , vi7

¢¯̄1+δ
dP 7j ,

M65 ≡ max
1≤i1<...<i6≤n

max
1≤j≤6

max
P6
j ∈P6

j

Z
R6d

¯̄
ϕ
¡
vi1 , vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi1 , vi2 , vi3 , vi4 , vi6

¢¯̄1+δ
dP 6j ,

25



R61 ≡ n10 max
i5<i9<i10

Z
R7d

E
£
ϕ
¡
v
i1
, v

i2
, v

i3
, v

i4
, V

i5

¢
ϕ
¡
vi6 , vi7 , vi8 , Vi9 , Vi10

¢¤
Π4s=1dF (vis )Π

8
t=6dF (vit ),

R62 ≡ n9max
i8<i9

Z
R7d

E
£
ϕ
¡
vi1 , vi2 , vi3 , vi4 , vi5

¢
ϕ
¡
vi1 , vi6 , vi7 , Vi8 , Vi9

¢¤
Π7s=1dF (vis ),

R63 ≡ n9max
i1<i7

Z
R7d

E
£
ϕ
¡
V
i1
, v

i2
, v

i3
, v

i4
, v

i5

¢
ϕ
¡
Vi1 , vi6 , vi7 , vi8 , Vi9

¢¤
Π8s=2dF (vis ),

R64 ≡ n9max
i4<i7

Z
R7d

E
£
ϕ
¡
vi1 , vi2 , vi3 , vi4 , Vi5

¢
ϕ
¡
vi1 , vi6 , vi7 , vi8 , Vi9

¢¤
Π4s=1dF (vis )Π

8
t=6dF (vit ),

R65 ≡ n8E
£
ϕ
¡
V

1
, V 2, V 3

, V
4
, V 5

¢
ϕ
¡
V

1
, V

2
, V

6
, V

7
, V

8

¢¤
,

R66 ≡ n7E
£
ϕ
¡
V 1 , V 2, V 3 , V 4 , V 5

¢
ϕ
¡
V 1 , V 2 , V 3 , V 6 , V 7

¢¤
,

R67 ≡ n6E
£
ϕ
¡
V

1
, V 2, V 3

, V
4
, V 5

¢
ϕ
¡
V

1
, V 2, V 3

, V
4
, V 6

¢¤
,

and
R68 ≡ n5 max

1<i1<i2<i3<i4≤n
E
£
ϕ
¡
V1, Vi1 , Vi2 , Vi3 , Vi4

¢¤2
.

Remark. In certain cases, the above results can be simplified: (1) if
R
R4d ϕ (v1, ..., v5)Π

4
s=1dF (vs) = 0,

R61 through R63 vanish in S6; (2) if
R
R3d ϕ (v1, ..., v5)Π

3
s=1dF (vs) = 0, R61 through R65 vanish in S6; (3) ifR

R2d ϕ (v1, ..., v5) dF (v1)dF (v2) = 0, R61 through R66 vanish in S6; and (4) if
R
Rd ϕ (v1, ..., v5) dF (v1) = 0,

R61 through R67 vanish in S6.
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