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Abstract

Click fraud–the deliberate clicking on advertisements with no real interest on the product
or service offered–is one of the most daunting problems in online advertising. Building
an effective fraud detection method is thus pivotal for online advertising businesses. We
organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Competition, opening
the opportunity for participants to work on real-world fraud data from BuzzCity Pte.
Ltd., a global mobile advertising company based in Singapore. In particular, the task
is to identify fraudulent publishers who generate illegitimate clicks, and distinguish them
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from normal publishers. The competition was held from September 1 to September 30,
2012, attracting 127 teams from more than 15 countries. The mobile advertising data
are unique and complex, involving heterogeneous information, noisy patterns with miss-
ing values, and highly imbalanced class distribution. The competition results provide a
comprehensive study on the usability of data mining-based fraud detection approaches in
practical setting. Our principal findings are that features derived from fine-grained time-
series analysis are crucial for accurate fraud detection, and that ensemble methods offer
promising solutions to highly-imbalanced nonlinear classification tasks with mixed vari-
able types and noisy/missing patterns. The competition data remain available for further
studies at http://palanteer.sis.smu.edu.sg/fdma2012/.

Keywords: Data mining, ensemble learning, feature engineering, fraud detection, imbal-
anced classification

1. Introduction

Advances in data management and web technologies have rendered online advertising as the
ideal choice for small and large businesses to effectively target the appropriate marketing
segments on the fly. The main coordinator in this setting is the advertising commissioner
(also known as ad network), acting as a broker between advertisers and content publish-
ers. An advertiser plans a budget, provides the commissioner with advertisements, and
agrees on a commission for every customer action (e.g., clicking an ad, filling a form, bid-
ding in an auction, etc). A content publisher contracts with the commissioner to display
advertisements on their websites, and gets commissions based on the traffic it drives to
the advertisers. This model, however, may incentivise dishonest publishers to generate il-
legitimate clicks on their sites–a major issue known as click fraud. Click fraud degrades
the reliability of online advertising systems and, if not kept under control, can lead to a
contraction of the advertising market in the long term. There have also been high-profile,
costly litigations from unsatisfied advertisers, giving bad reputation for the commissioners.
Thus, a reliable click fraud detection system is needed to help the commissioners proactively
prevent click fraud and assure their advertisers that their dollars have been well spent.

To this end, we organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Com-
petition, centered around real-world mobile advertising data. The goal is to develop and
crowdsource data mining and machine learning methods capable of building effective pre-
dictive models to detect fraudulent publishers. The competition offers a unique opportunity
to work on click and publisher datasets provided by BuzzCity Pte. Ltd., a global mobile
advertising network that has millions of consumers around the world (particularly in India,
Indonesia and Africa) accessing internet contents and interacting on mobile phones and
devices. Most publishers in the BuzzCity network adopt the cost per click (CPC) payment
scheme, which is subject to abuses by malicious publishers through click fraud. In Q1
2012, over 45 billion ad banners were delivered across the BuzzCity network, having over
10,000 publisher sites and reaching an average of 300 million unique users per month. A
fast and robust detection of the most predictive variables for fraudulent behavior is thus
of great importance. Currently, BuzzCity uses an in-house developed detection mechanism
to identify fraudulent publishers semi-automatically. The use of data mining and machine
learning methods will provide more detailed insights for improving the detection accuracy,
while reducing the efforts for manual interventions.

2

http://palanteer.sis.smu.edu.sg/fdma2012/


Detecting Click Fraud in Online Advertising: A Data Mining Approach

Accordingly, the FDMA 2012 Competition aims at providing an empirical platform to
gauge the state-of-the-art data mining and machine learning methods in a setting typical
of industrial applications. We summarize the key contributions of this paper below:

• We present an important application of machine learning and data mining methods
to tackle real-world fraud detection problems, which serves as valuable resources for
industrial and research practitioners. Thus far, there is a lack of comprehensive study
on data mining/machine learning approaches for fraud detection in advertising.

• Our study involves proprietary, industrial data, which are rarely available and pose
a challenging problem for many data mining and machine learning algorithms. The
solutions presented in this paper address some important issues in data mining and
machine learning research, including highly imbalanced distribution of the output
variable, heterogeneous data (mixture of numerical and categorical variables), and
noisy patterns with missing/unknown values.

• We show that exploratory data analysis and feature engineering are crucial milestones
for effective fraud detection. In particular, we present systematic analysis of both
spatial and temporal factors at different levels of granularity, which leads to creation
of good, predictive features for accurate fraud detection.

• We investigate the applicability of a wide range of single and ensemble learning al-
gorithms in fraud detection task. We found that the ensemble algorithms produce
significant improvement over the single algorithms. Also, coupling ensemble learning
with feature ranking analysis leads to discovery of the most important features for
distinguishing between fraudulent and normal behaviors.

• To the best of our knowledge, FDMA 2012 is also the first open international com-
petition and crowdsourcing initiative on fraud detection in online advertising. The
results not only provide useful research insights, but also illustrate how companies
(such as BuzzCity) can utilize data mining and machine learning methods to obtain
useful, actionable knowledge for improving their business operations.

In this paper, we report the selected, winning entries of the FDMA 2012 Competition,
which provide important insights on click fraud behavior. In Section 2, we give an overview
of the competition data, challenges, and evaluation procedures. Table 1 summarizes the
profiles of the winning teams and contributors of this paper, and Sections 3 to 6 elaborate
in turn their “journeys” and key findings1. We next describe the work independently done
by the competition organizer in Section 7. Section 8 provides concluding remarks.

2. Competition

2.1 Data

The raw data supplied by BuzzCity consist of two categories: publisher database and click
database, both provided in comma-separated values (CSV) format. The publisher database

1. The full reports of all the teams are also available at our website: http://palanteer.sis.smu.edu.sg/

fdma2012/
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Rank Team Affiliation Contribution

1 starrystarrynight Data Analytics Department Section 3
• Clifton Phua Institute for Infocomm Research, Singapore
• Eng-Yeow Cheu
• Ghim-Eng Yap
• Kelvin Sim
• Minh-Nhut Nguyen

2 TeamMasdar Masdar Institute of Science & Technology Section 4
• Kasun S. Perera Abu Dhabi, United Arab Emirates
• Bijay Neupane
• Mustafa A. Faisal
• Zeyar Aung
• Wei Lee Woon

3 DB2 School of Computing Section 5
• Wei Chen National University of Singapore, Singapore
• Dhaval Patel

4 Tea Graduate School of Science & Engineering Section 6
• Daniel Berrar Tokyo Institute of Technology, Japan

Table 1: Profile of the selected, winning teams in the FDMA 2012 Competition.

records the publisher/partners profile, and consists of several fields as listed in Table 2.
On the other hand, the click database captures the click traffic associated with various
publishers. Table 3 lists the fields in the click database. Table 4 provides a sample of the
two largest publishers of each status in the training set, a Fraud and an OK publisher, and
Table 5 lists three click samples from each publisher. There is another Observation status,
comprising small number of new publishers, or publishers who have high click traffic and
not yet deemed as fraudulent. Note that some fields in the publisher and click databases
have been anonymized for privacy protection.

Field Description

publisherid Unique identifier of a publisher
bankaccount Bank account associated with a publisher (anonymized; may be missing/unknown)
address Mailing address of a publisher (anonymized; may be missing/unknown)
status Label of a publisher, which falls into three categories:

• OK: Publishers whom BuzzCity deems as having healthy traffic (or those who
slipped their detection mechanisms)

• Observation: Publishers who may have just started their traffic or their traf-
fic statistics deviates from system wide average. BuzzCity does not have any
conclusive stand with these publishers yet

• Fraud: Publishers who are deemed as fraudulent with clear proof. BuzzCity
suspends their accounts and their earnings will not be paid

Table 2: Fields in the publisher database.

2.2 Challenge

The FDMA 2012 competition aims at building a data-driven methodology for effective
detection of fraudulent publishers. In particular, each participant is tasked to highlight
potential Fraud publishers and distinguish them from OK and Observation (or collectively

4
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Field Description

id Unique identifier of a particular click
numericip Public IP address of a clicker/visitor
deviceua Phone model/agent used by a clicker/visitor
publisherid Unique identifier of a publisher
campaignid Unique identifier of a given advertisement campaign
usercountry Country from which the clicker/visitor is
clicktime Timestamp of a given click (in yyyy-mm-dd format)
referredurl URL where ad banners are clicked (anonymized; may be missing/unknown)
channel Publisher’s channel type, which consists of:

• ad: Adult sites
• co: Community
• es: Entertainment and lifestyle
• gd: Glamour and dating
• in: Information
• mc: Mobile content
• pp: Premium portal
• se: Search, portal, services

Table 3: Fields in the click database.

publisherid bankaccount address status

8iaxj 14vxbyt6sao00s84 Fraud
8jljr OK

Table 4: Publisher sample in raw training data. There are missing values in bankaccount

and address. In pay per click online advertising, Fraud involves a large number
of intentional click charges with no real interest in the advertisements, using au-
tomated scripts or click farms. The perpetrators can be the publishers themselves
or their competitors, or the competitors of advertisers.

Normal) publishers, based on their click traffic and account profiles. This will help shed
light on several key areas, such as identifying the common underlying fraud schemes or
concealment strategies, understanding patterns of dishonest publishers, and developing new
ways for effective prevention/detection plans.

id numericip deviceua publisherid campaignid usercountry clicktime channel referredurl

13417867 3648406743 GT-I9100 8iaxj 8fj2j ru 2012-02-09 00:00:00 ad 26okyx5i82hws84o
13417870 3756963656 Samsung S5233 8jljr 8geyk in 2012-02-09 00:00:00 es 15vynjr7rm00gw0g
13417872 693232332 SonyEricsson K70 8jljr 8gkkx ke 2012-02-09 00:00:00 es
13417893 2884200452 Nokia 6300 8jljr 8gp95 vn 2012-02-09 00:00:01 es
13418096 3648406743 GT-I9100 8iaxj 8fj2m ru 2012-02-09 00:00:08 ad 24w9x4d25ts00400
13418395 781347853 GT-I9003 8iaxj 8fj2j ru 2012-02-09 00:00:20 ad 4im401arl30gc0gk

Table 5: Click samples in raw training data. There are missing values in referredurl and
deviceua. The raw features include IP address of a clicker (numericip), mobile
device model used by the visitor (deviceua), campaign ID of a particular adver-
tisement campaign (campaignid), country of the visitor (usercountry), publisher
channel type (channel), or an URL where the ad banner is clicked (referredurl).

5
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More specifically, we seek to answer this question: Given historical patterns (of both
fraudulent and normal publishers) in some time period (e.g., a 3 day period), how to detect
fraudulent publishers in a future period (e.g., a 3 day period in the week after)? That is,
we are interested in a detection/predictive model that can generalize well over time. To
this end, BuzzCity provides three sets of publishers and clicks data taken from different
time periods: a training set (for building predictive model), a validation set (for model
selection/optimization), and a test set (for evaluating the models’ generalization abilities
and determining the competition winners). Each click dataset captures the click traffic over
a 3 day period, while each publisher dataset records publishers receiving at least one click
in that period. We summarize the count statistics of the publishers and clicks in Table 6.

It is worth noting that the publisher labels (i.e., Fraud, Observation, OK) were gener-
ated from BuzzCity’s semi-automatic detection mechanism (cf. Section 1) that utilizes two
types of auxiliary information together: offline and online; the former corresponds to infor-
mation that BuzzCity deems impossible to automate or does not attempt to computerize
(e.g., manually contact the publishers and verify their responses), while latter is obtained
based on the statistical analysis of the click behavior done by BuzzCity’s proprietary au-
tomated programs. Due to the proprietary nature of this practice and for simplicity, the
details of the label generation process were not given as part of the competition. Here Buz-
zCity’s primary interest is whether the competition participants can independently infer
and discover fraudulent patterns based on the click and publisher databases alone, without
using the auxiliary information. Also note that the Fraud and Observation publishers
constitute very small portions of the population relative to the OK publishers (cf. Table 6),
rendering this problem challenging for many contemporary classification methods.

No. of publishers
Dataset Time period No. of clicks Fraud Observation OK Total

Train 9-11 Feb 2012 3,173,834 72 (2.34%) 80 (2.60%) 2,929 (95.07%) 3,081
Validation 23-25 Feb 2012 2,689,005 85 (2.77%) 84 (2.74%) 2,895 (94.48%) 3,064
Test 8-10 Mar 2012 2,598,815 82 (2.73%) 71 (2.37%) 2,847 (94.90%) 3,000

Table 6: Statistics of the competition data.

2.3 Evaluation

For performance evaluation, we chose to use the average precision criterion, which favors
algorithms capable of ranking the few useful items ahead of the rest. Such criterion is
particularly suitable for detecting rare instances such as fraudulent publishers (Zhu, 2004).
We briefly describe the criterion as follows: Let π be the number of relevant (i.e., actual
Fraud) instances. We first ranked the instances according to the prediction/detection scores
produced by each algorithm. Among the t×100% top-ranked instances, supposing h(t) ≤ t
are truly relevant (also called hits), let r(t) = h(t)

π and p(t) = h(t)
t be the recall and

precision respectively. Typically, h(t) and p(t) takes values only at a finite number of
points ti = i

n , i = 1, 2, ..., n. The average precision (AP) can then be computed using (1):

AP =

n∑
i=1

p(ti)∆r(ti) (1)

6
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where ∆r(ti) = r(ti)− r(ti−1).
Essentially, the AP criterion summarizes the precision-recall performances at different

threshold levels, and corresponds to the area under the precision-recall curve (Zhu, 2004).
In the case of fraud detection, simply evaluating precision and recall at a specific threshold
level is inadequate, since these metrics vary with the strictness of a classification algorithm’s
threshold and the range of its prediction outputs. Further details on the AP criterion can
be found in (Zhu, 2004).

2.4 Website and leaderboard

Our FDMA 2012 website supports a public leaderboard system displaying the best AP
score and the submission time of each team on the validation set. We ran the competition
for 1 month, from 1 to 30 September 2012, with two submissions per day allowed for each
team. BuzzCity offered a total prize of 7,000 Singapore dollars (SGD) for the competition
winners (i.e., SGD 4,000, 2,000, and 1,000 for the first, second, and third winners respec-
tively). During the competition, the actual publishers’ status labels (i.e., ground-truth)
in the validation set were hidden, and our system computes the average precision for each
submission. Rhe submitting teams received email notifications showing their current scores
and submission time. This allows teams to track their progress and fine-tune their models.
To ensure the models developed do not overfit the validation set, we used the test set for
the final evaluations, the status labels of which were also hidden during the competition.
The test set was only revealed 72 hours before the competition ended.

(a) (b)

Figure 1: Statistics of the average precision scores: (a) Public leaderboard (validation set),
and (b) Private leaderboard (test set).

Figure 1(a) shows the overall statistics of the leaderboard scores as of September 30,
2012, while Figure 1(b) shows the statistics of the final test scores. In total, we had 127
teams registering for the competition, 88 of which explicitly specified their affiliation and
country: 60 from academic institutions and 28 from industry, and 51 were local teams from
Singapore and 37 were overseas teams. A total of 95 teams submitted to the leaderboard
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Average precision
Rank Team Validation set Test set Affiliation

1 starrystarrynight 59.38% 51.55% Institute of Infocomm Research
2 TeamMasdar 59.39% 46.42% Masdar Institute of Science & Technology
3 DB2 62.21% 46.15% National University of Singapore
4 Tea 51.55% 42.01% Tokyo Institute of Technology

(*) LARC 57.79% 55.64% Singapore Management University

Table 7: Results of the top teams on the validation and test sets. Team ranks were deter-
mined using the test results.

during the competition period. As a baseline (for the leaderboard), we used the logis-
tic regression method (Fan et al., 2008), which provides reasonable performance reference
sufficiently close to the mean or median AP score.

The final standings on the validation and test sets are summarized in Table 7. We also
showed the best result obtained by the competition organizer (dubbed as team LARC) in the
last row. Comparing the validation and test results, the position of the top-3 ranks were
reversed, which may be attributed to overfitting.

3. First winner’s entry

3.1 Preprocessing and feature extraction

Figure 2(a) plots the correlations among some of our features including status, which we
used to ensure feature diversity - by excluding new features which are too similar to existing
ones. In Figure 2(b), using specific model parameters described in the next section, we ob-
tained the relative influence or importance of 118 predictive features in the final training set.
A complete listing of the 118 features is available at http://clifton.phua.googlepages.
com/feature-list.txt. In addition, there are two other features: publisherid, which is
not used for model building, and status, which is the class or dependent feature. Adding
all the features’ relative influence will sum up to a score of one hundred. On one extreme,
there are a few features with relative influence above three. On another extreme, there are
a few features with negligible influence on the results such as channel-related features (see
the Potential subsection on a discussion of leveraging the predictiveness of the raw channel

feature). The average relative influence per feature is about 0.88%.

The 118 predictive features can be grouped into three types of features: 67 click behavior
(57%), 40 repetitive click behavior (34%), and 11 high-risk click behavior (9%). The average
rank of all the features (based on the model output, as described in Section 3.2) is 69, 35,
and 69 respectively, meaning that duplicated clicks are likely to be invalid clicks. We use
simple statistical features based on average, standard deviation, and percentages, and none
of our features are created directly from status or specific values from raw anonymized
features, such as bankaccount, address, numericip, campaignid, and referredurl.

8
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(a) (b)

Figure 2: (a) Correlation plot of some click behavior features in the training set. (b) Rela-
tive influence of all features in the training set.

3.2 Method

3.2.1 Generalized boosted regression model

Gradient boosting is a machine learning technique used for classification problems with a
suitable loss function, which produces a final prediction model in the form of an ensemble of
weak prediction decision trees (Friedman, 2000). We used the implementation of generalized
boosted regression model (GBM) in R’s gbm package (Ridgeway, 2007). The final parameters
used on the final training dataset for our best average precision on the test dataset are:

• distribution (loss function): ”bernoulli” - also tested “Adaboost” distribution

• n.trees (number of iterations): 5000 - tested 100 to 5000 decision trees

• shrinkage (learning rate): 0.001 - tested 0.001 to 0.01

• interaction.depth (tree depth): 5 - tested 2 to 5

• n.minobsinnode (minimum observations in terminal node): 5 - tested 2 to 5

In the early to mid stages of the competition, we used two layers of GBM to select the
most important features. During the final stages, we focused on only one layer of GBM as
we had identified the three best types of features.

3.2.2 Other algorithms considered

When we first started, our team also tried out random forest (Breiman, 2001) (decision
trees ensemble algorithm) in R’s randomForest package, as well as RIPPER (Cohen, 1995)

9
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(rule induction algorithm) in WEKA (Hall et al., 2009). As the random forest and RIPPER
did not perform as well as GBM on the validation set, we did not conduct further explo-
rations into them or other classification algorithms. If we did find alternative classification
algorithms that perform as well as (or if not better than) GBM, we could train a set of base
classifiers and combine them with stacking (Wolpert, 1992).

3.3 Result and discussion

3.3.1 Spatial and temporal patterns

In Table 8, we list the top-10 features of each type to show that our features capture some
temporal and spatial aspects of clicks for each publisher. Within the one minute interval,
fraudulent clicks have significantly more duplicates than normal ones. For repetitive click
behavior features, the shorter intervals produce better results after we tested one, five, fif-
teen, thirty, and sixty minutes intervals using Chao-Shen entropy (Chao and Shen, 2003).
Chao-Shen entropy is a non-parametric estimation of Shannon’s index of diversity. It com-
bines the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) and the concept of
sample coverage proposed by Good (1953) to adjust for unseen observations in a sample. For
example, there are multi-feature duplicates such as avg spiky ReAgCnIpCi (average num-
ber of the same referredurl, deviceua, usercountry, numericip, and campaignid being
duplicated in one minute), as well as single feature duplicates such as std spiky numericip

(standard deviation of numericip being duplicated in one minute).

For our top click behavior and duplication features, we created conditional features based
on finer-grained time intervals to better capture temporal dynamics of click fraud behavior.
We divided a day into four six-hour periods: night (12am to 5:59am), morning (6am to
11:59am), afternoon (12pm to 5:59pm), and evening (6pm to 11:59pm). For example,
night referredurl percent is the number of distinct referredurls at night divided by the
total number of distinct referredurls, and night avg spiky referredurl is the average
number of the same referredurl being duplicated within one minute at night. Also, we
divided an hour into four fifteen-minute periods: first (0-14), second (15-29), third (30-44),
and last (45-59). For example, second 15 minute percent is the number of clicks between
15th to 29th minute divided by total number of clicks.

Fraudulent clicks tend to come from some countries (or finer-grained spatial regions)
more than others; for example, businesses in India and Indonesia are hardest hit by fraud
(Kroll Advisory Solutions, 2012). Most clicks on mobile advertisements also come from
these two countries. We tested the top five, ten, fifteen, twenty, and twenty-five high-risk
countries (out of two hundred over countries), and found that the top ten high-risk coun-
tries works best. For example, usercountry in percent and usercountry id percent

are the percentages of invalid clicks originating from India and Indonesia respectively. The
main reason for large numbers of invalid clicks coming from usercountry sg percent or
Singapore could be due to BuzzCity’s penetration tests being conducted from there.

3.3.2 Performance

Using the GBM configuration in with the 118 features mentioned in section 3.1, our team
was ranked fourth with an average precision of 59.38% on the validation set, as displayed
on the public leaderboard. After the competition ended and teams submitted their results

10
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Rank Feature Relative influence

6 std per hour density 3.12
12 total clicks 1.76
14 brand Generic percent 1.71
15 avg distinct referredurl 1.62
19 std total clicks 1.43
23 night referredurl percent 1.19
24 second 15 minute percent 1.18
27 distinct referredurl 1.15
29 std distinct referredurl 1.12
30 morning click percent 1.1

(a)

Rank Feature Relative influence

2 std spiky numericip 3.81
3 avg spiky ReAgCnIpCi 3.69
4 night avg spiky referredurl 3.66
5 avg spiky deviceua 3.29
8 avg spiky referredurl 2.67
9 avg spiky ReAgCn 2.59
10 night avg spiky ReAgCnIpCi 2.49
11 afternoon avg spiky ReAgCnIpCi 1.98
13 afternoon avg spiky deviceua 1.75
16 std spiky referredurl 1.6

(b)

Rank Feature Relative influence

1 usercountry id percent 5.49
7 usercountry sg percent 2.69
49 usercountry other percent 0.72
72 usercountry us percent 0.44
77 usercountry th percent 0.39
84 usercountry uk percent 0.34
91 usercountry in percent 0.26
103 usercountry ng percent 0.05
104 usercountry tr percent 0.04
106 usercountry ru percent 0.04

(c)

Table 8: Top-10 features by type in final training dataset: (a) By click behavior, (b) By
repetitive click behavior, and (c) By high-risk click behavior.

based on the test data, we were ranked the first with the average precision of 51.55%.
(The second winner finished the line with an average precision of 46.42%, and the third
winner with 46.15%.) As such, comparing our result with that of the other top teams, we
can conclude that our GBM model fits the data well.

3.3.3 Other potentials

In Table 9, we show that there is some potential for an alternative approach using the
channel of each fraudulent publisher. Fraudulent mobile and adult content publishers tend
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to produce much more invalid clicks than the other fraudulent publishers, especially at night
and morning periods. In contrast, fraudulent entertainment, lifestyle, and premium portal
publishers produce a lot less invalid clicks, and tend to have relatively more invalid clicks
during afternoon and evening periods. We attempted to split the datasets and build models
separately by channel, but did not have enough time to integrate/normalize the different
sets of prediction scores in a meaningful way.

Night Morning Afternoon Evening
Channel Publisher Fraud clicks Fraud clicks Fraud clicks Fraud clicks Fraud clicks

count (fraud %) (fraud %) (fraud %) (fraud %) (fraud %)
Adult (ad) 10 47226 (37%) 15435 (12%) 6439 (5%) 11299 (9%) 14053 (11%)
Mobile content (mc) 23 41941 (33%) 13589 (11%) 9284 (7%) 9623 (8%) 9445 (7%)
Community (co) 12 16411 (13%) 7218 (6%) 3301 (3%) 2612 (2%) 3280 (3%)
Entertainment and lifestyle (es) 14 14433 (11%) 2649 (2%) 3265 (3%) 3573 (3%) 4946 (4%)
Search, portal, services (se) 4 3180 (3%) 682 (1%) 572 (0%) 689 (1%) 1568 (1%)
Premium portal (pp) 6 2926 (2%) 351 (0%) 608 (0%) 732 (1%) 904 (1%)
Information (in) 3 893 (1%) 49 (0%) 284 (0%) 428 (0%) 132 (0%)
Total 72 127010 (100%) 39973 (31%) 23753 (19%) 28956 (23%) 34328 (27%)

Table 9: High risk categories in final training dataset.

3.3.4 Recommendations

We conclude this section by addressing several key questions in relation to a broader context:

• What is the underlying click fraud scheme? Simply put, a relatively large
number of clicks or rapid duplicate clicks, or a high percentage of clicks from high-risk
countries have been shown to be important fraud indicators.

• What sort of concealment strategies commonly used by fraudulent parties?
The Tuzhilin Report (Tuzhilin, 2006) on the Google AdWords/AdSense system lists
ten possible strategies or sources of invalid clicks. The hard-to-detect click fraud tends
to come from organized crime in hard-to-prosecute countries (Chambers, 2012). For
example, hard-to-detect and hard-to-prosecute click fraud uses existing user traffic
including 0-size iframes, forced searching, and zombie computers.

• How to interpret data for patterns of dishonest publishers and websites?
From a machine learning point-of-view, some decision tree and rule induction algo-
rithms can provide high interpretability to fraud patterns. However, the key step prior
to this is still to engineer the best features using domain knowledge and experimenta-
tion, and to allow investigators to discern and validate these fraud patterns from top
ranked features, even through black-box classification algorithms.

• How to build effective fraud prevention/detection plans? Effective fraud de-
tection plans need to have elements of resilience, adaptivity, and quality data (Phua
et al., 2012). Resilience is “defense-in-depth” with multiple, sequential, and indepen-
dent layers of defense. For example, BuzzCity already has anomaly-based detectors
to place some publishers under observation, and they can consider adding classifier-
based detectors to their click fraud detection system. In the context of click fraud,
the classifier-based detectors need to be adaptive to changing fraud and normal click
behavior. The classifier-based detectors also need to use quality data with timely
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updates when publishers are discovered to be fraudulent. Other than increasing ad-
vertisers’ awareness of click/conversion ratios, having better customer service and
fraud policies, and improving automated filters, one can pursue click fraud more ag-
gressively, switch from cost-per-click to cost-per-action advertising model, or cultivate
trust with advertisers by having independent audits (Jansen, 2007).

4. Second winner’s entry

4.1 Preprocessing and feature extraction

We first analyzed each attribute in the raw click and publisher database, and evaluated
its effects on the behavior of a publisher. We observed that not all features are useful;
attributes from the publisher database such as address, bankaccount can be excluded from
the feature construction process. To facilitate different experiment settings, we considered
three datasets. In the first dataset, all publishers labeled as Observation were relabeled as
OK. In the second dataset, all publishers labeled as Observation were relabeled as Fraud.
Finally, the third dataset retains all the three (original) labels. Training and testing were
performed accordingly on all the three datasets.

Feature extraction is another important facet for building the prediction model. Prop-
erly selected features should be able to capture properties or trends that are specific to
fraudulent publishers and robust towards their evolving patterns of behavior. We took each
raw attribute in the click database and model the publisher’s click pattern by creating sev-
eral statistical features based on that particular attribute. Details of the feature extraction
procedures applied to different attributes are given hereafter.

4.1.1 Attribute: clicktime

Fraudulent publishers often disguise their activities using various tricks such as generating
very sparse click sequences, changes in IP addresses, issuing clicks from different computers
in different countries and so on. Others stick to the conservative approach of generating
the maximum number of clicks in a given interval. It is important for any fraud detection
system to recognize both kinds of concealment strategies. Accordingly, we derived several
statistical features from the clicktime attribute in the click database, with the number
of clicks for each publisher observed over different time intervals: 1 minute, 5 minutes, 1
hours, 3 hours and 6 hours. The goal is to capture both the short and long term behavior
of the publishers, based on the observation that publishers often try to act rationally and
have constant clicks in very sparse time intervals.

Specifically, for each time interval, we counted the number of clicks each publisher
receives and aggregated these counts using several features: maximum clicks, average click,
click skewness, and click variance. Click variance essentially measures the deviation of
number of clicks from the average clicks (norm) of a publisher, while click skewness is a
measure of the asymmetry of the click distribution. Figure 3 shows all the features we
derived from the attribute clicktime from the raw click database.
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Figure 3: Feature creation from the clicktime attribute.

Feature Description

MaxSameIPClicks Maximum number of clicks from all unique IP addresses associated with a publisher
NoOfIPs Number of clicks from all unique IP addresses associated with a publisher
ClickOverIPRatio Ratio of the number of clicks over the number of unique IP addresses for a publisher
EntropySameIPClicks Entropy of the number of clicks from all IP addresses associated with a publisher
VarSameIPClicks Variance of the number of clicks from all IP addresses associated with a publisher

Table 10: Features derived from the numericip attribute.

4.1.2 Attribute: numericip

Internet protocol (IP) address is another attribute that can be used to characterize the
behavior of a publisher, since it is a reflection of the number of computers/mobile devices
used or different times at which the user clicks on a particular advertisement. Since many
IP addresses are dynamically allocated when users connects via an internet service provider
(ISP), it is not unusual for the same user to have different IP addresses. For a given 3-
day period, we observed changes in the IP addresses and number of clicks from a given IP
address for a given publisher id. We used parametric measures over IP address attribute
(numericip) to define the behavior of a publisher. Table 10 lists the feature set created
from the numericip attribute.

Some fraudulent publishers may try to increase their reward by clicking repeatedly on
an advertisement but all of these clicks might come from the same IP. From the data, we
observed that many clicks originating from the same IP or an unusually large click to IP
ratio tend to be associated with fraudulent behavior, and may place the associated publisher
under suspicion. We also observed that lower variance in the number of clicks from each IP
is indicative of a legitimate publisher, whereas higher variances might indicate a fraudulent
publisher. Similarly, the entropy for the distribution of the number of clicks originating
from each IP can be another useful indicator of fraudulent activity.

4.1.3 Attribute: deviceua

The deviceua attribute is the phone model that the visitors use to browse the web and
click on advertisements. As mentioned, a fraudulent visitor might use one phone, but
with many dynamically allocated IP addresses. Thus, we use the following measures to
derive features from deviceua attribute in the set of attributes: MaxSameAgentClicks,
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MaxSameAgentClicks, VarSameAgentClicks, and SkewnessSameAgentClicks. These fea-
tures also calculated in a similar way to those for the numericip attribute.

4.1.4 Other attributes

We also used the same method to generate features for country and campaignid. On the
other hand, each publisher is assigned to only one channel, thus we avoid taking channel to
derive more attributes. Instead, we defined the prior probability of being fraud for a given
channel based on the training set. That is, we computed number of visitors for each channel,
and then the number of fraudulent publishers in that set to obtain the prior probability.
Finally, for the referredurl attribute we derived ReferrerOverClickRatio by computing
the number of referred clicks over the total number of clicks for a given publisher.

At the end of feature extraction process, we had 41 different features created from
different individual and set of attributes from the dataset. The full list of those 41 features
is provided in www.dnagroup.org/PDF/FDMA12_TeamMasdar_AppendixA.pdf.

4.2 Method

4.2.1 Classification algorithms

Our approach to detecting fraud consists of employing contemporary classification models
over data derived from click database. We tuned the parameters of these models such that
they work robustly with the train and validation datasets, and can subsequently generalize
to any unseen test set. We tried a range of different model parameters that yielded the
highest precision and area under the receiver operating characteristics (AUC) curve, with
low standard deviation to ensure performance consistency.

We tried a variety of classification methods including decision tree, neural network, and
support vector machine. For each method, we also employed different learning algorithms.
Our preliminary experiments on the train and validation sets revealed that the decision
tree technique is particularly promising and gave good prediction results. As such, we shall
focus on decision tree-based models in the subsequent sections.

4.2.2 Resampling

As mentioned, only a small fraction of publishers are fraudulent, and the skewed nature of
the data would drive the prediction model to be more biased towards the majority class. In
light of this issue, we used various resampling strategies such as up/downsampling and the
synthetic minority oversampling technique (SMOTE) (Chawla et al., 2002). Upsampling
was done by replicating samples from the minority class until their number is equal to the
that of the majority class. Conversely, downsampling randomly discards the majority class
until the class distribution is balanced. In our experiments, we tried both up/downsampling
and SMOTE, followed by shuffling of the data instances. Results obtained both with and
without the use of sampling methods shall be discussed in Section 4.3.

4.2.3 Ensemble learning

Decision tree-based algorithms are weak learners known for its stability issue. To improve
a weak classifier, one may construct many weak classifiers instead of a single one, and to
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Base tree Ensemble (meta) learner

C4.5 tree Bagging, Metacost, Logitboost, random subspace
REP tree Bagging, Metacost, Logitboost
Random forest Bagging, Metacost, Logitboost

Table 11: Decision tree algorithms and the corresponding meta-learning algorithms.

combine them into a powerful decision rule. Recently, a number of combining techniques
have been developed, the most popular being bagging (Breiman, 1996), boosting (Freund
and Schapire, 1996) and the random subspace method (Ho, 1998). In bagging, one samples
the training set, generating random independent bootstrap replicates, constructs the clas-
sifier on each of these, and aggregates them by a simple majority vote in the final decision
rule. In boosting, classifiers are constructed on weighted versions of the training set, which
depend on previous classification results. In the random subspace method, classifiers are
constructed in random subspaces of the data feature space. These classifiers are typically
combined by simple majority voting.

Figure 4: Final classification model comprising ensemble of six learners.

For bagging, we considered the standard algorithm (Breiman, 1996) as well as MetaCost
(Domingos, 1999), a special type of bagging that produces a single cost-sensitive classifier
of the base learner, giving the benefits of fast classification and interpretable output. For
boosting, we considered the LogitBoost method (Friedman et al., 2000), which treats Ad-
aBoost (Freund and Schapire, 1995) as a generalized additive model and applies the cost
functional of logistic regression. Finally, we used the standard random subspace method
(Ho, 1998), with decision trees as the base learners. We built classification models using
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different combinations of base learners and meta-learning algorithm, as shown in Table 11,
and evaluated them using the train and validations sets. The base learners are C4.5 decision
tree (Quinlan, 1993), reduced error pruning (REP) tree (Su and Zhang, 2006), and random
forest (Breiman, 2001). Our final classifier consists of an ensemble of six models, which gave
the best overall performance in terms of precision, recall, and area under the ROC curve.
The goal of evaluating all three measures is to build a model that can detect high percentage
of Fraud cases, while maintaining high degree of precision. The final classification model
and the corresponding scores of the constituent learners are summarized in Figure 4.

4.3 Results and discussion

4.3.1 Effect of resampling

To see the effect of resampling on the model performance, we conducted experiments with
both up/downsampling and SMOTE (Chawla et al., 2002). The resampling and SMOTE
performed very well on the training set but performed badly on the validation set. That is,
results using the original data were found to be over 20% better than those obtained using
resampling and SMOTE.

4.3.2 Two- versus three-class task

Different models were trained using datasets containing only 2 classes (i.e., OK and Fraud),
and all 3 classes (i.e, OK, Observation and Fraud). For the 2-class setting, two approaches
were taken: In the first approach, all Observation cases were converted to OK, and in the
second approach all cases of Observation were regarded as Fraud cases. In the 3-class
setting we simply used the labels provided with the data. Of all three approaches, the
2-class dataset gave the best performance. The precision obtained using the J48 tree as the
learner and with 2 classes (Observation→ OK) was 50.37%, with 2 classes (Observation→
Fraud) was 46.1% and with all 3 classes was 45%. Thus, converting all of the Observation

cases to OK was the best approach giving the highest AP score.

4.3.3 Performance

We evaluated the prediction performance of different algorithms for all data sets. Few
algorithms which gave best result alone are mentioned above. There were many algorithms
with very low true positive and false negative rates, thus giving very high precision scores.
These algorithms were able to obtain high precision because of their low false positive value.
We were only interested on algorithms which have high true positive rates and precision.
The precision scores of the different algorithms when applied on the 2-class validation set
were C4.5 tree: 50.37%, REP tree: 46.82%, and LogitBoost: 44.82%, as per Figure 4.

With our ensemble approach, we were able to pass the baseline score but none of the
algorithms alone was able to obtain precision higher than 50.37%. We analyzed the results
and found that every algorithm has a drawback, which was either a high false positive rate
or a lower rate of true positives. This indicated that choosing any one of the algorithms
represented a trade-off between high sensitivity on the one hand, and higher precision on the
other. Subsequently, we combined the results from the different algorithms trained using
the 2-class dataset. Six different algorithms were chosen which obtained higher values for
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precision, recall and AUC when evaluated alone. This method proved to be the best as we
obtained an average precision of 59.39% on the validation set. It also performed well on
the final test set, achieving a score of 46.42%.

5. Third winner’s entry

5.1 Preprocessing and feature extraction

Click fraud can be generated using a variety of approaches (Dave et al., 2012), such as
(1) botnets (where malware on the user’s computer clicks on ads in the background), (2)
tricking or confusing users into clicking ads (e.g., on parked domains), and (3) directly
paying users to click on ads. To deal with various fraud pattern, we first need to extract
publisher’s feature from various statistics such as mean, standard deviation, count from
different views and different time granularity of the publisher. With these features, we can
choose the most discriminative ones to build an effective classifier.

5.1.1 Click statistics by publisher

We calculate the basic click statistics of each publisher (i.e., publisherid), unique count
of attribute such as numericip, country, deviceua, referredurl, campaignid and total
visit. The features used in this work and their descriptions are shown in Table 12:

Feature Description

unique count(numericip) unique count of the IP
unique count(country) unique count of the country
unique count(deviceua) unique count of the deviceua
unique count(referredurl) unique count of the referredurl
unique count(campaignid) unique count of the campaignid
total visit count of the click log’s row

Table 12: Features derived from the click statistics of each publisher.

5.1.2 Click statistics by numericip

The fraudulent visitors may visit the advertisements from the same IP address. In order
to capture this, we calculate the average access, standard deviation, counting by grouping
each IP for each publisher in different time granularity (by second, by min, by day). For
example, in the Table 13, suppose it is the full click log for the publisher “8kxij”, we can
get the average access by IP in minute granularity is 5, standard deviation is 0, and the
counting for the IP 2, 919, 155, 822 visit is 5. We can also get the same statistics in different
time granularity such as by day, hour, second. The feature created is shown in Table 14.

publisherid numericip deviceua campaignid usercountry clicktime channel referredurl
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:19.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:19.0 mc ?

Table 13: Example of fraud pattern: Clicking from the same IP address.
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Feature Description

avg IP sec average visit by IP per second
std IP sec standard deviation of average visit by IP per second
count IP sec sum of visit count (larger that 2) by IP per second

avg IP min average visit by IP in minute level
std IP min standard deviation of average visit by IP per minute
count IP min sum of visit count (larger that 2) by IP per minute

avg IP hour average visit by IP per hour
std IP hour standard deviation of average visit by IP per hour
count IP hour sum of visit count (larger that 2) by IP per hour

avg IP day average visit by IP per day
std IP day standard deviation of average visit by IP per day
count IP day sum of visit count (larger that 2) by IP per day

Table 14: Click statistics by IP address.

We also conjecture that fraudulent visitors will visit the advertisements not from the
same IP address but from the same subnetwork (see Table 15). For this, we tried to obtain
the same statistics by each subnetwork instead of IP. The subnetwork of different granularity
can be obtained by dividing the IP by 1,000 or 1,000,000 and rounding the result. Based
on this, we got the same statistics as shown in Table 14 for different subnetwork.

publisherid numericip deviceua campaignid usercountry clicktime channel referredurl

8jk0d 1,917,853,114 MSIE 6.0 8gp6q cn 2012-02-09 11:52:27.0 se ?
8jk0d 1,917,853,057 MSIE 6.0 8gp6q cn 2012-02-09 11:56:13.0 se ?
8jk0d 1,917,853,952 MSIE 6.0 8gp6q cn 2012-02-09 11:58:49.0 se ?
8jk0d 1,917,853,022 MSIE 6.0 8gp6q cn 2012-02-09 12:06:55.0 se ?

Table 15: Example of fraud pattern from the same subnetwork.

5.1.3 Click statistics by deviceua

Sometimes the malicious publishers use the same deviceua but different IP to access a
website at different time periods. For example, in Table 16, the fraudulent visitor using
same deviceua MSIE 6.0 visits the same publisher using different IP at different times, while
there is no other deviceua visiting this publisher during these time period. To capture this
behavior, we sorted the click by clicktime and then deviceua. Afterwards, for each click
log row, we can compare with the next click log row. If the deviceua is the same, we kept
the current row, otherwise removed. Thereby, we can calculate the portion of the filtering
rows over the total rows for each publisher. We called this feature sequence. This feature
is named as deviceua1. For example, in the Table 16, after filtering, we have 8 rows left, so
the final result will be 8/11. In addition, we tried to sort the click data by deviceua only
and calculate the statistics again as discussed above. This feature is named as deviceua2.

5.1.4 Click statistics by campaignid

The click data also suggest that malicious publishers may access the same advertisement
campaign repeatedly using the same IP address and phone agent at a brief time period.
This is shown in Table 17, where campaignid “8gkwy” was accessed many times by the
same numericip and deviceua. These clicks are thus likely to be illegitimate. Accordingly,
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publisherid numericip deviceua campaignid usercountry clicktime channel referredurl

8jk0d 1,917,852,952 MSIE 6.0 8gp6q cn 2012-02-11 02:55:50.0 se ?
8jk0d 1,917,853,022 MSIE 6.0 8gp6q cn 2012-02-11 02:56:36.0 se ?
8jk0d 1,917,853,060 MSIE 6.0 8gp6q cn 2012-02-11 03:53:12.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 04:49:42.0 se ?
8jk0d 701,380,683 Nokia2600c 8k7xb ng 2012-02-11 04:51:58.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 05:33:51.0 se ?
8jk0d 1,917,853,114 MSIE 6.0 8gp6q cn 2012-02-11 06:30:02.0 se ?
8jk0d 1,917,853,146 MSIE 6.0 8gp6q cn 2012-02-11 07:09:23.0 se ?
8jk0d 1,917,853,146 MSIE 6.0 8gp6q cn 2012-02-11 07:31:21.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 07:53:16.0 se ?
8jk0d 1,917,852,952 MSIE 6.0 8gp6q cn 2012-02-11 07:55:14.0 se ?

Table 16: Example of fraud pattern from one deviceua but different IP at different times.

we calculated the average access, standard deviation, counting by grouping campaignid

for each publisher in different time granularity (by second, by minute, by day). We then
obtained results similar to Table 14, grouped by campaignid instead of by numericip.

publisherid numericip deviceua campaignid usercountry clicktime channel referredurl

8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:05.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:16.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:40.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:01.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:09.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:26.0 co ?

Table 17: Example of fraud pattern on the same campaign ID.

5.1.5 Click statistics by numericip+deviceua

The numericip corresponds to a public IP address that may be assigned to different clickers
at different time periods. Hence, an IP address may not uniquely identify a clicker. A better
estimate is to use numericip+deviceua for identification. Using this identifier, we calcu-
lated the average access, standard deviation, counting by grouping numericip+deviceua

for each publisher in different time resolutions. Again, we obtained the statistics similar to
Table 14, grouped by numericip+deviceua instead of by numericip.

5.2 Method

5.2.1 Overall procedure

We employed a linear blending of many predictive models, and our approach consists of
three main steps. In the first step, we created our own validation set from the training set
(since the validation set provided by the competition organizer has no label). Specifically,
the internal validation set was generated by randomly selecting a subset of publishers in the
training set such that the original class (status) distribution is maintained (i.e., stratified
sampling). We chose this approach instead of cross-validation procedure for simplicity and
computational efficiency. In the second step, we optimized the meta-parameters of the
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Type Method Description

Single FT tree A type of decision trees with logistic regression functions at the
(Gama, 2004) inner nodes and/or leaves
REP tree A decision tree is built using information gain or variance and
(Su and Zhang, 2006) then pruned using reduced-error pruning (REP) method
Decision table Rule-based classifier that uses simple decision table majority
(Kohavi, 1995) voting, providing a precise yet compact representation
Bayesian network Directed graphical model for encoding statistical dependencies
(Neapolitan, 2003) among a set of variables
RPROP Learning for feed-forward neural networks that locally adapts
(Riedmiller and Braun, 1993) the weight updates based on the error function’s behavior

Ensemble LAD tree A multi-class alternating decision tree that is built using the
(Holmes et al., 2002) LogitBoost strategy
NB tree Decision tree with Naive Bayes classifiers at the leaf nodes
(Kohavi, 1996)
Random forest Combination of tree predictors such that each tree depends on the
(Breiman, 2001) values of a random vector sampled independently
Rotation forest Classifier ensemble based on feature extraction. Features are split
(Rodrguez et al., 2006) into subsets and principal component analysis is applied to each
Tree ensemble Variant of random forest whereby each tree model is learned on
(Berthold et al., 2009) different set of records and/or attributes

Table 18: Classification methods employed for the FDMA 2012 Competition.

models and picked the configuration that yields the best result on the internal validation
set. Finally, using the best meta-parameters found, the third step consists of retraining the
model on the combined train and internal validation sets. The model was then evaluated on
the test set and the prediction scores were recorded for submission to the FDMA website.

5.2.2 Classification algorithms

The classification methods we considered for this competition are listed in Table 18. Most
of these techniques are tree/rule-based classifiers (except for Bayesian network and resilient
propagation (RPROP)), which we selected due to their relatively good performances. All
methods were trained and evaluated using the procedure described in Section 5.2.1.

5.2.3 Blending

To combine the predictions of all the classification algorithms in Table 18, we used a linear
blending method. We could simply compute the final prediction as the mean over all
predictions in the ensemble, but better results can be achieved by computing weighted sum
of the predictions. In this work, we performed blending via weighted sum approach, and
the weight coefficients were learned using regularized linear regression. Furthermore, we
normalized all inputs (i.e., the predictions) to [0, 1]. We optimized the weight coefficients
according to the average precision evaluated on 10-fold cross-validation.
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5.3 Results and Discussion

5.3.1 Performance

The performances of the individual models and their blending are shown in table 19. For
the single models, RPROP performed the best, suggesting that neural network approach
is suitable for the detection task. Among the ensemble approaches, only the tree ensemble
outperformed RPROP, but the improvement was marginal. Lastly, the linear blending
approach gave better result than all its constituent models. Hence, we chose it as our final
model for the competition submissions. We obtained an average precision of 62.21% and
46.15% on the validation and test sets, respectively.

Type Method Average Precision

Single FT tree 36.3%
REP tree 35.8%
Bayes network 33.7%
RPROP 48.3%

Ensemble LAD tree 37.0%
NB tree 37.9%
Random forest 47.7%
Random subspace 38.9%
Rotation forest 42.9%
Tree ensemble 49.3%

Ensemble of ensemble Blending 52.3%

Table 19: Performance for different algorithms on the internal validation set.

5.3.2 Important features

To prune inconsequential features and improve prediction performance, we performed iter-
ative feature elimination (Guyon and Elisseeff, 2003) as follows. Initially, classification is
performed using the complete N features. In the next N − 1 iterations, each of the input
features is disabled once. Then the algorithm discards the feature that influences the pre-
diction result the least (in this case giving the smallest degradation in average precision).
The subsequent n − 2 iterations follow where each of the remaining features is ruled out
once. The total number of iterations is therefore N ∗ (N + 1)/2 − 1. Finally, we had all
computed levels of the feature elimination together with the average precision. We specified
an error threshold and select the level with fewest features that has a prediction error below
the threshold. Table 20 lists the final set of features after the elimination.

6. Runner-up’s entry

6.1 Preprocessing and feature extraction

6.1.1 Basic attributes

For each publisher, we considered the following basic attributes: (1) total number of clicks,
(2) number of clicks from the same computer (inferred from attribute numericip), (3)
distinct IP addresses (inferred from numericip), (4) distinct parts of the IP addresses,
(5) publisher’s channel type (inferred from channel), (6) phone models used by clickers
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Feature Description

unique count(referredurl) Unique count of referredurl
unique count(campaignid) Unique count of campaignid
unique count(country) Unique count of country
total visit Count of the click log’s row
count ip hour Sum of visit count (> 2 ) by numericip per hour
count ip ag sec Sum of visit count (> 2) by numericip+deviceua per second
count ip ag day Sum of visit count (> 2) by numericip+deviceua per day
count sip2 sec Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per second
count sip2 min Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per minute
count sip2 hour Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per hour
count sip day Sum of visit count (> 2) by subnetwork (divided by 1,000) per day
avg sip2 day Average visit by subnetwork (divided by 1,000,000) per day
avg ip ag min Average visit by numericip+deviceua per minute
avg ip ag day Average visit by numericip+deviceua per day
avg campaignid min Average visit by campaignid per minute
deviceua1 Statistics for click data sorted by time and deviceua, as discussed in Section 5.1.3
deviceua2 Statistics for click data sorted by deviceua, as discussed in Section 5.1.3

Table 20: Final feature set after backward elimination.

Figure 5: Geo tracking of clicks. Columns show the 197 countries of origin; rows show the
publishers from the training set. For each publisher, the click percentage from
each country is color-coded. Darker colors reflect higher percentages; yellow is
0% and dark red is 100%. Rows and columns are clustered based on complete
linkage. For status OK, only those publishers with at least 50 clicks are shown.

(inferred from deviceua); (7) advertisement campaign (inferred from campaignid); and (8)
number of clicks from different countries (geo tracking ; inferred from usercountry).

Click fraud, notably manual click fraud, is known to correlate with the geographical
location of the clicker. The heatmaps in Figure 5 visualize the geo tracking of clicks from
the training set with respect to the status of the publisher. For all three groups (Fraud,
Observation, and OK), the clicks originate from only a few countries (cf. columns). For
about half of the publishers in each group (cf. rows), the associated clicks are distributed
across these countries, while for the rest the majority of clicks come from only a very small
number of countries. In fact, we found such clusters in all three groups.
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Geo tracking alone, however, is not reliable for click fraud detection. There may be
various reasons that could explain the observed clusters, such as, obviously, the type and
the target of the advertisements. Furthermore, malicious scripts could generate fraudulent
clicks, and these scripts could run on computers in different geographical locations. In that
case, we might fail to detect any clusters.

6.1.2 Click profiles

For each publisher and each unique IP address, we investigated the click profile, i.e., the
time delay between consecutive clicks. For the majority of fraudulent publishers in the
training set, we observed that the number of unique IP addresses was below 3000. Only for
two fraudulent publishers, we observed that clicks were coming from more than 3000 unique
IP addresses. To derive the click profile, we discarded all publishers for which we observed
clicks coming from more than 3000 unique IP addresses. This approach was of course far
from being ideal, but it reduced the computational time considerably.

6.1.3 Long click profile

We assumed that many consecutive clicks from the same IP address in short time intervals
were suspicious. So for each publisher, we counted how many clicks from the same IP address
occurred each day in less than 5s, between 5s and 10s, between 10s and 20s, between 20s and
30s, and so on up to the interval > 300s. Furthermore, we required that at least 10 clicks
must have come from each IP address. Table 21 shows an example of a set of consecutive
clicks from the same IP address for the publisher 8ih09.

id deviceua campaignid usercountry date clicktime category referredurl same URL gap
14090783 Opera Mini 8flxe fr 2012-02-09 08:53:21.0 in 24940f5c4q688oc8 0 0
14096272 Opera Mini 8flxd fr 2012-02-09 09:02:01.0 in 24940f5c4q688oc8 1 520
14096576 Opera Mini 8flyo fr 2012-02-09 09:02:30.0 in 24940f5c4q688oc8 1 29
14135449 Opera Mini 8flyo fr 2012-02-09 09:59:33.0 in 24940f5c4q688oc8 1 3423
14149730 Opera Mini 8flyo fr 2012-02-09 10:18:31.0 in 24940f5c4q688oc8 1 1138
14153291 Opera Mini 8flyp fr 2012-02-09 10:23:32.0 in 14qhcdsqvou88kos 0 301
14153584 Opera Mini 8flyu fr 2012-02-09 10:23:57.0 in 14qhcdsqvou88kos 1 25
14154864 Opera Mini 8flyp fr 2012-02-09 10:25:42.0 in 24940f5c4q688oc8 0 105
14197361 Apple iPhone 8flyo fr 2012-02-09 11:23:23.0 in 3gza50jfnzcw44wc 0 3461
14197602 Apple iPhone 8jdc9 fr 2012-02-09 11:23:42.0 in 14qhcdsqvou88kos 0 19
14198413 Apple iPhone 8flxc fr 2012-02-09 11:24:50.0 in 14qhcdsqvou88kos 1 68
14198584 Apple iPhone 8flyp fr 2012-02-09 11:25:05.0 in 14qhcdsqvou88kos 1 15
14199113 Apple iPhone 8flys fr 2012-02-09 11:25:51.0 in 14qhcdsqvou88kos 1 46
14201181 Apple iPhone 8flxe fr 2012-02-09 11:28:31.0 in 14qhcdsqvou88kos 1 160
14206726 Apple iPhone 8flxf fr 2012-02-09 11:35:50.0 in 23ge85exom8084s0 0 439
14217945 Apple iPhone 8flyu fr 2012-02-09 11:50:32.0 in 23ge85exom8084s0 1 882
15754245 Opera Mini 8gpd5 fr 2012-02-10 10:18:52.0 in 3cu2xmfag82sosk4 0 0
15764598 Opera Mini 8gpd5 fr 2012-02-10 10:33:56.0 in 4jyefurnmxkwoo4w 0 904
15768527 HTC Vision 8gdka fr 2012-02-10 10:39:47.0 in 1rbl5y69ej34gg8w 0 351
15768829 HTC Vision 8gpd5 fr 2012-02-10 10:40:17.0 in 3cu2xmfag82sosk4 0 30
15777019 Opera Mini 8gpd5 fr 2012-02-10 10:52:51.0 in 3cu2xmfag82sosk4 1 754

783581 Opera Mini 8gpd5 fr 2012-02-11 10:34:38.0 in 1rbl5y69ej34gg8w 0 0
901789 SPH-P100 8gpd5 fr 2012-02-11 13:01:12.0 in 1rbl5y69ej34gg8w 1 8794
902642 SPH-P100 8gdka fr 2012-02-11 13:02:09.0 in 3cu2xmfag82sosk4 0 57
903031 SPH-P100 8gpd5 fr 2012-02-11 13:02:38.0 in 3cu2xmfag82sosk4 1 29

Table 21: Example of 25 consecutive clicks from the same IP for publisher 8ih09 (training
set).

For the clicks in Table 21, we see the following interval frequencies: (0, 0, 2, 4, 0, 1, 1, 1,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11), where the ith element represents
the count for the ith interval. For example, we observe two clicks with a time gap between
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10s and 20s (id 14197602 with 19s and id 14198584 with 15s)2. For each publisher, we
proceeded analogously for all IP addresses and derived the cumulative interval frequency
count, which is the long click profile. For the publisher 8ih09, for instance, this profile is
(0, 0, 17, 25, 26, 30, 20, 21, 19, 14, 7, 5, 9, 9, 7, 2, 7, 8, 4, 3, 7, 3, 3, 2, 1, 1, 2, 3, 1, 1, 1, 41), where
the ith element represents the cumulative count for the ith interval. We saw that clicks
from the same IP address tend to occur in relatively short sequences for 8ih09, which is in
fact labeled as Fraud. By contrast, let us consider the profile of a publisher labeled as OK,
for example, 8i7wi. Its long click profile is (0, 0, 4, 3, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 76); here, short click sequences are less frequent. Another publisher,
8jkh1, is labeled as Observation, and its long click profile is (6, 13, 11, 19, 22, 8, 13, 13,
21, 17, 13, 14, 11, 7, 12, 9, 5, 8, 7, 7, 5, 8, 1, 5, 6, 5, 2, 1, 2, 2, 5, 404).

Figure 6(a) shows the click frequencies per interval, derived from all long click profiles
per group. We see that, overall, consecutive clicks that follow one another rather quickly
occur more often for fraudulent publishers than for those with status Observation or OK.

6.1.4 Short click profile

The short click profile was derived in the same way as the long click profile, except that at
least 5 (and not 10) consecutive clicks must have come from the same IP address. Figure 6(b)
shows the click frequencies per interval, derived from all short click profiles per group. Again,
we observed that quick consecutive clicks occur more often in fraudulent publishers than in
those with status Observation or OK.

6.1.5 Profile of clicks coming from the same URL

The long and short click profiles ignored the URL where an advertisement had been clicked
on. It is possible, however, that a fraudulent (human) clicker does not navigate too often
from one web site to another. To derive a pattern of clicks coming from the same URL, we
asked for each publisher: how many clicks came from the same IP address and the same
URL in less than 5s, between 5s and 10s, between 10s and 20s, and so on up to the interval
> 300s. At least 5 clicks must have come from each IP address. A problem with this
approach, however, was that the URL information was missing for many clickers.

Consider again Table 21. The column referredurl contains encrypted information
about the URL. The column same URL contains a flag, indicating whether the clicker has
left (= 0) or stayed (= 1) on the same URL. We considered only those time gaps that refer
to the same URL; thus, we ignored the gap of 19s for id 14197602, for example, because
the clicker has navigated from 3gza50jfnzcw44wc to 14qhcdsqvou88kos.

Figure 6(c) shows the click frequencies per interval, derived from all click profiles from
identical URLs. Similarly, we observed that quick consecutive clicks occur more often in
fraudulent publishers than in those with status Observation or OK.

6.1.6 Redflag

For each publisher, we checked if there were at least 5 clicks from the same IP address and
the same URL and with a time gap of less than 20s. If so, we incremented a flag (redflag)

2. We also tracked the relative counts, i.e., the interval counts divided by the respective set size.
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(a)

(b)

(c)

Figure 6: Click frequency per interval based on (a) long click profiles, (b) short
click profiles, and (c) click profiles from the same URL. The intervals are
[0s, 5s], ]5s, 10s], ]10s, 20s], ...]300s,+∞).

for that publisher. In Figure 7, publishers from the training set are ranked from left to
right based on decreasing values of redflag. Fraudulent publishers (red) and those under
observation (blue) are concentrated towards the left hand side. Thus, the larger redflag,
the more suspicious is the publisher. Redflag is in fact a significant indicator of fraudulent
behavior (P < 0.001, Kruskal-Wallis test).
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Figure 7: Publishers (from the training set) ranked from left to right based on decreasing
values of redflag. Red bars denote publishers with status Fraud; blue bars denote
publishers with status Observation; white bars denote publishers with status OK.
Fraudulent publishers and those under observation are significantly concentrated
towards the left hand side (P < 0.001, Kruskal-Wallis test).

6.2 Method

According to the rules of the competition, each team was allowed to submit the predictions
of two models for the final evaluation. Below we describe our two models.

For the first model, we used only the basic attributes and the long click profile. The
algorithm was random forests (Breiman, 2001), which first generates a number of unpruned
decision trees (here, classification and regression trees) from bootstrap samples of the train
set. Each tree uses only a random selection of the available attributes. Subsequently, the
algorithm combines the trees into one committee (“forest”) whose predictions result from
aggregating the predictions of the individual trees.

Because of the drastic class imbalance in the train set, either cost-sensitive learning
or up/down-sampling is necessary. For random forests, both approaches were shown to
be on par in terms of performance (Chen et al., 2004). Up/down-sampling, however, is
computationally less expensive because each tree uses only a small subset of the train set.
Given the time constraints, we adopted only one approach: up/down-sampling. A multitude
of sample sizes were tested, and the models were selected based on the out-of-bag (OOB)
error rate. Our preliminary results suggested that the differences between the predictive
performance of the models were not so large. From all models, we finally selected seven
(Table 22) and combined them into one ensemble of random forests. This is model #1, and
it was submitted for the final evaluation.

In addition to the reduced data set, we included the following data for our second
model: short click profile, click profile from identical URLs, and redflag. The algorithm
was random forest with up/down-sampling. We tested again various parameters (number
of trees, terminal node size, sampling ratios) and selected the final model on the basis of the
OOB error rate. The final model consisted of 50 trees with a terminal node size of 3. The
percentages for the bootstrap samples were: 97% for class Fraud, 88% for Observation,
and 61% for OK. This is model #2, and it was submitted for the final evaluation.

6.3 Results and Discussion

6.3.1 Evaluation of click profiles

How well can the three click profiles discriminate the publishers? To address this question,
we trained three random forests, each using only one of these click profiles and no further
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# ntree nodesize Fraud Observation OK OOB error

1 250 5 90% 63% 41% 4.64%
2 250 5 90% 63% 41% 4.67%
3 250 3 83% 75% 51% 4.64%
4 250 3 69% 38% 34% 4.48%
5 250 3 69% 38% 34% 4.74%
6 250 3 90% 44% 51% 4.54%
7 250 4 83% 63% 68% 4.45%

Table 22: Individual random forests with up- and down-sampling (ntree: number of trees
in each forest; nodesize: number of terminal nodes in each tree).

data. Each model consisted of 250 trees, each with 3 terminal nodes. The sampling was
90% for Fraud, 75% for Observation, and 61% for OK. Table 23 shows the classification
results of these three models (not submitted for the final evaluation).

6.3.2 Performance

Table 24 shows the classification results of the two models that were submitted for eval-
uation on the final test set. Model #2 (single random forest, 50 trees) achieved a better
performance on both the training and the validation set. However, the performance on the
final test remarkably deteriorated, compared with the performance of model #1 (ensemble
of random forests, 1750 trees) that used only the reduced data set.

Click profile OOB error Average precision (validation)

Long 4.61% 47.67%
Short 4.64% 46.77%
Clicks from same URL 4.51% 47.89%

Table 23: Classification results of random forests using only click profiles.

Model # OOB error Average precision (validation) Average precision (test)

1 4.61% 49.99% 42.01%
2 3.66% 51.55% 36.94%

Table 24: Classification results of the final two models.

6.3.3 Remarks

Two problems made this competition particularly challenging. First, there is the problem of
concept drift. The train, validation, and test datasets came from different time windows. A
publisher may appear across different sets with a similar pattern, but the provided, actual
status label may be different. For example, a publisher may have been labeled as OK in
early February and then as Observation in late February, perhaps because this publisher
showed a suspicious pattern.

Second, there is no “ground truth” about which publishers are indeed really fraudu-
lent, which are truly OK, and which should be under scrutiny. The real status labels were
generated by some fraud detection algorithm (here called “ground model”, for short), but
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(a) (b)

(c) (d)

Figure 8: Distribution of the train dataset: (a) Number of clicks, (b) Number of unique
visitors (numericip), (c) Number of unique referrers (referredurl), and (d)
Click per visitor ratio (number of clicks divided by number of unique visitors).

how reliable are its predictions? Consider the following example. For one publisher in the
train set, we observed 5706 total clicks. All clicks came from the same IP address, and 3307
(58%) occurred in less than 5s. Also, is it not suspicious that 1086 consecutive clicks (19%)
have an interval of even 0s? It is tempting to speculate that a script generated these clicks.
Surprisingly, the status of that publisher is OK in the train set. In the validation set, the
click profiles of that publisher may also raise attention: more than 70% of all 1149 clicks –
from one and only IP address – occurred in less than 5s, with 248 clicks having a time gap
of 0s. Several similar examples of questionable status labels could be found.

7. Organizer’s entry

7.1 Preprocessing and feature extraction

We first analyzed the basic statistics of the publishers, derived by grouping the entries in
the click database by publisher. For each publisher, we computed the probability distribu-
tion (i.e., normalized frequency) of the number of clicks, number of visitors (identified by
numericip), number of referredurls, and the ratio of the number of clicks over the num-
ber of visitors. Figure 8 shows the four distributions in the train set respectively, grouped
by the publisher’s status. Interestingly, we can observe from Figure 8(a) that the Fraud

publishers have lower click probability than the OK publishers. This can be attributed to
the fact that BuzzCity blocks the traffic of a publisher as soon as its system deems the
publisher as fraudulent. Figure 8(b) shows a similar observation for the distribution of the
visitors.
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Feature type #features

Click per visitor ratio 1
Click per ad ratio 1
Click per deviceua ratio 1
Click per country ratio 1
Click per referredurl ratio 1
Category (binary) 10
Nonempty account (binary) 1
Nonempty address (binary) 1

(a)

Feature type #features

Click fraction from top 20 countries 20
Click fraction from missing country 1
Click fraction from other countries 1
Click fraction from missing referredurl 1
Click fraction from missing deviceua 1

(b)

Feature type #features

Click series 6 × 3 = 18
Visitor series 6 × 3 = 18
Ad series 6 × 3 = 18
Deviceua series 6 × 3 = 18
Country series 6 × 3 = 18
Referredurl series 6 × 3 = 18
Click per visitor ratio series 6 × 3 = 18
Click per ad ratio series 6 × 3 = 18
Click per deviceua ratio series 6 × 3 = 18
Click per country ratio series 6 × 3 = 18
Click per referredurl ratio series 6 × 3 = 18
Gap interval series 6 × 3 = 18

(c)

Table 25: List of features extracted from the BuzzCity’s databases: (a) Basic features, (b)
Spatial features, and (c) Time series features.

For referrer (referredurl) distribution, we found Fraud publishers to be quite different
from OK ones, and the former have low probability similar to the Observation publish-
ers. Further investigation revealed that many Fraud publishers have missing/unknown
referredurl fields. Hence, features derived from referredurl can be good indicators for
fraudulent acts. Lastly, the distribution of the click per visitor ratio in Figure 8(c) shows
that Fraud publishers have higher ratio than the other groups, suggesting that the former
focus on more efficient use of resources (IP address, in this case) to inflate the click traffic.
This motivates us to investigate other ratio-based features (e.g., click per referredurl ratio,
click per deviceua ratio, click per country ratio, etc). Note that, if the denominator of the
ratio (e.g., number of visitors) is zero, the ratio value will be set to zero.

We extracted several basic ratio features out of the click database, as listed in Table
25(a). Since each publisher is associated with only one of the 10 channel categories (cf. Table
3), we also derived 10 boolean features where only one feature can be set to 1 (true). From
the publisher database, on the other hand, we computed two boolean features: whether a
publisher has a bank account (nonempty bank account) and whether (s)he has an address
(nonempty address). Altogether, we have 5 + 10 + 2 = 17 basic features. Using these basic
features alone, however, the detection results were found to be inadequate. To improve the
detection results, we conducted fine-grained analysis on the spatiotemporal aspects of the
publishers’ click traffic, leading to two new types of features: spatial and time series. Table
25(b)-(c) respectively list the spatial and time series features we used in this work.
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For the spatial features, we computed for each publisher the fraction of clicks coming
from different usercountry, referredurl and deviceua. For the usercountry case, we
considered the following top 20 countries in terms of their total number of clicks: {bd
(Bangladesh), br (Brazil), et (Ethiopia), gh (Ghana), id (Indonesia), in (India), ir (Iran),
ke (Kenya), mx (Mexico), my (Malaysia), ng (Nigeria), pk (Pakistan), ru (Russia), sa (Saudi
Arabia), th (Thailand), tr (Turkey), uk (United Kingdom), us (United States), vn (Viet-
nam), and za (South Africa). We further computed the click fraction from missing/unknown
country, and collate the click fraction from the remaining countries. Finally, we calculated
the click fractions from missing referredurl and deviceua, which according to our pre-
liminary studies correlate with the probability of a publisher being fraudulent.

For the time series features, we broke down the 3-day span of each (train, validation,
or test) dataset into windows of 1 minute long, and tracked several values of interest (e.g.,
number of clicks in each minute, number of visitors per minute, duration between etc).
This resulted in a time series vector of length 4,320 (i.e., 3 days = 4.320 minutes) for each
value type. We also experimented with longer time interval (e.g., 1 hour and 1 day), but
the results were worse than the 1 minute interval. Next, we computed several statistical
features aggregating the time series values over the 3-day period. That is, we generated 6
statistical features for each time series: nonzero count, mean, maximum, sum, sum of square,
and standard deviation. Note that, as most publishers have sparse time series, we filtered
out all zero values prior to computing the statistical features. For example, given the series
value v(t) at time window t = {1, 2, . . . , 4320}, the mean of the series is v = 1

N

∑
v(t)6=0 v(t),

where N = |{v(t)|v(t) 6= 0}| is the number of nonzero entries in the series. Our preliminary
studies showed that such approach led to better results than including zero values.

To capture trending patterns in the time series, we also derived the same set of statistical
features for the positive and negative gradients of the series. That is, given a count/ratio
value v(t) at time window t, the positive gradient d+(t) and negative gradient d−(t) are
computed using (2) and (3), respectively:

d+(t) = v(t+ 1)− v(t), if v(t) < v(t+ 1) (2)

d−(t) = v(t)− v(t+ 1), if v(t) > v(t+ 1) (3)

where t = {1, 2, . . . , 4319}. As before, we ruled out all zero values when constructing the
gradient vectors d+(t) and d−(t), and in turn when computing the 6 statistical features
summarizing the gradients. Thus, for each time series type, we have 6× 3 = 18 features.

We also included a special time series called gap interval series. The gap interval refers
the gap between the timestamps of two consecutive clicks. So if a publisher receives C
clicks, then we have a gap interval series of length C−1 (in contrast to the other time series
that consists of 1-minute windows). We summarizes this series using the same 6 × 3 = 18
feature set. In sum, each publisher has 12 types of time series (as per Table 25) and hence
a total of 18× 12 = 216 time series features.

Adding all the basic, spatial, and time series features, we have a total of 17+216+24 =
257 features. Not all these features were useful though, and feature elimination steps shall be
carried out to improve the classification results. This is discussed in Section 7.2.2. Finally,
after generating all the features, we normalized the feature values to be within [0, 1].
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7.2 Method

7.2.1 Classification algorithms

We considered various single and ensemble-typed classification algorithms for the fraud
detection task. As our single classifiers, we employed the following algorithms established
in machine learning and data mining literature:

• Logistic regression: A popular classification method which extends linear regression
analysis to model the relationship between a set of predictive variables and a binary
outcome variable. It produces an outcome probability between 0 and 1. In this work,
we employed the L2-regularized logistic regression implemented in the LIBLINEAR
framework (Fan et al., 2008). To cope with the imbalanced class distribution, we
adjusted the class weights to be inversely proportional to class frequencies.

• Support vector machine (SVM): A state-of-the-art classification method that aims
at maximizing the margin of separation between data points from different classes.
Intuitively, larger margin implies lower generalization error. We employed the SVM
implementation in the LIBSVM framework (Chang and Lin, 2011), with different
kernel functions including linear, polynomial, and radial basis kernels. As with logistic
regression, we defined class weights to be inversely proportional to class frequencies.

• k-nearest neighbors (k-NN): A type of instance-based learning or non-generalizing
learning: it does not attempt to construct a general internal model, but simply stores
instances of the training data (Cover, 1967). Classification is computed from a simple
majority vote of the nearest neighbors of each point; a query point is assigned the
class that has the most representatives within the nearest neighbors of the point.

On the other hand, we employed several decision tree-based ensemble classifiers, which
have been widely used in data mining competitions:

• Random forest : Each tree in the forest is built from a sample drawn with replacement
(i.e., bootstrap sample) from the train set (Breiman, 2001). Moreover, when splitting
a node during the tree construction, the split chosen is not the best split among all
features, but rather the best among a random subset of the features. In contrast to
the original work (Breiman, 2001), which lets each classifier vote for a single class, we
combined the tree classifiers by averaging their probabilistic predictions.

• Gradient tree boosting (GTB): Generalization of boosting to arbitrary differentiable
loss functions (Friedman, 2000). GTB is an accurate off-the-shelf classification method
that builds an additive model in a forward stage-wise fashion; it allows for the opti-
mization of arbitrary differentiable loss functions. In each stage, regression trees are
fit on the negative gradient of the binomial or multinomial deviance loss function.

• Extremely randomized trees (Extra tree): In this tree-based ensemble approach, ran-
domness goes one step further in the way splits are computed. Similar to random
forest, a random subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each candidate
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feature and the best of these randomly-generated thresholds is picked as the splitting
rule (Geurts et al., 2006). To arrive at the final decision, we again combined the tree
classifiers by averaging their probabilistic predictions.

7.2.2 Feature elimination

As mentioned, the complete 257 features are not all useful, and further improvement can
be achieved by removing inconsequential or noisy features. We adopted a feature selection
approach (Guyon and Elisseeff, 2003) that is wrapped around our classifiers providing them
subsets of features and improving their performance. In particular, we devised a simple
wrapper approach which we refer to as backward feature elimination, as outlined in Algo-
rithm 1. The algorithm requires (as input) the set of features and their predefined ranking
or relative importance. The feature importance can be computed in several ways. In tree-
based ensemble methods (e.g., random forest and GTB), features at the top of the tree are
used to contribute to the final prediction decision of a larger fraction of the input samples.
The expected fraction of the samples they contribute to can thus be used as an estimate
of the relative importance of the features. In logistic regression or linear SVM, the feature
importance can be estimated from the absolute values of its weight coefficients. For other
methods that do not naturally give feature ranking (e.g., nonlinear SVM or k-NN), we esti-
mated the feature importance using the F -value of the analysis of variance (ANOVA) test
(Box, 1953). The higher the F -value, the more important the feature is.

Algorithm 1 Backward feature elimination.

Require: Features set F = {fi} and their ranks ri, minimum number of features m, train
data T and validation data V

1: R← {} and Fbest ← F // Initialization
2: M ← train(F, T) // Train M using features F from T
3: AP ← evaluate(M , F, V) // Evaluate M using features F from V
4: APbest ← AP
5: Fs ← sort(F) // Sort the features set in ascending order of ri
6: for i = 1 to |Fs| −m do
7: R← R ∪ {fi}
8: M ← train(Fs \R, T) // Train M using features Fs \R from T
9: AP ← evaluate(M , Fs \R, V) // Evaluate M using features Fs \R from V

10: if APbest ≤ AP then
11: APbest ← AP
12: Fbest ← Fs \R
13: end if
14: end for
15: return Fbest

Our feature elimination method starts from the full feature set and eliminates features
one by one from the lowest rank. An updated classifier is then generated from the remaining
features. Our approach bears some similarities to the recursive feature elimination (Guyon
et al., 2002), but instead of re-ranking the features after each elimination step, we still refer
to the original (full) feature ranking. We also kept track of all performances obtained by
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Average precision
Type Method Best parameter Validation Test

Single Logistic regression C = 512 41.20% 29.65%
SVM (Linear) C = 32 29.74% 23.73%
SVM (Polynomial) C = 8192, degree = 2 29.33% 20.02%
SVM (Radial basis) C = 128 30.37% 23.63%
k-NN k = 5, weight = ”distance” 28.78% 33.46%

Ensemble Random forest ntrees = 100,maxFeat = 6 57.53% 51.44%
GTB ntrees = 900,maxFeat = 28, depth = 5 48.78% 49.25%
Extra trees ntrees = 200,maxFeat = 28 55.36% 54.04%

Table 26: Performances of various classifiers for the validation and test sets. For SVM and
logistic regression, C is the penalty parameter controlling the tradeoff between
training errors and margin maximization. For the ensemble methods, ntrees is
the number of tree models in the ensemble, maxFeat is the maximum number
of features allowed for each tree, and depth is the maximum depth of a tree.

each elimination, rather than stopping the elimination when a performance degradation is
detected. The process is repeated until the minimum number of features m is reached. For
SVM, logistic regression, and k-NN, we set m = 1. For tree-based ensemble methods, we
set m as the maximum number of features maxFeat (i.e., m = maxFeat), since the largest
tree in the ensemble most likely has maxFeat features.

7.3 Results and Discussion

7.3.1 Performance

Table 26 shows the prediction results of all classifiers using the complete features listed
in Figure 25. The best configuration for each classifier was determined using grid search
on the corresponding (meta) parameter space. For logistic regression and SVM, we varied
the penalty parameter C within the range

{
2−5, 2−3, 2−1, 21, . . . , 215

}
and then selected

the parameter that gave the best AP score on the validation set. We also experimented
with different kernels for the SVM, including linear, polynomial (with degree 2), and radial
basis kernels. As for k-NN, we took the parameter k from the range {1, 3, 5, ..., 15}. We
also considered “uniform” and “distance” weight functions for the k-NN predictions, giving
equal weight and weight proportional to the inverse of distance to the neighborhood points,
respectively. Out of these single classifiers, k-NN with ’distance’ weight yielded the best
score on the test set, suggesting that the decision boundary for the Fraud class is complex.
For SVM, employing nonlinear kernel in place of linear kernel did not improve the result.

We further experimented with the tree ensemble methods (i.e., random forest, GTB, and
Extra trees). For each method, we selected the best combination of ntree, maxFeat, and
depth from the range {100, 200, 300, . . . , 1000}, {2, 4, 6, . . . , 30}, and {1, 2, 3, 4, 5}, respec-
tively. Among the three methods, we found that the extremely randomized trees yielded
the best AP score int the test set, followed by the random forest which performed best
on the validation set. In comparison to the single classifiers, we can see that the ensemble
methods produced substantially higher AP scores. A plausible explanation is that ensem-
ble methods try to exploit the local different behavior of the base learners to enhance the
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(a) (b)

Figure 9: Feature ranking as obtained by: (a) Extra trees, and (b) Random forest.

accuracy of the overall system. Also, using mixture of base models (instead of choosing
just one) can help reduce the risk of (accidentally) selecting a poorly performing classifier,
thereby reducing the overall system variance. Yet another key ingredient of effective ensem-
ble system is the diversity of its constituent models. In the case of extremely randomized
trees, the randomization of the split thresholds (in addition to the bootstrapping step in
random forest) helps promote the diversity, leading not only to faster ensemble construction
but also reduced variance of the overall system.

7.3.2 Feature ranking

In Figure 9, we show the top 10 features found by our two best classifiers, Extra trees and
random forest, whereby feature importance was estimated from the expected fraction of
the samples the tree components contribute to (cf. Section 7.2.2). These features revealed
several interesting observations. For instance, the top three features of the extremely ran-
domized trees suggest that Fraud publishers tend to have missing/unknown referredurl,
which would be captured by the high click per referredurl ratio and high click fraction from
unknown referredurl. Moreover, high click traffic from high-risk countries such as In-
donesia can indicate fraudulent behavior (similar to the findings from the first competition
winner). We can also observe that the ratio features and their related time series features,
particularly the sum, count and uptrend (positive gradient) features, may be indicative of
fraudulent behaviors. Similar observations were found by random forest, although the click
fraction from high-risk countries were not deemed as important. This, in turn, may explain
its inferior performance with respect to Extra trees.

7.3.3 Model simplification

Using the feature elimination procedure outlined in Algorithm 1, we can remove incon-
sequential features and further improve the detection performance. Table 27 shows the
consolidated results of different classifiers after feature elimination. In general, feature
elimination improved both performances on the validation and test sets, while simplifying
the classification models. We observed a large portion of features being removed by the
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Full features Reduced features
Type Method Validation AP Test AP #features Validation AP Test AP

Single Logistic regression 41.20% 29.65% 46 / 257 46.02% 31.18%
SVM (Linear) 30.45% 21.89% 38 / 257 36.75% 26.91%
SVM (Polynomial) 22.69% 16.72% 256 / 257 28.42% 20.23%
SVM (Radial basis) 34.32% 23.38% 255 / 257 39.10% 23.66%
k-NN 28.78% 33.46% 257 / 257 28.78% 33.46%

Ensemble Random forest 57.53% 51.44% 59 / 257 58.84% 52.17%
GTB 48.78% 49.25% 235 / 257 58.33% 49.90%
Extra trees 55.36% 54.04% 118 / 257 57.79% 55.64%

Table 27: Performances of single and ensemble classifiers after feature elimination.

logistic regression, linear SVM, random forest, and Extra trees, leading to a fair amount of
improvements. By contrast, only small improvements were observed in GTB and nonlinear
SVMs, which can be attributed to the marginal feature removals.

8. Conclusion

The results of the FDMA 2012 competition exceeded our expectations in several ways.
First, we have high level of participation, although this is our first time organizing such
competition. Second, the participants turned in good results quickly, and the performances
continually improved toward the end of the competition, showing the interesting potentials
of various feature engineering and data mining methods. We conclude this paper by summa-
rizing the solutions proposed by the winning teams, and then providing several important
lessons we can learn from the competition results.

8.1 Methods employed

We briefly comment on the methods commonly used by the winning teams as well as the
remaining participants, as follows:

• Preprocessing: From the competition, we can see that most participants focused
on time-series features generated through analyzing the click traffic of a publisher at
multiple time resolutions (windows) and taking the statistics across time. Only a few
participants utilized spatial features by grouping the click traffic based on country,
referredurl, channel, etc. Simple normalization was also often used to improve the
performance of the classifiers, such as normalization to [0, 1]. Feature transformation
methods (e.g., principal component analysis) were rarely used and reported not to
bring performance improvements.

• Feature selection: Feature selection approaches broadly fall into two types: filter
and wrapper methods (Guyon and Elisseeff, 2003). Filter methods include feature
selection algorithms that are independent of any predictors, filtering out features that
have little chance to be useful in data analysis. Filters are usually less computationally
intensive than wrappers, but they produce a feature set which is not tuned to a
specific type of predictive model. On the other hand, algorithms of the wrapper
type are wrapped around predictors, providing them subsets of features and receiving
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their feedback (usually accuracy). These wrapper approaches are aimed at improving
results of the specific predictors they work with. Some participants used feature
selection methods and reported that, in general, the wrapper methods performed
better than the filter methods.

• Classification algorithm: In this competition, ensembles of decision trees were the
most widely used approach, providing fairly fast learning and well suited to highly-
skewed class distribution, noisy nonlinear patterns, and mixed variable types. More
specifically, this success can be attributed to several factors. First, there is a lack
of data to properly represent the true distribution, in which case the learning algo-
rithm can find many different hypotheses that all give the same accuracy on the train
data. By constructing an ensemble out of these accurate classifiers, the algorithm can
”average” their votes and reduce the risk of choosing the wrong classifier. Second,
many learning algorithms work by some form of local search that may get stuck in
local optima. An ensemble built by running the local search from many different ini-
tial conditions may provide better approximation to the true, unknown function than
any of the individual classifiers. Lastly, for many datasets, the true function cannot
be captured by a single hypothesis. By forming weighted sums of hypotheses in an
ensemble, we can expand the space of representable functions.

All in all, ensemble methods combined with wrapper methods proved to be an effective
approach for fraud detection. In practice, however, single models would still be preferred,
owing to interpretability and tractability reasons. Future endeavors in this enterprise in-
clude devising a novel class of single classification algorithms, capable of matching the
performances obtained by the top ranking participants.

8.2 What we have learned

The results from the FDMA 2012 Competition offer important insights on fraudulent be-
havior in online advertising. Below we summarize the key findings of the winning teams:

• First winner’s entry: From a temporal standpoint, detecting large and/or duplicate
clicks and distinguishing between morning and night traffics are important indicators
for fraudulent acts. In spatial context, it was shown that high click fractions from top
10 high-risk countries provide strong signals for click fraud. For model selection, it is
also important have a model that balances between accuracy and overfitting.

• Second winner’s entry: Fraudulent partners often try to act rationally resembling
legitimate ones. Large variance on deviceua suggests that fraudulent partners use
many agents to act rationally. An ensemble model that averages the predictions of
different algorithms helps to gracefully deal with highly skewed class distribution, and
can lead to better performance than that of the individual methods.

• Third winner’s entry: Analyzing time series at different granularity levels (e.g.,
sec, min, hour, day) is important, and simple statistics (e.g., average, count) worked
well in detecting click fraud. Backward feature elimination can be used to derive the
most important fraud indicators. Linear blending of different models were found to
give the best performance and improve the performance of the individual models.
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• Runner-up’s entry: Many consecutive clicks from the same IP address in a short-
time interval are considered suspicious. The ensemble of random forests was found to
be an effective fraud detection method. The problem of concept drift was observed in
the competition data, and the “ground-truth” labels in the data may be inaccurate
and biased toward BuzzCity’s internal detection procedure.

• Organizer’s entry: Fine-grained analysis of time series at short interval (1 minute)
is crucial for deriving informative features for fraudulent publishers. The best model
showed that referredurl-based features, e.g., click per referredurl ratio and fraction
of missing/unknown referredurl, provide informative indicators for fraud. Also,
the high fraction of clicks from high-risk countries may be used as a signal for click
fraud. Lastly, the combination of tree-based ensemble classifiers and backward feature
elimination leads to a promising approach to tackle highly-imbalanced data.

8.3 Research outlook

Despite the encouraging results and practical usability of our solutions to fraud detection
task, there remains a considerable need for further work on this important topic. An obvious
room for improvement is how the current methods can be used to tackle more sophisticated
types of click fraud. For instance, fraudsters can work together as a group, allowing them
to not only gain more with less (shared) resources, but also reduce the risk of getting
detected. The solutions presented in this paper are currently unable to catch such coalition
attacks. Several works have been dedicated to identify coalition fraud in online advertising
(Metwally et al., 2007; Kim et al., 2011). However, these methods have so far been focused
on investigating network topology structure (e.g., a bipartite graph of publishers and site
visitors), without probing into the detailed spatial and temporal characteristics of either the
individuals or group of individuals involved. Future research is needed to augment extrinsic
network/group features with fine-grained analysis of spatio-temporal features.

A related research question concerns the adaptability of the current methods in the
face of rapidly-evolving fraudulent behavior and strategies. For instance, several solutions
presented in this paper utilize deviceua (user agent) as a feature, which may be easily
exploited by malicious parties once it is known. Although ensemble approaches and the use
of multiple complementary features can address this issue to some extent, there is a need
for more general and robust learning methodologies. A plausible approach is to employ
online learning (Shalev-Shwartz, 2012), which helps deal with concept drift pertaining to
the behavioral changes of fraudulent parties, without having to retrain the prediction model
from scratch. Another interesting direction to address the issue is to develop a transfer
learning capability (Pan and Yang, 2010), utilizing information from (multiple) auxiliary
domains. Such approach is useful to deal with future data having different feature space
and/or different distribution, while minimizing the model re-calibration efforts.
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