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Enriching Surveys with Supplementary
Data and its Application to Studying
Wage Regression
DENIS HENG YAN LEUNG and KEN YAMADA
School of Economics, Singapore Management University

BIAO ZHANG
Department of Mathematics and Statistics, University of Toledo

ABSTRACT. We consider the problem of supplementing survey data with additional information
from a population. The framework we use is very general; examples are missing data problems,
measurement error models and combining data from multiple surveys. We do not require the survey
data to be a simple random sample of the population of interest. The key assumption we make
is that there exists a set of common variables between the survey and the supplementary data.
Thus, the supplementary data serve the dual role of providing adjustments to the survey data for
model consistencies and also enriching the survey data for improved efficiency. We propose a semi-
parametric approach using empirical likelihood to combine data from the two sources. The method
possesses favourable large and moderate sample properties. We use the method to investigate wage
regression using data from the National Longitudinal Survey of Youth Study.

Key words: empirical likelihood, inverse probability weighting, selection bias, supplementary
data, surveys

1. Introduction

In many empirical studies, it is necessary to combine survey data with information from addi-
tional samples from the population. As an example, Tarozzi (2007) described a study on the
poverty ratio using the 1999–2000 round of the Indian National Sample Survey, where because
of changes in the expenditure questionnaire over the different rounds of the survey, supple-
mentary data were utilized to calibrate the trend of poverty ratio estimate over time. In that
study, the use of supplementary data was necessary for the researcher to derive meaningful and
compatible time trend parameters. Sometimes, supplementary data are used to enhance the effi-
ciency of a study. For example, in a study of the minimum wage using the UK Labour Force
Survey, Skinner et al. (2002) found that data on the primary variable were only available on
a subset of respondents. They used data from supplementary variables to impute the missing
values of the primary variable.

Works on combining surveys with supplementary data fall into a few strands. In one strand,
as in Tarozzi (2007), both the survey and the supplementary data are micro data collected
from different surveys. The interest of the researcher is to combine the data from the sur-
vey of interest with the supplementary data. Often, the supplementary data are not directly
compatible with the data from the survey of interest. In Tarozzi (2007), weights were used to
reflect the non-compatibility between the data from the survey of interest and the supplemen-
tary data. Poverty rate was modelled as a parameter in a set of weighted moment conditions,
and the supplementary data played a part in estimating the weights. Other examples of com-
bining data from different surveys can be found in Arellano & Meghir (1992), Lusardi (1996)
and Merkouris (2004).
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In another strand, census data are treated as auxiliary information to supplement the micro
data collected in a survey. Typically, the census data are used to form known moments of some
of the variables in the survey data; the moments are then used to construct moment conditions
that can be combined with the information given by the survey data. This approach has been
used by Imbens & Lancaster (1994). The survey and census data are combined using general-
ized methods of moments (Hansen, 1982). Hellerstein & Imbens (1999) also used this approach
but combined the survey and census data using a semi-parametric empirical likelihood (EL;
Owen, 1988). In the context of finite population sampling, Chen & Qin (1993) showed that
the use of the finite population size as supplementary information effectively improves the
semi-parametric efficiency in an EL.

The third strand can be found in measurement error models. In there, the survey only col-
lects data on mis-measured counterparts of the variables of interest. Data on supplementary
variables allow the researcher to recover the true relationship between the variables of interest.
A commonly used assumption in the literature is a linear correlation between the mis-measured
variable(s) and the variable(s) of interest (see, e.g. Cook and Stefanski, 1994; Wang et al.,
1997; Liang et al., 2007). Recently, Chen et al. (2005) proposed a method that allows arbitrary
correlation between the mis-measured variables and the variables of interest.

The problem we study here is related to that in the missing data literature. In there, some of
the survey data are missing in the outcome variable and/or the covariates, and the supplemen-
tary data provide additional information that allows the researcher to use those observations
with missing values. Some recent works can be found in Pepe (1992) and Chen & Chen (2000)
for data that are missing completely at random (Little & Rubin, 2002) and in Robins et al.
(1994) and Chen et al. (2008) when data are missing at random.

We now introduce the framework of this paper. Consider the situation where we have n
potential observations of random variables .Z;S/, where in general, Z and S may be vector
valued. These n observations may be collected from one or more surveys from the target popu-
lation. Typically, Z D .Y;XT /T , where Y represents some outcome, X is a vector of covariates
and S is a vector of additional variables. In practice, S may include design variables used for
sampling or administrative records that are available for every unit in the population, as in the
case of some high quality registries. The n observations are meant to represent a simple random
sample of the target population.

In reality, for the i th observation, we get to observe .zi ; si / or .z�
i
; si /, where z�

i
is a

sub-vector of zi . Let R be a 0-1 variable such that ri D 1 if the observation has .zi ; si / or
0 otherwise. Without loss of generality, suppose the available data can be written as
¹.z1; s1; r1 D 1/; : : : ; .zm; sm; rm D 1/; .z�

mC1
; smC1; rmC1 D 0/; : : : ; .z�n; sn; rn D 0/º.

Hereafter, we call the first m observations the complete data and the remaining n�m observa-
tions the incomplete data. Notice that, under this convention, if j and j 0 are two incomplete
observations, it is possible that z�

j
and z�

j 0
represent different sub-vectors of their respective

complete observation counterparts. Hence, it accommodates the practical situation that the
contents of the incomplete information may differ between observations. In the sequel, we
use Z� to represent any sub-vector of Z, which may be different in length and contents for
different observations. The vector S is observed for all observations. The researcher may not
be directly interested in S, but together with Z�, it helps to adjust for selection bias when data
are missing in some observations. On the contrary, Z� is a sub-vector of Z and hence contains
information about the study. We assume the target population to be an infinite population.
Our method is still valid under a finite population setting if the design weights of all obser-
vations are equal, as in the case of a simple random sampling situation. However, for more
complex surveys, adjustments to the method are needed (e.g. Chen and Sitter, 1999; Wu &
Rao, 2006).
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Let the probability that an observation from the target population belonging to the complete
data satisfy the following model:

Pr.R D 1jZ;S/ D Pr.R D 1jZ�;S/ D w.Z�;S;�/; (1)

where w is a fully specified probability distribution function for given �, an unknown vector
of parameters. Model (1) allows for selection bias of the complete data, but the selection bias
is only dependent on the observables (Little & Rubin, 2002). Selection on observables may
arise by design, for example, in two-phase survey sampling, where in the first phase, a simple
random sample is taken, and on the basis of values of the observations in the first phase, a non-
random second stage sample is taken. Alternatively, it may be the result of missing data, where
subjects with certain (observable) characteristics are more (or less) likely to contain missing
information. While the former is easily handled by modelling (1), the latter requires the inherent
missing at random assumption (Little & Rubin, 2002). Because we do not require the complete
data to be a simple random sample of the target population, the use of the complete data
without any adjustments may lead to inconsistent estimates of the parameters of interest.

Our interest is in an unknown p-dimensional population parameter ˇ of the distribution of
Z and suppose that the following set of q � p moment conditions,

EŒU.Z;ˇ0/� D 0; (2)

is uniquely satisfied for ˇ D ˇ0, where the expectation is taken under the distribution of Z in
the target population. We wish to estimate ˇ0.

If we assume that (1) holds, then an estimator Ǒ CC obtained by solving the näive sample
equivalence of the moment conditions (2), viz.

nX
iD1

riU
�

zi ; Ǒ CC

�
D 0; (3)

will generally produce a biased estimate of ˇ. Conversely, the inverse probability (propen-
sity score) weighting (IPW) estimator (Horvitz & Thompson, 1952) Ǒ IPW, obtained as the
solution to

nX
iD1

riU
�

zi ; Ǒ IPW

�
w
�
z�
i
; si ; O�

� D 0; (4)

where O� is a consistent estimate of � by modelling (1) using both the complete and the
incomplete data and is consistent under (1) if w is correctly specified. The IPW estimator has
been used widely, for example, in Lipsitz et al. (1999), Abowd et al. (2001) and Nevo (2003) for
estimation of conditional means in the presence of missing data and Imbens (2000) and Hirano
et al. (2003) for the evaluation of treatment effects with non-experimental data. A recent review
of the IPW estimator can be found in Graham et al. (2012). It has been shown by many (e.g.
Wooldridge, 2007) that it is better to use an estimate of � on the basis of the data even when it
is known. We note that the sample moment conditions (4) utilize only the observations in the
complete data.

In this paper, we take a different approach. We begin with the likelihood based on the
observed data

L D

mY
iD1

w
�
z�i ; si ;�

�
dF .zi ; si /

nY
jDmC1

®
1 � w

�
z�j ; sj ;�

�¯
dF

�
z�j ; sj

�
; (5)
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where F.z; s/ and F.z�; s/ stand for the unknown joint cumulative distribution functions of
.Z;S/ and .Z�;S/, respectively. Instead of using the full likelihood (5), which may be non-
robust to misspecifications of F.z; s/ and F.z�; s/, we take a semi-parametric approach, where
except for (1) and (2), the distribution of the data is unspecified. For a fixed w, the proposed
inference for ˇ is formulated semi-parametrically via a two-sample EL (Owen, 2001, p. 223)
based on moment conditions from both the complete and the incomplete data. There has been
growing interest in the last decade in developing model-free inferential techniques to analyse
data. One such technique is the EL, which is based on estimating an unknown multinomial like-
lihood supported on the observations, subject to some constraints that are assumed to hold and
represent the only information available in the sample. Because no statistical model is imposed
on the data other than (1) and (2), EL can be viewed as a semi-parametric method. Owen
(1988) and Qin & Lawless (1994) showed how to construct semi-parametric likelihood ratios
from such a method. An attractive feature of the EL is that it provides a unified framework
for producing both point estimates and confidence regions for ˇ, without requiring a full para-
metric model for the data. Confidence regions can be obtained from a Wilks’ theorem for the
log-EL ratio, and in many situations, the confidence interval is Bartlett correctable (DiCiccio
et al., 1991; Chen & Cui, 2006).

Our method is related to some recent works in the literature. Chen & Chen (2000) suggested
a method based on the regression estimate. Chen et al. (2003) used a two-sample EL, one based
on moment conditions from the complete data with the other based on the incomplete data.
However, both methods can only be applied to situations where the complete and incomplete
data are both simple random samples. On the other hand, our proposed method adjusts for
the selection bias by employing the biased sampling technique of Vardi (1985). Chen et al.
(2008) proposed a method that also allows selection bias. Their method is a two-step approach
where in the first step, moment conditions based on the incomplete data are used to create
weights, which are then used in an IPW estimator in the second step. Earlier, Hellerstein &
Imbens (1999) also considered a two-step approach; however, instead of using observations
from an incomplete data set, they assumed that incomplete information comes from some
known population moments.

The rest of this paper is organized as follows. The proposed method and its large sample
results are given in Section 2. We separate the case where w is fully specified, that is, � known
and the case where w is specified up to an unknown �. Some finite sample Monte Carlo simu-
lation results are reported in Section 3. In Section 4, the method is illustrated using data from
the National Longitudinal Survey of Youth (NLS). Concluding remarks are given in Section 5.
All proofs are given in the Appendix.

2. Main results

The incomplete data serve the dual role of calibrating the complete data for valid inferences
and enriching the complete data for improved efficiency. Under moment conditions (2), if
.Z�T ;ST /T � Z or if .Z�T ;ST /T is perfectly correlated with Z, then the following set of
sample moment conditions

nX
iD1

riU.zi ;ˇ/
w.z�

i
; si ;�/

C

nX
jDmC1

.1 � rj /U
�

E
�

zj jz�j ; sj
�
;ˇ
�

1 � w
�

z�
j
; sj ;�

� D 0; (6)

would give an estimator of ˇ. Otherwise, the second component of (6) is not fully known. If (6)
is replaced by

nX
iD1

riU.zi ;ˇ/
w
�
z�
i
; si ;�

� C nX
jDmC1

.1 � rj / opt

�
z�
j
; sj ;�;ˇ

�
1 � w

�
z�
j
; sj ;�

� D 0; (7)
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where  opt .Z
�;S;�;ˇ/ � EŒU.Z;ˇ/jZ�;S� and � represents a vector of parameters that

are known or to be estimated separately, then the solution of (7) gives a consistent and semi-
parametrically efficient estimator of ˇ as long as w is correctly specified (Robins et al., 1994).
However, opt .Z

�;S;�;ˇ/ is usually unknown and therefore (7) cannot be directly applied. A
number of earlier works have attempted to estimate  opt .Z

�;S;�;ˇ/ (e.g. Robins et al., 1994;
Chen et al., 2008). However, the estimation of opt .Z

�;S;�;ˇ/may be difficult in many situa-
tions. In this paper, we take a different approach. We do not directly estimate opt .Z

�;S;�;ˇ/.
Instead we find a ‘working’  .Z�;S;�;ˇ/, which is defined as an arbitrary set of q � p

moment equations such that

E
�
 
�
Z�;S;�0;ˇ0

��
D 0;

for some value �0, and the true value ˇ0 is defined in (2).
In practice, the following approach may be used to find  .Z�;S;�;ˇ/. Let Q̌ be any consis-

tent estimate of ˇ. A natural choice for Q̌ is the IPW estimate Ǒ IPW. Then on the basis of the
complete data,  .Z�;S;�; Q̌ /may be found as the projection of U.Z; Q̌ / on the space spanned
by .Z�;S/. Importantly, we point out that with the estimated Q�, as long as it converges to
�0 at the rate of n�1=2, then all the large sample results remain unchanged. The reason can
be appreciated by observing (34) in the Appendix, where it is inconsequential to replace �0
with Q� because the first factor in (34) has zero mean. Hence, we assume that � is known in
 .Z�;S;�;ˇ/ in the rest of this paper, and we suppress � to simplify exposition.

For simplicity, write Ui .ˇ/ � U.zi ;ˇ/; i D 1; : : : ; m,  j .ˇ/ �  .z�
j
; sj ;ˇ/; j D m C

1; : : : ; n, wi .�/ � w.z�
i
; si ;�/; i D 1; : : : ; n. Throughout the paper, the symbol 0 is used to

denote a zero vector or a null matrix. For any matrix A, A � 0 means that the matrix is positive
semi-definite. For any matrices A and B, A � B implies that B � A is a non-negative definite
matrix.

On the basis of the observed data, the likelihood (5) can be rewritten as

ŒE.w0/�mŒ1 � E.w0/�n�m
mY
iD1

wi .�/dF.zi ; si /
E.w0/

nY
jDmC1

.1 � wj .�//dF
�

z�
j
; sj

�
1 � E.w0/

; (8)

where

E.w0/ D
Z
w
�
z�; s;�0

�
dF.z; s/ D

Z
w
�
z�; s;�0

�
dF.z�; s/:

The first and second terms of (8) are the binomial likelihood of the proportions of complete
and incomplete data. The last two terms are the conditional likelihoods by conditioning on the
complete and the incomplete observations, respectively. Note that the last two terms come from
the biased sampling problem discussed in Vardi (1982, 1985). Following Vardi (1982, 1985), let
pi D dF.zi ; si /; i D 1; 2; ::::; m and qj D dF.z�

j
; sj /; j D m C 1; ::::; n be the jump sizes of

the distributions. The semi-parametric log-EL is

`.ˇ;�/ D

mX
iD1

logwi .�/C
nX

jDmC1

log¹1 � wj .�/º C
mX
iD1

logpi C
nX

jDmC1

log qj : (9)

Note that for any function h.Z�;S/,

Z
h.z�; s/dF.z; s/ D

Z
h.z�; s/dF.z�; s/ D �; (10)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



160 D. H. Y. Leung et al. Scand J Statist 42

and Z
U.z;ˇ/dF.z/ D

Z
U.z;ˇ/dF.z; s/ D 0: (11)

The log-EL (9) can be maximized with respect to the following constraints:

mX
iD1

pi D 1; pi � 0;

nX
jDmC1

qj D 1; qj � 0; (12)

mX
iD1

piUi .ˇ/ D 0; (13)

mX
iD1

pi ¹hi .�;ˇ/ � �º D 0;
nX

jDmC1

qj ¹hj .�;ˇ/ � �º D 0; (14)

where

hi .�;ˇ/ D
�
wi .�/; 

T
i .ˇ/

�T
:

Note that the constraints
Pm
iD1 piwi .�/ D

Pn
jDmC1 qjwj .�/ D E.w0/ are necessary.

They reflect the fact that the complete data are not necessarily a simple random sam-
ple from the target population. The constraints

Pm
iD1 pi i .ˇ/ D

Pn
jDmC1 qj j .ˇ/ DR

 .z�; s;ˇ/dF.z�; s/, on the other hand, are optional. However, they can improve the
estimation efficiency.

2.1. � known

First, we consider the case that w.�/ is completely known; that is, we use � D �0. We only need
to maximize the second part of the log-EL. Introducing Lagrange multipliers �1;�2 and �, the
values of pi and qj that maximize (9) subject to the constraints (12)–(14) give

pi D
1

m

1

1C �T1 ¹hi .�0;ˇ/ � �º C �
T
2 Ui .ˇ/

; i D 1; 2; : : : ; m; (15)

qj D
1

n �m

1

1C �T ¹hj .�0;ˇ/ � �º
; j D mC 1; : : : ; n; (16)

which upon substituting back to the second part of (9), gives

`.ˇ;�/D�

mX
iD1

log
h
1C�T1 ¹hi .�0;ˇ/��ºC�

T
2 Ui .ˇ/

i
�

nX
jDmC1

log
h
1C�T ¹hj .�0;ˇ/��º

i
;

(17)

with the restriction that the Lagrange multipliers satisfy the following equations:

mX
iD1

Ui .ˇ/

1C �T1 ¹hi .�0;ˇ/ � �º C �
T
2 Ui .ˇ/

D 0;

mX
iD1

hi .�0;ˇ/ � �

1C �T1 ¹hi .�0;ˇ/ � �º C �
T
2 Ui .ˇ/

D 0;

nX
jDmC1

hj .�0;ˇ/ � �
1C �T ¹hj .�0;ˇ/ � �º

D 0:
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Differentiating (17) with respect to � gives

@`.ˇ;�/

@�
D

mX
iD1

�1

1C �T1 ¹hi .�0;ˇ/ � �º C �
T
2 Ui .ˇ/

�

nX
jDmC1

��

1C �T ¹hj .�0;ˇ/ � �º
D0:

(18)

Using the constraints in (12) and combining (15), (16) and (18) give

m�1 C .n �m/� D 0 or � D �
m

n �m
�1:

The Lagrange multipliers can be reparametrized as

�1 D
°m
n

�
1 � �T1 �

�
;
m

n
�T1

±T
; �2 D

m

n
�2:

Under the new parameters, and write Hi .�0;ˇ/ D
�
1; hT

i
.�0;ˇ/

�T
; i D 1; : : : ; n, the

constraints (13) and (14) can be rewritten as

1

n

nX
iD1

"
riHi .�0;ˇ/

�T
1

Hi .�0;ˇ/C �
T
2

Ui .ˇ/
�
.1 � ri /Hi .�0;ˇ/
1 � �T

1
Hi .�0;ˇ/

#
� g1.�1; �2;ˇ;�0/ D 0; (19)

nX
iD1

riUi .ˇ/
�T
1

Hi .�0;ˇ/C �
T
2

Ui .ˇ/
� g2.�1; �2;ˇ;�0/ D 0: (20)

The log-EL (17) becomes

`.ˇ/ D �

nX
iD1

ri log
°
�T1 Hi .�0;ˇ/C �

T
2 Ui .ˇ/

±
�

nX
iD1

.1 � ri / log
°
1 � �T1 Hi .�0;ˇ/

±
: (21)

Differentiating (21) with respect to ˇ gives

@`.ˇ/

@ˇ
D�

nX
iD1

ri
�T
1
@Hi .�0;ˇ/

@ˇ
C�T

2
@Ui .ˇ/
@ˇ

�T
1

Hi .�0;ˇ/C�
T
2

Ui .ˇ/
C.1�ri /

�T
1
@Hi .�0;ˇ/

@ˇ

1 � �T
1

Hi .�0;ˇ/
� g3.�1; �2;ˇ;�0/D0:

(22)

Define � D
�
�T
1
; �T
2
;ˇT

�T
and let O� D

�
O�T1 ; O�

T
2 ;
ǑT
�T

be the solution of g ��
gT
1
; gT
2
; gT
3

�T
D 0.

We have the following results:

Theorem 1. Under conditions C1–C4 in the Appendix, then solving g D 0 gives

n1=2
�
Ǒ � ˇ0

�
d
!MVN

�
0;
�

BTA�1B
��1	

;

where

A D

0
BBBB@

E

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!

E

 
UT
0

H0
w0

!
E

 
UT
0

U0
w0

!
1
CCCCA ; B D

0
@ 0

E
�
@U0
@ˇ

	 1A ;
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U0
d
D Ui .ˇ0/, w0

d
D wi .�0/, H0

d
D Hi .�0;ˇ0/ and

d
D stands for equivalence in distributions.

Furthermore, the difference of the asymptotic covariances of Ǒ and Ǒ IPW is positive semi-
definite, where Ǒ IPW is the IPW estimator.

In fact, using simple matrix algebra, the variance of Ǒ can be shown to be

E�1
�
@U0
@ˇ

	"
E

 
UT
0

U0
w0

!
� E

 
UT
0

H0
w0

!
E�1

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!#
E�1

�
@U0
@ˇT

	
:

(23)

The first term in (23) is the variance of the IPW estimator, and the second term represents the
reduction of variance due to using Ǒ . The reduction depends on two factors. First, the function
w0 and second, the correlation between H0 and U0. In particular, the reduction is high if
the ‘correlation’ between H0 and U0 is high or if the proportion of incomplete data, that is,
.n �m/=n is high.

Note that the dimensions of Hi .�0;ˇ/ D
�
1;wi .�0/; 

T
i .ˇ/

�T
and Ui .ˇ/ are pC 2 and p,

respectively. By a property of positive matrices, it is shown in the Appendix that

�E

 
UT
0

H0
w0

!
E�1

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!
��E

 
UT
0
 0

w0

!
E�1

 
 T0  0

w0.1 � w0/

!
E

 
UT
0
 0

w0

!
;

where  0
d
D  i .ˇ0/.

The following theorem motivates the form of  .ˇ/ that we should use.

Theorem 2. For any measurable function  .ˇ/, let  i .ˇ/
d
D  0, then

� E

 
UT
0
 0.1 � w0/

w0

!
E�1

 
 T0  0

w0

!
E

 
UT
0
 0.1 � w0/

w0

!
;

� �E

 
UT
0
 0

w0

!
E�1

 
 T0  0

w0.1 � w0/

!
E

 
UT
0
 0

w0

!
:

Therefore, according to the theorem, if the best guess of  opt .ˇ/ is  opt;g.ˇ/, then we
should set  .ˇ/ D .1 � w.�// opt;g.ˇ/.

If the interest is in testing the hypothesis H0 W ˇ D ˇ0, an EL-ratio statistic can be based on

R.ˇ0/ D 2

²
max
�1;�2;ˇ

`.�1; �2;ˇ/ � max
�1;�2

`.�1; �2;ˇ0/

³
;

whose large sample properties are summarized in the succeeding text.

Theorem 3. Under conditions C1–C4 in the Appendix, under the hypothesis: H0 W ˇ D ˇ0,

R.ˇ0/
d
! �2.p/;

where p is the dimension of ˇ.
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2.2. � unknown

If � is unknown in the propensity score function, the full log-EL is

`F .ˇ;�/ D

nX
iD1

Œri logwi .�/C .1 � ri / log.1 � wi .�//�

�

nX
iD1

ri log
°
�T1 Hi .�;ˇ/C �T2 Ui .ˇ/

±
�

nX
iD1

.1 � ri / log
°
1 � �T1 Hi .�;ˇ/

±
:

(24)

One possible approach is to maximize (24) directly with respect to ˇ and � simultaneously.
However, this approach may encounter computational problems as `F .ˇ;�/ is very compli-
cated. Therefore, in this paper, we take a different approach by maximizing the two terms in
(24) separately; that is, (1) maximize the binomial log-likelihood with respect to � to obtain Q�,
and (2) for fixed � at Q�, maximize the second term in (24), that is, maximize the log-EL. Let

g0 D
1

n

nX
iD1

ri
@ logwi .�/

@�
C .1 � ri /

@ log.1 � wi .�//
@�

D
1

n

nX
iD1

ri � wi .�/

wi .�/.1 � wi .�//

@wi

@�
;

be the score function based on the binomial likelihood. Suppose O�
C
D
�
O�
T
; O�T

�T
solves

gC �
�
gT
0
; gT
1
; gT
2
; gT
3

�T
D 0, the following result for Ǒ when � is unknown can be obtained.

Theorem 4. Under conditions C1–C4 in the Appendix, solving gC D 0 gives

n1=2
�
Ǒ � ˇ0

�
d
!MVN

�
0;
�
QBTC�1 QB

��1	
;

where

QB D

 
0
B

!
; C D

 
W11 �VT

21

�V21 A

!
;

with

W11 D E

0
B@
�
@w0
@�

�T �
@w0
@�

�
w0.1 � w0/

1
CA ; VT21 D �

0
B@E

0
B@
�
@w0
@�

�T
H0

w0.1 � w0/

1
CA ;E

0
B@
�
@w0
@�

�T
U0

w0

1
CA
1
CA :

Using simple matrix algebra,
�
QBTC�1 QB

��1
can be written as

�
BT.ACV21W11VT

21
/�1B

��1
�
�
BTA�1B

��1
from theorem 1. Notice from theorem 4, the forms of W11 and V21 suggest

that the extra variation is due to the estimation of �. In practice, � is likely to be unknown and
needs to be estimated along with the parameter of interest, ˇ. Hence, the foregoing comparison
allows us to assess the efficiency loss as a result of an unknown �. We note in passing that our
method of separating the estimation of the nuisance parameter � from the parameter of inter-
est ˇ is related to the pseudo-maximum likelihood estimation described in Gong & Samaniego
(1981). They derived the asymptotic consistency and asymptotic variance formula of the
pseudo-maximum likelihood estimate when the nuisance parameter is replaced by an estimate
(Gong & Samaniego, 1981, theorem 2, eq. 2.6). Our expression

�
BT .AC V21W11VT

21
/�1B

��1
generalizes their equation (2.6) in the current context, when the nuisance parameter estimate is
assumed to be asymptotically consistent (cf. Gong and Samaniego, 1981, p. 865, Remarks).
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3. Monte Carlo simulations

In this section, we give the results of a simulation study designed to evaluate the finite sample
properties of the proposed estimator. We compared the proposed estimator (EL) with three
other estimators:

(i) The maximum likelihood estimator ǑC assuming all data are observed. This estimator
is not feasible in practice. However, it sets a benchmark on how much information is
contained in the sample if there were no incomplete data.

(ii) The IPW estimator Ǒ IPW obtained as the solution of

mX
iD1

1

wi . O�/
Ui .ˇ/ D 0: (25)

This version of the IPW differs from the original IPW estimator in the use of an esti-
mator O� of � in w.�/. Our choice of using an estimator O� of � is due to a well-known
statistical advantage with estimated over the true propensity score (see, e.g. Imbens,
1992; Hirano et al., 2003; Wooldridge, 2007).

(iii) The doubly robust estimator of Rotnitzky et al. (1998) (hereafter denoted as DR) ǑDR

that solves the moment condition (7) with  opt .ˇ/ replaced by an estimate  DR.ˇ/.

If  DR.ˇ/ �  opt .ˇ/ and w.�/ is correctly specified, then Ǒ attains the semi-parametric
efficiency bound within the class of estimating functions generated by U.ˇ/ for estimating ˇ
(Newey, 1990). Furthermore, ǑDR is consistent if either w.�/ or  DR.ˇ/ is correctly specified.
This property is the so-called doubly robustness property. However, ǑDR may suffer efficiency
loss when  DR.ˇ/ ¤  opt .ˇ/ even if w.�/ is correct.

Two models were used in our simulation study. In both models, Z D .Y;X/T where Y is an
univariate outcome variable and X is a univariate covariate; Z� D X and S represents a proxy
variable for Y . In model 1, Y and S are given by the models

Y D ˇT .1; X/C e and S D Y C Qe;

where X; e; Qe are independently distributed as N.0; 1/ and ˇ D .ˇ1; ˇ2/
T . For the complete

data,

U.ˇ/ � .1; X/T
°
Y � ˇT .1; X/

±
: (26)

For this model, we used

 DR.ˇ/ D .1; X/
T
°
�T .1; X; S/ � ˇT .1; X/

±
; (27)

where � D .�1; �2; �3/T for ǑDR and  .ˇ/ D ¹1�w.�/º DR.ˇ/ for Ǒ . The initial estimate for
� is obtained by fitting an ordinary least squares on the model

E.Y jS;X/ D �T .1; S;X/: (28)

As we pointed out in Section 2, (28) does not need to be optimal. The goal is to extract as much
information as possible on ˇ using S and X from the incomplete data. We note in passing that
for a model like this, simpler methods are available for analysis of the data. For example, if we
make the following additional assumptions: (i) that the selection bias is independent of S given
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X , and (ii) that if the relationship between S and Y is known, then the model can be fitted using
a weighted regression with the moment condition:

mX
iD1

ti .1; xi /
T
°
yi � ˇ

T .1; xi /
±
C

nX
jDmC1

tj .1; xj /
T
°
sj � ˇ

T .1; xj /
±
;

where ti ; tj are appropriate inverse weights to deal with heteroscedasticity. In that case, the
method in this paper is asymptotically equivalent to this simpler method. In practice, of course,
there may be selection bias, and we would not know the true form of S , but the proposed
method would remain consistent even if the form of  .ˇ/ is incorrect.

In model 2, Y and S are defined by

Y D ˇT .1; X/ � e; S D Y C Qe;

where X � 0:25�2.1/ and e � exp.1/, Qe � N.0; 1/. The forms of U.ˇ/,  DR.ˇ/ and  .ˇ/ are
the same as those for model 1.

To implement the estimator proposed in this paper, we adopted the algorithm of Chen et al.
(2002) with the following modifications:

(i) For fixed ˇ and �, the Lagrange multipliers . O�1; O�2/ are solved using the constraint
equations. However, in each iteration, we must ensure the conditions �T

1
HiC�T2 Ui > 0

and 1��T
1

Hi > 0 hold for each i D 1; : : : ; n: If at least one of the two conditions is not
satisfied, the step size is reduced by half and the conditions re-evaluated. The reduction
is carried out until both conditions are satisfied.

(ii) Using . O�1; O�2/, the negative profile log-EL is minimized using an optimization algo-
rithm such as optim or nlm function in R.

Throughout the simulation study, we used the value of ˇ D .0; 2/T . One thousand simu-
lations of n D 1000 each were carried out for each combination of the parameters. For each
simulation run, we used the following model to generate the complete and the incomplete data:

w.�/ D
exp

®
�T .1; X; S/

¯
1C exp

®
�T .1; X; S/

¯ ; (29)

where � � .�1; �2; �3/
T . Different values of � are used to simulate situations with different

amount of complete data as a proportion of the total data available. Moreover, (29) allows
us to model non-randomness in the data. For model 1, the values of � used are as follows:
.�1; 0; 0/T ; .�1; 1=3; 1=3/T , .�1; 2=3; 2=3/T and .�1; 1; 1/T . These four sets of � induce a
ratio of the observations in the complete data to the total number of observations, that is,
m=n � 0:7, 0:5, 0:35 and 0:3, respectively. For model 2, the values of � are as follows:
.�1; 0:5; 0:5/T , .�1; 1; 1/T , .�1; 1:5; 1:5/T and .�1; 2; 2/T . These choices of � give, respec-
tively, m=n � 0:65, 0:6, 0:55 and 0:45. Different choices of � are used for the two models
because the distributions of X;S are different between the two models.

The simulation results for model 1 are reported in Table 1. For each method, the first row
gives the mean (variance) of the estimate of ˇ1 based on the 1000 replications; the second row
gives similar information for ˇ2. The estimates for ˇ1 are denoted by ǑC1; ǑIPW1; ǑDR1; Ǒ1,
respectively, for the infeasible complete case estimator, the inverse probability estimator,
the doubly robustness estimator and the proposed EL estimator. The estimates for ˇ2 are
similarly defined.

Table 1 shows that IPW, DR and EL all give estimates that are approximately unbiased for
the underlying parameters. When compared with the infeasible estimator, all three methods
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Table 1. Mean (variance) of different estimators based on 1000 simulations with sample size n D 1000,

w.X;S;�/ D
exp¹�T .1;X;S/º
1Cexp¹�T .1;X;S/º , Y � N.ˇ

T .1;X/; 1/, S � N.Y; 1/, ˇ D .ˇ1; ˇ2/T D .0; 2/T

Method � D .�1; 0; 0/T � D .�1; 1=3; 1=3/T � D .�1; 2=3; 2=3/T � D .�1; 1; 1/T

Ǒ
C1 �0.001 (0.00201) �0.001 (0.00195) 0.001 (0.00194) �0.001 (0.00190)
Ǒ
C2 2.001 (0.00101) 2.000 (0.00040) 1.999 (0.00094) 2.000 (0.00101)
Ǒ
IPW1 �0.002 (0.00645) 0.001 (0.01013) 0.016 (0.02141) 0.036 (0.03511)
Ǒ
IPW2 2.001 (0.00405) 1.999 (0.00451) 1.989 (0.00872) 1.977 (0.01402)
Ǒ
DR1 �0.001 (0.00500) �0.001 (0.00661) �0.002 (0.01374) 0.002 (0.14793)
Ǒ
DR2 2.000 (0.00258) 1.999 (0.00281) 2.001 (0.00589) 1.998 (0.08253)
Ǒ
1 �0.001 (0.00506) �0.001 (0.00651) �0.002 (0.00999) �0.010 (0.01557)
Ǒ
2 2.000 (0.00262) 2.000 (0.00270) 2.000 (0.00373) 2.005 (0.00577)

Table 2. Mean (variance) of different estimators based on 1000 simulations with sample size n D 1000,

w.X;S;�/ D
exp¹�T .1;X;S/º
1Cexp¹�T .1;X;S/º , Y � .ˇ1 C ˇ2X/ exp.1/, S � N.Y; 1/, ˇ D .ˇ1; ˇ2/T D .0; 2/T

Method � D .�1; 0:5; 0:5/T � D .�1; 1; 1/T � D .�1; 1:5; 1:5/T � D .�1; 2; 2/T

Ǒ
C1 �0.005 (0.00289) 0.002 (0.00243) 0.002 (0.00244) �0.003 (0.00239)
Ǒ
C2 2.029 (0.08511) 1.996 (0.07714) 1.987 (0.07564) 2.021 (0.07251)
Ǒ
IPW1 �0.007 (0.00327) 0.002 (0.00268) 0.002 (0.00264) �0.004 (0.00271)
Ǒ
IPW2 2.039 (0.09329) 1.993 (0.08188) 1.990 (0.07748) 2.026 (0.07711)
Ǒ
DR1 �0.007 (0.00419) 0.002 (0.00697) �0.004 (0.01748) �0.012 (0.03717)
Ǒ
DR2 2.036 (0.09112) 1.993 (0.08937) 1.992 (0.10325) 2.033 (0.12198)
Ǒ
1 �0.008 (0.00336) 0.000 (0.00270) �0.001 (0.00277) �0.008 (0.00319)
Ǒ
2 2.037 (0.09318) 1.994 (0.08252) 1.995 (0.08151) 2.040 (0.08736)

suffered substantial efficiency loss across the different scenarios. Table 1 also indicates that
efficiency loss is a function of two factors: the proportion of incomplete data and the depen-
dency of the function w.�/ on X and S so that the efficiency loss is directly proportional to
the amount of incomplete data and the dependency of w.�/ on X and S . In fact, on the basis
of the results in Table 1, efficiency seems to be more affected by the dependency of w.�/ on X
and S . This result can be explained by observing that when w.�/ is highly dependent on X and
S , some of the observations may have w.�/ close to 1 or 0, and these extreme values of w.�/
in turns induce high variance in the estimation of ˇ1 and ˇ2. When the non-randomness is not
strong Œ� D .�1; 0; 0/T and .�1; 1=3; 1=3/T ], both DR and EL perform similarly, and they are
both better than the IPW estimator, as to be expected. When the non-randomness is moder-
ately strong Œ� D .�1; 2=3; 2=3/T �, DR is still better than IPW, but both are less efficient than
EL. Under strong non-randomness [� D .�1; 1; 1/T ], DR becomes much worse than the other
two estimators, and EL remains the best among the three estimators.

The simulation results for model 2 are reported in Table 2. For this model, the efficiency
loss of IPW, DR and EL compared with the infeasible estimator is not as severe as in model
1 (compare the first two rows with the rest of Table 2). The performance of IPW is similar to
that of EL for all the scenarios studied. In fact, IPW is slightly better than EL, which could be
explained by the fact that the efficiency loss is not that great in this model anyway and therefore,
the extra step in estimating opt in the EL adds variance to its estimates. Another reason could
be due to the moderate sample size used, so when w is too close to 0 or 1, the convergence
rates of all existing estimators are slow. For larger sample size (available upon request), EL
and IPW give almost identical results. The performance of DR is almost uniformly worse than
IPW and EL.
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4. Empirical illustration

Following the work of Mincer (1974), economists have often studied the effects of human cap-
ital on productivity via wage regression, where the natural logarithm of a measure of wage is
regressed upon education, experience and ability. In a wage regression, the use of experience
allows economists to study the influence of education on wage, adjusting for individual differ-
ences in human capital acquired on the job. In this section, we apply the methods discussed in
this paper to investigate estimation of wage regression using data from the 1980 wave of the
NLS. The NLS sampled 5255 young men in 1966 to represent the civilian population of men
aged 14 to 24 years in the USA. The individuals selected into the NLS were followed longi-
tudinally and were interviewed almost annually until 1981. The data set consists of detailed
information about each individual, in particular, measures of ability. However, the data set suf-
fers a high attrition rate such that by 1980, only 3438 (65.8%) of the men in the 1966 cohort
were left in the study. To make matters worse, there is no evidence to suggest that attrition was
completely at random.

In our application, we use the hourly wage as a measure of wage, and education is the highest
grade completed. We use the following three variables as surrogates for human capital: edu-
cation, experience and IQ test score. Experience is measured by age minus six minus years of
education, and the wage regression equation is

log.wage/ D ˇ0 C ˇ1 educationC ˇ2 experienceC ˇ3 experience2 C ˇ4 IQC �: (30)

There are many evidences that show wage differences between race that cannot be accounted
for by education, experience and ability; hence, following others, we focus our attention on the
sample of 1784 white men in 1980. This sample accounts for about half of the 3438 men in the
1980 NLS because black men were deliberately oversampled. Among the 1784 white men, a
sub-sample of 1041 have complete records of IQ score. However, all individuals in that cohort
also took another ability test called the Knowledge of the World of Work (KWW), and the
KWW test score is available for all 1784 men. Under the notations we defined in Section 1, then
Y D log.wage/, Z D .Z�T ; IQ/T , Z� D .education; experience; experience2/T , S D KWW
and R D 1 for the 1041 men with IQ information and R D 0 for the remaining 1784 � 1041 D
743 men.

We use the four methods in Section 3 to analyse wage regression model (30) on the basis
of the data. For the complete case method, CC, we only carry out the analysis using the
1041 observations with IQ score information. For IPW, the analysis is also based on 1041
observations but weighted by inverse probability of selection, which we assume is given
by w.�/ D logit.�0 C �1 KWW/. For DR, we use all 1784 observations, and we assume

that  DR is the function:
�

Z�T ; OIQ
�T

Œlog.wage/ � .ˇ0 C ˇ1education C ˇ2experience C

ˇ3 experience2 C ˇ4 OIQ�, where OIQ is obtained from a linear regression of IQ on KWW. For
EL, 1784 observations are used, with  .ˇ/ D Œ1 � w.�/� � DR.ˇ/.

The results of the analysis are given in Table 3. The results show that the estimates of the
regression coefficients using CC are quite different from the other methods, which support the
hypothesis that the individuals with missing IQ may not be a simple random sample of the
1784 men. The other three methods give similar estimates. We use 100 bootstraps to estimate
the variances of the estimates. Across all estimates, the variances using CC, IPW and DR are
about the same in magnitude, but the corresponding variances using EL are about 40% lower.
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Table 3. Estimates (variance1) of wage regression analysis based on 1784 white men from the 1980 NLS

Intercept Education Experience Experience2 IQ

CC 0.289 0.0551 0.0781 �0.169 0.00393
(4.39�10�2) (4.82�10�5) (4.02�10�4) (5.04�10�3) (8.29�10�7)

IPW 0.420 0.0529 0.0657 �0.126 0.00380
(4.40�10�2) (4.61�10�5) (4.29�10�4) (5.48�10�3) (8.41�10�7)

DR 0.420 0.0528 0.0657 �0.126 0.00379
(4.40�10�2) (4.62�10�5) (4.29�10�4) (5.48�10�3) (8.44�10�7)

EL 0.427 0.0547 0.0622 �0.119 0.00365
(2.27�10�2) (3.78�10�5) (2.35�10�4) (3.08�10�3) (5.30�10�7)

NLS, National Longitudinal Survey of Youth; CC, complete case method; IPW, inverse probability weight-
ing; DR, doubly robust estimator of Rotnitzky, Robins and Scharfstein (1998); EL, empirical likelihood.
1Based on 100 bootstrap samples.

5. Concluding remarks

In this paper, we consider the problem of combining data from multiple sources under the
setting of sampling from an infinite population. We divide the data into those with complete
information from all relevant variables and those with incomplete information on one or more
of the variables. We assume that information is missing at random, in the sense of Little &
Rubin (2002). Our method has two key features. First, unlike competitors such as the IPW and
DR, which handle biased sampling using inverse probability weighting (1= Ow.�/), the proposed
method uses the direct weighting (14). Because Ow.�/ is an estimated probability and therefore,
ranges between 0 and 1, using 1= Ow.�/ may be unstable. Second, the method uses  .ˇ/ to
capture information in the incomplete data, but it does not require  .ˇ/ to be unbiased for the
optimal function  opt .ˇ/.

A number of works have discussed the use of EL method for combining data from multi-
ple surveys or supplementing survey data with information from known population quantities
(Chen & Qin, 1993; Chen & Sitter, 1999; Wang & Rao, 2002; Wu, 2004; Rao & Wu, 2010).
Except Wang & Rao (2002), these works focused on the situation of finite population sampling,
and all assumed that the inclusion probability in the sample is known. Under finite population
sampling, unless the inclusion probability is equal for all the units in the population, for exam-
ple, simple random sampling (Chen & Qin, 1993), the EL formulation needs to be adjusted.
Chen & Sitter (1999) introduced a pseudo-EL to handle more complex surveys from finite
populations when there is auxiliary information from the finite population. The other works
all follow the pseudo-EL approach. Wang & Rao (2002) considered survey data with some
observations missing in the outcome, and they proposed imputing the missing outcome with
a regression model on the basis of relevant covariates. They then used EL on the basis of the
imputed data for constructing confidence intervals for model parameters. However, imputa-
tion removes the independent and identically distributed condition, and the resulting EL ratio
statistic is no longer a standard chi-squared, as in our theorem 3. Wu (2004) considered com-
bining two surveys from a single sampling frame. They used a two-sample pseudo-EL, and
the EL weights were calibrated by equating summary statistics from the surveys. Rao & Wu
(2010) extended the method of Wu (2004) for simultaneously combining data from multiple
frames and incorporating known population values. They proposed a multiplicity pseudo-EL
that does not require complete frame membership information from the units.

Our paper differs from these works in that we consider an infinite population and we allow
more complicated parameters other than the mean or the distribution function of the outcome
of a survey. There are pros and cons in our formulation. The infinite population assumption
allows standard EL to be applied, but our method is only applicable to the simple random
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sampling situation, which may seem restrictive because most surveys are conducted in a more
complex setting. Our method does allow more complicated parameters to be estimated under
more general missingness mechanisms. An obvious follow-up to our paper is to extend the
current work in more complex sampling schemes in a finite population setting.

For a simple random sample of n observations from a population, EL produces a non-
parametric estimate of the cumulative distribution function of the data. In the absence of any
auxiliary information, the EL weights are 1=n, which are identical to the probability mass from
the empirical cumulative distribution function of the data. In the presence of auxiliary infor-
mation, EL adjusts the weights to reflect the auxiliary information. From this viewpoint, the
calculation of EL weights is related to the concept of calibration (e.g. Särndal, 2007), which
refers to a general class of methods for reweighting observations in a survey such that cer-
tain auxiliary information about the sample or population is taken into consideration. The
goal of calibration is manifold and includes improving accuracy of estimates and harmonizing
estimates from different surveys from the same population quantities. In its traditional form,
calibration is model free, and non-response adjustment is carried out separately from the cali-
bration process. But there has been work in introducing models in the method (e.g. Wu & Sitter,
2001) and building adjustment into the calibration process (e.g. Kott, 2006). Our method can
be seen as a step in that direction.
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Appendix. Proofs

We begin by summarizing some key notations used in the main text and introducing some new
ones that are used in the proofs.

Let m be the number of observations with .Z;S/ and n � m be the number of observations
with .Z�;S/. Let Hi .�;ˇ/ D .1; wi .�/; Ti .ˇ//

T ; i D 1; : : : ; n and let

g1.�1; �2;ˇ;�/D
1

n

nX
iD1

"
riHi .�;ˇ/

�T
1

Hi .�;ˇ/C �T2 Ui .ˇ/
�
.1 � ri /Hi .�;ˇ/
1 � �T

1
Hi .�;ˇ/

#
;

g2.�1; �2;ˇ;�/D
1

n

nX
iD1

riUi .ˇ/
�T
1

Hi .�;ˇ/C �T2 Ui .ˇ/
;

g3.�1; �2;ˇ;�/D�
nX
iD1

ri
�T
1
@Hi .�;ˇ/=@ˇC�T2 @Ui .ˇ/=@ˇ

�T
1

Hi .�;ˇ/C�T2 Ui .ˇ/
C.1 � ri /

�T
1
@Hi .�;ˇ/=@ˇ

1 � �T
1

Hi .�;ˇ/
:

Write gk � gk.�1; �2;ˇ;�/; k D 1; 2; 3 for convenience and let g D .gT
1
; gT
2
; gT
3
/T .

Let ˇ0, �0, (0,1,0) and 0 be the true values of ˇ, �, �1 and �2, respectively. Define � D

.�T
1
; �T
2
;ˇT /T , �C D .�T ;�T /T , �0 D ..0; 1; 0/; 0;ˇT0 /

T , �C
0
D .�T0 ;�

T
0
/T and write U0

d
D

Ui .ˇ0/,  0
d
D  i .ˇ0/, w0

d
D wi .�0/, H0

d
D Hi .�0;ˇ0/ and r

d
D ri where

d
D stands for

equivalence in distributions.
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The conditions needed to establish theorems 1–4 are the following:

(C1:) The propensity score wi .�/ is twice continuously differentiable with respect to � in a
neighbourhood of �0 and is uniformly bounded away between 0 and 1; furthermore,
m=n! � 2 .0; 1/ as n!1.

(C2:) There exists an estimator Q� that converges in mean square to �0 within the parameter
space � such that for sufficiently largem and n, E¹. Q� ��0/. Q� ��0/

T º � A0 for a fixed
positive definite matrix A0.

(C3:) Let 	0 D .UT
0
;HT
0
/T . It is assumed that E

 
	0	

T
0

w0

!
and E

 
	0	

T
0

1 � w0

!
are positive

definite; and the rank of E
�
@U0
@ˇ

�
is p, which is also the dimension of ˇ.

(C4:) @2U.ˇ/
@ˇ@ˇT

is continuous in a neighbourhood of ˇ0 where



@U.ˇ/
@ˇ




 is bounded; @
2H.�;ˇ/
@�@�T

is continuous in a neighbourhood of .�0;ˇ0/, and in this neighbourhood



@H.�;ˇ/

@�




 is

bounded, E.jjU.ˇ/jj/3 <1 and E.jjH.�;ˇ/jj/3 <1.

We first prove two lemmas whose results will be applied in theorems 1–4. Let

qn0 D n�1
nX
iD1

ri � wi .�0/

wi .�0/ ¹1 � wi .�0/º

@wi .�0/

@�
and ƒ� D E

"
1

w0 ¹1 � w0º

@w0

@�

@wT
0

@�

#
:

Lemma 1. Under Condition C1, O� � �0 D ƒ
�1
� qn0 C op

�
n�1=2

�
:

Proof. The binomial likelihood `B.�/ corresponds to the first term of (24). Because O� is the
maximizer of `B.�/,

@`B.�/

@�
D

nX
iD1

ri � wi .�/

wi .�/ ¹1 � wi .�/º

@wi .�/

@�
D 0: (31)

Applying Taylor’s expansion of (31) at the true value �0,

O� � �0 D B�1n qn0 C op
�
n�1

�
; (32)

where

Bn D n�1
nX
iD1

�
ri�wi .�0/

wi .�0/ ¹1�wi .�0/º

�"
@2wi .�/

@�2
�

¹1 � 2wi .�0/º

wi .�0/.1 � wi .�0//

@wi .�0/

@�

@wT
i
.�0/

@�

#
;

C n�1
nX
iD1

"
1

1 � wi .�0/

@wi .�0/

@�

@wT
i
.�0/

@�

#
:

As Bn D ƒ� C op.1/ and qn0 D Op
�
n�1=2

�
, the lemma is established from (32).

Lemma 2. Under Conditions C1–C4, O�1, O�2 and . O� � �0/ are all of Op
�
n�1=2

�
.

Proof. Because

E ¹Ui .�0/º D 0; E ¹hi .�0/ � �º D 0; i D 1; : : : ; m;

E ¹hj .�0/ � �º D 0; j D mC 1; : : : ; n;
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therefore, gk ; k D 1; 2; 3 are of Op
�
n�1=2

�
. Furthermore, using Condition C2, Q̌ D ˇ0 C

Op
�
n�1=2

�
. The lemma then follows similar derivations as those in Owen (1990) and Qin &

Lawless (1994).
Using the results of lemmas 1 and 2, ignoring terms of op

�
n�1=2

�
, we can replace O� by �0

and so on.

Proof of theorem 1: We first show consistency of Ǒ . Using (10) and (11), it follows that from
g D 0 and Owen (1990) that in an Op

�
n�1=3

�
neighbourhood, there is a unique and

continuously differentiable implicit function


.ˇ/ D Op

�
n�1=3

�
;

as long as jj Ǒ � ˇ0jj � Op
�
n�1=3

�
. From Qin & Lawless (1994), for ˇ in the set B D ¹ˇ W

jjˇ � ˇ0jj D n
�1=3º, we can show

`.ˇ;
.ˇ// > `.ˇ0;
.ˇ0//; a.s.

where `.ˇ;
.ˇ// is the profile log-EL likelihood (21). Because `.ˇ;
.ˇ// is continuously dif-
ferentiable, it has a local minimum inside the ball with surface B. Consistency of Ǒ then follows
from the fact that B degenerates to ˇ0 as n!1.

Differentiate gk ; k D 1; 2; 3 with respect to �, and evaluate at �C
0

,

@g1.�
C
0
/

@�1
D �

1

n

nX
iD1

�
ri

wi .�0/
2
C

1 � ri

.1 � wi .�0//
2

�
Hi .�0;ˇ0/

THi .�0;ˇ0/;

@g1.�
C
0
/

@�2
D �

1

n

nX
iD1

riHi .�0;ˇ0/
TUi .ˇ0/

wi .�0/
2

;

@g1.�
C
0
/

@ˇ
D
1

n

nX
iD1

�
ri

wi .�0/

@Hi .�0;ˇ0/
@ˇ

�
1 � ri

1 � wi .�0/

@Hi .�0;ˇ0/
@ˇ

�
;

@g2.�
C
0
/

@�1
D �

1

n

nX
iD1

riUi .ˇ0/
THi .�0;ˇ0/

wi .�0/
2

;

@g2.�
C
0
/

@�2
D �

1

n

nX
iD1

riUi .ˇ0/
TUi .ˇ0/

wi .�0/
2

; (33)

@g2.�
C
0
/

@ˇ
D
1

n

nX
iD1

ri

wi .�0/

@Ui .ˇ0/
@ˇ

;

@g3.�
C
0
/

@�1
D �

1

n

nX
iD1

�
ri

wi .�0/

@Hi .�0;ˇ0/
@ˇ

�
1 � ri

1 � wi .�0/

@Hi .�0;ˇ0/
@ˇ

�
;

@g3.�
C
0
/

@�2
D �

1

n

nX
iD1

ri

wi .�0/

@Ui .ˇ0/
@ˇ

;

@g3.�
C
0
/

@ˇ
D 0:
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It can easily be shown that

@g
�
�C
0

�
@�

! V D

0
BBBBBBBB@

E

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!
0

E

 
UT
0

H0
w0

!
E

 
UT
0

U0
w0

!
E
�
@U0
@ˇ

	

0 E
�
@U0
@ˇ

	
0

1
CCCCCCCCA
:

Furthermore,

n1=2g
�
�C
0

�
D n�1=2

0
BBBBBB@

nX
iD1

�
ri

wi .�0/
�

.1 � ri /

.1 � wi .�0//

�
Hi .�0;ˇ0/

nX
iD1

ri

wi .�0/
Ui .ˇ0/

0

1
CCCCCCA
d
!MVN.0;W/;

(34)

where

W D

0
BBBBBB@

E

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!
0

E

 
UT
0

H0
w0

!
E

 
UT
0

U0
w0

!
0

0 0 0

1
CCCCCCA
:

Recalling that Hi .�;ˇ/ D .1; wi .�/; 
T
i .ˇ//

T ; i D 1; : : : ; n, where technically,  Ti is a func-
tion of � and ˇ. However, because the top element in (34) has mean zero, it is irrelevant whether
we assume that � is known or can be replaced by a root-n consistent estimator. This fact allows
us to assume that � is known and drop it from further consideration. On the basis of the
foregoing results, we have

n1=2
�
O� � �0

�
d
!MVN.0;†/; where † D

�
VW�1VT

��1
:

Let

A D

0
BBBB@

E

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!

E

 
UT
0

H0
w0

!
E

 
UT
0

U0
w0

!
1
CCCCA ; B D

0
@ 0

E
�
@U0
@ˇ

	 1A :

Then V and W can be written as

V D

 
A B

BT 0

!
; W D

 
A 0
0 0

!
:

Using the theory of inverse of block matrices, it can be shown that

.V�1/TWV D

 
0 0
0 .BTA�1B/�1

!
:
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Therefore,

n1=2
�
Ǒ � ˇ0

�
d
!MVN

�
0;
�

BTA�1B
��1	

;

where

�
BTA�1B

��1
D E�1

�
@U0
@ˇ

	"
E

 
UT
0

U0
w0

!

�E

 
UT
0

H0
w0

!
E�1

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!#
E�1

�
@U0
@ˇT

	

by using the inverse matrix formula and the fact that the first component of B is 0.

Proof of theorem 2: Note that

E

 
HT
0

H0
w0.1 � w0/

!
D

0
BBBBBBB@

E
�

1

w0.1 � w0/

	
E
�

1

1 � w0

	
E
�

 0

w0.1 � w0/

	

E
�

1

1 � w0

	
E
�

w0

1 � w0

	
E
�

 0

1 � w0

	

E
�

 0

w0.1 � w0/

	
E
�

 0

1 � w0

	
E

 
 T0  0

w0.1 � w0/

!

1
CCCCCCCA
:

By using the positive matrix property,

E�1
 

HT
0

H0
w0.1 � w0/

!
�

0
BBB@

0 0 0
0 0 0

0 0 E�1
 

 T0  0

w0.1 � w0/

!
1
CCCA � 0:

Therefore,

E

 
UT
0

H0
w0

!
E�1

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!
� E

 
UT
0
 0

w0

!
E�1

 
 T0  0

w0.1 � w0/

!
E

 
 T0 U0
w0

!
:

Next, we will show that

� E

 
UT
0
 0.1 � w0/

w0

!
E�1

 
 T0  0.1 � w0/

w0

!
E

 
 T0 U0.1 � w0/

w0

!

� �E

 
UT
0
 0

w0

!
E�1

 
 T0  0

w0.1 � w0/

!
E

 
 T0 U0
w0

!

Let

�1 D E�1
�
 T0  0

1 � w0

w0

	
r � w0

w0
 0; �2 D E�1

 
UT
0
 0

w0

!
r � w0

w0.1 � w0/
 0:

We can easily show that

var.�1/ D E�1
�
 T0  0

1 � w0

w0

	
;

var.�2/ D E�1
 

UT
0
 0

w0

!
E

 
 T0  0

w0.1 � w0/

!
E�1

 
 T0 U0
w0

!
:
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Furthermore,

cov.�1;�2/ D E�1
�
 T0  0

1 � w0

w0

	
E

 
 T0  0

w0

!
E�1

 
UT
0
 0

w0

!
:

Because w0 and  0 depend only on Z�;S, by conditioning on Z�;S, we can show that
E.UT

0
 0=w0/ D E. T0  0=w0/, which implies that var.�1/ D cov.�1;�2/. Therefore

0 � var.�1 ��2/ � var.�1/ � 2var.�1/C var.�2/

) var.�1/ � var.�2/

) �var�1.�1/ � �var�1.�2/:

However, if we set  D .1 � w0/ 0, then

var.�2/DE�1
 

UT
0
 0

w0

!
E

 
 T0  0

w0.1 � w0/

!
E�1

 
 T0 U0
w0

!
D E�1

�
 T0  0

1 � w0

w0

	
D var.�1/:

Proof of theorem 3: Write

R.ˇ0/ D 2
°
`
�
O�1; O�2; Ǒ

�
� ` . Q�1; Q�2;ˇ0/

±
;

and let O� D
�
O�1; O�2; Ǒ

�
, Q� D . Q�1; Q�2;ˇ0/. Expanding `. Q�/ at O� gives

`
�
Q�
�
� `

�
O�
�
D
@`
�
O�
�

@�
C
1

2

�
Q� � O�

�T @2` � O��
@�@�T

�
Q� � O�

�
C op.1/:

Note that @`
�
O�
�
=@� D 0. Therefore,

R.ˇ0/ D �
�
Q� � O�

�T @2` � O��
@�@�T

�
Q� � O�

�
C op.1/:

From theorem 1,

1

n

@2`
�
O�
�

@�@�T
! V;

in probability and

n1=2
�
O� � �0

�
D �V�1g

�
�C
0

�
C op.1/ D �

 
A B

BT 0

!�1
g
�
�C
0

�
C op.1/; (35)

where A and B are as defined in theorem 1. To find the asymptotic distribution of Q�, we
note that0

BBBB@
@g1

�
�C
0

�
@�1

@g2
�
�C
0

�
@�1

@g1
�
�C
0

�
@�2

@g2
�
�C
0

�
@�2

1
CCCCA!

0
BBBB@

E

 
HT
0

H0
w0.1 � w0/

!
E

 
HT
0

U0
w0

!

E

 
UT
0

H0
w0

!
E

 
UT
0

U0
w0

!
1
CCCCA � A:
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Expanding g1; g2 about �0 gives

n1=2
�
Q� � �0

�
! �

 
A�1 0

0 0

!
g
�
�C
0

�
C op.1/: (36)

Combining (34), (35) and (36), and using the fact that

V�1 D

 
A B

BT 0

!�1
D

 
A�1 � A�1B

�
BTA�1B

��1
BTA�1 A�1B

�
BTA�1B

��1�
BTA�1B

��1
BTA�1

�
BTA�1B

��1
!
;

we have

n1=2
�
Q� � O�

�
D V�1

 
0 0

�BTA�1 I

!
g
�
�C
0

�
C op.1/

d
!MVN .0;�/ ;

where

� D V�1
 

0 0
�BTA�1 I

!
W

 
0 �A�1B
0 I

!
V�1:

Using the Ogasawara–Takahashi theorem (Rao, 1973, p 188), to show R.ˇ0/
d
! �2.p/, where

�2.p/ is a chi-square variable with degrees of freedom equal p, which is also the dimension of
ˇ, we only need to demonstrate that

�V�V� D �V� and t race.V�/ D p:

We can write

� D V�1
 

0 0
�BTA�1 I

!
W

 
0 �A�1B
0 I

!
V�1

D V�1
 

0 0
�BTA�1 I

! 
A 0
0 0

! 
0 �A�1B
0 I

!
V�1

D V�1
 

0 0
�BT 0

! 
0 �A�1B
0 I

!
V�1 (37)

D V�1
 

0 0
0 BTA�1B

!
V�1

D V�1
 

0 0
�BTA�1 I

!
;

and  
0 0

�BTA�1 I

! 
0 0

�BTA�1 I

!
D

 
0 0

�BTA�1 I

!
: (38)

Using (37) and (38),

�V�V� D V�1
 

0 0
�BTA�1 I

!
VV�1

 
0 0

�BTA�1 I

!
V�

D V�1
 

0 0
�BTA�1 I

!
V� D �V�:
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Also, because

V� D

 
0 0

�BTA�1 I

!
;

and trace(V�) = p.

Proof of theorem 4: By differentiating the binomial log-likelihood with respect to �, we obtain

g0 D
1

n

nX
iD1

ri
@ logwi .�/

@�
C .1� ri /

@ log.1 � wi .�//
@�

D
1

n

nX
iD1

ri � wi .�/

wi .�/.1 � wi .�//

@wi .�/

@�
:

Let O�
C
D
�
O�
T
; O�T

�T
solve gC �

�
gT
0
; gT
1
; gT
2
; gT
3

�T
D 0. The full log-EL from (24) can be

written as

`F .ˇ;�/ D `B.�/C `.ˇ;�/:

Following a similar line of argument as in the proof of theorem 1, we can find an implicit
function 
C.ˇ;�/, such that

`
�
ˇ;�;
C.ˇ;�/

�
> `

�
ˇ0;�0;


C.ˇ0;�0/
�
; a.s.

Furthermore,

`B.�/ � `B.�0/:

Hence,

`F .ˇ;�/ > `F .ˇ0;�0/; a.s.

and consistency of . Ǒ ; O�/ follows.
Next, we need to evaluate @gk=@�; k D 0; 1; 2; 3 at �C

0
. Differentiate gk ; k D 0; 1; 2; 3 with

respect to � and evaluate at �C
0

,

@g0
�
�C
0

�
@�

D �
1

n

nX
iD1

riwi .�0/Œ1 � wi .�0/� � Œri � wi .�0/�Œ1 � 2wi .�0/�

Œwi .�0/.1 � wi .�0/�
2

@2wi .�0/

@�@�T
;

@g1
�
�C
0

�
@�

D
1

n

nX
iD1

�
ri

wi .�0/
�

1 � ri

1 � wi .�0/

�
@Hi .�0;ˇ0/

@�

�

�
ri

wi .�0/
2
C

1 � ri

Œ1 � wi .�0/�
2

�
Hi .�0;ˇ0/

T @wi .�0/

@�
;

@g2
�
�C
0

�
@�

D �
1

n

nX
iD1

riUi .ˇ0/
wi .�0/

2

@wi .�0/

@�
;

@g3
�
�C
0

�
@�

D 0: (39)

Furthermore,

@g0
�
�C
0

�
@�1

D 0;
@g0

�
�C
0

�
@�2

D 0;
@g0

�
�C
0

�
@ˇ

D 0: (40)
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Combining (33), (39) and (40), it can be shown that in probability

@gC
�
�C
0

�
@�C

! VC D

0
B@ V11 0 0

VT
21

A B
0 BT 0

1
CA ; (41)

where

V11 D �E

 
w0

@w0
@�

1 � w0

!
; VT21 D �

0
B@E

0
B@
�
@w0
@�

�T
H0

w0.1 � w0/

1
CA ;E

0
B@
�
@w0
@�

�T
U0

w0

1
CA
1
CA :

Note that the expression for V11 results from assuming a logistic propensity function. The
results of this theorem still hold for other forms of propensity function, but the expression
would be different. Also,

n1=2gC
�
�C
0

�
D n�1

0
BBBBBBBBBBB@

nX
iD1

�
ri

wi .�0/
�

1 � ri

1 � wi .�0/

�
@wi .�0/

@�
nX
iD1

�
ri

wi .�0/
�

.1 � ri /

1 � wi .�0/

�
Hi .�0;ˇ0/

nX
iD1

ri

wi .�0/
Ui .ˇ0/

0

1
CCCCCCCCCCCA

d
!MVN.0;WC/;

where

WC D

0
B@ W11 �VT

21
0

�V21 A 0
0 0 0

1
CA ; (42)

with

W11 D E

0
B@
�
@w0
@�

�T �
@w0
@�

�
w0.1 � w0/

1
CA :

Therefore,

n1=2
�
O�
C
� �C

0

�
d
!MVN.0;†C/; where †C D

�
VC

�
WC

��1 �
VC

�T	�1
:

We now derive the asymptotic distribution of Ǒ . Write

D D

 
V11 0
V21 A

!
; QB D

 
0
B

!
; C D

 
W11 �VT

21

�V21 A

!
: (43)

Using (43), (41) and (42) can be rewritten as

VC D

 
D QB
QBT 0

!
; WC D

 
C 0
0 0

!
:
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Using simple matrix algebra and the theory of generalized inverses, it follows that

�
VC

�
WC

��1 �
VC

�T	�1
D

 
DC�1DT DC�1 QB
QBTC�1DT QBTC�1 QB

!�1
D

 
0 0

0
�
QBTC�1 QB

��1
!
:

(44)

From (44), therefore,

n1=2
�
Ǒ � ˇ0

�
d
!MVN

�
0;
�
QBTC�1 QB

��1	
:
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