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Abstract

We uncover a new necessary condition for implementation in iteratively
undominated strategies by mechanisms that satisfy the “best element prop-
erty” where for each agent, there exists a strategy profile that gives him
the highest payoff in the mechanism. This class includes finite and regular
mechanisms. We conclude that either the quasilinearity-like assumptions
of available sufficiency results cannot be completely dispensed with or some
mechanisms that do not satisfy the best element property must be employed.
We term the condition “restricted deception-proofness.” It requires that, in
environments with identical preferences, the social choice function be im-
mune to all deceptions, making it then stronger than incentive compatibility.
In some environments the conditions for (exact or approximate) implementa-
tion by mechanisms satisfying the best element property are more restrictive
than previously thought.
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1 Introduction

Aside from incentive compatibility, the necessary conditions for implemen-
tation in iteratively undominated strategies are typically viewed as very per-
missive.! For example, in a standard Bayesian environment with incomplete
information, in which type spaces are common knowledge, Abreu and Mat-
sushima [1] [AM, henceforth| show that both incentive compatibility and
their measurability condition (referred to as AM measurability from now
on) are necessary for (exact or approximate) implementation in iteratively
undominated strategies. Incentive compatibility is the central restriction in
the economic theory of information, and it can sometimes be quite demand-
ing. However, as argued for instance in AM or in Serrano and Vohra [14],
AM measurability is usually very weak: interim preferences of the different
types are almost always distinct from each other, and then AM measurabil-
ity amounts to no restriction at all. These necessity results are generalized
to robust environments, in which weaker common knowledge requirements
are made, in Bergemann and Morris [3] [BM from now on] and in Artemov,
Kunimoto and Serrano [2] [AKS in the sequel].

In the three papers afore mentioned (AM, BM and AKS), additional
conditions are used to prove the corresponding sufficiency results. AM'’s
Assumption 2 states that, for each agent i and each state, there exist two
ex-post lotteries that ¢ ranks strictly, and for which all other agents have the
(weakly) opposite ranking. BM make use of an economic assumption, which
is essentially a robust analogue of AM’s Assumption 2. Because of their
robustness considerations, BM require that for each agent i, there exists a
constant lottery z; that ¢ strictly prefers to the uniform lottery g, and for
which all other agents have the (weakly) opposite preferences, regardless
of the underlying payoff types. Finally, AKS essentially postulate that the
set of alternatives includes a numeraire, on which an arbitrarily small off-
equilibrium penalty can be imposed. As a nice byproduct, these papers
obtain sufficiency results using finite mechanisms, in which best responses
always exist. In all three cases, the use of these assumptions in the sufficiency
proofs is seemingly minor (only to employ infinitesimal punishments out of
equilibrium). Thus, one might have thought that such conditions could be
dispensed with and that new proofs of the authors’ sufficiency results could
be written without the aid of such assumptions.

In this paper, we show that such assumptions cannot be dropped if we
restrict our attention to mechanisms satisfying the best element property:
in a mechanism with this property, for each agent, there always exists a
strategy profile that gives him the highest payoff in the mechanism. Note
that finite mechanisms and regular mechanisms (See AM [1] for its formal

'Here, “iteratively undominated strategies” refers to the iterative removal of strictly domi-
nated strategies.



definition), which essentially require that best responses always exist, satisfy
the best element property. Moreover, the best element property holds even
in any mechanism that relies on a “standard” integer game where each agent
has to announce an integer and can choose his best outcome if his integer
is the highest. Standard integer games are often used in implementation
theory (See Maskin [12] for example) and so, our results encompass such
non-regular mechanisms as well.

Indeed, we uncover a new necessary condition, previously overlooked,
that must be added. We term it restricted deception-proofness. It says that
in environments in which preferences are identical across agents, the social
choice function (SCF) must be immune to all manipulations via deceptions.
As such, the condition is then stronger than incentive compatibility and
sometimes strictly so, leading to a new restriction on the (exactly or approx-
imately) implementable SCFs in iteratively undominated strategies. Con-
sidered by itself, restricted deception-proofness can be substantially more
restrictive than AM measurability or the conditions of virtual monotonic-
ity and its mixed counterpart (the latter two found in Serrano and Vohra
[14, 15]. Bergemann, Morris, and Tercieux [5] and Serrano and Vohra [14, 15]
use what we call a stochastic integer game as part of their implementing
mechanisms. In a stochastic integer game, each agent has to announce an
integer; the higher an integer he announces the higher the probability with
which he can choose his best outcome; but, no matter how high an integer
he announces, he cannot obtain his best outcome with probability 1. If an
SCF f violates restricted deception-proofness, any implementing mechanism
(e.g., the ones mentioned relying on stochastic integer games) cannot satisfy
the best element property.? This explains our restriction on the class of
mechanisms employed. We shall provide an example, which has appeared
previously in the literature, to illustrate our points.

We study incomplete information environments. Two papers containing
some related results for the complete information domain are Borgers [6] and
Bergemann and Morris [4]. Bergemann and Morris [4] show a similar result
for virtual implementation by finite mechanisms under complete information.
Borgers [6] obtains an impossibility result under complete information when
only deterministic finite mechanisms are allowed and all possible identical
(strict) preferences are included in the domain of SCFs. We will discuss
connections of our work to Borgers [6] at the end of the paper.

2In fact, Bergemann, Morris, and Tercieux [5] show in their Proposition 2 that no assumptions
that amount to quasilinearity are needed for exact implementation in iteratively undominated
strategies under complete information. We conjecture that a result similar to their Proposition
2 can be proven in incomplete information environments.



2 Preliminaries

Let N = {1,... ,n} denote the set of agents and ©; be the set of finite types
of agent ¢. Denote @ =01 X --- x0,,and O_; =01 X -+ X O;_1 X O;41 X
- x0,.3 Let q;(6_;]0;) denote agent i’s belief that other agents receive the
profile of types 6_; when his type is 6;.

Let A denote the set of pure outcomes, which are assumed to be inde-
pendent of the information state. For simplicity, suppose A = {a1,... ,ax}
is finite. Let A(A) denote the set of probability distributions on A.

Agent i’s state dependent von Neumann-Morgenstern utility function is
denoted u; : A(A) x © — R.

We can now define an environment as € = (A,{u;, 0;,¢;}ien), which is
implicitly understood to be common knowledge among the agents.

A social choice function (SCF) is a function f : © — A(A). The in-
terim expected utility of agent i of type 6;, who pretends to be of type 6,
corresponding to an SCF f is defined as:

Ui(f:0110:) = D qi(0-il0:)us (f(0],0-4)); (65,6-,)).
0_,€0_;

Denote Uz(f‘(gz) = Uz(f,HZ\GZ)

A mechanism T' = ((M;)ien,g) describes a (nonempty) message space
M; for agent ¢ and an outcome function g : M — A(A), where M = X;enM,;.
Let 0; : ©; — M; denote a (pure) strategy for agent ¢ and 3J; his set of pure
strategies. Let

Uilgoalti) = Y qi(0-il6:)ui(g(o(0-i,6:)); (04, 0:)).
0 o

Given a mechanism I' = (M, g), let H; be a subset of ;.4

Definition 1 (Strict Dominance) A strategy o; € H; is strictly domi-
nated for agent i with respect to H = x;enH; if there exist §; € ©; and
J; € X; such that for every o_; € x4, Hj,

Ui(g o (03,0-3)|0;) > Ui(g o (01,0-)]6:).

For any subsets H, H' C X, where H' C H, we use the notation H — H’
(read: H is reduced to H') to mean that for any o € H\H’, some o; is

3Similar notation will be used for products of other sets.

40ur notation seems to assume that a message space M can be either finite or countable.
However, we can also handle the case of uncountable M. In doing so, we must impose some
suitable measurability condition on M so that the corresponding strategy space ¥; and interim
preferences U;(g o o|f;) are well-defined. See Duggan [9] and Serrano and Vohra [15] for this
treatment.



strictly dominated with respect to H. Let A denote the first element in an
ordinal A; let > be the linear order on A; and let X denote a successor to
Ain A% Let {K*}rea be a finite, countably infinite, or uncountably infinite
family of subsets of the strategy space ¥ satisfying the following properties:
(1) K =% (2) K* = KN where KA = My KA for a limit ordinal A and
any successor \'; and (3) K* =[N, K — K only for £ = £*.6

Definition 2 (Iterative Dominance) A strategy profile o € X is itera-
tively undominated if o € KC*.

Remark: The above definition of iterative dominance allows for eliminat-
ing dominated strategies possibly by using strategies that have previously
been eliminated.” This is equivalent to the standard definition of iterative
dominance as long as we consider finite mechanisms. In fact, all the canon-
ical mechanisms proposed by AM, BM and AKS are finite. Although the
standard definition of iteratively undominated strategies uses only a count-
ably infinite number of rounds of elimination, we could also allow for an
uncountable number of rounds. This extension is sometimes necessary if we
go beyond finite mechanisms. Fortunately, even allowing an uncountable
number of rounds of elimination, Chen, Long, and Luo [7] show in their
Theorem 1 that K* always exists and is unique (i.e., order independent).
This is true for any mechanism. Hence, K* is well defined.

Definition 3 (Exact Implementability) An SCF f is said to be exactly
implementable in iteratively undominated strategies if there exists a mech-
anism I' = (M, g) such that there exists a unique {o} = K* for which

g(o(0)) = f(0) for all 6 € O.

Remark: If ¢ is a unique iteratively undominated strategy profile, we gain
nothing by allowing the agents to use “mixed strategies.” Given the defini-
tion of implementability above, we automatically guarantee the existence of

5An ordinal A is a well-ordered set in the order-isomorphic sense. In particular, the well-
ordered set of natural numbers is called the first infinite ordinal. By saying that \' is a successor
of A, we mean that A > \. A limit ordinal is an element in A which is not a successor.

6 Although the concepts used here may look complex, the essential idea for iterative dominance
is the same as the case of a countable number of eliminations. The reader is referred to AM [1]
for the countable case of iterative dominance.

"Consider Example 5 of Dufwenberg and Stegeman [8] where there is only one player with
My = (0,1) and u; (x) = « for each x € M;. Following the standard definition of strict dominance,
every x € (0,1) can be iteratively undominated, i.e, the outcome induced by iterative dominance
is order dependent. In finite games, it is well known that a strategy is a Nash equilibrium if it is
the unique outcome of iterative dominance. However, this infinite game has no Nash equilibrium.
If we instead use our definition of strict dominance, the set of iteratively undominated strategies
is empty, which is consistent with the fact that there is no Nash equilibrium. This is the main
reason why we allow for eliminating dominated strategies possibly by using strategies that have
been previously eliminated.



a unique iteratively undominated strategy profile, which is a unique Bayesian
Nash equilibrium as well. This equilibrium is furthermore in pure strategies
(see Chen, Long and Luo [7]).

Consider the following metric on SCF's:

d(fh) = S |f(al@) — R(al0)]

The notation f(a|@) refers to the probability with which f implements a € A
in the state 6.8

Definition 4 (Approximate Implementability) An SCF f is said to be
virtually or approrimately tmplementable in iteratively undominated strate-
gies if, there exists € > 0 such that for any e € (0,£], there exists an SCF
f€ for which d(f, f¢) < € and f¢ is exactly implementable in iteratively un-
dominated strategies.

The next standard definition is very important in the entire economic
theory of information:

Definition 5 (Incentive Compatibility) An SCF f: 0 — A(A) is said
to satisfy incentive compatibility if for every i € N, 6;, 0; € 0,,

Ui(f16:) > Ui(f;6:16;)

Our definition of implementability implies implementability in (pure or
mixed) Bayesian (Nash) equilibrium as well. It follows that incentive com-
patibility is necessary for “exact” implementation in iteratively undominated
strategies. By a standard continuity argument, one can easily show that in-
centive compatibility is also necessary for “approximate” implementation in
iteratively undominated strategies. Hence, we have the following;:

Proposition 1 If an SCF f is either exactly or approximately implementable
in iteratively undominated strategies, then it satisfies incentive compatibility.

For the next definition we require some more notation. Let W_; be a
partition of ©_;. Say that 6; is equivalent to ¢] with respect to ¥_; when
agent ¢’s interim expected utility under type 6; is exactly the same (up to
positive affine transformations) as under type ¢, when evaluating any SCF
that is measurable with respect to ©; x W_,.

8AM [1] and BM [3] use the ¢;-norm to measure the distance between two SCFs, while we
use the ¢o-norm. However, since we restrict our attention to finite environments (i.e., the set of
pure alternatives and the type space are both finite), this change does not make any substantial
difference.



Let pi(0;, ¥_;) be the set of all elements of O; that are equivalent to 0;
with respect to W_;, and let

RZ(\I/_Z) = {pi(gi, \I/_Z‘) C 61‘ 0; € @z} .

Note that R;(V_;) forms an equivalence class on ©;, that is, it constitutes
a partition of ©;. We define an infinite sequence of n-tuples of partitions,
{\I'h}jl’ozo, where U" = x;c yU” in the following way. For every i € N,

\I/? = {Gi}7
and recursively, for every ¢ € N and every h > 1,

Uh = R (1.

7

Note that for every h > 0, \II?H is the same as, or finer than, \IJ? Define

o
Ut = ﬂ ol
h=0

Since ©; is finite for each agent ¢ € IV, there exists a positive integer L such
that ¢" = ¢” for any h > L. Therefore, at most a finite number of iterations
in the algorithm suffices for determining W*.

Definition 6 (AM-Measurability) An SCF f is said to satisfy AM-
measurability if it is measurable with respect to W*.

The following is an important result in AM [1]:

Proposition 2 (AM [1]) If an SCF f is either exactly or approxzimately
implementable in iteratively undominated strategies, then it satisfies AM-
measurability.

Remark: Although we assume that ©; is finite, we can extend the above
result to both countably infinite and uncountably infinite ©;. To do so,
we have to allow the use of transfinite induction in the AM-measurability
algorithm as we did for the iterative removal procedure of strictly dominated
strategies. See Kunimoto and Serrano [10] for details of this treatment.

To easily check AM-measurability, it is often possible to finish the al-
gorithm in the first iteration. When this happens, we say that the envi-
ronment satisfies type diversity. To define this condition, recall that A =
{a1,... ,ax}. Define UF(6;) to be the interim expected utility of agent i of
type 0; for the constant SCF that assigns a in each state in O, i.e.,

UFO:) = Y qi(0-i]0:)ui(a; 0:,0_;).
6_,e0_;



Here is the condition of type diversity, as stated in Serrano and Vohra
[14]:

Definition 7 (Type Diversity) An environment € satisfies type diver-
sity (TD) if there do not exist i € N, HZ-,H; € 0, with 0; # (9;, 8 e R4y
and v € R such that

Ui(0;) = BU(6;) + e,
where e is the unit vector in RE.

Clearly, under type diversity, the measurability algorithm stops after
the first iteration, leading to the finest partition possible — all types are
separated. As a result, all SCFs satisfy AM-measurability.

In this paper, we restrict attention to a class of mechanisms where for
each agent, there always exists a strategy profile that gives him the highest
payoff in the mechanism.

For every ¢ € N and every partition U;, let ¥;(¥;) denote the set of pure
strategies of player 7 that are measurable with respect to W,.

Definition 8 Let I' = (M, g) be a mechanism. The profile o € 31 (¥q) X
<o X X (Wy,) is agent i’s best strategy profile with respect to U if for all
W; € WU;, there exists some 0; with 0; € 1; such that

Ui(g o ol;) > Ui(g 0 6|0;) V& € X(P).

Definition 9 (Best Element Property) A mechanism I' is said to sat-
1sfy the best element property if, for each V, for every agenti € N, there
exists a best strategy profile with respect to V.

Remark: See the introduction (specifically, its third paragraph) for the
implications of the best element property.

3 Restricted Deception-Proofness

This section introduces a new property of SCFs and contains our main result.
Let F be the set of all SCFs.

Definition 10 (Identical Preferences) An environment& satisfies iden-
tical preferences at a nonempty subset of the type space © C O if there
exists a set Og with the following three properties:

e (1) for each agent i € N, there exists a bijection ¢; : Oy — O, where
0, C 0;;



° (2) X co_,9(0-il6;) =1 for each 0; € ©;; and

e (3) there exists V : F x ©g — R such that for each i € N, there exist
Bi > 0 and v; € R for which U;(-|0;) = BV (:|¢; *(6;)) + i for each
0; € éz

Property (1) says that, for each agent ¢ € N, there exists a set of types O,
that can be embedded in the common type space Oy across agents. Property
(2) says that the event consisting of the n-fold Cartesian product of 6=
@1 X oo X @n is a belief-closed subspace of ©. In words, © can be treated
separately from the rest of the type space. In particular, property (3) says
that interim preferences are identical across agents within ©. Note that
when we consider complete information environments, each (:)Z as well as O
become a singleton.

A deception is a profile of functions, o = (;)ien, Where a; : ©; — O,
a;(0;) # 0; for some 60; € O; for some i € N. (Note that the identity function
I:© — O isnot a deception.) For an SCF f and a deception «a, foa denotes
the SCF such that for each 0 € O, [f oa(f) = f(«(f)). Let A be the set
of all deceptions union with the identity function on ©. Note that A can be
considered the entire strategy space ¥ of the direct mechanism.

The following is the central definition of this paper:

Definition 11 (Restricted Deception-Proofness) An SCF f satisfies
the restricted deception-proofness property if, whenever an environment
& satisfies identical preferences at ©, it follows that

Ui(f10:) = max Ui(f o al6;)

for each i € N and 0; € (:)Z

Restricted deception-proofness means that, whenever the environment
contains an informational event with identical preferences over the strategic
situation described by the SCF’s direct mechanism, the SCF has a “com-
mon top” property for all types of all agents. Indeed, among all possible
manipulations of the SCF, embodied by all deceptions, no type of any agent
would like to use that coordinated effort to depart from truth-telling. We
shall illustrate the definition in the next section. Importantly, Bergemann,
Morris, and Tercieux [5] and Serrano and Vohra [14, 15] employ canonical
mechanisms that do not satisfy the best element property for their sufficiency
result if the SCF violates restricted deception-proofness. In those sufficiency
results, the authors use what we call a stochastic integer game as part of
the construction of the mechanisms where each agent has to announce an
integer; the higher an integer he announces the higher the probability that
he can choose his best outcome; however, no matter how high an integer he
announces, each agent cannot choose his best outcome with probability 1.



We next present our main result:

Proposition 3 If an SCF f is exactly implementable in iteratively undom-
inated strategies by a mechanism satisfying the best element property, it sat-
isfies restricted deception-proofness.

Remark: The reader is referred to the introduction (specifically, its fourth
paragraph) which explains why our result needs to qualify the class of mech-
anisms employed.

Proof: Let I' = (M, g) be an implementing mechanism that satisfies the
best element property. Let F' be the set of SCFs associated with I'. That
is,

fF:{fEf‘f:goaforsomeUEE}.

By our hypothesis of restricted deception-proofness, we consider an en-
vironment satisfying identical preferences at some nonempty belief-closed
subspace 0. Accordingly, we also have the associated common type space
O and each agent i’s bijection ¢; : ©9 — ;. In what follows, we need the
following notation:

Hné_{fe]-“r

arg max V (f|o:1(6;)) V 0; € ©;, Vi € N} ;
ferr

and

aT,0
Ei = {Ui €

goo € H"® for some o_; € Ei}.

Note that we can guarantee that are # () and 25’9 # () because the
mechanism I satisfies the best element property. Define [Kg(z)b to be the
set of agent i’s strategies that are k-times iteratively undominated when
every agent’s type space is restricted to the belief-closed subspace O. Let
[K%(E)]i be the corresponding strategies that are iteratively undominated.

Let KE () = xien[KE(2)];.”

We claim that 3T© C K& (). First, observe that ﬁ)f’@ - [K%(Z)}i =3
for each ¢ € N. We proceed by induction. According to the induction hy-
pothesis, suppose that 25© C ICg(E). Fix agent i arbitrarily. Our induction

hypothesis guarantees that f{? C [IC%(E)},Z-. Fix also 6; € 25’9 arbitrarily.

9To save notation, here we only consider a countably infinite number of elimination of strate-
gies. Whenever we need the transfinite induction to deal with infinite mechanisms, the induction
argument below can be easily fixed accordingly.

10



By the induction hypothesis, there exists 6_; € 2529 - [IC%(Z)}_i such
that for any 6; € (:)i,

V(go (64,6-0)|e; (6:) = Vgo (o7,6-5)|e;  (6:)),

for any o; € ¥;. This implies ﬁ)f’@ - [ICngl(Z)}i. Since we have identical
preferences at ©, we can conclude that S © C IC](E‘)H(E). This establishes

that 1€ C K ().
Since f is implementable in iteratively undominated strategies, we have
that

go IEE CgoKg(X) = (f(0))eo-

Therefore, we can choose 6 € K* such that go6 = f and 6; € 25,9 for all
1€ N. A

In particular, this implies that f € H"©, and hence for each 6; € ©, and
each i € N, we have

V(fl6:(8:) = V(g o516, (8:)) = max V(g o olg; (6:)) = max V(f o alé; ' (6).

Here, the last inequality follows because the set F! contains the set of SCFs
associated with the direct mechanism for f (i.e., f itself union with the set of
foa for all deceptions a). Thus, f satisfies restricted deception-proofness.
This completes the proof. .

The next result is a simple, but important extension of the previous one:

Proposition 4 If an SCF f is approximately implementable in iteratively
undominated strategies by a mechanism satisfying the best element property,
it satisfies restricted deception-proofness.

Proof: Let I'. = {((M; )icn,g:-)} denote the implementing mechanism that
satisfies the best element property when the approximation is e > 0. Fix & >
0 to be small enough and consider the class of such implementing mechanisms

INE I o
Define

frs:{fe.ﬂ f:geoaforsomeaeEFE};
and

FF =limsup F'=.

e—0

By our hypothesis of restricted deception-proofness, we consider an en-
vironment satisfying identical preferences at some nonempty subsets of the

11



type space o. Accordingly, we also have the associated common type space
Op and each agent ¢’s bijection ¢; : ©g — ;.
For each € < &, let

H'=6 = {f € Fr-

argmax V(f|o; 1 (6;) V 6; € Oy, Vi € N} ;
f
and

2

5T _ {gi e sl

ge oo € H'*® for some o_; € 21}2} .

Once again, we can guarantee that HT=0 # () and 255’9 # () because the
mechanism T'. satisfies the best element property. Define H'® and ﬁ)f’@

as the limits of H'=® and 255,9’ respectively.! With the definitions so
adapted, the rest of the proof proceeds as the proof of the previous propo-
sition. W

4 Discussion

4.1 An Example

At this point it will be useful to consider an example that first appeared in
Palfrey and Srivastava ([13], Example 3) and that was extensively analyzed
in Serrano and Vohra ([14], Section 5).

There are two alternatives, A = {a,b} and three agents. Each agent has
two possible types, ©; = {0,,0,} and each type is drawn independently with
qi(0y) = q for all i and ¢* > 0.5. Agents have identical preferences, given by

| 1 if at least two agents are of type 0,
ui(a,0) = { 0 otherwise

wi(b,0) = 1 if at least two agents are of type 6,
ST 1 0 otherwise

For each agent, the corresponding interim utilities for the constant SCF's
assigning alternatives a and b are:

Ui(ba) = 1-¢ Ul(0a) = o,
Ui = (1-4q)% Up) = 1-(1—q)

2

Since ¢% > 0.5, this implies that U?(0;) > U2(6;) for all i and 0; € ©;.

10We take a sequence along which such limits exist.

12



Using this, it can be checked that in this environment, only constant
SCFs satisfy AM-measurability.

For us, what is more interesting now is the modification of the example
by adding a third alternative ¢, which for instance gives a zero payoff to
all agents in all states.!! As argued in Serrano and Vohra [14], the modi-
fied example satisfies type diversity, and hence, all SCFs now satisfy AM-
measurability. However, AM’s sufficiency result cannot be applied to any
non-constant SCF even then.!?

We have identified a new necessary condition for exact or approximate
implementation in iteratively undominated strategies, and we show next that
in the three-alternative example there are SCFs that satisfy incentive com-
patibility and AM-measurability, but that violate the restricted deception-
proofness property. Thus, it is not possible to show a sufficiency result
for approximate implementation in iteratively undominated strategies by a
mechanism satisfying the best element property. Extra conditions (either on
the environment, like the AM, BM and AKS papers used; or on the SCF
itself) must be imposed.

For instance, let ¢ = 99/100 and consider the following SCF f:

F(0a,0p,04) = 0.9a + 0.1b,
F(0a,04,0,) = 0.9a + 0.1b,
Oy, 04, 0a) = 0.9a + 0.1b,

) =

) =

0a) =

>

s 0p, 0) = 0.1a + 0.9b,
F(0p,04,0,) = 0.1a + 0.9b,
= 0.1a + 0.9b,
F(0, 05, 65) = 0.1a + 0.9b.

Noting the fact that all agents have identical preferences, we first check
that f satisfies incentive compatibility:

Us(f162) = (99/100)%0.9 + 2(99/10000)0.9 = 0.89991,
which is strictly greater than
Ui(f,60b]0,) = (1/10000)0.9 + 2(99/10000)0.1 4 (99/100)%0.9 = 0.88416.

And
Ui(f16y) = 0.9,
11 All that is needed is a third alternative to ensure type diversity. No assumption regarding a

universally bad outcome or anything of that sort is needed here.
12See again the introduction (specifically, its second paragraph).
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which is strictly greater than
Ui(f,04|6,) = 2(99/10000)0.1 + (99/100)0.9 = 0.88407.

As can be checked, the environment satisfies identical preferences at ©
(the entire type space) but f violates restricted deception-proofness. Indeed,
consider the deception « such that a;(6,) = @;(0p) = 6, for i = 1,2,3. Note
that f o a(f) = b for every # € ©. We next compute the interim expected
utilities of each of the two types for this manipulated version of the SCF:

Us(f o alf,) = (99/100)% = 0.9801 > 0.89991 = U;(f|6,),

and
Ui(foalfy) =1— (1/100)2 =0.9999 > 0.9 = U;(f|05)-

So, both types of each agent have an incentive to manipulate the SCF by
using the proposed deception, instead of truth-telling.

Suppose that the SCF f is exactly implementable in iteratively undom-
inated strategies by a mechanism I' = (M, g) satisfying the best element
property. Since all agents have identical preferences at © and the mecha-
nism I' satisfies the best element property, there must exist a strategy profile
o € ¥ such that U;(g o 0]6;) > maxge 4 U;(f o &|6;) for any 0; € ©; and any
i € N. By our Proposition 3, we have shown that such ¢ is indeed an it-
eratively undominated strategy profile, i.e., o € K*. By our hypothesis of
implementability, we must have U;(g o 0]6;) = U;(f|0;) for each 0; € ©; and
each i € N. However, this contradicts the fact that, for the deception « of
the previous paragraph, U;(f o «|6;) > U;(f|0;) for each 0; € ©; and each
1€ N.

4.2 The Connection with a Result of Borgers’s
(1995)

Borgers [6] shows the following remarkable result under complete informa-
tion:

Theorem [Borgers [6]] Let f : © — A be a deterministic full-range SCF
where |A| > 2. Suppose that every agent has strict preferences over A in
each state # € ©. Assume further that the domain of SCFs © contains all
possible unanimous strict preferences over A. Then, the SCF f is exactly
implementable in iteratively undominated strategies by a finite mechanism
if and only if it is dictatorial.

Note that the “if”-part is easy to establish. The striking part of the result

is its the “only if”-part. Assume that an SCF f is exactly implementable
by a finite mechanism. We can decompose the (only if)-part of the proof
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into the following three steps: (Step 1): f(0) = a if all agents have identical
preferences at  with a being the best outcome; (Step 2): For each outcome
a € A, there exists exactly one agent i(a) € N who can either enforce or
exclude outcome a; and (Step 3): i(a) must be the same agent across all
outcomes. Hence, he is a dictator.

Under the full range assumption, our Proposition 3 can be considered an
extension of Step 1 of Bérgers [6] from complete information to incomplete
information. In doing so, we expand the applicability of Borgers’s argument
in Step 1 to encompass a much richer class of environments: (1) we can
take care of von Neumann-Morgenstern utility functions over the lottery
space; (2) we can deal with stochastic SCFs; (3) we can include infinite
mechanisms, as long as they satisfy the best element property; and (4) we
can show that the result holds for approximate implementation as well as
exact implementation.

However, the good news stop there. As already pointed out by Borgers
[6], the use of stochastic mechanisms seems to create real difficulties to the
rest of the argument. We have not been able to prove the extension of the
result, but we have not been able to find a counterexample either. In this
regard, the connections with Majumdar and Sen [11] and their impossibility
result for ordinally Bayesian incentive compatibility seem quite relevant. We
leave this intriguing issue as an important open question.
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