
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2011

Linear Obfuscation to Combat Symbolic Execution Linear Obfuscation to Combat Symbolic Execution

Zhi WANG

Jiang Ming

Chunfu Jia

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
WANG, Zhi; Ming, Jiang; Jia, Chunfu; and GAO, Debin. Linear Obfuscation to Combat Symbolic Execution.
(2011). Computer Security - ESORICS 2011: 16th European Symposium on Research in Computer Security,
Leuven, Belgium, September 12-14: Proceedings. 6879, 210-226.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2005

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Linear Obfuscation to Combat Symbolic

Execution

Zhi Wang1, Jiang Ming2, Chunfu Jia1, Debin Gao3

1 College of Information Technical Science, Nankai University, China
zwang@mail.nankai.edu.cn, cfjia@nankai.edu.cn

2 College of Information Sciences & Technology, Pennsylvania State University, USA
mingjiangpku@gmail.com

3 School of Information Systems, Singapore Management University, Singapore
dbgao@smu.edu.sg

Abstract. Trigger-based code (malicious in many cases, but not nec-
essarily) only executes when specific inputs are received. Symbolic ex-
ecution has been one of the most powerful techniques in discovering
such malicious code and analyzing the trigger condition. We propose a
novel automatic malware obfuscation technique to make analysis based
on symbolic execution difficult. Unlike previously proposed techniques,
the obfuscated code from our tool does not use any cryptographic oper-
ations and makes use of only linear operations which symbolic execution
is believed to be good in analyzing. The obfuscated code incorporates
unsolved conjectures and adds a simple loop to the original code, mak-
ing it less than one hundred bytes longer and hard to be differentiated
from normal programs. Evaluation shows that applying symbolic execu-
tion to the obfuscated code is inefficient in finding the trigger condition.
We discuss strengths and weaknesses of the proposed technique.
Keywords: Software obfuscation, symbolic execution, malware analysis

1 Introduction

Symbolic execution was proposed as a program analysis technique more
than three decades ago [1]. In recent years, symbolic execution has ad-
vanced a lot. It is usually combined with dynamic taint analysis and the-
orem proving, and is becoming a powerful technique in security analysis
of software programs. In particular, symbolic execution has been shown
to be useful in discovering trigger-based code (malicious in many cases,
although not necessarily) and finding the corresponding trigger condi-
tion [2].

To fight against the state-of-the-art malware analyzers, Sharif et al.
proposed a conditional code obfuscation scheme that obfuscates equality
conditions that rely on inputs by introducing one-way hash functions [3].
It was shown that analyzers based on symbolic execution are hard to rea-
son about the value of input that satisfies the equality condition. However,

admitted by the authors, using cryptographic functions in the obfuscation
might improve malware detection [3].

In this paper, we challenge the requirement of using cryptographic
functions in obfuscation to make symbolic execution difficult, and pro-
pose a novel automatic obfuscation technique that makes use of linear
unsolved conjectures. There are a few advantages of using only linear
operations in the obfuscation without any cryptographic ones. First, the
obfuscated code becomes less suspicious in malware detection. The ob-
fuscated code produced by our technique only adds a simple loop to the
code, making the resulting obfuscated code similar to legitimate programs
that employ, e.g., simple number sorting algorithms. Second, such simple
obfuscated code makes it possible for our technique to be combined with
other obfuscation and polymorphism techniques to achieve stronger pro-
tection. Third, the size of the obfuscated code is less than one hundred
bytes longer than the original program.

Many unsolved conjectures (e.g., the Collatz conjecture [4], see Fig-
ure 1) involve some simple linear operations on integers that loop for
an unknown number of times. Such operations are usually fast and com-
monly used in basic algorithms in computer science. They are perfect
candidates to be used in obfuscations to make symbolic execution dif-
ficult because symbolic execution is usually weak and inefficient in an-
alyzing loops, in particular, the number of times the loop body exe-
cutes [5,6,7,8,9,10,11,12,2].

ai =

{

n for i = 0

f(ai−1) for i > 0

where f(n) =

{

n/2 if n ≡ 0 (mod 2)

3n+ 1 if n ≡ 1 (mod 2)

Fig. 1. Collatz conjecture: ai will eventually reach 1 regardless of the
value of n.

Another advantage of using these unsolved conjectures is that they can
be used to obfuscate inequality conditions, a case the previous proposal
is unable to handle [3]. Although some inequality conditions could be
transformed to (a set of) equality conditions, it might become impractical
when the inequality range is big.

We propose and implement an automatic obfuscator to incorporate
unsolved conjectures into trigger conditions in program source code. Ex-

tensive evaluations show that symbolic execution would take hundreds of
hours in order to figure out the trigger condition.

The rest of the paper is organized as follows. Section 2 discusses
the background of symbolic execution, unsolved conjectures, and related
work. We detail our threat model and give an overview of the steps in
our obfuscation technique in Section 3. Detailed implementation of our
obfuscator is explained in Section 4. We show the evaluation results of
the obfuscated code and discuss strengths and weaknesses in Section 5.
Finally we conclude in Section 7.

2 Background and Related Work

In this section, we briefly discuss existing work on symbolic execution,
its application, and limitations in handling loops. We also discuss related
work on obfuscating software programs. At the end of the section, we
outline some unsolved conjectures in mathematics which we make use of
in our obfuscator.

2.1 Symbolic execution and its applications

Forward symbolic execution has been extensively utilized in various se-
curity analysis techniques [13]. Automatic testing leverages forward sym-
bolic execution to achieve high code coverage and automatic input gen-
eration [7,8,9,6,10,5,14,15]. Most of these applications automatically gen-
erate inputs to trigger well-defined bugs, such as integer overflow, mem-
ory errors, null pointer dereference, etc. Recent work shows that forward
symbolic execution can be used to generate succinct and accurate input
signatures or filters to block exploits [16,17,18,19]. Previous work has
also proposed several improvements to enhance white-box exploration on
the programs that rely on string operations [20,21] and lift the symbolic
constraints from the byte level to the protocol level [16]. Malware anal-
ysis leverages forward symbolic execution to capture information flows
through binaries [22,23,24,25]. Brumley et al. proposed MineSweeper [2]
that utilizes static analysis and symbolic execution to detect trigger con-
ditions in malware and trigger-based behavior.

2.2 Limitation of symbolic execution in unrolling loops

Most existing forward symbolic execution techniques have limitations in
traversing branches in a loop, particularly when symbolic variables are

used as the bound. Typically, only a fixed number of times or a fixed
amount of time is spent to approximate the analysis [5,6,7,8,9,10,11,12,2].
Several approaches improve this loop unrolling strategy. LESE [26] intro-
duces new symbolic variables to represent the number of times each loop
executes and links symbolic loop variables to symbolic inputs with known
input grammar. RWset [27] prunes redundant loop paths by tracking all
the reads and writes performed by the checked code. We exploit this
weakness of symbolic execution in handling loops to propose our novel
obfuscator that uses only linear operations. In Section 6, we discuss the
resilient of our obfuscator to these advancements in dealing with loops.

2.3 Binary obfuscation

Different approaches for binary obfuscation have been developed, and the
main purpose is to improve resistance to static analysis [28,29,30,3,31].
Collberg et al. performs binary obfuscation by code transformation [32].
Popov et al. obfuscates binary by replacing branch instructions with trap
and bogus code [29]. Moser et al. propose opaque constants to evade
static analysis. The main difference between our approach and existing
work is that our goal is to impede forward symbolic execution. Sharif et al.
presented an advanced work to attack symbolic execution by encrypting
code that is conditionally dependent on input [3], which is the closest
to our approach. However encrypting the original code introduces data
bytes rarely observed. Our work introduces only linear operations and is
less susceptible to statistical de-obfuscation techniques.

2.4 Unsolved conjectures

Unsolved conjectures are unproven propositions or theorems that appear
to be correct and have not been disproven. The Collatz conjecture, also
known as the 3x+1 conjecture [4] asserts that starting from any positive
integer n (see Figure 1), repeated iterations of this function eventually
produces the value 1. The 3x+1 conjecture and its variations are simple
to state but hard to be proven [33,4,34]. Conway proved that such 3x+1
problems can be formally undecidable [35]. The 3x+1 conjecture has been
tested and found to always reach 1 for all integers ≤ 20 · 258 in 2009 [36].

Some other examples of unsolved conjectures that we can use in our
obfuscator include

5x+ 1 conjecture:

f(n) =

n/2 if n ≡ 0 (mod 2)

n/3 if n ≡ 0 (mod 3)

3n+ 1 else

Matthews conjecture:

f(n) =

7n+ 3 if n ≡ 0 (mod 3)

(7n+ 2)/3 if n ≡ 1 (mod 3)

(n− 2)/2 if n ≡ 2 (mod 3)

7x+ 1 conjecture:

f(n) =

n/2 if n ≡ 0 (mod 2)

n/3 if n ≡ 0 (mod 3)

n/5 if n ≡ 0 (mod 5)

7n+ 1 else

Juggler Sequence:

ai =

{

⌊a
1/2
i−1⌋ if ai−1 ≡ 0 (mod 2)

⌊a
3/2
i−1⌋ if ai−1 ≡ 1 (mod 2)

These conjectures are similar to the Collatz conjecture in that they
all converge to a fixed value regardless of the value of the starting integer,
see Table 1.

Table 1. Convergence of unsolved conjectures.

Conjecture Convergence Modular Operand

3x+ 1 1 mod 2 Integer
5x+ 1 1 mod 2, 3 Integer
7x+ 1 1 mod 2, 3, 5 Integer

Matthews 0 mod 3 Integer
Juggler 1 mod 2 Floating point, Integer

3 Overview of our Obfuscator

Our proposed obfuscation technique complicates symbolic execution by
introducing a spurious input variable and a loop from unsolved conjec-
tures. The additional spurious input variable affects the control flow of the
program in such a way that the trigger condition of the malicious behav-
ior depends on this newly added input variable. Therefore, the additional
input variable has to be modeled as a symbol in symbolic execution. A
loop introduced by an unsolvable conjecture is added to the control flow,
typically at the trigger condition. This loop adds a huge number of pos-
sible execution paths (growing exponentially) to the program execution,
and takes symbolic execution a long time to figure out the original trigger
condition.

Note that the introduction of the spurious input variable and the un-
solved conjecture do not hide the malicious behavior, a goal some existing
obfuscator tries to achieve [3]. What our obfuscator tries to do is to hide
the condition under which the malicious behavior is triggered, but not

the behavior itself, although our obfuscator could be used in conjunction
with other tools to achieve both. In addition, we try to hide the trigger
condition without using cryptographic operations so that the obfuscated
code is less suspicious.

Figure 2 demonstrates the idea with a simple example. Figure 2a
shows a simple code segment where do_m() is some malicious behavior
with a trigger condition x==30. This is a program easily analyzed with
symbolic execution. Figure 2b shows a code segment with a while loop.
In the loop body, the variable y is updated in different ways according
to certain condition on y. This code segment is hard to be analyzed by
symbolic execution because the value of y depends on the number of times
the loop body gets executed, which is hard to be figured out.

i f (x == 30) {
do m () ;

}

(a) Malicious code
with trigger condi-
tion

whi le (y > 1){
i f (y % 2 == 1){

y = 3 ∗ y + 1 ;
}
e l s e {

y = y / 2 ;
}

}

(b) Collatz conjecture

// x : user input
// y : spur i ous v a r i ab l e

y = x + 1000 ;
whi l e (y > 1){

i f (y % 2 == 1){
y = 3 ∗ y + 1 ;

}
e l s e {

y = y / 2 ;
}
i f ((x − y > 28) &&

(x + y < 32)){ // cond .
do m () ;
break ;

}
}

(c) Obfuscated code

Fig. 2. An example

Now if we try to obfuscate the code segment in Figure 2a by intro-
ducing a spurious variable and a loop as shown in Figure 2b, we can see
that the trigger condition of the malicious behavior is no longer static
but depends on the spurious variable, whose value depends on the num-
ber of times the body executes (see Figure 2c). Intuitively, this is hard to
analyze with symbolic execution.

However, there is one important issue we have not discussed — how
do we make sure that the semantics of the program does not change
after the obfuscation. In other words, although symbolic execution has

a hard time figuring out the number of times the body executes in the
loop, are we (as the programmer) able to figure that out? Answer is yes,
thanks to the unsolved conjecture as shown in Figure 1. This unsolved
conjecture simply says that y will converge to 1 regardless of its initial
value. With this, we can work out the condition (cond. as in Figure 2c) to
be introduced in the obfuscated code under which the malicious behavior
executes.

Note that our proposed obfuscator might be susceptible to pattern
recognition, assuming that the unsolved conjecture we use is known. This
could be solved by randomly choosing various unsolved conjectures, vari-
ations to cond. according to the particular unsolved conjecture used, or
combining with other existing obfuscation techniques (e.g., opaque con-
stants [30]). We discuss this further in Section 6.

4 Implementation

Having explained the basic idea as introducing a spurious input variable
and adding a loop from unsolved conjectures, we turn to the implemen-
tation details in this section. Here we assume that the source code is
available for obfuscation. The same idea can be easily applied to binaries
since the obfuscated code we insert is simple and involves linear opera-
tions only.

4.1 Adding a spurious variable

In most cases, only variables derived from program inputs are taken as
symbolic variables in symbolic execution [15,8,25]. We therefore have to
make inserted spurious variables dependent upon program inputs.

This is not difficult since the Collatz conjecture hold regardless of the
initial value of the variable. For example, if we assume that x represents
a program input, our spurious variable y can be made dependent on it
by y = x + c where c is a constant, or y = x + gettimeofday(), or
y = x+ rand() where the relation between y and x is more complicated.

However, it is not the case that the more complicated the relation-
ship between y and x is, the longer symbolic execution takes. Symbolic
execution does not support some complex operations, e.g., pointer ma-
nipulations, floating point operations, etc. When it is obvious that the
variable is impossible to reason about symbolically, concrete values will
be used to simplify the constraints to continue the symbolic execution.
Therefore, we want to make the dependence complicated but not to the

extent of being skipped by symbolic execution. We use linear polynomial
with normal operations in our experiments (see Section 5). In the example
shown in Figure 2, we simply use y = x+ 1000.

4.2 Choosing an unsolved conjecture

Some requirements when choosing an unsolved conjecture include

– Convergent: the loop converges.

– Partially decidable: although no proof exists, it has been tested
that the terminating condition is known under certain range.

– Machine implementable: it can be easily implemented in common
programming languages.

– Simple/Linear: the implementation is simple and involves linear op-
erations only.

All the examples shown in Section 2 satisfy these requirements.

Although the objective of our obfuscation is to confuse symbolic ex-
ecution but not to combat pattern recognition, program analysts who
know our obfuscation technique might create signatures of the unsolved
conjectures and the corresponding convergence values to de-obfuscate the
program. We discuss two ways of introducing variations to make such
pattern recognition difficult. Section 6 also discusses the similarity of an
implementation of the unsolved conjecture with the implementation of
simple arithmetic algorithms.

In order to use the unsolved conjecture to obfuscate the malicious
code, we need to insert a trigger condition within the loop under which
the malicious behavior will execute. Intuitively, this trigger condition is
related to the converge value of the conjecture (see Table 1), which is a
constant regardless of the starting integer value. We can introduce vari-
ations to the trigger condition, y == 1 in the case of Collatz conjecture,
by backtracking a few rounds before the loop actually terminates. For
example, y == 2 can be used as the trigger condition when we backtrack
one round, and y == 4 for two rounds.

Another variation we can introduce is for the condition of the loop.
This condition is actually unimportant as long as it allows the loop to
continue before reaching the trigger condition. Therefore, it can be cho-
sen from a large number of options, including conditions on the converge
value (e.g., while (y > 1)), conditions on the max stopping time of loops
(e.g., for (i=0; i<1000; i++)), etc. For Collatz conjecture, the stop-
ping times of positive integers from 1 to 231 are all less than 1000.

4.3 Inserting trigger-based malicious code into the unsolved
conjecture

Now we have introduced a new spurious variable y = x+1000 (Section 4.1)
and an unsolved conjecture with a trigger condition y == 1 (Section 4.2).
The next is to insert the malicious code into the unsolved conjecture and
to modify the trigger condition accordingly to preserve the semantics
of the original code. Depending on the original trigger condition of the
malicious code, we modify it in three different ways.

– > or ≥ (e.g., x ≥ 30): Since the spurious variable is always greater
than or equal to 1 in the loop, x− y ≥ 30− 1.

– < or ≤ (e.g., x ≤ 30): Similarly, we have x+ y ≤ 30 + 1.
– == (e.g., x == 30): This is equivalent to the intersection of two

inequalities x ≥ 30∩x ≤ 30, and therefore we have x+y ≥ 31∩x−y ≤
29 (also equivalent with the code segment shown in Figure 2c).

We implement the automatic obfuscator which takes input the original
source code in C and output obfuscated code to be compiled. We apply
the obfuscator on three malware samples, Blaster [37], MyDoom [38], and
NetSky [39] to evaluate the overhead in size in the obfuscated binaries.
Table 2 shows the results.

Table 2. Overhead in size of obfuscated binaries.

Malware Size of original binary
Increase in size (bytes) after obfuscation

Before memory alignment After memory alignment

Blaster 29,426 72 64
Mydoom 28,240 46 64
NetSky 36,182 60 64

Blaster is a worm that exploits the DCOM RPC vulnerability. It only
triggers its malicious behavior (DoS attack against windowsupdate.com)
if the system date falls into the range of Aug 16 and Aug 31. The trigger
condition in the original code is implemented by two if statements which
are both obfuscated by our technique. We find that the obfuscated binary
code increases by 72 and 64 bytes in its size before and after memory
alignment, respectively.

Mydoom is a mass-mailing worm that performs a DoS attack on Feb
1, 2004 starting at 16:09:18 UTC. NetSky is another mass-mailing worm
that uses its own SMTP engine to send itself to the email addresses it
finds on compromised systems. It only launches the attack on Oct 11

windowsupdate.com

2004. We obfuscate the trigger condition (date and time) for these two
malware samples, and find that the increase in size is also 64 bytes after
memory alignment, which is hardly noticeable.

5 Security Evaluation

In this section, we first test the effectiveness of our obfuscation on an
example with one branch condition, the running example as shown in
Figure 2, to evaluate its resistance to symbolic execution. Although this
example is very simple, results show that there is very little likelihood
to find the trigger input by reasoning about the obfuscated code sym-
bolically. We then continue to discuss if the evaluation results on such
a simple example are general in other more complicated programs. We
used a machine with a six-core processor running at 3.0 GHz and 4 GB
of RAM to do symbolic execution.

5.1 Strategy used by program analyzers

In order to evaluate the effectiveness of our obfuscator in confusing auto-
matic program analyzers that employ symbolic execution, we first discuss
the strategy used by the automatic program analyzer.

Recall that the objective of our obfuscation is to hide the trigger
condition but not the malicious behavior. Also recall we assume that
the program analyzer does not find out the trigger condition by pattern
matching due to the variations we introduce to the trigger condition; see
Section 4.2. An automatic program analyzer’s strategy is described as
follows.

1. Pick an initial program input y0;
2. Dynamically monitor the execution of the program under the chosen

input yi. If the malicious behavior is observed, the trigger condition
is found to be yi;

3. Collect the branch conditions along the execution trace and negate
the last condition on the trace;

4. Use a solver to solve for a new program input that satisfies the new
sequence of conditions (with the last one negated) as well as the im-
mediate condition of the malicious behavior (cond. as in Figure 2c).
Let yi+1 equal to the new input if it can be found and go to step 2;
if the new input cannot be found, negate the next (towards the start
of the sequence) condition and send it to the solver until a new input
can be found.

In the example as shown in Figure 2c, the trigger condition is y == 1030

(i.e., x == 30). Assume that the program analyzer picks y = 1158 as the
initial input, which will result in a sequence of true/false results in eval-
uating the condition y % 2 == 1 in each iteration of the loop. Table 3
shows the value of y, the evaluation result of the condition in some of
the iterations for the trigger condition y == 1030 and an initial input of
y == 1158.

Table 3. Dynamic traces with an initial input of 1030 and 1158.

y = 1030 y = 1158

iteration y y % 2 == 1 iteration y y % 2 == 1 STP result

1 1030 false 1 1158 false

2 515 true 2 579 true

3 1546 false 3 1738 false

...

9 145 true 9 163 true

10 436 false 10 490 false

11 218 false 11 245 true true

...

123 4 false 30 4 false false

124 2 false 31 2 false false

125 1 true 32 1 true false

Table 3 also shows the result of the solver when the program analyzer
tries to find the next input. The STP solver keeps returning false, i.e.,
cannot find a valid input satisfying the given condition sequence, until
iteration 11. Once STP returns the next program input, the program
analyzer goes back to step 2 and tries again.

This process terminates until the malicious behavior is observed and
the trigger condition is found. The reason why the last condition is
negated first is because we assume that the program analyzer is able
to guess an initial input that is close to the trigger condition. This is a
reasonable assumption since the trigger condition is usually context de-
pendent. Under such an assumption, the program analyzer would like to
choose the next y as one that results in a very similar program execution
trace as the earlier one, which has a higher probability of getting closer
and closer to the actual trigger condition during the experiment.

5.2 Probability of finding the correct trigger condition

Assuming that the trigger condition is unique, and the solver always man-
ages to find the next input if there exists one that satisfies the given con-
dition sequence (if multiple ones satisfy the condition sequence, a random
one will be returned), we notice that the solver finds the next input ex-
actly at iteration i where for all j ≤ i the corresponding looping condition
cj = (y%2 == 1) evaluates to the same result as in the trigger condi-
tion. In the example shown in Table 3, this means that for all j ∈ [1, 10],
cj evaluates to the same value in both y == 1030 and y == 1158 while
c11 evaluates to different values. This can be proven easily because if the
solver finds the next input any earlier, it contradicts with our assumption
that the trigger condition is unique.

To discuss the probability of finding the correct trigger condition with
symbolic execution, we use the following notations in Table 4.

Table 4. Notations used.

t the trigger input (1030 in our example)

x the program input used by the analyzer

f(x) the number of iterations executed before x converges to 1

g(x) largest i s.t. for all j ≤ i, cj is the same for t and x

s(n) the number of different x s.t. g(x) = n

z(x) the time taken to find the next input x

Table 5 shows the evaluation of some random x. Intuitively, f(x)
gives us an idea how long it takes to finish monitoring the execution of
the program under input x. g(x) evaluates how close x is with the trigger
input t. The difference between f(x) and g(x) indicates the number of
times the solver is invoked before it manages to find the next valid input
x. An interesting observation here shows that z(x) is not proportional to
f(x)− g(x). This is because the time taken for the solver depends on the
complexity of the conditions. z(x) is dominated by the last few tests with
complex conditions (closer to g(x)), and is therefore mainly dependent
on the value of g(x).

The last two columns in Table 5 show the value of s(n). Intuitively, the
larger s(n) is, the more likely the solver returns the next input x such that
g(x) = n. There exists some g(x) values that do not correspond to any

possible x (s(g(x)) = 0), as shown in Figure 3. Since s(n) =
∑g(t)

i=n+1 s(i),

Table 5. Statistics for different initial values of x picked.

x f(x) g(x) z(x) s(g(x)) s(g(x) + 1)

1158 32 10 19.14s 33554431 16777215
17414 142 20 878.4s 262144 131072

1049606 153 31 878.4s 4096 2048
134218758 326 43 5178.9s 32 16
2147484678 179 50 1083.6s 2 1

1030 125 125 1

the nonzero s(n) values decrease by half with the increase of n. Therefore,

Pr (g(xk+1) = g(xk) + n) =
1

2m

where m is the number of nonzero s(g(x)) values between g(xk) and
g(xk+1).

For example,

Pr(xk+1 = 17414|xk = 1158) = 262144/33554431 = 0.0078

where xk+1 is the return of our solver after monitoring the execution with
input xk.

Appendix A shows the continuous scripts of the program analyzer for
initial inputs x = 1158 and x = 1034, which confirms our intuition in
the probability of g(xk+1) shown above. This shows that it is unlikely the
program analyzer gets lucky and the solver returns the trigger condition
in the beginning of the study. More likely the program analyzer will take
one step closer each time the solver returns an input, just like the scripts
shown in Appendix A. The total times needed to find the correct trig-
ger condition are 16871.24 and 21709.1 seconds, respectively, for the two
initial inputs.

5.3 Choice of initial input

Section 5.2 shows that the program analyzer most likely will take one step
closer to the trigger condition t (with an input x that has a slightly larger
g(x)) every time the solver returns an input for some particular initial
input. In this section, we show that the result presented in Section 5.2
can be generalized to other initial inputs. Figure 3 shows the distribution
of initial inputs x ∈ [1, 232] for different g(x) for the trigger condition
t = 1030. Appendix B shows that similar distribution is found for eight
random values of t.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p

u
t

v
a

lu
e

Max

Min

Mean

Standard Deviation

Count

Fig. 3. Distribution of initial inputs for different g(x)

It is obvious from Figure 3 that there are more initial values with
smaller g(x). The number of initial input values continues to drop until
it reaches zero for g(x) > 50, with a single exception when x = t which
results in g(x) = g(t) = 125. Recall that g(x) is an indication of how close
x is with t, this means that there are fewer possible values of x when it
comes closer to t, which means that the strategy of randomly picking other
values of x does not usually give the program analyzer an advantage in
finding t. The strategy shown in Section 5.2 is still a reasonably good
strategy.

Looking at the mean values, we notice that it is not a continuous
line, although the mean is always around 2 × 108. It is not a close line
mainly because there exists many g(x) values that do not correspond to
any possible x. As we explained earlier, there are many scenarios where
the solver might not be able to find any inputs. A closer look into the
original data reveals that the mean is always around 216. This shows
that there is very little bias in the distribution of x when t is small, and
therefore the program analyzer could not get much advantage by choosing
smaller/larger initial values.

This analysis shows that choose different initial inputs does not give
the program analyzer significant advantages, and the analysis results in
Section 5.2 can be extended to different initial inputs, as well as different
trigger conditions (see Appendix B).

6 Limitations

Our obfuscator is designed to make symbolic execution difficult in finding
out a trigger condition of malicious code. We show its effectiveness in some
examples and its security in Section 5. However, this obfuscator is not

designed to solve all obfuscation problems and there are some limitations
to it.

Constants Our obfuscator is not designed to obfuscate constants. In fact,
we introduce additional constants into the obfuscated code. To handle
this problem, our obfuscator can be used in conjunction with opaque
constants [23] to hide special characteristic of the obfuscation.

Malicious behavior Our obfuscator is not designed to hide the malicious
code, but the condition under which the malicious code will be executed.
A malware author can introduce existing code mutation techniques, such
as polymorphism and metamorphism, to make it difficult to analyze the
malicious behavior.

Pattern matching The unsolved conjectures introduced by our obfuscator
might introduce special patterns that can be identified. Besides using
different conjectures shown in the section 2.4 and introducing variations as
discussed in Section 4, here we show that the control flow of our unsolved
conjectures is very similar to some common program algorithm, which
makes pattern matching difficult.

(a) A quick sort algorithm (b) Our obfuscated code

Fig. 4. Control flow comparison

Figure 4 shows that the control flow of the two code segments are
similar. We also use one of the most sophisticated binary difference ana-
lyzer, BinHunt [40] to analyze the similarity of various binary codes, and

show the results in Table 6. Results show that our obfuscated code is very
similar to the code of quick sort.

Table 6. Binary difference analysis (larger matching strength indicates
higher similarity).

Matching strength Our obfuscated code Select sort Bubble sort

Quick sort 0.85 0.49 0.38

Larger set of triggered inputs In our analysis we assume that there is a
single integer that satisfies the trigger condition, and show that symbolic
execution has a hard time figuring it out. However, the probability results
may change when there is a larger set of inputs that satisfy the trigger
condition.

Execution overhead Our obfuscator introduces some additional overhead
to the execution of the program due to the loop added. This is usually
not a concern when it is applied in a malicious program. However, it may
be an issue when the technique is used to obfuscate legitimate programs.

7 Conclusion

In this paper, we introduce a novel obfuscator that makes symbolic ex-
ecution difficult in finding trigger conditions. Our obfuscator applies the
concept of unsolved conjectures and adds a loop to the obfuscated code.
Experiments show that symbolic execution will have a hard time unrolling
the loop and therefore inefficient in figuring out the trigger condition un-
der which certain code segment will be executed. Our security analysis
shows that there does not exist other analyzing strategy in making the
analysis simpler, even when different initial inputs are used or when the
trigger condition is different.

Acknowledgments. The authors thank the anonymous reviewers for
their suggestions. This work was supported by the National Natural Sci-
ence Foundation of China under grant 60973141, the Natural Science
Foundation of Tianjin under grant 09JCYBJ00300 and the Specialized
Research Fund for the Doctoral Program of Higher Education of China
under grant 20100031110030.

References

1. King., J.C.: Symbolic execution and program testing. Commun. ACM 19 (1976)
385–394

2. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, J., Song, D., Yin,
H.: Automatically identifying trigger-based behavior in malware. Book Chapter
in ”Botnet Analysis in Defense” 36 (2007)

3. Sharif, M., Lanzi, A., Giffin, J., Lee., W.: Impeding malware analysis using con-
ditional code obfuscation. In: Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium (NDSS 2008). (2008)

4. Lagarias., J.C.: The 3x+1 problem and its generations. Amer. Math. Monthly 92

(1985) 3–23
5. Lee, G., Morris, J., Parker, K., Bundell, G., Lam., P.: Using symbolic execution to

guide test generation. Software Testing, Verification & Reliability 15 (2005) 41–61
6. Godefroid, P., Levin, M.Y., Molnar., D.: Automated whitebox fuzz testing. In:

Proceedings of the 15th Annual Network and Distributed System Security Sym-
posium (NDSS 2008). (2008)

7. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code
crash itself. In: Proceedings of the 12th SPIN Workshop. (2005)

8. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler., D.: EXE:automatically
generating inputs of death. In: Proceedings of the 2006 ACM Conference on Com-
puter and Communications Security (CCS 2006). (2006)

9. Cadar, C., Dunbar, D., Engler., D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 2008
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2008). (2008)

10. Molnar, D., Li, X., Wagner., D.: Dynamic test generation to find integer bugs in x86
binary linux programs. In: Proceedings of the 2009 USENIX Security Symposium.
(2009)

11. Wang, T., Wei, T., Lin, Z., Zou., W.: Intscope: Automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In: Proceedings of
the 16th Annual Network and Distributed System Security Symposium (NDSS
2009). (2009)

12. Newsome, J., Brumley, D., Franklin, J., Song., D.: Replayer: Automatic proto-
col replay by binary analysis. In: Proceedings of the 13th ACM Conference on
Computer and and Communications Security (CCS 2006). (2006)

13. Schwartz, E.J., Avgerinos, T., Brumley., D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy.
(2010)

14. Sen, K., Marinov, D., Agha., G.: CUTE: A concolic unit testing engine for c. In:
Proceedings of FSE2005 (13th International Symposium on the Foundations of
Software Engineering). (2005)

15. Godefroid, P., Klarlund, N., Sen., K.: DART: Directed automated random testing.
In: Proceedings of the ACM Conference on Programming Lanuguage Design and
Implementation. (2005)

16. Caballero, J., Liang, Z., Poosankam, P., Song., D.: Towards generating high cov-
erage vulnerability-based signatures with protocol-level constraint-guided explo-
ration. In: Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection. (2009)

17. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado., M.: Bouncer: Securing
software by blocking bad input. In: Proceedings of the 2007 ACM Symposium on
Operating Systems Principles (SOSP). (2007)

18. Brumley, D., Newsome, J., Song, D., Wang, H., Jha., S.: Towards automatic
generation of vulnerability-based signatures. In: Proceedings of the 2006 IEEE
Symposimu on Security and Privacy. (2006)

19. Brumley, D., Wang, H., Jha, S., Song., D.: Creating vulnerability signature using
weakest preconditions. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy. (2007)

20. Xu, R.G., Godefroid, P., Majumdar, R.: Testing for buffer overflows with length
abstraction. In: Proceedings of the 2008 international symposium on Software
testing and analysis. (2008)

21. Caballero, J., McCamant, S., Barth, A., Song., D.: Extracting models of security-
sensitive operations using string-enhanced white-box exploration on binaries. Tech-
nical report, Technical Report UCB/EECS-2009-36, EECS Department, University
of California, Berkeley (2009)

22. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero.,
S.: Identifying dormant functionality in malware programs. In: Proceedings of the
2010 IEEE Symposium on Security and Privacy. (2010)

23. Moser, A., Kruegel, C., Kirda., E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 2007 USENIX Security Symposium. (2007)

24. Yin, H., Song., D.: Panorama: capturing system-wide information flow for malware
detection and analysis. In: ACM Conference on Computer and Communications
Security (CCS 2007). (2007)

25. Brumley, D., Hartwig, C., G.Kang, M., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin., H.: Bitscope: Automatically dissecting malicious binaries. Technical
report cs-07-133, School of Computer Science, Carnegie Mellon University (2007)

26. Saxena, P., Poosankam, P., McCamant, S., Song., D.: Loop-extended symbolic
execution on binary programs. In: Proceedings of the 18th international symposium
on Software testing and analysis. (2009)

27. Boonstoppel, P., Cadar, C., Engler., D.: Rwset: Attacking path explosion in
constraint-based test generation. In: Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2008). (2008)

28. Linn, C., Debray., S.: Obfuscation of executable code to improve resistance to
static disassembly. In: Proceedings of the 10th ACM conference on Computer and
communications security. (2003)

29. Popov, I.V., Debray, S.K., Andrews., G.R.: Binary obfuscation using signals. In:
Proceedings of the 2007 USENIX Security Symposium. (2007)

30. Moser, A., Kruegel, C., Kirda., E.: Limits of static analysis for malware detection.
In: Proceedings of the 23rd Annual Computer Security Applications Conference.
(2007)

31. Lee, B., Kim, Y., Kim., J.: binOb+: a framework for potent and stealthy binary ob-
fuscation. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. (2010)

32. Collberg, C., Thomborson, C., Low., D.: A taxonomy of obfuscating transforma-
tions. Technical report 148, Department of Computer Sciences, The University of
Auckland (1997)

33. Crandall, R.E.: On the ”3x + 1” problem. Mathematics of Computation 32 (1978)
1281–1292

34. Guy, R.K.: Unsolved problems in number theory. Problem Books in Mathematics
(2004)

35. Conway, J.H.: Unpredictable iterations. In: Proceedings of the 1972 Number
Theorey Conference. (1972)

36. Silva., T.O.: Computational verification of the 3x+1 conjecture. Technical re-
port, Electronics, Telecommunications, and Informatics Department,University of
Aveiro (2010)

37. Knowles, D., Perriott, F.: W32.Blaster. http://www.symantec.com/security_

response/writeup.jsp?docid=2003-081113-0229-99&tabid=2 (2003) .
38. Ferrie, P.: W32.Mydoom. http://www.symantec.com/security_response/

writeup.jsp?docid=2004-012612-5422-99&tabid=2 (2004) .
39. Shinotsuka, H.: W32.NetSky. http://www.symantec.com/security_response/

writeup.jsp?docid=2004-030717-4718-99&tabid=2 (2004) .
40. Gao, D., Reiter, M.K., Song, D.: BinHunt: Automatically finding semantic differ-

ences in binary programs. In: Poceedings of the 10th International Conference on
Information and Communications Security (ICICS 2008). (2008)

A Contineous scripts of the program analyzer when

x = 1158 and x = 1034

Table 7. Complexity of symbolic formulas and average solving time

Round x g(x) f(x) z(x) # of STP nodes x g(x) f(x) z(x) # of STP nodes

1 1158 10 32 19.14 19107 1034 3 125 707.6 127543
2 1286 11 27 13.6 17613 1022 5 63 127.6 45602
3 1542 13 35 24.2 24076 550 7 93 464.4 124144
4 2054 14 38 31.2 26042 1222 8 40 38.4 24682
5 3078 15 36 27.3 26119 646 10 101 345.8 65050
6 5126 17 55 72.2 40000 4358 11 47 64.8 29976
7 9222 18 110 469.2 84462 518 13 124 621.6 125150
8 17414 20 142 878.4 110404 7174 15 120 598.5 128339
9 33798 22 60 98.8 44059 25606 18 127 654 131941
10 66566 24 56 70.4 41148 50182 20 66 124.2 57248
11 132102 26 101 345 76491 99334 22 116 413.6 85067
12 263174 28 102 288.6 86298 197638 24 148 892.8 145560
13 525318 29 90 244 68720 4326406 26 181 1286.5 150866
14 1049606 31 153 878.4 118753 1573894 29 76 141 58221
15 2098182 32 105 350.4 76268 6292486 32 228 1999.2 185416
16 4195334 34 137 710.7 105035 12583942 34 105 319.5 81474
17 8389638 36 169 824.6 147493 25166854 36 230 1978.8 188020
18 16778246 37 82 126 71580 100664326 39 139 750 138716
19 33555462 39 171 1188 129648 1946158086 41 135 639.2 137371
20 67109894 41 172 956.3 146783 2013266950 43 183 1162 161645
21 134218758 43 326 5178.9 281345 1879049222 44 306 4034.8 243945
22 268436486 44 174 975 147574 1610613766 46 249 2151.8 199218
23 536871942 46 175 993.3 148022 3221226502 48 177 1109.4 153689
24 1073742854 48 176 1024 147881 2147484678 50 179 1083.6 150026
25 2147484678 50 179 1083.6 150026

Sum of z(x) 16871.24 21709.1

B Distribution of initial inputs for different trigger

input t

http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-030717-4718-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-030717-4718-99&tabid=2

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(a) t =0x0000000a

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(b) t =0x00000020

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(c) t =0x00000406

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(d) t =0x000057f1

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(e) t =0x0007d57b

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(f) t =0x00a2355f

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(g) t =0x09c45b3f

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
9

G(x)

in
p
u
t

v
a
lu

e

Max

Min

Mean

Standard Deviation

Count

(h) t =0xc8435f73

	Linear Obfuscation to Combat Symbolic Execution
	Citation

	Linear Obfuscation to Combat Symbolic Execution
	Zhi Wang, Jiang Ming, Chunfu Jia, Debin Gao

