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MORE EFFICIENT ESTIMATION IN
NONPARAMETRIC REGRESSION

WITH NONPARAMETRIC
AUTOCORRELATED ERRORS

LIIIAAANNNGGGJJJUUUNNN SUUU
Guanghua School of Management, Peking University

AMMMAAANNN ULLLLLLAAAHHH
University of California, Riverside

We define a three-step procedure for more efficient estimation of the nonpara-
metric regression mean with nonparametric autocorrelated errors+ The procedure
is based upon a nonparametric prewhitening transformation of the dependent vari-
able that has to be estimated from the data by a local polynomial technique+ We
establish the asymptotic distribution of our estimator under weak dependence con-
ditions and show that it is more efficient than the conventional local polynomial
estimator+ Furthermore, we consider criterion functions based on the linear expo-
nential family, which include the local polynomial least squares criterion as a spe-
cial case+ Simulation evidence suggests that significant gains can be achieved in
finite samples with our approach+

1. INTRODUCTION

Consider the following regression model:

Yt � m1~Xt !� Ut , t � 1, + + + , n, (1.1)

where the d1-dimension process $Xt % is a stationary process, the stationary sca-
lar error process $Ut % is autocorrelated but satisfies E~Ut 6Xt ,Xt�1, + + + !� 0 almost
surely, and Ut � m2~Ut�1, + + + ,Ut�d2

!� «t + For the moment, one can assume that
$«t % is independent and identically distributed ~i+i+d+! with mean zero and vari-
ance s«

2 and E~«t 6Ut�1,Ut�2, + + + , Xt , Xt�1, + + + ! � 0+ The functions m1~{! and
m2~{! are assumed to be unknown but smooth+ We are interested in estimating
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the infinite-dimensional parameter m1~{! more efficiently than some conven-
tional approaches+

When the regression function m1~{! is parametrically specified, it is standard
to use generalized least squares ~GLS! that reflects the autocorrelation struc-
ture in the error process to improve the efficiency of the least squares estima-
tors+ When m1~{! is nonparametrically specified, Xiao, Linton, Carroll, and
Mammen ~2003! showed that the autocorrelation function of the error process
can help improve estimators of the regression function+ They assumed that
the error process Ut is stationary and mean zero and has an invertible linear
process representation: Ut � (j�0

` cj «t�j , where $«t % are i+i+d+ ~0,s«2!+ This
assumption is fairly general because by the Wold decomposition theorem any
stationary linear or nonlinear process has a linear ~infinite-order! representa-
tion+ For example, it permits Ut to be any finite-order ARMA~ p,q! process and
allows for the full class of linear processes, as is common in much literature on
estimating linear regression with linearly autocorrelated errors+ In this paper
we argue that it may be better, say, in finite-sample applications, to model the
error process nonparametrically than to model it as an infinite-order linear
process when the error process has a finite-order nonlinear structure: Ut �
m2~Ut�1, + + + ,Ut�d2

! � «t +
One intuitive explanation for this approach is that the factors omitted from

the time series regression, like those included, are correlated across periods in
an unknown way, which will bring errors with autocorrelation of an unknown
form ~also see Hong, 1996!+ As Wooldridge ~2003! argued, if interest rates are
unexpectedly high for this period, then they are likely to be above average ~for
the given levels of inflation, deficits, etc+! for the next period+ But there is no
theory that suggests any parametric form for the correlation structure+ The empir-
ical literature is overwhelmingly dominated by the linear AR~1! model, which
in our opinion is mostly a matter of convenience+ It is sometimes argued that
models can be improved by more elaborate error processes, but the results are
often sensitive to the specification chosen ~see Greene, 1997, p+ 584!+ To avoid
this issue, we can leave the form of m2 unspecified+

Our second motivation for modeling m2~{! nonparametrically is due to Hidalgo
~1992!+As Hidalgo ~1992, p+ 48! remarked, linear time series models are appro-
priate in a Gaussian environment, and in the absence of Gaussianity it is most
probable that the autocorrelation function is nonlinear+ We share the opinion
that the Gaussianity assumption in econometrics or statistics is most often for
mathematical convenience+ Once Gaussianity is abandoned, nonlinear time series
are frequently required; and once linearity is abandoned, the form of m2~{! is
hard to identify in view of the many possibilities that exist+ Therefore, we leave
m2~{! to be unspecified and shall estimate it nonparametrically+

Third, when m1~{! is parametric ~e+g+, m1~x! � x 'b, where b is a d1 � 1
parameter vector! but m2~{! is of our form with d2 � 1, Hidalgo ~1992! showed
that the finite-dimensional parameter in the regression function can be adap-
tively estimated+ As he argued, by allowing the error process to be of nonlinear
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feature, the regression model of interest may capture some interesting charac-
teristics such as cycles and jumping behavior that are observed in many time
series+

Also, it is worth mentioning that our efficient result does not rely heavily
upon the correct specification of m2~{! ~or the correct choice of d2!+ We com-
ment in Remark 2 in Section 3 that for any invertible moving average ~MA!
process or strictly stationary autoregressive ~AR! process, our proposed estima-
tor has an efficiency gain over the conventional polynomial estimator+

Nevertheless, due to the “curse of dimensionality,” we expect the dimen-
sions d1 and d2 to be low unless one imposes further assumptions, say, an
additive structure in mi~{!, for i � 1,2+ In this sense, we say that our result
complements that of Xiao et al+ ~2003!+ In practice, one can use a nonlinearity
test to determine whether the error process is linear or not and then determine
which procedure to pursue+

Now we come to the methodology adopted in the paper+ Throughout our pre-
sentation ~with an exception in Sect+ 5!, we assume that the order d2 is known+
We propose a local-polynomial-based procedure for estimating m1~{! in the time
series regression model ~1+1! that takes account of the correlation structure of
the error terms+ The resulting estimator is asymptotically more efficient than
the conventional polynomial estimator+ The basic idea is to write ~1+1! as

Yt � m1~Xt !� m2~Ut�1, + + + ,Ut�d2
!� «t , t � d2 � 1, + + + , n, (1.2)

and then to explore the additive structure in the preceding model+ If
~Ut�1, + + + ,Ut�d2

! is observable counterfactually, the model is simply the addi-
tive model widely studied in the literature+ Linton ~1997, 2000! defined a two-
step procedure for estimating generalized additive nonparametric regression
models that is more efficient than the marginal integration-based method
~e+g+, Linton and Härdle, 1996!+ However, because ~Ut�1, + + + ,Ut�d2

! are not ob-
served, we replace them by the residual series ~ ZUt�1, + + + , ZUt�d2

! obtained by
regressing Yt on Xt nonparametrically+ We show that such a replacement does
not affect the first-order asymptotic efficiency of the resulting estimator+

The rest of the paper is organized as follows+ We introduce an infeasible
local polynomial estimator in Section 2 and a feasible one in Section 3, both of
which are more efficient than the conventional one-step local polynomial esti-
mator+ In Section 4 we define criterion functions based on the linear exponen-
tial family and discuss a class of efficient estimators+ We then address some
practical issues related to the implementation of our estimators and report some
Monte Carlo simulation results in Section 5+ All proofs are given in the
Appendix+

2. AN INFEASIBLE EFFICIENT ESTIMATOR

Suppose that we have a sample $~X1,Y1!, + + + , ~Xn,Yn!%, where Xt � R
d1 and

Yt � R, from the nonparametric regression model ~1+1!+ The objective is to
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estimate m1~x! at some interior point x more efficiently than some conven-
tional approach and to provide tight confidence intervals for such estimates+
Noticing that the error terms in ~1+1! are correlated, the conventional nonpara-
metric estimator for m1~x! does not take into account the correlation structure
and thus is supposed to be dominated by some more efficient estimators+
Nevertheless, the error terms in the transformed model ~1+2! are uncorrelated+
Equation ~1+2! is also a valid regression equation by assumption+ Let tUt�1 [
~Ut�1, + + + ,Ut�d2

!+ If m2~ tUt�1! were known, a nonparametric regression of Yt �
m2~ tUt�1! on Xt would be more efficient in the sense of mean squared errors
than the nonparametric regression of Yt on Xt + In this paper, we give asymp-
totic analysis based on the local polynomial procedure+ See Fan ~1992! and
Fan and Gijbels ~1996! for discussion on the attractive properties of local
polynomials+

For any data set $ EYt , Xt %t�1
n , the local polynomial regression of EYt on Xt of

order q can be obtained from the multivariate weighted least squares criterion:

nh0
�d1(

t�1

n

K0~~x � Xt !0h0 !� EYt � (
0�6j 6�q

uj~Xt � x!j�2
, (2.1)

where K0 is a nonnegative kernel function on R
d1 and h0 � h0~n! is a scalar

bandwidth sequence+ Here, we use the notation of Masry ~1996a, 1996b!:1 j �
~ j1, + + + , jd1

!, 6j 6�(i�1
d1 ji , x j � Pi�1

d1 xi
ji , and (0�6j 6�q �(k�0

q
(j1�0

k
+ + +(jd1�0

k

j1� + + +�jd1
�k

+

The term uj � uj~x! � ~10j!!~] 6j 6m1~x!0] j1x1 + + + ,] jd1xd1
!, where j! [ Pi�1

d1 ji !+
Let Km1~x!� Du0, where Du0 is the minimizing intercept in ~2+1! with EYt � Yt , and
let Um1~x! be the corresponding estimator when EYt � Yt � m2~ tUt�1!+ For sim-
plicity, we suppose that K0~u! � Pj�1

d1 k0~uj !, with k0 being the univariate ker-
nel function+ For later use, we denote

Qn, loc~u! [ nh0
�d1(

t�1

n

K0~~x � Xt !0h0 !�Yt � m2~ tUt�1!� (
0�6j 6�q

uj~Xt � x!j�2
,

(2.2)

where u � u~x! is a collection of all the parameters uj, 0 � 6j 6 � q, in a lex-
icographical order introduced subsequently+ In particular, the first element in u
is denoted as u0 � u0~x! throughout our presentation+

Following the notation of Masry ~1996a, 1996b!, let Nl � ~l � d1 � 1!!0
~l!~d1 � 1!!! be the number of distinct d1-tuples j with 6j 6 � l+ Arrange the Nl

d1-tuples as a sequence in a lexicographical order ~with highest priority to last
position so that ~0,0, + + + , l ! is the first element in the sequence and ~l,0, + + + ,0! is
the last element! and let fl

�1 denote this one-to-one map+ For each j with 0 �
6j 6 � 2q, let mj~K0! � *Rd1 u jK0~u! du, nj~K0! � *Rd1 u jK0

2~u! du, and define
the N � N-dimensional matrices M and G and N � Nq�1 matrix B, where N �

(l�1
p

Nl , by
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M � �
M0,0 M0,1 J M0,q

M1,0 M1,1 J M1,q

I I I

Mq,0 Mq,1 J Mq,q

� , G� �
G0,0 G0,1 J G0,q

G1,0 G1,1 J G1,q

I I I

Gq,0 Gq,1 J Gq,q

� ,
B � �

M0,q�1

M1,q�1

I

Mq,q�1

� , (2.3)

where Mi, j and Gi, j are Ni � Nj-dimensional matrices whose ~l, r! elements are,
respectively, mfi ~l !�fj ~r! and yfi ~l !�fj ~r! + Note that the elements of the matrices
M � M~K0,q! and G� G~K0,q! are simply multivariate moments of the kernel
K0 and K0

2 , respectively, and the matrix B � B~K0,q! depends on the kernel
and the order of the local polynomial we use+ In addition, we arrange the Nr

elements of the derivatives

~D rm1!~x! [
] 6r6m1~x!

] r1x1 + + + ,] rd1xd1

as an Nr � 1 column vector m1
~r!~x! in the lexicographical order+

The following theorem gives the asymptotic distribution of Um1~x! and shows
that it is asymptotically more efficient than Km1~x!+

THEOREM 2+1+ Suppose that (1.2) holds. Then, under Assumption A in the
next section, we have

Mnh0
d1~ Um1~x!� m1~x!� h0

q�1 @M�1Bm1
~q�1!~x!#0,0 !

d
&& N�0,

s«
2

fX ~x!
@M�1GM�1 #0,0�, (2.4)

where @A#0,0 signifies the upper-left element of matrix A, M � M~K0,q! , G �
G~K0,q! , and B � B~K0,q! .

Theorem 2+1 can be proved under much weaker assumptions, and it shows
that the bias of the estimator Um1~x! is the same as that of the conventional
qth-order local polynomial estimator Km1~x! and the variance of Um1~x! is smaller
than that of Km1~x!+2 In the case with a local linear estimator, q � 1 and the bias

term is 1
2
_ h0

2*R u2k0~u! du(i�1
d1 ~]2m1~x!0]xi

2!+ Let 7K0722 [ *Rd1 K0
2~u! du+ Then

Um1~x! has a variance s«
27K07220fX ~x!, and hence it is more efficient than the

traditional local linear estimator Km1~x!, which has variance sU
27K07220fX ~x!,
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where sU
2 � var~m2~ tUt�1!! � s«

2 + Therefore, the relative efficiency of the pro-
posed estimator relative to the standard estimator in purely variance terms is
s«

20sU
2 � 1+ For example, when Ut � aUt�1 � «t , we have s«

20sU
2 � ~1 � a 2!,

which is strictly less than one except when a � 0+ The percentage efficiency
gain is less if measured in mean squared errors than in variances, but the two
relative efficiencies are monotonically related+3

We call Um1~x! an “oracle” estimator because its definition uses knowledge
that only an oracle could have+ A variety of smoothing paradigms could have
been chosen here, and each will result in an “oracle” estimate+ See Section 4
for more discussions+

3. A FEASIBLE EFFICIENT ESTIMATOR

In practice, m2~{! is unknown and tUt�1 � ~Ut�1, + + + ,Ut�d2
!' is not observed+ In

this section we propose a feasible estimator by substituting a suitable pilot esti-
mator of m2~{! in ~2+2! and replacing tUt�1 by the residuals obtained from regress-
ing Yt on Xt only+ The proposed three-step estimation procedure is as follows+

1+ Obtain a preliminary consistent estimator of m1 by qth-order local poly-
nomial smoothing Yt on Xt with corresponding kernel K1 and bandwidth
sequence h1 � h1~n!+ Denote the preliminary estimates as [m1~Xt ! and cal-
culate the estimated residuals ZUt � Yt � [m1~Xt ! for t � 1, + + + , n+4

2+ Obtain a consistent estimator of m2 by pth-order local polynomial smooth-
ing ZUt on ZtUt�1 [ ~ ZUt�1, + + + , ZUt�d2

! with corresponding kernel K2 and
bandwidth sequence h2 � h2~n!+ Denote the estimates as [m2~ ZtUt�1! for
t � d2 � 1, + + + , n+

3+ Replace m2~ tUt�1! in ~2+2! by [m2~ ZtUt�1! to obtain

ZQn, loc~u! [ nh0
�d1(

t�1

n

K0~~x � Xt !0h0 !

� ZIt�Yt � [m2~ ZtUt�1!� (
0�6j 6�q

uj~Xt � x!j�2
, (3.1)

where ZIt � 1$ Zf tU~ ZtUt�1! � b% for some constant b � b~n! � 0 and Zf tU is
the nonparametric kernel estimator for the density f tU of tUt�1 with band-
width h2 and kernel K2 based on the residual series $ ZUt %+ Let Zu* � Zu*~x!
minimize ZQn, loc~u! and let [m1

*~x! � Zu0*~x! be our feasible estimate of
m1~x!+

Like Robinson ~1988! and Hidalgo ~1992!, we use ZIt to trim out small values
of Zf tU to get a desirable result for [m1

*+When tUt�1 has a compact support, m2 can
be estimated consistently over its full support by the local polynomial regres-
sion+ So there is no need for trimming in this case+

The preceding procedure may be iterated to achieve better finite-sample
performance in practice+ We shall show subsequently that, under appropriate
assumptions, the proposed estimator [m1

*~x! is asymptotically equivalent to the
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infeasible estimator Um1~x!+ To facilitate the asymptotic analysis, let Wt �
~Xt
' , tUt�1

' !'+ We denote the densities of Xt , tUt�1, and Wt by fX , f tU , and fW ,
respectively+ We make the following assumptions on the error terms, regres-
sors, kernel functions, and bandwidth sequences+

Assumption A+

1+ The kernels Ki , i � 0,1,2, satisfy Ki~u! � Pj�1
di ki ~uj !, where d0 [ d1 and

ki , i � 0,1,2, are bounded, symmetric about zero, and of compact support
@�ci , ci # and satisfy the property that *R ki ~u! du � 1+ The functions
Hij~u!� u jKi~u! for all j with 0 � 6j 6 � 2p � 1 for i � 2, and 0 � 6j 6 �
2q � 1 for i � 0 and 1, are Lipschitz continuous+ The first and second
partial derivatives K2

~i !~u!, i � 1,2, of K2~u! satisfy *7u jK2
~i !~u!7du � `

for 0 � 6j 6� 2p+ The functions EHj~u! [ u jK2
~2!~u! for all j with 0 � 6j 6�

2p are Lipschitz continuous+
2+ The strictly stationary process $~Xt

' ,Ut !
' % is strong mixing with mixing

coefficients a~ j ! that satisfy (j�1
` j 2a~ j !d0~1�d! � ` for some d � 0+

The term fX is Lipschitz continuous and bounded away from zero on its
compact support+ The first- and second-order partial derivatives of f tU are
continuous and bounded on its support+ The density fW of Wt and the joint
densities ft1, + + + , tl ~{, + + + ,{! of ~V0 ,Vt1 , + + + ,Vtl ! ~1 � l � 5! are continuous and
bounded where Vt [ ~Xt

' , Xt�1
' , + + + , Xt�d2

' , tUt�1
' ,«t !

'+
3+ The function m1~{! is ~q � 1! times partially continuously differentiable,

and the function m2~{! is ~ p � 1! times partially continuously differentia-
ble+ The ~q � 1!th-order partial derivatives of m1 and the ~ p � 1!th-order
partial derivatives of m2 are Lipschitz continuous on their supports+ The
first- and second-order partial derivatives of m2 are bounded on its support+

4+ The process $Ut % satisfies Ut � m2~Ut�1, + + + ,Ut�d2
!� «t , where $«t % is an

i+i+d+ process with mean zero and variance s«
2 and E @«t 6Ut�1,Ut�2, + + + ,

Xt , Xt�1, + + + # � 0 for all t+ Here E6Ut 64~1�d! � 0+
5+ The bandwidth sequences hi, i � 0,1,2, go to zero as n r ` and satisfy
~i! nh0

d1 h1
2~q�1! r 0, nh0

d1 h2
2~ p�1!b�2 r 0; ~ii! nh0

�d1 h1
2d10~ ln n!2 r `,

nh0
�d1 h2

2d2 b40~ ln n!2 r `; ~iii! nh1
d1 h2

20ln n r `, nh2
d2�2 b40ln n r

`; ~iv! nh0
�d1 h1

d1 h2
d2�2 b40~ ln n!2 r `, h0

d1 h1
�d1 h2

2p b�2 ln n r 0; ~v!
nh0

d1�2~q�1! r C � @0,`!, h0
d1 h2

�d2�2 b�2 ln n r 0+

Assumptions A1–A3 are comparable with Conditions 1–3 in Masry ~1996a!
except that our assumptions are a bit stronger than his+ Unlike Li and Wool-
dridge ~2002!, who assume a b-mixing condition, which is handy for applying
a result of Yoshihara ~1976!, we assume a strong mixing condition, which suf-
fices to use the Davydov inequality ~Bosq, 1996, p+ 19! and one lemma due to
Gao and King ~2002! for U-statistics+ The differentiability of A3 ensures a Tay-
lor expansion to appropriate orders+ Although A4 is a high-level assumption, it
includes the stationary linear or nonlinear AR processes of finite order+ If $Ut %
is geometrically ergodic with its initial measure equal to its invariant measure,

104 LIANGJUN SU AND AMAN ULLAH



then $Ut % is strictly stationary+ Primitive conditions on the geometric ergodicity
of nonlinear autoregressive processes can be found from Appendix A1+4 of Tong
~1990!+

Assumption A5 looks complicated and deserves some comment+ Let v1n �
n�102h1

�d1 02M ln n , v2n � n�102h2
�d2 02M ln n , and It � 1$ f tU~ tUt�1! � b%+ Then by

Masry ~1996b! and Hansen ~2004!, max1�t�n6 [m1~Xt ! � m1~Xt !6 � Op~v1n �
h1

q�1! and maxd2�1�t�n It 6 [m2~ tUt�1! � m2~ tUt�1!6 � Op~b�1v2n � b�1h2
p�1! if

$U1, + + + ,Un% were used in forming [m2~{!+ Assumptions A5~i! and ~ii! require
that the bias and variance terms in the first and second estimation stage
should be o~n�102h0

�d1 02!+ Because $U1, + + + ,Un% is not observed and $ ZU1, + + + , ZUn%
is used instead in forming [m2~{!, there are compound estimation errors associ-
ated with the first two-stage estimation+We restrict them to be small in Assump-
tions A5~iii! and ~iv!: h2

�1v1n � o~1!, h2
�1 b�2v2n � o~1!, h2

�1 b�2v1n v2n �
o~n�102h0

�d1 02!, b�1h2
pv1n � o~n�102h0

�d1 02!, where the appearance of h2
�1 is

due to the use of Taylor expansion in our proof+ The last part of Assumption
A5 will facilitate the proof+ Like Hansen ~2004!, one can set b @ ~ ln n!�102 and
consider the case when p � q � 1+ If d1 � d2 � 1, one can set h0 @ n�105, h1 @
n�104, and h2 @ n�104; if d1 � 1 and d2 � 2, one can set h0 @ n�105, h1 @ n�104,
and h2 @ n�105; if d1 � 2 and d2 � 1 or 2, one can set h0 @ n�106, h1 @ n�105,
and h2 @ n�104 or h2 @ n�105, respectively, etc+; then Assumption A5 is satis-
fied+When d1 � d2, undersmoothing is needed to achieve bias reductions in the
first- and second-stage estimations, which is familiar from the multistep non-
parametric estimation literature+ In contrast, when d2 � d1, undersmoothing may
not be required in the second-stage estimation+When f tU has a compact support
and is bounded away from zero on its support, the trimming technique is not
needed+ See Remark 7 in Section 4+

THEOREM 3+1+ Under Assumption A,

Mnh0
d1~ [m1

*~x!� m1~x!� h0
q�1 @M�1Bm1

~q�1!~x!#0,0 !

d
&& N�0,

s«
2

fX ~x!
@M�1GM�1 #0,0�+ (3.2)

Remark 1+ We have a sort of “oracle” property here: the feasible estimator
[m1
*~x! is asymptotically equivalent to Um1~x! and hence is more efficient than
Km1~x!+ Therefore [m1

*~x! should be preferred to Km1~x!+ The asymptotic normal
distribution given by Theorem 3+1 can be used to calculate pointwise confi-
dence intervals for estimators described here+ To do this we require an estima-
tion of the asymptotic variance+ The procedure is standard, and we omit it for
brevity+

Remark 2+ It is worth mentioning that our three-stage approach has a close
analogy with the well-known prewhitening method in the time series literature+
See Press and Tukey ~1956!, Andrews and Monahan ~1992!, and more recently
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Xiao et al+ ~2003!+ Also, our efficiency gain may not require the correct speci-
fication of m2 ~or the correct choice of d2! in the second stage+ Interestingly,
for any invertible MA process or strictly stationary AR process, the proposed
estimator has an efficiency gain over the conventional one-step local poly-
nomial estimator+ To see this more clearly, suppose Ut � ~1 � 0+7L!«t , where L
is the lag operator+ The process is invertible, so that we can write it as the
AR~`! process: Ut � �(j�1

` 0+7 jUt�j � «t + Now if we fit a misspecified non-
linear AR~1! model to the AR~`! process $Ut % :Ut � m2~Ut�1!� et , where et[
Ut � E~Ut 6Ut�1!, we can tell that var~et ! � var~Ut !+ So even for this misspec-
ified model, the variance of our third-stage estimator is proportional to var~et !,
which is strictly smaller than the variance of the preliminary estimator ~pro-
portional to var~Ut !!+ Though not presented here the efficiency gain in such
misspecified models was verified in a separate study through Monte Carlo
simulations+

Remark 3+ Horowitz, Klemela, and Mammen ~2002! obtained asymptotic
minimax results for estimating additive components in nonparametric regres-
sion models under the assumption that the error term is Gaussian+ Fan, Gasser,
Gijbels, Brockmann, and Engel ~1997! showed that, with an appropriate choice
of the bandwidth matrix and the kernel function, the univariate local poly-
nomial regression estimator and the multivariate local linear regression estima-
tor achieve the asymptotic linear minimax risk+ To apply the latter result to our
context, we assume for clarity that q � 1 and that the regression function m1 is
in the class

C [ $m1 : 6m1~z!� m1
' ~x!~z � x!T 6� 0+5~z � x!C~z � x!T %,

where C is a positive definite ~d1 � d1! matrix+ Heuristically speaking, this
class includes regression functions that have a Hessian matrix bounded by C+ If
we choose the last-stage bandwidth and kernel function according to equation
~3+1! and Theorem 3+1 of Fan et al+ ~1997!, respectively, the resulting estimator
~ [m1
*! will be minimax efficient+ Although minimax efficiency is an important

property in theory, it is hard to work with and even harder to justify ~cf+ Linton,
2000!+ For this reason, we do not stress the minimax efficiency of our estimator+

4. MORE EFFICIENT ESTIMATION BASED ON GENERAL
CRITERION FUNCTIONS

As Linton ~2000! remarked, the notion of efficiency in nonparametric models
is not as clear and well understood as it is in parametric models+ One example
he gave is that pointwise mean squared error comparisons do not provide a
simple ranking between estimators such as kernels, splines, and nearest neigh-
bors+ Our purpose is to measure our procedure against the given infeasible ~“ora-
cle”! procedure for estimating m1~x! based on the knowledge of m2~{! and show
that the estimator of m1~x! based on our procedure is more efficient than the
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estimator obtained by ignoring m2~{!+ This result does not pertain to the least
squares criterion function only+

Like Linton ~2000!, we can extend the results in preceding sections and work
with criterion functions motivated by the likelihood function of a complete spec-
ification of the conditional distribution of Yt given Wt [ ~Xt

' , tUt
'!' along with

the additive restriction ~1+2!+ In the following discussion, we shall write w [
~x ', tu '!'+ We assume that the conditional distribution of Yt given Wt � w comes
from the one-parameter linear exponential family ~e+g+, Gourieroux, Monfort,
and Trognon, 1984!, admitting a density with respect to some fixed measure m:

P~ y,m! � exp $A~m!� B~ y!� C~m!y%, (4.1)

where A~{!, B~{!, and C~{! are known functions on the real line and m � M, a
suitable parameter space, is the mean of the distribution whose density is P~ y,m!+
Equation ~4+1! suggests the following class of criterion functions:

Qn~u! � nh0
�d1(

t�1

n

K0~~x � Xt !0h0 !$Yt Ct ~u!� At ~u!%, (4.2)

where Ct~u! � C~m2~ tUt�1! � (0�6j 6�quj~Xt � x!j!, At~u! � A~m2~ tUt�1! �
(0�6j 6�quj~Xt � x!j!, and B~Yt ! is absent from ~4+2! because it does not depend
on u+ Let :u � :u~x! maximize Qn~u! and let Am1~x! � :u0~x! be our infeasible
estimate of m1~x!+ We have the following result+

THEOREM 4+1+ Suppose that (1.2) holds and the functions A~{! and C~{!
have bounded continuous derivatives up to order max~q � 1,3! over any com-
pact interval. Then, under Assumption A, we have

Mnh0
d1~ Am1~x!� m1~x!� h0

q�1 @M�1Bm1
~q�1!~x!#0,0 !

d
&& N~0,s«

2 a~x!@M�1GM�1 #0,0 !,

where a~x! � a2~x!0@a1~x!# 2, a1~x! � *C '~m1~x! � m2~ tu!! fW~x, tu! d tu, and
a2~x! � *C '~m1~x! � m2~ tu!!2fW~x, tu! d tu.

Remark 4+ The preceding theorem indicates that ignoring m2~{! will result
in a loss of efficiency in estimating m1~{! for a general class of criterion func-
tions+ Corresponding to each density P ~see ~4+1!!, we have an estimator,
m1

�~x!, for m1~x! that is obtained from maximizing ~4+2! when m2~ tUt�1! is
absent in the definitions of At~u! and Ct~u!+ The term m1

�~x! will have the
same bias as Am1~x! but the variance that is proportional to sU

2 + Thus m1
�~x! is

dominated by Am1~x! in terms of both variance and mean squared error+ For
example, if we choose the density P to be normal with mean m and variance 1,
then Am1~x!� Um1~x! and m1

�~x!� Km1~x!+ From the preceding section, we know
that Um1~x! is more efficient than the conventional one-step local polynomial
estimator Km1~x!+

EFFICIENT ESTIMATION OF NONPARAMETRIC MODELS 107



Remark 5+ From the proof of the preceding theorem ~~A+5!–~A+9! in partic-
ular!, we can see that a stronger conclusion can be drawn: all derivatives of
m1~x! up to order q can be estimated more efficiently in the procedure of ob-
taining Am1~x! than in the procedure of obtaining m1

�~x!+ Because our primary
interest is the efficient estimation of m1~x!, we state the theorem as it is+

Like Um1~x! introduced before, Am1~x! is an “oracle” estimate+ In practice, we
can follow the procedure in Section 3 to obtain a feasible estimator for m1~x!+
Specifically, we replace m2~ tUt�1! in ~4+2! by [m2~ ZtUt�1! to obtain

ZQn~u! � nh�d1(
t�1

n

K0~~x � Xt !0h0 !It $Yt ZCt ~u!� ZAt ~u!%, (4.3)

where ZCt~u!� C~ [m2~ ZtUt�1!�(0�6j 6�quj~Xt � x!j! and ZAt~u!� A~ [m2~ ZtUt�1!�
(0�6j 6�q uj~Xt � x! j !+ Let Zu ** � Zu **~x! maximize ZQn~u! in ~4+3! and let
[m1
**~x! � Zu0**~x! be our feasible estimate of m1~x!+ A result similar to Theo-

rem 3+1 can be stated as follows+

THEOREM 4+2+ Suppose that the functions A~{! and C~{! have bounded con-
tinuous derivatives up to order max~q � 1,3! over any compact interval. Then,
under Assumption A, we have

Mnh0
d1~ [m1

**~x!� m1~x!� h0
q�1 @M�1Bm1

~q�1!~x!#0,0 !

d
&& N~0,s«

2 a~x!@M�1GM�1 #0,0 !,

where a~x! is defined in Theorem 4.1.

Remark 6+ This says that [m1
**~x! is asymptotically equivalent to Am1~x! and

thus more efficient than m1
�~x!+ The expression [m1

**~x! is constructed by the
three-step procedure, implying that the estimation of the infinite-dimensional
nuisance parameter m2~{! has no impact on the limiting distribution of [m1

**~x!+
This is not generally the case in parametric estimation problems, unless there is
some orthogonality between the estimating equations+ One important reason
for our procedure to work is that the bias from the first two-step estimation can
be made asymptotically negligible by undersmoothing in the first one or two
stages+ As before, if we choose the density P to be normal with mean m and
variance 1, then [m1

**~x! � [m1
*~x!+ From the preceding section, we know that

[m1
*~x! is more efficient than the conventional one-step local polynomial esti-

mator Km1~x!+

Remark 7+ Recently, Hansen ~2004! provides a uniform convergence result
for a sample average functional, which can easily be used for density and regres-
sion estimation with infinite support+ Applying Theorem 3 of Hansen ~2004!,
one can easily show
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sup
$ tu: f tU ~ tu!�b%

6 [m2~u!� m2~u!6 � Op~v1, n � b�1v2, n !+ (4.4)

The preceding result plays a key role in our proof of Theorem 4+2+ It is easy to
see that the local polynomial estimation of m2 can be replaced by the standard
nonparametric kernel regression+ We stick to the local polynomial estimation
because there is no need for trimming when f tU is compactly supported+

5. MONTE CARLO SIMULATIONS

In this section we first address the issue of determining the order d2 in the second-
stage estimation+ Then we investigate the proposed estimator [m1

*~x! on simu-
lated data and compare it with the conventional one-step local polynomial
estimator Km1~x! and the conventional kernel estimator+

5.1. Choice of d2

In the preceding sections we assume that the order of serial correlation d2 is
known+ In practice, however, d2 is generally unknown+ Recently Gao and Tong
~2004! have developed a novel cross-validation-based model selection proce-
dure for semiparametric nonlinear time series when all regressors are observ-
ables+ One can in theory extend their results by allowing for nonparametrically
generated regressors+ However, the theoretical investigation of this problem can
be quite tedious+ So we use simulations to examine whether the Gao and Tong
method is useful in our context+5

We consider a small class of data generating processes ~DGPs! for the error
process $Ut %, including both linear and nonlinear AR~1! processes and two lin-
ear AR~2! processes:

DGP 1: Ut � �0+8Ut�1 � «t ;
DGP 2: Ut � 0+95Ut�1 exp~�Ut�1

2 ! � «t ;
DGP 3: Ut � �0+5Ut�11$6Ut�16 � 0+1% � 0+95Ut�11$6Ut�16 � 0+1% � «t ;
DGP 4: Ut � 2w~Ut�1!Ut�1 � «t ;
DGP 5: Ut � 0+6Ut�1 � 0+3Ut�2 � «t ;
DGP 6: Ut � 0+7Ut�1 � 0+2Ut�2 � «t ;

where w~{! is the standard normal density function, $«t % is i+i+d+, and «t is equal
to the sum of 100 independent random variables each uniformly distributed on
@�0+1, 0+1# + According to the central limit theorem ~CLT!, we can treat «t as
being nearly a normal random variable with truncated support on @�10, 10#
~see Yao and Tong, 1994, p+ 59!+ DGPs 1, 5, and 6 allow us to examine the
effect of linear dependence on the proposed estimator+ DGPs 2– 4 are nonlinear
processes+ The stationary and mixing conditions for the linear processes can be
justified easily, and those for the nonlinear processes can be verified by using
existing results from Masry and Tjøstheim ~1995, 1997!+ In all cases, the depen-
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dent variables are generated according to Yt � m1~Xt ! � Ut , where m1~Xt ! �
5 exp~Xt !0~1 � exp~Xt !! and $Xt % is i+i+d+ uniform on @�0+5, 0+5# and is inde-
pendent of the process $«t % + Simple algebra shows that var~m1~Xt !! � 0+127,
which is comparable to var~«t ! � 0+333+

We first obtain a local linear estimator of m1 by choosing q � 1, the Gauss-
ian kernel K1~u! � ~2p!�102 exp~�u202!, and the rule of thumb bandwidth for
Gaussian kernel h1 � 1+06 [sX n�105, where [sX is the sample standard error for
$Xt %t�1

n +We denote the local linear estimates as [m1~Xt ! and calculate the resid-
uals ZUt � Yt � [m1~Xt ! for t � 1, + + + , n+ Then we apply the procedure of Gao and
Tong ~2004! to choose the order d2 based on $ ZUt %t�1

n +
To be specific, we consider the case where Ut�1, Ut�2, and Ut�3 are

selected as candidate regressors in generating Ut + Like Gao and Tong ~2004!,
we split the observed data set $~ ZUt ,Rt ! [ ~ ZUt , ZUt�1, ZUt�2 , ZUt�3 !%t�4

n into two
parts: $~ ZUt ,Rt !, t � S % and $~ ZUt ,Rt !, t � S c%, where S is a subset of $4,5, + + + , n%
containing nv integers and S c is its complement containing nc integers: nc �
nv � n � 3+ The basic idea of Gao and Tong is to use the “construction” data
$~ ZUt ,Rt !, t � S c% to run the regression of ZUt on potential candidate regressors
chosen from Rt and then to assess the prediction error by using the data $~ ZUt ,Rt !,
t � S %, treated as if they were future values+

Let D denote all nonempty subsets of $1,2,3%+ For any D � D, denote Rt,D

as a column vector consisting of ZUt�i such that i � D+ Let KD be a multi-
variate kernel function defined on R

6D 6 and h be a bandwidth parameter+
Denote WD~t, s! [ KD~~Rt,D � Rs,D !0h!0(r�4

n KD~~Rt,D � Rr,D!0h!, Zft
c~D! [

(s�S c WD~t, s! ZUs , and Zt, c~D! [ ZUt � Zft
c~D!+ The average squared prediction

error is

CV~D;h, nv ! [
1

nv
(
t�S

$Zt, c~D!%
2w~Rt !, (5.1)

analogous to equation ~2+9! in Gao and Tong ~2004!, where w~{! is a weighting
function+ In the special case where nv � 1, we get the conventional leave-
one-out cross-validation function ~CV1!+ Let us randomly draw a collection
R of m subsets of $4,5, + + + , n% that have size nv+ Let MCCV ~D; h, nv! [
m�1nv

�1(S�R(t�S $Zt, c~D!%
2w~Rt ! and denote ~ ZD, Zh! [ arg min$D�D, h�HD

c %

MCCV~D;h, nv !, where HD
c is a set of bandwidth parameters+ Under suitable

conditions, we conjecture that with probability converging to one, ZD will pick
up the right regressors in Rt +

We choose KD, HD
c , m, and nc according to Section 3+1 in Gao and Tong

~2004!: KD is a product of 6D 6 standard normal kernels, HD
c [ @0+1nc

�209 ,
3nc

�109# , m � n � 3, and nc � [~n � 3!0+9], the largest integer part of ~n � 3!0+9+
We use w~Rt ! � Pi�1

3 1~6 ZUt�i 6 � 2 [sU !, where [sU is the sample standard error
for $ ZUt %t�1

n + To save time, we specify D � $$1%, $1,2%, $1,2,3%%, and we choose
h � HD

c by discretizing HD
c with 50 equally spaced points+ Table 1 reports the
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relative frequencies that each element of $$ ZUt�1%, $ ZUt�1, ZUt�2%, $ ZUt�1, ZUt�2, ZUt�3%%
is selected by using the Monte Carlo cross validation ~MCCV! criterion function+

Table 1 shows that when the true order ~d2! of the time series $Ut % is 1, the
MCCV procedure of Gao and Tong ~2004! can pick up the right order even
when the sample size is fairly small ~n � 200! given the fact that three-
dimensional densities have to be estimated in the selection procedure+ When
d2 � 2, the success of the procedure depends on the persistence in the data: for
low persistent data ~DGP 5!, the Gao and Tong procedure still works well for n
as small as 200, but for highly persistent data ~DGP 6!, a large sample ~n �
500! is required+

5.2. Efficiency Comparison

Now we suppose that the right number of lags, d2, has been chosen and inves-
tigate the proposed estimator [m1

*~x! on simulated data and compare it with the
conventional one-step local polynomial estimator Km1~x! and the conventional
kernel estimator, [m1,ker~x! [ (s�1

n K0~~x � Xs !0h0 !0(t�1
n K0~~x � Xt !0h0!Yt +

We do not try to optimize the performance of either the conventional estima-
tors or our own+ Rather, we take what are fairly common choices, in real appli-
cations, of bandwidth sequences and kernels and demonstrate that even with
these implements there are significant finite-sample gains to be made+We choose
the same Epanechnikov kernel in estimating [m1

*~x!, Km1~x!, and [m1,ker~x!:

Table 1. Relative frequencies based on the semiparametric MCCV order selec-
tion of Gao and Tong ~2004!

DGP1
~d2 � 1!

DGP2
~d2 � 1!

DGP3
~d2 � 1!

DGP4
~d2 � 1!

DGP5
~d2 � 2!

DGP6
~d2 � 2!

n � 100
$Ut�1% 0+842 0+860 0+776 0+842 0+315 0+508
$Ut�1,Ut�2% 0+134 0+114 0+164 0+120 0+486 0+394
$Ut�1,Ut�2,Ut�3% 0+024 0+026 0+060 0+038 0+199 0+098

n � 200
$Ut�1% 0+932 0+948 0+872 0+908 0+144 0+462
$Ut�1,Ut�2% 0+060 0+052 0+124 0+084 0+748 0+516
$Ut�1,Ut�2,Ut�3% 0+008 0 0+004 0+008 0+108 0+024

n � 500
$Ut�1% 1 1 0+960 0+970 0+010 0+300
$Ut�1,Ut�2% 0 0 0+040 0+030 0+960 0+700
$Ut�1,Ut�2,Ut�3% 0 0 0 0 0+030 0

Note: The results are based on 500, 250, and 100 repetitions for n � 100, 200, and 500, respectively+
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Ki~u!� 0+75~1 � u2!1~6u 6 � 1!, i � 0,1,2+ Note that the error term has a com-
pact support; we do not use the trimming device in our simulations+

For bandwidth sequences, noticing that only h0 shows up in the limiting dis-
tribution of our more efficient estimator, we recommend choosing h0 based upon
the nonparametric leave-one-out cross-validation method+ To be specific, let h0 �
c0 [sX n�10~4�d1! ; we choose h0 to be

Zh0 [ arg min
h0�H d1

CV~h0 ! [
1

n (t�1

n

$Yt � [m1,ker
~�t ! ~Xt !%

2w~Xt !, (5.2)

where [m1,ker
~�t ! ~x! is obtained as [m1,ker~x! by deleting the tth observation, w~Xt !

is defined analogously as in Section 5+1, and Zh0 is obtained by grid search over
the interval H d1 [ @0+1 [sX n�10~4�d1!,5 [sX n�10~4�d1! # in 50 steps+We shall use the
same bandwidth Zh0 in obtaining Km1~x! and [m1,ker~x! as in the third step of obtain-
ing [m1

*~x!+
To obtain [m1

*~x!, we also need to choose h1 and h2 in the first two-stage
estimation+ As we shall see, our efficient results are not sensitive to the choice
of these two bandwidth parameters, and so we recommend some rules of thumb
based on the optimal bandwidth for nonparametric kernel density estimation+ It
is well known that the optimal bandwidth for estimating a one-dimension den-
sity with the Epanechnikov kernel is given by hopt � 2+34 [sX n�105+ So when
d1 � 1 and q � p � 1, by rule of thumb we can set h1 � 2+34 [sX n�104, h2 �
2+34 [sU n�10~3�d2 !, where we have imposed undersmoothing conditions+ This
choice of h1 and h2, together with the choice of h0 � Zh0, will meet Assump-
tion A5 for d2 � 1, 2, or 3, where we conjecture that this data-driven band-
width selection does not alter the validity of our theorems+ If d1 � 2, we can
modify the rule correspondingly, e+g+, set h1 � 2+34 [sX n�10~3�d1! and h2 �
2+34 [sU n�10~3�d2 !, where one should understand that h1 is a diagonal matrix and
that [sX is a diagonal matrix with the standard deviation of, say, $Xi, t % in the
~i, i !th place+ In the following experiment ~d1 � 1, d2 � 1 or 2!, we set h1 �
c [sX n�104, h2 � c [sU n�10~3�d2 !, where c � $1, 2, 4%, and consider three sample
sizes: n � 100, 200, and 500+

First we consider the estimation of m1~x! at the interior point x � 0 and
report in Table 2 the relative efficiency: the ratio of average mean squared errors
over 500 replications+ In the table, row RE1 reports the relative efficiency of
the proposed efficient estimator [m1

*~x! over the conventional kernel estimator
[m1,ker~x!, and row RE2 reports the relative efficiency of the proposed efficient

estimator [m1
*~x! over the conventional local polynomial estimator Km1~x!+ For

comparison purposes, we also report in Table 2 the infeasible asymptotic rela-
tive efficiency ~RE0! calculated based upon the asymptotic variance of [m1

*~x!
and Km1~x!+ It is worth mentioning that the second derivative of m1~x! at x � 0
is 0+ So RE0 is also the asymptotic relative efficiency based on the mean squared
error of [m1

*~x! and Km1~x! at x � 0+
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We summarize some general findings from our simulation experiments+ ~1!
The proposed efficient estimator performs very well across various DGPs under
our investigation and across different c’s that control the degree of smoothing
in the first two-stage estimations+ ~2! In general, the more the serial depen-
dence in the error process, the larger is the efficiency gain achieved+ In partic-
ular, for the linear AR~1! processes, like Xiao et al+ ~2003!, we find in a separate
study that the relative efficiency first improves as the AR coefficient in abso-
lute value increases and then degenerates as the coefficient approaches one+
This suggests that a different asymptotic theory may apply when we have a
near unit error process+ ~3! There are more substantial gains that can be achieved
for negative serial dependence cases ~DGP1! than for positive serial depen-
dence cases ~DGPs 2, 4–6!+ The RE1 and RE2 can reach RE0 in the case where
the negative serial dependence is large ~DGP1!+ ~4! The relative efficiency gen-
erally improves when the sample sizes n increase from 100 to 200+

Table 2. Relative efficiency of the efficient nonparametric estimator

RE0
DGP1
~0+360!

DGP2
~0+182!

DGP3
~0+524!

DGP4
~0+382!

DGP5
~0+716!

DGP6
~0+225!

n � 100
c � 1 RE1 0+525 0+918 0+898 0+851 0+805 0+978

RE2 0+495 0+912 0+865 0+850 0+792 0+963
c � 2 RE1 0+403 0+920 0+832 0+861 0+937 0+923

RE2 0+396 0+920 0+816 0+827 0+886 0+933
c � 4 RE1 0+341 0+977 0+931 0+843 0+799 0+915

RE2 0+349 0+969 0+914 0+850 0+755 0+913

n � 200
c � 1 RE1 0+432 0+957 0+776 0+837 0+913 0+922

RE2 0+390 0+961 0+778 0+823 0+861 0+926
c � 2 RE1 0+374 0+892 0+750 0+909 0+777 0+960

RE2 0+364 0+892 0+722 0+914 0+765 0+947
c � 4 RE1 0+314 0+925 0+819 0+813 0+804 0+923

RE2 0+287 0+912 0+827 0+803 0+800 0+922

n � 500
c � 1 RE1 0+305 0+901 0+697 0+828 0+926 0+919

RE2 0+297 0+897 0+703 0+827 0+927 0+918
c � 2 RE1 0+322 0+878 0+714 0+802 0+825 0+907

RE2 0+321 0+877 0+726 0+797 0+836 0+910
c � 4 RE1 0+383 0+905 0+766 0+805 0+779 0+931

RE2 0+377 0+908 0+784 0+800 0+771 0+930

Note: RE0 is the infeasible asymptotic relative efficiency, and RE1 and RE2 are the relative efficiency of the
efficient estimator [m1

*~x! over the conventional kernel estimator [m1,ker~x! and conventional local polynomial
estimator Km1~x!, respectively+
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We also consider the estimation of m1~x! over all sample points X1, + + + , Xn

and calculate the integrated relative efficiency ~IRE! as the ratios of mean
squared errors that are averaged over a smaller number of replications and over
all data points+ The results are qualitatively similar to the preceding analysis+

NOTES

1+ We do not use boldface letters to denote random variables such as Xt and tUt�1 and their
values, x and tu+

2+ It is straightforward to show that Mnh0
d1~ Km1~x! � m1~x! � h0

q�1 @M�1Bm1
~q�1!~x!#0,0 !

d
&&

N~0, ~sU
20fX ~x!! � @M

�1GM�1#0,0!+
3+ We can make the comparison at the respectively optimal bandwidths+ By Masry ~1996a!, the

optimal bandwidth for estimating m1~x! by Km1~x! is given by h0,opt � $~sU
2 d1 @M

�1GM�1 #0,0 !0
~2~q � 1!$@M�1Bm1

~q�1!~x!#0,0 %
2 !%n�10~2q�2�d1!+ For Um1 the optimal bandwidth is the same as that

for Km1 but with s«
2 in place of sU

2 , and hence it is smaller+With this, one can obtain the formula for
the mean squared errors when the optimal bandwidth is used+

4+ Noting that we need to obtain [m1~Xt ! and ZUt � Yt � [m1~Xt ! for all t � 1, + + + , n, we can tell
that the Nadaraya–Watson kernel estimator is less desirable than the local polynomial estimator:
we need to correct the boundary bias in the case where $Xt % is compactly supported or apply some
trimming techniques otherwise+ See Fan and Gijbels ~1996! or Pagan and Ullah ~1999! for more
comparisons between the two types of estimators+

5+ The authors are thankful to a referee for suggesting the use of the Gao and Tong ~2004!
simulation procedure+
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APPENDIX

We use 7{7 to denote the euclidean norm of {, c to signify a generic constant whose
exact value may vary from case to case, and we use aT to denote the transpose of a+ Let
Wt � ~Xt

T , tUt�1
T !T, w � ~x T, tuT!T, m~w!� m1~x!� m2~ tu!, G~w; z!� m~w!C~z!� A~z!,

Zt � m ~Wt !, OZt ~u! � m2~ tUt�1! � (0�6j 6�q uj~Xt � x!j, and ZZt ~u! � [m2~ ZtUt�1! �

(0�6j 6�quj~Xt � x!j+ Further, let G ~ j !~w; z!, j � 1,2, + + + ,max~q � 1,3!, denote partial
derivatives of G with respect to z+

Proof of Theorem 2.1. The proof follows from the argument of Masry ~1996a! or
the proof of Theorem 1 in Xiao et al+ ~2003! with EYt � Yt � m2~ tUt�1! in place of sYt in
their paper+ Alternatively, one can apply Theorem 4+1+ To see this, write Qn, loc~u! �
nh0

�d1(t�d2�1
n K0~~x � Xt !0h0 !Yt

2 � 2nh0
�d1(t�1

n K0~~x � Xt !0h0!$Yt Ct~u! � At~u!% [
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nh0
�d1(t�d2�1

n K0~~x � Xt !0h0 !Yt
2 � 2Qn,1~u!, where Ct~u! [ C~ OZt~u!! � OZt~u!,

At~u! [ A~ OZt~u!! � � OZt~u!
202 with OZt~u! [ m2~ tUt�1! � (0�6j 6�quj ~Xt � x!j+ It is

immediate to see that Qn,1~u! plays the role of Qn~u! in Theorem 4+1 and a~x!� 10fX~x!
as desired+ �

Proof of Theorem 3.1. Write ZQn, loc~u! � nh0
�d1(t�d2�1

n K0~~x � Xt !0h0 !Yt
2 �

2nh0
�d1(t�1

n K0~~x � Xt !0h0!$Yt ZCt~u! � ZAt~u!% [ nh0
�d1(t�d2�1

n K0~~x � Xt !0h0 !Yt
2 �

2 ZQn,1~u!, where ZCt~u! [ C~ ZZt~u!! � ZZt~u! and ZAt~u! [ A~ ZZt~u!! � � ZZt~u!
202 with

ZZt~u! [ [m2~ ZtUt�1!�(0�6j 6�quj~Xt � x!j+ Then ZQn,1~u! plays the role of ZQn~u! in Theo-
rem 4+2, and the result follows immediately+ �

Proof of Theorem 4.1. Let u0~x! be the collection of uj
0~x!� ~10j!!~D jm1!~x!, 0 �

6j 6 � q, the true local parameters, using the lexicographical order introduced in the text+
For example, 6j 6� 0 corresponds to the first element in the collection, to be denoted as
u0

0~x!+ We first show that Nu0~x!~� Um1~x!! consistently estimates u0
0~x! and that Nuj~x!

consistently estimates uj
0~x! for 1 � 6j 6 � q+ By Assumption A and the continuity of

A~{! and C~{!, we can apply the uniform law of large numbers ~e+g+, Gozalo and Linton,
2000, p+ 101! to get

sup
u�Q
6Qn~u!� OQn~u!6rp 0, (A.1)

where OQn~u!� E $Qn~u!% and Qn~u! is as in ~4+2!+ Furthermore, noting that E $Yt Ct~u!�
At~u!6Wt %� m~Wt !Ct~u!� At~u!� G~Wt ; OZt~u!! by the definitions of G and OZt~u!, we
have

OQn~u! ��G�Wt ;m2~ tUt�1!� u0 � (
1�6i6�q

ui~Xt � x!i�h0
�d1 K0� Xt � x

h0
� fW ~Wt ! dWt

��G�x � vh0 , tu;m2~ tu!� u0 � (
1�6i6�q

ui v ih0
6i6�K0~v! fW ~x � vh0 , tu! dvd tu

r �G~w;m2~ tu!� u0 ! fW ~w! d tu[Q0~u0 ! (A.2)

uniformly in u � Q+ By Property 4 of Gourieroux et al+ ~1984!, Q0~u0! � Q0~u0
0! with

equality if and only if u0 � u0
0 + This establishes consistency of Nu0~x! for u0

0~x!+
The derivative parameters ui~x!, 1 � 6i6 � q, are determined by subsequent order

terms ~in h0! through a Taylor expansion of ~A+2!+ For example, let j � ~1,0, + + + ,0! �
R

d1 and u�j denote all the elements in u except uj+ We consider the consistency of Nuj~x!
for uj

0~x!+When evaluated at ~uj ,u�j
0 !, uj � uj~x! is determined by the order term that is,

apart from terms that do not depend on u1 or are of smaller orders, a constant times

Q1~uj ! [ h0
2�	a~w!uj �

1

2
b~w!uj

2
 fW ~w! d tu, (A.3)

where a~w!� ~]m0]x1!~w!C '~m~w!! and b~w!� G ''~w;m~w!!+ By Property 3 of Gourie-
roux et al+ ~1984!, C '~m! � 0+ By Properties 1 and 2 of Gourieroux et al+ ~1984!,
G ''~w;m~w!! � �C '~m~w!!+ We can see that the unique maximum of Q1~uj! is uj~x! �
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~]m10]x1!~x!, where j � ~1,0, + + + ,0!+ This establishes the consistency of Nuj~x!+ Simi-
larly, one can establish the consistency of other elements in Nu~x!+

We now turn to the asymptotic normality+ To facilitate the proof, we denote Mt �
Mt~x! and K0, t � K0, t~x! as a symmetric N � N matrix and an N �1 vector, respectively:

Mt ~x! � �
Mt,0,0~x! Mt,0,1~x! J Mt,0,q~x!

Mt,1,0~x! Mt,1,1~x! J Mt,1,q~x!

I I I

Mt,q,0~x! Mt,q,1~x! J Mt,q,q~x!
� , K0, t ~x!� �

K0, t,0~x!

K0, t,1~x!

I

K0, t,q~x!
� ,

(A.4)

where Mt, j, k~x! is an Nj � Nk-dimensional submatrix with the ~l, r! element given by

@Mt, j, k # l, r � � Xt � x

h0
�fj ~l !�fk~r!

K0� Xt � x

h0
�

and K0, t, j~x! is an Nj-dimensional subvector whose rth element is given by

@K0, t, j ~x!# r � � Xt � x

h0
�fj ~r!

K0� Xt � x

h0
�+

By asymptotic expansion of Qn~u! at u0, we have

Hn @ Nu~x!� u0~x!# � ��Hn
�1
]2Qn~u

*~x!!

]u]uT
Hn

�1��1

Hn
�1
]Qn~u

0~x!!

]u
, (A.5)

where u *~x! is a vector intermediate between Nu~x! and u0~x! and Hn �
diag~1, h0 , + + + , h0 , + + + , h0

q , + + + , h0
q! with Nl terms of h0

l , 0 � l � q ~so Hn is an N � N
matrix!+ The presentation of ~A+5! assumes that the matrix in the square brackets is invert-
ible with probability tending to one, which we will show subsequently+ The score func-
tion is

]Qn~u
0~x!!

]u
�

1

nh0
d1

Hn(
t�1

n

K0, t ~x!$Yt C '~ OZt !� A'~ OZt !%,

whereas the Hessian matrix is

]2Qn~u!

]u]uT
�

1

nh0
d1

Hn(
t�1

n

Mt ~x!$Yt C ''~ OZt ~u!!� A''~ OZt ~u!!%Hn ,

where OZt~u! � m2~ tUt�1! � (0�6j 6�quj~Xt � x!j, OZt � OZt~u
0~x!!+

We next show that the score vector satisfies a CLT+ Noting that Yt C '~ OZt !� A'~ OZt !�
«t C '~ OZt ! � G '~Wt ; OZt !, Hn

�1 @]Qn~u
0~x!!0]u# � n�1h0

�d1(t�1
n K0, t ~x!C

'~ OZt !«t �
n�1h0

�d1(t�1
n K0, t ~x!G

'~Wt ; OZt ! [ Tn1 � Tn2+ By the law of iterated expectation and
the dominated convergence theorem, we have E @K0, t ~x!C '~ OZt !«t # � 0 and
var @K0, t~x!C '~ OZt !«t # � s«

2 E $K0, t ~x!@K0, t ~x!#
TC '~ OZt !

2 % � h0
d1s«

2 a2~x!G$1 � o~1!%,
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where a2~x!� *C '~m~w!!2fw~x, tu! d tu, and G is defined in ~2+3!+ Under Assumptions A1,
A2, and A5, we can follow the argument of Masry ~1996a, Thm+ 3! to show that the
covariance terms are asymptotically negligible and that a CLT applies to Tn1:

Mnh0
d1Tn1

d
&& N~0,s«

2 a2~x!G!+ (A.6)

The second vector in the score function contributes to the bias+ Noting that G '~Wt ;Zt !� 0
~by Property 1 of Gourieroux et al+, 1984!, G ''~Wt ;Zt ! � �C '~m~Wt !!, and uk

0 �
~10k!!~D km1!~x!, using Taylor expansion twice gives us

G '~Wt ; OZt ! � �C '~m~Wt !!��m1~Xt !� (
0�6k6�q

1

k!
~D km1!~x!~Xt � x!k�

� G '''~Wt ;Zt
*!��m1~Xt !� (

0�6k6�q

1

k!
~D km1!~x!~Xt � x!k�2

� C '~m~Wt !!� (
6k6�q�1

1

k!
~D km1!~x!~Xt � x!k � op~h0

q�1!�
� G '''~Wt ;Zt

*!� (
6k6�q�1

1

k!
~D km1!~x!~Xt � x!k � op~h0

q�1!�2

,

where Zt
* is intermediate between OZt and Zt , the second equality follows by expanding

m1~Xt ! around x for 7Xt � x7 � c0 h0 because the kernel K0 has compact support on
@�c0, c0# by Assumption A+1 and m1~x! has continuous derivatives of total order q � 1
by Assumption A+3+ So

Tn2 �
1

nh0
d1
(
t�1

n

K0, t C '~m~Wt !!	 (
6k6�q�1

1

k!
~D km1!~x!~Xt � x!k
 � op~h0

q�1!

� h0
q�1 a1~x!Bm1

~q�1!~x!� op~h0
q�1!, (A.7)

where a1~x! � *C '~m~w!! fw~x, tu! d tu and B is defined in ~2+3!, and the last equality
follows by a standard law of large numbers, change of variables, and dominated conver-
gence arguments+

Now by the uniform law of large numbers and dominated convergence arguments,
we have

sup
u�Qn~x!

�Hn
�1� ]2Qn~u!

]u]uT
�
]2Qn~u

0~x!!

]u]uT �Hn
�1�rp 0, (A.8)

where Qn~x! is a shrinking neighborhood of u0~x!+ Furthermore, by the law of large
numbers and dominated convergence theorem,
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Hn
�1
]2Qn~u

0~x!!

]u]uT
Hn

�1 �
1

nh0
d1
(
t�1

n

Mt ~x!$G
''~ OZt !� «t C ''~ OZt !%

�
1

nh0
d1
(
t�1

n

E @Mt ~x!G
''~ OZt !#� op~1!

� �
1

nh0
d1
(
t�1

n

E @Mt ~x!C
'~m~Wt !!#� op~1!

� �a1~x!M � op~1!, (A.9)

where a1~x! � *C '~m~w!! fw~x, tu! d tu and M is defined in ~2+3!+ The theorem then fol-
lows from equations ~A+5!–~A+9!+ �

For any u � u~x! � Q, let ZZt~u! � [m2~ t ZUt�1! � (0�6j 6�quj~Xt � x!j, ZZt � ZZt~u
0!,

OZt � OZt~u
0!, Zt � m~Wt ! � m1~Xt ! � m2~ tUt�1! as before+ Clearly, hnt~u! [ ZZt~u! �

OZt ~u! � ZZt � OZt � [m2~ t ZUt�1! � m2~ tUt�1! [ hnt + Decompose hnt � @ [m2~ t ZUt�1! �
m2~ t ZUt�1!# � @m2~ t ZUt�1! � m2~ tUt�1!# [ hnt,1 � hnt,2+ Denote n1n � n�102h1

�d1 02M ln n
and n2n � n�102h2

�d2 02M ln n + Let An � $ tu : f tU~ tu! � b% and It � 1$ f tU~ tUt�1! � b% + Our
proof of Theorem 4+2 relies on the following propositions and lemmas+

PROPOSITION A+1+ Under Assumption A, hnt,1 It � Ie1
' @ f tU ~ tUt�1!M~K2 , p!#�1

Un,1~ tUt�1!It � op~n
�102h0

�d1 02! uniformly in t and maxd2�1�t�n hnt,1 It � Op~b�1n2n! ,
where M~K2, p! is defined as M in (2.3) but with kernel K2 and local polynomial order p
and Un,1 is defined subsequently in Lemma A.2.

Proof. To facilitate the proof, let K2, t~ tu! be an EN � 1 vector, K2, t
' ~ tu! be an EN � d2

matrix, and Mn~ tu! be a symmetric EN � EN matrix:

K2, t ~ tu! � �
K2, t,0~ tu!

K2, t,1~ tu!

I

K2, t, p~ tu!
� , K2, t

' ~ tu!� �
K2, t,0
' ~ tu!

K2, t,1
' ~ tu!

I

K2, t, p
' ~ tu!

� ,
Mn~ tu! � �

Mn,0,0~ tu! Mn,0,1~ tu! J Mn,0, p~ tu!

Mn,1,0~ tu! Mn,1,1~ tu! J Mn,1, p~ tu!

I I I

Mn, p,0~ tu! Mn, p,1~ tu! J Mn, p, p~ tu!
� ,

where EN [ (j�0
p Nj , K2, t, j~ tu! is a Nj-dimensional subvector whose rth element is

given by

@K2, t, j ~ tu!# r � � tUt�1 � tu

h2
�fj ~r!

K2� tUt�1 � tu

h2
�,
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K2, t, j
' ~ tu! is an Nj � d2 matrix with the ~r, l ! element being the partial derivative of
@K2, t, j~ tu!# r with respect to the lth element in tu, and Mn, j, k~ tu! is an Nj � Nk-dimensional
submatrix with the ~l, r! element given by

@Mn, j, k~ tu!# l, r �
1

~n � d2 !h2
d2
(

t�d2�1

n � tUt�1 � tu

h2
�fj ~l !�fk~r!

K2� tUt�1 � tu

h2
�+

The terms ZK2, t~ tu! and ZMn~ tu! are defined analogously as K2, t~ tu! and Mn~ tu!, respec-
tively, but with the residual series $ ZU1, + + + , ZUn% in place of the latent variables $U1, + + + ,Un% +

Like Xiao et al+ ~2003, Lem+ A+3!, we write for tu � An,

[m2~ tu!� m2~ tu! � Ie1
' ZMn

�1~ tu! ZVn~ tu!� Ie1
' ZMn

�1~ tu! ZBn~ tu!

� Ie1
' @ f tU ~ tu!M~K2 , p!#�1 ZVn~ tu!� Ie1

' @ f tU ~ tu!M~K2 , p!#�1 ZBn~ tu!

� Ie1
' @ f tU ~ tu!M~K2 , p!#�1 @ ZMn~ tu!� f tU ~ tu!M~K2 , p!# ZVn~ tu!

� Ie1
' @ f tU ~ tu!M~K2 , p!#�1 @ ZMn~ tu!� f tU ~ tu!M~K2 , p!# ZBn~ tu!

[ Tn,1~ tu!� Tn,2~ tu!� Tn,3~ tu!� Tn,4~ tu!,

where the “variance” term ZVn~ tu! and the “bias” term ZBn~ tu! are EN � 1 vectors defined by
ZVn~ tu! � ~n � d2 !

�1h2
�d2(t�d2�1

n ZK2, t ~ tu!«t , and ZBn~ tu! � ~n � d2 !
�1h2

�d2(t�d2�1
n

ZK2, t ~ tu! ZDt ~ tu!, where ZDt~ tu! � m2~ ZtUt�1! � (0�6k6�p~10k!!~D km2!~ tu!~ ZtUt�1 � tu!k+ We
analyze the properties of Tn, i~ tu!, i � 1, + + + ,4, in Lemmas A+2–A+5, which will complete
the proof of the proposition+ �

LEMMA A+2+ Under Assumption A, Tn,1~ t ZUt�1!It � Ie1
' @ f tU ~ tUt�1!M~K2 , p!#�1

Un,1~ tUt�1!It � op~n
�102h0

�d1 02! uniformly in t, and sup tu�An
Tn,1~ tu!� Op~b�1n2n! , where

Un,1~ tu! � ~n � d2 !
�1h2

�d2(t�d2�1
n K2, t ~ tu!«t .

Proof. Let Vn~ tu! be defined as ZVn~ tu! but with K2, t~ tu! in place of ZK2, t~ tu!+ By the
Taylor expansion and Assumptions A+1 and A+3, we have

ZVn~ tu!� Vn~ tu! �
1

~n � d2 !h2
d2
(

t�d2�1

n

@ ZK2, t ~ tu!� K2, t ~ tu!#«t

�
1

~n � d2 !h2
d2
(

t�d2�1

n

@K2, t
' ~ tu!#$ t ZUt�1 � tUt�1%«t $1 � op~1!%

�
1

~n � d2 !h2
d2
(

t�d2�1

n

(
i�1

d2 ]K2, t ~ tu!

] tui

«t $m1~Xt�i !� [m1~Xt�i !%$1 � op~1!%,

(A.10)

where op~1! is uniformly in tu and the second equality follows from the property of K2

and the fact that supd2�1�t�n7 t ZUt�1 � tUt�17 � d2 maxi�1, + + + ,d2
supd2�1�t�n7 [m1~Xt�i ! �

m1~Xt�i !7 � Op~n1n � h1
q�1! � op~1!+

Now, let e1 � ~1,0, + + + ,0!' � R
N+ By Masry ~1996b!, uniformly in x, [m1~x! �

m1~x!� n�1h1
�d1 e1

' @MfX ~x!#
�1(t�1

n K1, t ~x!$Ut �(6k6�q�1~10k!!~D km1!~x!~Xt � x!k%
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$1 � op~1!%, where K1, t~x! is defined analogously to K2, t~ tu! with a typical element:
@K1, t, j~x!# r � ~~Xt � x!0h1!

fj ~r!K1~~Xt � x!0h1!+ So ZVn~ tu!� Vn~ tu!� Vn,1~ tu!� Vn,2~ tu!,
in which Vn,1~ tu! [ n�1~n � d2 !

�1h1
�d1 h2

�d2�1(t�d2�1
n (s�1

n an~Vt ,Vs ; tu!, Vn,2~ tu! [
~n � d2 !

�1h2
�d2(t�d2�1

n (i�1
d2 ~]K2, t ~ tu!0] tui !«t bn~Xt�i !, where for Vt [ ~Xt

' , Xt�1, + + + ,
Xt�d2

' , tUt�1
' ,«t !

', an~Vt ,Vs; tu! [ (i�1
d2 h2«t ~]K2, t ~ tu!0] tui !e1

' @MfX ~Xt�i !#
�1K1, s~Xt�i !Us ,

and bn~x! [ n�1h1
�d1 e1

' @MfX ~x!#
�1(s�1

n K1, s~x!$(6k6�q�1~10k!!~D km1!~x!~Xs � x!%+
For fixed tu, Vn,1~ tu! is a second-order U statistic, and it is easy to show that

Vn,1~ tu! � Op~n
�1h1

�d1 02h2
�d2 02�1!+ For a uniform bound on Vn,1~ tu!, one can modify

the proof of ~A+10! in Gozalo and Linton ~2001! to show that sup tu 6Vn,1~ tu!6 �
Op~n

�1h1
�d1 02 h2

�d2 02�1 ln n! � op~n
�102h0

�d1 02!+ It is straightforward to extend the proof
of Theorem 2 in Masry ~1996b! to show that supx 6h1

�~q�1! bn~x! � b~x!6 � Op~n1n!,
where b~x! � e1

'M�1Bm1
~q�1!~x!+ So Vn,2~ tu! � h1

q�1~n � d2 !
�1h2

�d2(t�d2�1
n (i�1

d2

~]K2, t ~ tu!0] tui !«t b~Xt�i ! � op~n
�102h0

�d1 02!+ By a similar argument as used in the
proof of Theorem 3 in Hansen ~2004!, the first term is Op~n

�102h2
�d2 02�1M ln nh1

q�1! �
op~n

�102h0
�d1 02! uniformly in tu by Assumption A+5~i! and ~ii!, and thus sup tu6Vn,2~ tu!6�

op~n
�102h0

�d1 02!+
Also, by an application of Theorem 3 in Hansen ~2004!, sup tu7Vn~ tu!7 � Op~n2n!+ So

by the triangle inequality, sup tu7 ZVn~ tu!7 � Op~n2n! � op~n
�102h0

�d1 02! � Op~n2n!, and
the second part of the lemma follows+ The first part of the lemma follows because, by
the Taylor expansion, Assumptions A5~i!, ~iii!, and ~iv!, Tn,1~ t ZUt�1!It � Tn,1~ tUt�1!It �
Op~b

�2n2n !Op~h2
�1n1n � h2

�1 h1
q�1! � Tn,1~ tUt�1!It � op~n

�102h0
�d1 02!+ This concludes

the proof+ �

LEMMA A+3+ Under Assumption A, sup tu�An
6Tn,2~ tu!6 � op~n

�102h0
�d1 02!+

Proof. Let Dt ~ tu! � m2~ tUt�1! � (0�6k6�p~10k!!~D km2!~ tu!~ tUt�1 � tu!k+ Then by
Assumption A3, Dt~ tu! � (6k6�p�1~10k!!~Dkm2 !~ tut

*!~ tUt�1 � tu!k for some tut
* that lies

between tUt�1 and tu, and ZDt~ tu! � (6k6�p�1~10k!!~Dkm2 !~ t [ut
*!~ t ZUt�1 � tu!k for some t [ut

*

that lies between t ZUt�1 and tu+ Clearly 7 t [ut
*� tut

*7� Op~n1n � h1
q�1! uniformly in t and tu+

So by Assumption A3,

ZDt ~ tu!� Dt ~ tu! � 	 (
6k6�p�1

1

k!
~D km2 !~ t [ut

*!@~ t ZUt�1 � tu!k � ~ tUt�1 � tu!k #

� 	 (

6k6�p�1

1

k!
@~D km2 !~ t [ut

*!� ~D km2 !~ tut
*!# ~ tUt�1 � tu!k


� h2
p Op~n1n � h1

q�1! uniformly in tu and t for 7 tUt�1 � tu7� ch2 +

Because 6Dt~ tu!6 � Op~h2
p�1! for 7 tUt�1 � tu7 � ch2, it follows that 6 ZDt~ tu!6 �

Op~h2
pn1n � h2

p h1
q�1 � h2

p�1! for 7 tUt�1 � tu7 � ch2+ Now, write ZBn~ tu! � ~n � d2 !
�1

h2
�d2(t�d2�1

n $ ZK2, t ~ tu! � K2, t~ tu!% ZDt~ tu! � ~n � d2 !
�1h2

�d2(t�d2�1
n K2, t ~ tu!$ ZDt ~ tu! �

Dt~ tu!% � ~n � d2 !
�1h2

�d2(t�d2�1
n K2, t ~ tu!Dt ~ tu! [ Bn,1~ tu! � Bn,2~ tu! � Bn,3~ tu!+ It is

easy to show that sup tu7Bn,1~ tu!7 � Op~n
�102h1

�d1 02 h2
�1M ln n !Op~h2

pn1n � h2
p�1! �

op~bn�102h0
�d1 02! by Assumptions A1 and A+5~i!, ~ii!, and ~iv!, sup tu7Bn,2~ tu!7 �

Op~h2
pn1n ! � op~bn�102h0

�d1 02! by Assumptions A1 and A5~iv!, and sup tu7Bn,3~ tu!7 �
Op~h2

p�1! � op~bn�102h0
�d1 02! by Assumptions A1 and A+5~i!+ The lemma follows+ �
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LEMMA A+4+ Under Assumption A, sup tu�An
6Tn,3~ tu!6 � op~n

�102h0
�d1 02!+

Proof. For a typical element of ZMn~ tu! � Mn~ tu!, we have

@ ZMn, j, k~ tu!# l, r � @Mn, j, k~ tu!# l, r

�
1

~n � d2 !h2
d2
(

t�d2�1

n �� t ZUt�1 � tu

h2
�fj ~l !�fk~r!

K2� t ZUt�1 � tu

h2
�

� � tUt�1 � tu

h2
�fj ~l !�fk~r!

K2� tUt�1 � tu

h2
�� +

By Assumption A1, we can show that sup tu 6@ ZMn, j, k~ tu!# l, r � @Mn, j, k~ tu!# l, r 6 �
Op~h2

�1v1n � h2
�1 h1

q�1!+ By an application of Theorem 3 of Hansen ~2004!,
sup tu7Mn~ tu!� f tU~ tu!M~K2, p!7� Op~h2 � v2n!+ So by the triangle inequality, sup tu6 ZMn~ tu!�
f tU~ tu!M~K2, p!6 � Op~h2 � v2n � h2

�1v1, n � h2
�1 h1

q�1!, analogous to Masry ~1996b!+
From the proof of Lemma A+2, sup tu7 ZVn~ tu!7 � Op~v2n!+ Consequently, sup tu6Tn,3~ tu!6 �
Op~h2 � v2n � h2

�1v1n � h2
�1 h1

q�1!Op~b
�1v2n !� op~n

�102h0
�d1 02!, where the expression

in the last sentence follows from Assumptions A5~i!–~v!+ �

LEMMA A+5+ Under Assumption A, sup tu�An
6Tn,4~ tu!6 � op~n

�102h0
�d1 02! .

Proof. The lemma follows from the proofs of Lemmas A+3 and A+4: sup tu7 ZBn~ tu!7 �
op~bn�102h0

�d1 02! and sup tu6 ZMn~ tu! � f tU~ tu!M~K2, p!6 � Op~h2 � v2n � h2
�1v1, n �

h2
�1 h1

q�1! � op~1!+ �

PROPOSITION A+6+ Under Assumption A, hnt,2 � Un,2~ tUt�1! � op~n
�102h0

�d1 02!
uniformly in t, and maxd2�1�t�n 6hnt,2 6 � Op~n1n! , where Un,2~ tUt�1! � �n�1h1

�d1

(s�1
n (i�1

d2 ~]m2~ tUt�1!0]Ut�i !e1
' @MfX ~Xt�i !#

�1K1, s~Xt�i !Us.

Proof. The second part follows from the fact that maxd2�1�t�n7 t ZUt�1 � tUt�17 �
Op~n1n � h1

q�1! � Op~n1n! by Assumption A5+ The first part follows because
hnt,2 � m2

' ~ tUt�1!~ t ZUt�1 � tUt�1! � Op~~n1n!
2! � (i�1

d2 ~]m2~ tUt�1!0]Ut�i !$m1~Xt�i ! �
[m1~Xt�i !% � op~n

�102h0
�d1 02! � Un,2~ tUt�1! � op~n

�102h0
�d1 02!+ �

Remark. Propositions A+1 and A+6 imply that

hnt It � Ie1
' @ f tU ~ tUt�1!M~K2 , p!#�1Un,1~ tUt�1!It � Un,2~ tUt�1!

� op~n
�102h0

�d1 02! uniformly in t (A.11)

and

max
d2�1�t�n

6hnt It 6 � Op~n1n � b�1n2n !� op~1!+ (A.12)

Proof of Theorem 4.2. By the assumption on A~{! and C~{!, we expand G~Wt ; ZZt~u!!
and its derivatives about G~Wt ; OZt~u!! in a Taylor series to get ~for j � 0,1, and r �
1,2, + + + ,max~q,2!!,
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G ~ j ! ~Wt ; ZZt ~u!! � (
i�0

r�1

G ~ j�i ! ~Wt ; OZt ~u!!@hnt #
i � G ~ j�r! ~Wt ; OZt

*j~u!!@hnt #
r, (A.13)

where OZt
*j~u! are intermediate between ZZt~u! and OZt~u!+ By ~A+12!, we have

sup
u�Qn~x!

max
d2�1�t�n

It 6G ~ j ! ~Wt ; ZZt ~u!!� G ~ j ! ~Wt ; OZt ~u!!6 � op~1!, j � 0,1+

A similar result evidently holds for A and C and their derivatives+ Therefore

sup
u�Q
6 ZQn~u!� Qn~u!6

� sup
u�Q

� 1

~n � d2 !h0
d1
(

t�d2�1

n

K0� x � Xt

h0
�$Yt @ ZIt ZCt ~u!� Ct ~u!#� @ ZIt ZAt ~u!� At ~u!#%�

� sup
u�Q

1

~n � d2 !h0
d1
(

t�d2�1

n

�K0� x � Xt

h0
�«t � 6 ZIt ZCt ~u!� Ct ~u!6

� sup
u�Q

1

~n � d2 !h0
d1
(

t�d2�1

n

�K0� x � Xt

h0
�� 6 ZIt G~Wt ; ZZt ~u!!� G~Wt ; OZt ~u!!6

�
c

~n � d2 !h0
d1
(

t�d2�1

n

�K0� x � Xt

h0
�«t ~1 � ZIt !�

�
c

~n � d2 !h0
d1
(

t�d2�1

n

�K0� x � Xt

h0
�~1 � ZIt !� � op~1!

� Dn,1 � Dn,2 � op~1!,

where the second inequality follows from ~A+13! and the following facts: ~i! K0 is com-
pactly supported; ~ii! m2~{! is bounded on its support+ Recall that ZIt � 1$ Zf tU~ t ZUt�1! � b%+
Note that P~ Zf tU~ t ZUt�1! � b! � P~6 Zf tU~ t ZUt�1! � f tU~ tUt�1!6 � b! � P~ f tU~ tUt�1! � 2b!+ By
Lemma 6 of Robinson ~1988!, the second term goes to zero as br 0+ For the first term,
one can show that it goes to zero by altering the proof of Proposition 4 in Robinson
~1988!+ So E @ ZIt # r 1 as n r `+ Consequently Dn, i � op~1!, i � 1,2, implying
[m1
*~x!

p
&& m1~x!+

The proof is complete if we can show

��Hn
�1� ] ZQn~u

0~x!!

]u
�
]Qn~u

0~x!!

]u
��� � op~n

�102h0
�d1 02! and (A.14)

sup
u�Qn~x!

��Hn
�1� ]2 ZQn~u!

]u]uT
�
]2Qn~u!

]u]uT �Hn
�1�� � op~1!+ (A.15)

Consider the N � 1 vector Hn
�1~] ZQn~u

0~x!!0]u � ]Qn~u
0~x!!0]u! � ~n � d2 !

�1

h0
�d1(t�d2�1

n K0, t ~x!«t $ ZIt C '~ ZZt ! � C '~ OZt !% � ~n � d2 !
�1h0

�d1(t�d2�1
n K0, t ~x!

$ ZIt G '~Wt ; ZZt ! � G '~Wt ; OZt !% [ Tn,5 � Tn,6+ In the discussion that follows, we shall re-
strict our attention to the first components of Tn,5 and Tn,6, which are of interest+ The
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other components behave similarly because the functions K0~u! and ujK0~u!, 6j 6�1, + + + ,q,
have similar properties+ Recall that It � 1$ f tU~ tUt�1! � b%+ Following the strategy of
Hidalgo ~1992, p+ 73!, we first establish

~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t $It C '~ ZZt !� C '~ OZt !% � op~1!, (A.16)

~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!$It G '~Wt ; ZZt !� G '~Wt ; OZt !% � op~1! (A.17)

and then show that there is no difference asymptotically when we replace It by ZIt in the
preceding two equations+

Write

~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t $It C '~ ZZt !� C '~ OZt !%

� ~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t It $C
'~ ZZt !� C '~ OZt !%

� ~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t C '~ OZt !~1 � It !

� Tn,5,1 � Tn,5,2 , (A.18)

where, e+g+, Tn,5,2 � ~n � d2 !
�102h0

�d1 02(t�d2�1
n St , St � K0, t~x!«t C '~ OZt !~1 � It !+

Clearly, E @Tn,5,2# � 0, E @Tn,5,2#
2 � h0

d1 E @St #
2 � 2~n � d2 !

�1h0
d1(t�d2�1

n�1

(t�t�1
n E @St�tSt # [ I � II+ By the dominated convergence theorem, I r 0+ By

the Davydov inequality ~Bosq, 1996, p+ 19!, Assumptions A1 and A5, II �
ch0

d1~1�d!0~1�d! (t�d2�1
n�1 ~1 � t0~n � d2!!a~t!

d0~1�d! r 0+ So

Tn,5,2 � op~1! (A.19)

by the Chebyshev inequality+

Tn,5,1 � ~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t It $C
'~ ZZt !� C '~ OZt !%

� ~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t It $C
''~ OZt !~ ZZt � OZt !

� Op~~n1n � b�1n2n !
2 !%

� ~n � d2 !
�102h0

�d1 02 (
t�d2�1

n

K0, t,0~x!«t It $C
''~ OZt !~ ZZt � OZt !%� op~1!,
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by ~A+12! and Assumption A+5~ii!+ By ~A+11!, Proposition A+1, and Proposition A+6, the
leading term of Tn,5,1 equals

Tn,5,1a �
1

~n � d2 !
102h0

d1 02 (
t�d2�1

n

K0, t,0~x!«t It C ''~ OZt !hnt

�
1

~n � d2 !
302h0

d1 02 h2
d2
(

t1�d2�1

n

(
t2�d2�1

n

K0, t1,0~x!«t1 It1 C ''~ OZt1 !

� @ f tU ~ tUt1�1!M~K2 , p!#�1K2, t2~ tUt1�1!«t2

�
1

n~n � d2 !
102h0

d1 02 h1
d1
(

t1�d2�1

n

(
t2�1

n

K0, t1,0~x!«t1 It1 C ''~ OZt1 !

� (
i�1

d2 ]m2~ tUt1�1!

]Ut1�i

e1
' @MfX ~Xt1�i !#

�1K1, t2~Xt1�i !Ut2 � op~1!

[ (
t1�d2�1

n

(
t2�d2�1

n

St1, t2
~1! � (

t1�d2�1

n

(
t2�1

n

St1, t2
~2! � op~1!

[ Sn,1 � Sn,2 � op~1!,

where, e+g+, St1, t2
~1! [ S ~1! ~Vt1 ,Vt2 ! with Vt [ ~Xt

' , Xt�1
' , + + + , Xt�d2

' , tUt�1
' ,«t !

'+ We shall use

(t1, t2
n to denote (t1�d2�1

n (t2�d2�1
n and write DSt1, t2

~1! for S ~1! ~ FVt1 , FVt2 !, where $ FVt , t � 1%
denotes an i+i+d+ sequence with the same marginal distributions as $Vt , t � 1%+ Obviously,
E @ DSt1, t2

~1! # � 0 for t1 � t2+ We can readily apply the Davydov inequality to show
(t1, t2

n E~St1, t2
~1! ! � o~1! and Lemma C+2 in Gao and King ~2002! to show

(t1, t2
n (t3 , t4

n E~St1, t2
~1! St3, t4

~1! !� o~1!, so that Sn,1 � op~1! by the Chebyshev inequality+ Sim-
ilarly, one can show that Sn,2 � op~1! and hence

Tn,5,1 � op~1!+ (A.20)

Combining ~A+18!, ~A+19!, and ~A+20!, we have shown ~A+16!+
For ~A+17!, ~n � d2 !

�102h0
�d1 02(t�d2�1

n K0, t,0~x!$It G '~Wt ; ZZt ! � G '~Wt ; OZt !% �
~n � d2 !

�102h0
�d1 02 (t�d2�1

n K0, t,0~x!It $G
'~Wt ; ZZt ! � G '~Wt ; OZt !% � ~n � d2 !

�102h0
�d1 02

(t�d2�1
n K0, t,0~x!G

'~Wt ; OZt !~1 � It ! � Tn,6,1 � Tn,6,2+ One can analyze the first term
Tn,6,1 in an analogous fashion to Tn,5,1 to obtain Tn,6,1 � op~1!+ For the second term,
recall that G '~Wt ;Zt !� 0 by Property 1 of Gourieroux et al+ ~1984! and G ' has bounded
derivatives over any compact interval, so Tn,6,2 � Op~~n � d2 !

102h0
d1 02 h0

q�1! � op~1!+
This proves ~A+17!+

By the triangle inequality, Masry ~1996b!, and Hansen ~2004!,
maxd2�1�t�n 6 Zf tU ~ t ZUt�1! � f tU~ tUt�1!6 � sup tu6 Zf tU~ tu! � f tU~ tu!6 � maxd2�1�t�n 6 f tU ~ t ZUt�1! �
f tU~ tUt�1!6 � Op~y2n � h2

2! � Op~y1n � h1
q�1! � op~b!+ Equations ~A+16! and ~A+17! are

also true if the trimming parameter is replaced by b � c~y2n � h2
2 � y1n � h1

q�1! [
b � cn+ Let gn � ~n � d2 !

�102h0
�d1 02 + Then for any finite e � 0 and large enough n,
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P	�gn (
t�d2�1

n

K0, t,0~x!$ ZIt G '~Wt ; ZZt !� G '~Wt ; OZt !%�
� e,6 f tU ~ tUt�1!� f tU ~ tUt�1!6 � cn ∀t


� P	�gn (
t�d2�1

n

K0, t,0~x!$It G '~Wt ; ZZt !� G '~Wt ; OZt !%�
� e02,6 f tU ~ tUt�1!� f tU ~ tUt�1!6 � cn ∀t
 +

Nevertheless, P $maxd2�1�t�n 6 f tU ~ tUt�1! � f tU~ tUt�1!6 � cn ∀t % r 0 as n r `+ So we
conclude that ~A+16! is also true when we substitute It with ZIt + A similar argument holds
for ~A+17!+

This proves ~A+14!+ The proof of ~A+15! follows by another application of ~A+13! and
arguments similar to the preceding discussion+ �
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