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Efficient Index-Based Approaches for Skyline
Queries in Location-Based Applications

Ken C.K. Lee, Baihua Zheng, Member, IEEE, Cindy Chen, and Chi-Yin Chow, Member, IEEE

Abstract—Enriching many location-based applications, various new skyline queries are proposed and formulated based on the notion

of locational dominance, which extends conventional one by taking objects’ nearness to query positions into account additional to

objects’ nonspatial attributes. To answer a representative class of skyline queries for location-based applications efficiently, this paper

presents two index-based approaches, namely, augmented R-tree and dominance diagram. Augmented R-tree extends R-tree by

including aggregated nonspatial attributes in index nodes to enable dominance checks during index traversal. Dominance diagram is a

solution-based approach, by which each object is associated with a precomputed nondominance scope wherein query points should

have the corresponding object not locationally dominated by any other. Dominance diagram enables skyline queries to be evaluated

via parallel and independent comparisons between nondominance scopes and query points, providing very high search efficiency. The

performance of these two approaches is evaluated via empirical studies, in comparison with other possible approaches.

Index Terms—Locational dominance, skyline query, reverse skyline query, subspace skyline query, top-K query, index, search

algorithms, performance

Ç

1 INTRODUCTION

LOCATION-DEPENDENT spatial queries, which find spatial
objects based on their nearness to given query points,

have been extensively studied. Nearest neighbor (NN)
search [9], [23], reverse NN search [12], and so on, are
representative ones. On top of those spatial queries,
nonspatial attributes of objects may be considered together
as additional yet independent query criteria. For instance, a
query “finding the nearest hotel with price below $250”
uses hotel price, i.e., a nonspatial attribute, to distill
inexpensive hotels on top of NN search. Another query
“finding the cheapest hotel within a mile” finds the
cheapest hotel within a range query result.

In fact, many today’s applications would consider both
object nearness and their nonspatial attributes as object
selection and ranking criteria, simultaneously. Thus, many
recent research works, for example, [10], [11], [14], [17], [27],
[29] have explored the notion of locational dominance in
location-dependent information access.

Formally, we consider a set of spatial objects O
distributed in a 2D geographical space S in this paper.
Each object oð2 OÞ is located at a point location (i.e., an
(x; y) coordinate) bounded by S and has values for a set of
nonspatial attributes, A. Notationally, we use jo; pj to

denote the euclidean distance between a location point p
(within S) and o; and we use o½a� to denote o’s value for an
attribute að2 AÞ. Here, all attribute values are assumed to
be ordinal and a smaller attribute value is considered to
be better. Accordingly, Definition 1 gives the definition of
locational dominance; and Example 1 as the running
example illustrates it.

Definition 1 (Locational Dominance). With respect to a query
point q, we denote that an object o locationally dominates
another object o0 by o ‘q o0, which is expressed as follows:

o ‘q o0 ¼ 8a2A o½a� � o0½a� ^ jo; qj � jo0; qj
^ ð9a2Ao½a� < o0½a� _ jo; qj < jo0; qjÞ:

ð1Þ

Besides, we use o 6‘q o0 to indicate that o does not locationally
dominate o0 with respect to q.

Example 1 (Running Example). Fig. 1 depicts the locations
of six example hotels (objects), namely, o1; o2; o3; o4; o5,
and o6, along with their prices and ranks, which are
nonspatial attributes. The smaller its price (rank) is, the
better a hotel is considered to be. The euclidean distances
of objects to a point of attraction, q1, (i.e., a query point)
are listed in the figure.

With respect to q1, o2, and o6, which cannot offer a
lower price, a better rank, or a shorter distance to q1 than
o3, are said to be locationally dominated by o3. Likewise,
o1 is locationally dominated by o5, since o5 is closer to q1

than o1, despite they have the same price and rank.
Because of its best rank, o4 is not dominated. Thus, o3, o4,
and o5 are those not locationally dominated objects with
respect to q1.

Based on this locational dominance notion, many new
spatial queries can be devised to enrich location-based
applications. In this paper, we consider four representative
ones, namely,
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1. location-dependent skyline query (SQ),
2. reverse location-dependent skyline query (RSQ),
3. top-K influential object query (TIQ), and
4. subspace location-dependent skyline query (SSQ),

and develop holistic approaches to answer them
efficiently.

Those queries are detailed as follows:

. Location-dependent skyline query (SQ). Given a query
point q and an object set O, an SQ (which has also
been studied in [10], [11], [14], [17], [27], [29]) finds
all objects that are not locationally dominated by
others with respect to q, formally, SQðq;OÞ ¼ fo j o 2
O; 6 9o02O�fogo0 ‘q og. In the running example, an SQ
issued at q1 returns fo3; o4; o5g.

. Reverse location-dependent skyline query (RSQ). As
opposed to SQ, an RSQ (that borrows the idea of
reverse skyline query [7]) searches for query points
(from a given query point setQ) with respect to which
a specified object o is not locationally dominated.
Hence, RSQðQ; oÞ ¼ fq j q 2 Q, 6 9o02O�fogo0 ‘q og, or
RSQðQ; oÞ ¼ fq j q 2 Q; o 2 SQðq;OÞg.1

As shown in Fig. 2 that considers an additional
point of attraction q2 (that means Q ¼ fq1; q2g), an
RSQ issued at o2 retrieves q2 (not q1), since o2 is
locationally dominated by o3 with respect to q1. This
RSQ is especially useful for a hotel (e.g., o2) to
identify customers (interested in q2) who may prefer
it to other hotels.

. Top-K influential object query (TIQ). SQ can return
those not locationally dominated objects, but they
cannot rank those nondominated objects. In many
situations, it is more desirable if there is a way to tell
which objects are valuable to be recommended given
multiple query points. Accordingly, we introduce
and define the degree of influence for an object o inO
denoted by IoðQÞ as the number of SQ results (each
for one query point in a given query point setQ) that
contain o to weigh the importance of the object.
More formally, IoðQÞ ¼ jfq j q 2 Q; o 2 SQðq; OÞgj, or
jRSQðQ; oÞj. Let us revisit Fig. 2. With respect to
fq1; q2g, Io4

ðfq1; q2gÞ and Io2
ðfq1; q2gÞ are both 2,

whereas all others are 1. That means o2 and o4 are
not locationally dominated with respect to the two
points of attraction. Hence, these hotels are said to be
more influential and more valuable to be recom-
mended to customers.

Here, we introduce TIQ to retrieve K objects

that have the highest degrees of influence to Q;

notationally TIQðQ;OÞ ¼ fo0 j o0 2 O0 � O ^ jO0j ¼
K; 8o2ðO�O0ÞIoðQÞ � Io0 ðQÞg2;3;4.

. Subspace location-dependent skyline query (SSQ). An
SSQ considers a proper subset of nonspatial attributes
(A0 � A) and object proximities to a query point q,
and it retrieves those nonlocationally dominated
objects according to subspace locational dominance as
defined in Definition 2.

Definition 2 (Subspace Locational Dominance). With

respect to a query point q, we denote that an object o subspace

locationally dominates another object o0 by o ‘q;A o0, as

expressed in the following equation:

o ‘q;A0 o0 ¼ 8a2A0 o½a� � o0½a� ^ jo; qj � jo0; qj
^ ð9a2A0 o½a� < o0½a� _ jo; qj < jo0; qjÞ;

ð2Þ

where A0 � A. We also use o 6‘q;A0 o0 to denote that o does not

subspace locationally dominate o0 according to q and A0.
Thus, SSQðq;O;A0Þ ¼ fo j o 2 O; 6 9o02O�fogo0 ‘q;A0 og.

In Fig. 1, when only hotel price is considered, an SSQ at
q1 retrieves o2, o3, o4, and o5. Now, o2 becomes included
compared with SQ at q1, since both o1 and o2 are equidistant
to q1 and have the same good hotel price.

Only at search time can object distances to query points
and so locational dominance relationships among objects be
determined. Hence, the aforementioned skyline queries
cannot trivially be answered through conventional index-
based skyline approaches that require all fixed object
attribute values. Nonindexed approaches inevitably access
all objects to determine their distances to query points and
incur exhaustive object comparisons for dominance checks,
leading to poor search performance.

In this paper, we develop two index-based approaches,

namely, 1) augmented R-tree (AR-Tree) and 2) dominance

diagram (DD), as holistic solutions to efficiently answer

the aforementioned skyline queries efficiently. AR-tree

extends R-tree [26] that indexes objects on their locations

by aggregating objects’ nonspatial attribute values and

maintaining aggregated attribute values in index nodes

for search space pruning. Searches for nonlocationally

2508 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 11, NOVEMBER 2013

Fig. 1. Six example objects and an SQ issued at q1. Fig. 2. RSQ issued at object o2.

1. The differences between RSQ and [7] are discussed in Section 2.

2. Here, K is bounded by the size of an object set jOj.
3. If multiple objects have identical degree of influence, the tie is resolved

arbitrarily.
4. The work [22] defines the influence for an object as the number of top-

K query results that include the object, but differently, we consider the
quantity of SQ results instead.



dominated objects with AR-tree resemble iterative NN
searches [9] and use the aggregated nonspatial attributes
to determine the presence of nonlocationally dominated
objects within certain parts of an index.

DD is a solution-based approach. It maintains a collec-
tion of nondominance scopes. Each nondominance scope is a
spatial area for an object oð2 OÞ denoted by DðoÞ, such that
o is guaranteed to be not locationally dominated by any
other with respect to any query point inside DðoÞ. By
checking the residence of a query point q in DðoÞ, whether
or not o is locationally dominated with respect to q can be
quickly determined. Since locational dominance relation-
ship among objects with respect to all possible locations in S
is precomputed, object comparisons for dominance checks
are completely waived at search time. The notion of
nondominance scope was first introduced in our previous
work [14] to answer location-dependent skyline queries.
Here, we extend the idea to support other queries and
explore parallel processing to boost search efficiency. We
also deal with nondominance scope maintenance in pre-
sence of object set updates.

We conducted empirical studies to evaluate the perfor-
mance of our proposed approaches in comparison with the
state-of-the-art approaches designed for conventional sky-
line queries. DD is the most efficient approach for SQ, RSQ,
and TIQ, whereas AR-tree outperforms DD for SSQ.

The remainder of the paper is organized as follows:
Section 2 reviews related research works. Sections 3 and 4
detail augmented R-tree and dominance diagram, respec-
tively. Further, Section 5 discusses performance evaluation.
At last, Section 6 concludes this paper, and states our
contributions and future work directions.

2 RELATED WORK

Since the introduction of skyline query [4] to retrieve
nondominated records (a.k.a. maximum/minimum vectors
[2] or Pareto-optimal tuples [6]) from a database, various
search techniques have been proposed; and they are
categorized into sort-based approaches (e.g., SFS [6], SaLSa
[1]) and index-based approaches (e.g., Index [25], NN [13],
BBS [21], Z-SKY [15], ZINC [19]).

Index-based approaches generally outperform sort-
based approaches when dominated objects are well
grouped together for search space pruning. Here, we
review BBS [21], one of the most well received index-based
approaches in the following to explain this point. As shown
in Fig. 3, our six hotel objects are indexed on price and rank
and bounded as minimum bounding boxes (MBBs) in an R-
tree. To find nondominated hotels, BBS accesses unexa-
mined objects and index nodes according to their smallest
sums of prices and ranks. The trace of BBS is depicted in the
figure. After the root is visited, N1 is expanded. Then, its
objects o3 and o4 are examined in sequence. Since they are
not dominated, o3 and o4 are both collected in a skyline
query result set. Next, N3 is explored. However, it is
dominated by o3 and thus all its contained objects are
waived from further examination. Further, N2 is explored;
and o1 and o5 are not dominated and collected. Finally, the
skyline query result set, fo1; o3; o4; o5g, is obtained.

Two possible extensions can enable BBS to answer SQs
(SSQs), as discussed below. The first extension indexes
both object locations and nonspatial attributes in R-tree.
Due to curse of dimensionality [3], the access performance
of R-tree, however, deteriorates. The second extension puts
the bounds of object locations in index nodes. Accordingly,
the accesses of objects and index nodes are ordered based
primarily on their smallest sums of nonspatial attributes. In
case of tie, one with the shortest euclidean distance to a
query point is examined first. Thus, BBS runs with almost
the same trace for a query point q1 except that N3 is
explored (since it is not locationally dominated by o3) and
o5 is accessed before o1. Yet, the range of nonspatial
attribute values is often narrower than that of spatial
coordinates. Far apart objects would be grouped into some
index nodes. Thus, many false hits and larger computa-
tional and I/O costs can be incurred.

Since BBS and the two possible extensions cannot
perform well for SQs (SSQs), sort-based approaches appear
to be a good alternative. SaLSa [1] is the most representative
sort-based approach. It examines objects according to their
minimum attribute values and uses the smallest of the
maximum examined objects’ attribute values to shrink the
result search bound. The search terminates as long as no
unexamined objects stay in the search bound. Recently, two
other sort-based approaches [11], [29] for SQs have been
devised. Since objects close to a query point q should not be
locationally dominated by those far away objects, in [11],
objects are scanned in an ascending order of their distances
to q and those not locationally dominated are maintained as
the query result. In [29], �-scanning approach presumes that
conventional skyline SL (based on nonspatial attributes) is
already determined, since it is independent of q. Then it
filters out those locationally dominated objects from SL.
Next, it accesses objects (not in SL) in distance order with
respect to q and collects those not locationally dominated
and those in SL into an SQ result. Differently, our
approaches in this paper are both index-based and ours
support not only SQ but also RSQ, TIQ, and SSQ.

Besides, many skyline query variants have also been
studied. We review those highly related to ours below.
Spatial skyline query [24] defines spatial dominance based
on object distances to individual query points (not non-
spatial attributes). In [24], algorithms such as B2S2 and VS2

for spatial skyline queries were extended to support an SQ
by expanding a search area to cover SL. Then objects within
the search area are examined. This idea is very similar to
the above-discussed �-scanning approach. Notice that
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objects in SL may be spatially scattered, leading to a huge
search area for SQs.

Continuous skyline query [10] treats the distances
between the moving query point and all the objects as one
criterion in dominance relationship and the proposed
solutions [10] rely on object scan.

Dynamic skyline query [7] considers object attribute
values relative to a specified object and determines
nondominated objects according to that object instead of
the origin. Based on dynamic skyline query, reverse skyline
query [7] was defined to find all objects that have a
specified object in their dynamic skylines. Both dynamic
skyline query and reverse skyline query assume all the
dimensions in the space are orthogonal. Differently, RSQ as
introduced in this paper considers the euclidean distances
that are computed according to both objects’ x- and y-
coordinates according to a query point at search time. Due
to the different settings, algorithms designed for the reverse
skyline query cannot evaluate RSQs.

3 AUGMENTED R-TREE

Augmented R-tree (AR-tree) extends spatial R-tree [26] by
maintaining for each index node the minimums of its
enclosed objects’ nonspatial attribute values.

Fig. 4a depicts an AR-tree with a fanout of 3. Our closely
located example objects are grouped into three leaf nodes,
N1, N2, and N3; and their MBBs are formed as depicted in
Fig. 4b. Here, N1, N2, and N3 maintain the minimums of
nonspatial attribute values such as (hotel price, hotel rank)
of objects, namely, (100,4), (200,1) and (100,3), respectively.
Unlike R-tree supporting the second BBS extension as
discussed in Section 2, AR-tree can keep spatially separate
objects in different MBBs. Update of an AR-tree can be
performed by propagating changes from bottom up, i.e.,
from updated objects along tree paths toward the root [16].

On augmented R-tree, search algorithms for SQs, RSQs,
TIQs, and SSQs are developed and presented in the
following sections.

3.1 SQ and SSQ Evaluation Using AR-tree

An SQ (i.e., SQðq;OÞ) can be evaluated through an iterative
NN search [9] on an AR-tree indexing O. In this search,
objects and index nodes are maintained in a priority queue
P and accessed according to their shortest euclidean
distances to q. If multiple queued entries are equidistant
to q, one with the smallest sum of nonspatial attribute

values is examined first. In details, the search in each round
fetches an entry with the smallest distance to q from P and
performs a dominance check on that entry against existing
SQ result candidates maintained in a candidate set C. If it is
locationally dominated by any object in C, the entry is
discarded from a further examination. Otherwise, a node
referred by it is expanded and all its children are enqueued
into P ; or an object pointed by it is inserted into C. When P
becomes vacated, the search completes and all nonlocation-
ally dominated objects maintained in C are returned as the
SQ result.

An SSQ (i.e., SSQðq;O;A0Þ) can be evaluated by this
approach except dominance checks examine A0 instead.

3.2 RSQ Evaluation Using AR-Tree

If o0 ‘q o, an object o0 should not have a longer distance to a
query point q than another object o. Based on this
observation, our search algorithm for RSQs on AR-tree is
developed.

Provided an RSQ (i.e., RSQðQ; oÞ) issued at o, the union
of all vicinity circles cirðq; jo; qjÞ centering at individual
query points qð2 QÞ and encircling o forms an initial search
space. Thereafter, an AR-tree indexing O is traversed.
During the search, those index nodes are expanded as long
as their MBBs overlap any vicinity circle and their
minimums of attribute values are not worse than o.
Otherwise, the descendants of those index nodes are
waived from detailed examinations. If any vicinity circle
encloses any object that locationally dominates o, corre-
sponding query points should not be in an RSQ result and
their circles are removed from the search space. The search
continues until 1) all objects that may locationally dominate
o within any circle are examined, or 2) all circles are
removed. Finally, the query points of those remaining
circles form an RSQ result set.

Fig. 4b illustrates this search algorithm. Let us consider
two query points q1 and q2 and an RSQ issued at o2. Then,
two vicinity circles, i.e., cirðq1; jo2; q1jÞ and cirðq2; jo2; q2jÞ,
form the search space. Assume that the index is traversed in
a depth-first order. After the root is explored, N1 is first
expanded. Then, o2 which is a queried object is skipped.
Next, o1 staying out of the two circles is also skipped.
Thereafter, N2 is accessed. Since cirðq1; jo2; q1jÞ encloses o3

that locationally dominates o2, cirðq1; jo2; q1jÞ is removed
from the search space. Further, the remainders, namely, o4

and N3, which are outside of cirðq2; jo2; q2jÞ, are all skipped.
Finally, q2 is the RSQ result.

3.3 TIQ Evaluation Using AR-Tree

To answer a TIQ, the degree of influence IoðQÞ for each
object o with respect to a set of query points Q needs to be
estimated and then K objects with the greatest degrees of
influence are outputted.

If IoðQÞ for each object o is estimated based on
jRSQðQ; oÞj, a huge number of RSQs are evaluated against
Q, making TIQs costly to answer. Rather, IoðQÞ for each
object o can be incrementally computed through evaluating
SQs on individual query points q in Q, which are expected
to be smaller than O, in practice.

This incremental search algorithm for TIQ is described as
follows: First, each object o is provided with a counter cnto
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to keep track of the number of SQ results that include o.

Initially, cnto is set to 0. Afterward, SQs are evaluated, each

for one query point q in Q. Whenever o is included in an SQ

result, cnto is incremented by one. After all SQs are

evaluated, cnto indicates IoðQÞ and K objects with the

largest counter values are returned.
The efficiency of this incremental approach can be

further improved by saving some SQs from being eval-

uated. As we can observe, some closely located query points

may produce identical SQ results. That means if an SQ at a

query point q has been evaluated, SQs issued at n other

query points near q may share the same SQ result. In this

case, the counters for those SQ result objects can be directly

incremented by nþ 1. To enable a quick determination

whether one SQ result for q can be shared to other SQs, we

introduce the notion of validity distance denoted by X q;O for

a given SQ result SQðq;OÞ. Definition 3 formalizes this

validity distance notion. Now, when any query point q0 has

its distance to q, i.e., jq; q0j, not greater than X q;O, SQðq0;OÞ is

guaranteed to be equal to SQðq;OÞ, as explained by

Lemma 1. Thus, an SQ at q0 can be saved from evaluation.

Definition 3 (Validity Distance). Suppose that o1; o2; . . . ojOj
in O are in an ascending distance order with respect to a query

point q, where i < j) joi; qj � joj; qj.5 SQðq;OÞ (� O) are

SQ result objects. We denote that o has no worse attributes than

o0 (i.e., 8a2Ao½a� � o0½a�) by o / o0. Accordingly, we formulate

validity distance for SQðq;OÞ (denoted by X q;O) as follows:

X q;O ¼ min
oi2O

�
X q;OðoiÞ

�
;

where X q;OðoiÞ suggests a validity distance for oi that oi
remains either nonlocationally dominated (if it is in SQðq;OÞ)
or locationally dominated (if it is not in SQðq;OÞ). In detail,

X q;OðoiÞ is formulated according to three following conditions.

Specifically,

X q;OðoiÞ

¼

1; if oi 2 SQðq;OÞ ^ 6 9i<j oj / oi;
joj; qj � joi; qj

2
; j ¼ minfj j i < j; oj / oig;

if oi 2 SQðq;OÞ ^ 9i<j oj / oi;
joi; qj � joj; qj

2
; j ¼ maxfj j j < i; oj 2 SQðq;OÞ ^ oj / oig;

otherwise ði:e:; oi 62 SQðq;OÞÞ:

8>>>>>>>>><
>>>>>>>>>:

Lemma 1. Given an SQ result SQðq;OÞ, a corresponding

validity distance X q;O and a query point q0, that jq; q0j �
X q;O ) SQðq;OÞ ¼ SQðq0;OÞ is true.

Proof. By triangular inequality, the distance between any

object o and q0, i.e., jo; q0j is bounded as jo; qj � jq; q0j �
jo; q0j � jo; qj þ jq; q0j, according to jo; qj and jq; q0j. Based

on this, we prove this lemma by contradiction. Here, we

assume that jq; q0j � X q;O but SQðq0;OÞ 6¼ SQðq;OÞ due to

two following possible scenarios.

The first scenario (i.e., SQðq;OÞ � SQðq0;OÞ 6¼ ;) oc-
curs when a certain object oi in SQðq;OÞ becomes
locationally dominated by another object oj (where
oj / oi) with respect to q0; so oi is not included in
SQðq0;OÞ. With respect to q, oi is sorted before oj.
Otherwise, oi should be excluded from SQðq;OÞ. Now,
because of q0, joj; q0j < joi; q0j that implies joj; qj � jq; q0j <
joi; qj þ jq; q0j or joj; qj � joi; qj < 2 � jq; q0j. However, that

jq; q0j � X q;O �
joj; qj � joi; qj

2
< jq; q0j

should not be true. Besides, if no such oj exists, oi should
be included in SQðq0;OÞ.

The second scenario (i.e., SQðq0;OÞ � SQðq;OÞ 6¼ ;)
implies a certain object oi not in SQðq;OÞ becomes

nonlocaitonally dominated by some other with respect

to q0. Logically, there exists an object oj (where oj / oi and

joj; qj < joi; qj) in SQðq;OÞ. As it is closer to q0, oi becomes

nonlocationally dominated by oj, i.e., joi; q0j < joj; q0j,
which can be rewritten into joi; qj � jq; q0j < joj; qj þ jq; q0j.
Again, this results in jq; q0j � X q;O � joi;qj�joj;qj2 < jq; q0j,
which should not be true.

Since the two scenarios can never happen when jq; q0j �
X q;O, the statement SQðq;OÞ ¼ SQðq0;OÞ is true. tu

The computation of the validity distance X q;O for
SQðq;OÞ can be incrementally computed and seamlessly
integrated with SQ evaluation. The logic is outlined in
Algorithm 1.

Algorithm 1. Validity distance Xðq;OÞ computation.
Global: validity distance X q;O (initialized to 1)

Input: an entry � (an object or index node)

BEGIN

1. if � is an index node and 6 9oi2C oi ‘q � then return;

2. foreach (o 2 C in desc. dist. order w.r.t. q) do

3. if (� / o) then

4. X q;O  minðX q;O; j�;qj�jo;qj2 Þ;
5. return;

END

In the algorithm, X q;O is maintained as a global variable
and initialized to 1. Then, an entry �, which can be either
an object or an index node, is examined in each invocation.
If an entry is an index node and it is not locationally
dominated by existing result candidates in C, the algorithm
ends immediately without updating X q;O (line 1). This is
because descendants enclosed by the node will be visited in
subsequent invocations. Here, the result of dominance
check for � can be obtained from SQ evaluation. Next, SQ
result candidates are compared with � in a descending
distance order with respect to q (lines 2-5). When � has its
nonspatial attributes not worse than any result object o (i.e.,
� / o) in C, X q;O is updated to j�;qj�jo;qj2 if it is smaller than the
current value of X q;O (line 4). Thereafter, the algorithm
completes (line 5), as objects accessed after o cannot provide
any shorter validity distance. Besides, some index nodes
would be pruned during SQ evacuation, so this algorithm
may provide a shorter validity distance than the actual one.
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5. If multiple objects are equidistant from q, one with the smallest sum of
nonspatial attributes are ordered first. Otherwise, the tie is broken
arbitrarily.



Finally, with the validity distances for individual SQs,
our search algorithm (as depicted in Algorithm 2) for TIQs
can run very efficiently.

Algorithm 2. TIQ Search.

Input: a set of query points Q;

the number of req. objects K
Output: K result objects O0 (� O)

BEGIN

1. cnto  0; 8o 2 O;

2. while (Q 6¼ ;) do

3. pick q from Q; Q  Q� fqg;
4. evaluate SQðq;OÞ and X q;O (based on Algorithm 1);

5. Q0  fq0 j q0 2 Q; jq; q0j � X q;Og;
6. cnto  cnto þ 1þ jQ0j; 8o 2 SQðq;OÞ;
7. Q  Q�Q0;
8. O0 fo1; o2; � � � oK j oi; oj 2 O; i < j) cntoi � cntojg;
9. output O0;

END

In the algorithm, the result for an SQ at each query point
q and corresponding validity distance X q;O are computed
(line 4). Next, all remaining query points whose distances to
q are smaller than X q;O are collected into Q0 (line 5). Then,
cnto for each object o is incremented by 1þ jQ0j (line 6). The
search completes after all query points are evaluated.
Finally, K objects with the greatest counter values are
determined and returned (lines 8-9).

4 DOMINANCE DIAGRAM

Dominance diagram (DD) is a solution-based approach,
based on the notion of nondominance scopes. In what
follows, we formulate nondominance scope and devise
algorithms for 1) nondominance scope computation, 2) SQ,
RSQ, SSQ, and TIQ evaluation based on indexed nondomi-
nance scopes, and 3) nondominance scope maintenance. All
those algorithms can run in parallel.

4.1 Nondominance Scope Formulation

First of all, Definition 4 gives the formal definition of
nondominance scopes.

Definition 4 (Nondominance Scopes). For an object o, a
nondominance scope DðoÞ, represents an area (� S) such that
with respect to any point p 2 DðoÞ, o is not locationally
dominated by any other objects, i.e., 8o02O�fog8p2DðoÞo0 6‘p o.
Based on this, DðoÞ is formulated and expressed as follows:

DðoÞ ¼ fp j p 2 S ^ 6 9o02ðO�fogÞ o0 ‘p og: ð3Þ

On the other hand, because an infinite number of possible
points in S and a quadratic number of object comparisons
need to be examined for each possible point, computing
precise nondominance scopes according to (3) is computa-
tionally infeasible. Here, we revise a nondominance scope
formulation to improve the computational cost. First, we use
Do0 ðoÞ to denote a region that an object o is not locationally
dominated by another object o0. Correspondingly, DðoÞ is
logically treated as an intersection area among Do0 ðoÞ for all
other objects o0 (o0 6¼ o) bounded by S, as expressed in the
following equation:

DðoÞ ¼
\

o02O�fog
ðDo0 ðoÞ \ SÞ: ð4Þ

Now, let us focus on the formulation of Do0 ðoÞ. Recall (1)
in Definition 1, all the three conditions should hold if o is
locationally dominated by o0. In reverse thinking, o is not
locationally dominated by o0 if any of these conditions is
violated. Accordingly, we identify three disjointed condi-
tions that o cannot be locationally dominated by o0 with
respect to any point p in S (i.e., o0 6‘p o) as stated in (5). Based
on these conditions, Do0 ðoÞ can be efficiently and precisely
derived

o0 6‘p o ¼ :ðð8a2Ao0½a� � o½a�Þ
^ ðjo0; pj � jo; pjÞ
^ ð9a2Ao0½a� < o½a� _ jo0; qj < jo; pjÞÞ
¼ ð9a2Ao0½a� > o½a�Þ
_ ðjo0; pj > jo; pjÞ
_ ð8a2Ao0½a� � o½a� ^ jo0; pj � jo; pjÞ
¼ ð9a2Ao0½a� > o½a�Þ
_ ðjo0; pj > jo; pjÞ
_ ð8a2Ao0½a� ¼ o½a� ^ jo0; pj ¼ jo; pjÞ:

ð5Þ

These three conditions enable us to identify all possible
points p, just according to the nonspatial attribute values
and locations of o and o0. They are detailed as follows:
Condition 1: 9a2A o0½a� > o½a� is satisfied when o has some
nonspatial attributes better than o0, no matter o0 is closer to p
than o or not. With this condition, an entire space S is
implied to contribute Do0 ðoÞ. Condition 2: jo0; pj > jo; pj is
true, if p is closer to o than o0. This condition implies an area
covered by a half-plane Ho;o0 [20] but not the perpendicular
bisector Bo;o0 [20] constitutes Do0 ðoÞ. Here, Ho;o0 �Bo;o0 covers
all locations closer to o than o0 and Bo;o0 refers to those
locations equidistant to o and o0. Condition 3: 8a2A o0½a� �
o½a� ^ jo0; pj � jo; pj can be fur ther rewr i t ten in to
8a2A o0½a� ¼ o½a� ^ jo0; pj ¼ jo; pj, because of partial overlaps
with the former two conditions. This condition says both o
and o0 have equal values for all nonspatial attributes and
they are equally close to some locations, implying p on the
perpendicular bisector Bo;o0 between o and o0.

Based on the above analysis, Do0 ðoÞ for an object o with
respect to another object o0 consists of three components,
namely, D1o0 ðoÞ, D2o0 ðoÞ, and D3o0 ðoÞ; and it is formally
stated as follows:

Do0 ðoÞ ¼ D1o0 ðoÞ [ D2o0 ðoÞ [ D3o0 ðoÞ; ð6Þ

where

D1o0 ðoÞ ¼
S; if 9a2A o0½a� > o½a�;
;; otherwise:

�

D2o0 ðoÞ ¼ ðHo;o0 �Bo;o0 Þ; and

D3o0 ðoÞ ¼
Bo;o0 ; 8a2A o½a� ¼ o0½a�;
;; otherwise:

�

Let us exemplify how nondominated scopes are formed
for our example objects. As it has the lowest price, o1 is
not dominated by other objects except o5 that has equal
values in nonspatial attributes, Dðo1Þ includes both Ho1;o5
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and Bo5;o1
, according to Conditions 2 and 3, respectively.

Symmetrically, Ho5;o1
[Bo5;o1

forms Dðo5Þ. Both Dðo1Þ and
Dðo5Þ are depicted in Fig. 5a.

Next, o2 has no nonspatial attributes better than o1, o3,
o5, and o6, so Dðo2Þ as shown in Fig. 5b is formed as the
intersection area of Ho2;oi �Bo2;oi , where oi 2 fo1; o3; o5; o6g.
Further, o6 is only dominated by o3. Hence, Dðo6Þ equals
Ho6;o3

�Bo6;o3
, as shown in Fig. 5c. Finally, o3 and o4, which

are not dominated by any other objects, have an entire
space as their nondominance scopes. Fig. 5d depicts Dðo3Þ
and Dðo4Þ.

An object o can obtain an empty nondominance scope,
i.e., DðoÞ ¼ ; if 1) another object o0 is colocated at o and 2) o0

has all nonspatial attributes not worse than o and one or
more attributes strictly better than o. In this case, DðoÞ needs
not computed and maintained.

To represent DðoÞ, which is an n-vertex convex polygon,
we maintain a list of n vertexes: v0; . . . vn�1, in a counter-
clockwise order around o. The ith edge connects two
adjacent vertexes, i.e., ðvi; vðiþ1Þmod nÞ for i 2 ½0; n� 1�. Refer
to Fig. 5, Dðo2Þ is composed of vertexes v0, v1, and v2.
Besides, an n-bit vector is stored, in which the ith bit
indicates whether the ith edge (i.e., a segment of a
perpendicular bisector) is included as a part of DðoÞ. In
the figure, edges bounding Dðo2Þ are not included, and thus
all the corresponding bits are set to off. To determine
whether a given point p is inside DðoÞ (i.e., p 2 DðoÞ), we can
check if p is on the left side of every edge ðvi; vðiþ1Þmod nÞ if
the ith bit is off, or if p is not on the right side of every
ðvi; vðiþ1Þmod nÞ if the ith bit is on.

4.2 Nondominance Scope Computation

Despite (4) provides an equivalent and more efficient
nondominance scope formulation than (3), it would still
incur a lot of object comparisons. In this section, we derive
and present an efficient nondominance scope computation
algorithm equipped with some optimization strategies,
according to (4).

To efficiently compute nondominance scopes, we devise
four following strategies:

1. Parallelizing nondominance scope computation. Nondo-
minance scopes for objects can be independently
derived. Thus, the computation can be parallelized
in available processors to shorten the elapsed time.

2. Examining objects with no worse attributes only.
According to the first condition of (6), any object o0

with any nonspatial attributes worse than o con-
tributes an entire space S to Do0 ðoÞ. Thus, compar-
isons between o and o0 can be saved. Our second
optimization strategy is that only those with all
attributes not worse than o are accessed.

3. Exploiting largest empty circle property. At each vertex v
of a nondominance scope DðoÞ for an object o, a
circumcircle cirðv; jv; ojÞ whose radius is jv; oj is
formed according to two or more objects that
effectively affect the formation of DðoÞ. If they are
the actual vertexes ofDðoÞ, these circumcircles should
only include any other objects whose attributes are all
better than or equal to o. Fig. 6 illustratesDðo2Þ’s three
circumcircles centering at vertexes v0, v1, and v2. The
radii of these circumcircles are jv0; o2j, jv1; o2j,
and jv2; o2j. Dðo2Þ is formed since cirðv0; jv0; o2jÞ,
cirðv1; jv1; o2jÞ, cirðv1; jv1; o2jÞ are empty. This is the
so-called largest empty circle property.

Accordingly, our third strategy is to exploit this
largest empty circle property to eliminate detailed
comparisons for certain objects. In our example,
after o5 is examined, Dðo2Þ is formed as shown in
Fig. 6. Since o6 is just on the border but not enclosed
by any circumcircle, o6 can be completely ignored in
refining Dðo2Þ.

4. Comparing objects in distance order. DðoÞ for an object o
is mostly determined by those objects near o.
Therefore, our fourth strategy suggests to examine
objects according to their nearness to o so as to refine
o’s nondominance scope. Additionally, we check
jo0; oj against the diameters of all largest empty
circles (i.e, 2	 jv; oj for all vertexes v) of currently
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formed DðoÞ. If jo0; oj > maxvf2	 jv; ojg, o0 and
subsequent objects are guaranteed to be outside of
all circumcircles and o can be skipped from
examination. Thereafter, computation DðoÞ is done
and no further refinement is needed.

Based on all the discussed optimization strate-
gies, a nondominance scope computation algorithm
is developed and its pseudocode is outlined in
Algorithm 3.

Algorithm 3. Nondominance Scope Computation.

Input: an object set O; an entire space S;

the root of an aggregated R-tree r;
the number of processors num;

Output: a set of nondominance scopes D;

BEGIN

1. divide O evenly into O1 [ O2 [ � � � Onum;

2. parallel foreach i 2 ½1; num� do // opt. 1

3. foreach o 2 Oi do

4. DðoÞ  S; P .enqueue(r);

5. while (P is not empty) do // opt. 4

6. � P .dequeue();

7. if jo; �j > maxv2vertexðDðoÞÞ 2	 jv; oj then

goto 15; // opt. 4

8. if (� is o) return 5;

9. if 9a2Ao½a� < �½a� then goto 5; // opt. 2

10. if 8v2vertexðDðoÞÞj�; vj � jo; vj then goto 5;

// opt. 3

11. if � is an object then

12. DðoÞ  DðoÞ \ ðD1�ðoÞ [ D2�ðoÞ [ D3�ðoÞÞ;
13. else // � is an index node

14. P .enqueue(�c), 8�c 2 childð�Þ;
15. D D [ fDðoÞg;
16. return D;

END

The algorithm first divides O evenly into num object sets,
Oi, where i 2 ½1; num� (line 1) according to num, the number
of available processors. Then, it computes nondominance
scopes for objects in different subsets in parallel (lines 2-15).
Next, the nondominance scope DðoÞ for each object o inOi is
computed (lines 3-14). Initially,DðoÞ is set to S and a priority
queue P is used to order the accesses of index nodes and
objects as entries in nondescending distance order. Further,
an entry � is fetched from P and examined according to
different conditions. Whenever � is outside all its circumcir-
cles, computation ofDðoÞ completes (line 7). If � is o (line 8), �
has no better attributes (line 9) or � is not enclosed by any
circumcircle (line 10), a detailed examination of � is skipped.
Further, � is used to refine current DðoÞ if � is an object.
Otherwise (� is an index node), all its children are enqueued
into P for further investigation. Finally, all derived non-
dominance scopes are collected in D and D is outputted at
the end of the computation.

4.3 SQ and RSQ Evaluation on DD

With nondominance scopes, evaluations of SQs and RSQs
can be simplified as comparing individual nondominance
scopes and query points. Notice that this simplified
execution effectively improves evaluation performance.
Besides, query evaluation can be performed in parallel on
multiple processors.

To evaluate an SQ issued at a query point q, nondomi-
nance scopes are checked against a query point q. The
objects of those nondominance scopes that cover q form the
SQ result set. To facilitate SQ evaluation, nondominance
scopes for all objects can be indexed by a spatial index, for
example, R-tree. Then, the index is traversed to find those
nondominance scopes covering q. Further, nondominance
scopes can be maintained in multiple indexes, based on
which searches can be performed in parallel to answer SQs.

Likewise, an RSQ can be answered by checking which
query points are covered by the nondominance scope for a
specified object. Some indexes on query points can be built
in advance to speed up the search. Again, query points
can be divided into different groups to enable parallel
RSQ evaluation.

4.4 TIQ Evaluation on DD

Although the above algorithms for SQs (RSQs) can be
trivially utilized to deduce the degree of influence for
individual objects, it can possibly incur a huge number of
SQ (RSQ) evaluations and a lot of comparisons between
query points and nondominance scopes.

In this section, we develop a more efficient algorithm
that can effectively avoid many comparisons and quickly
narrow down the search space for the most influential
objects. First of all, we assume that 1) all query points are
indexed by a sum R-tree (TQ), which counts for each index
node the number of query points indexed by the node, and
2) all nondominance scopes are indexed by an R-tree (TO).

Algorithm 4. TIQ Search on Dominance Diagram.

Input: the root of R-tree TO on DðoÞ’s, rD;

the root of sum R-tree TQ on query points rQ;

the requested number of result objects K;

Local: priority queue P (initialized to ;);
Output: K result objects O0;
BEGIN

1. enqueue ðrD; frQgÞ to P ;

2. while P is not empty and jO0j < K do

3. ð�D;QÞ  P .dequeue();

4. Q0  f�Q j �Q 2 Q; �Q � �D 6¼ ;g;
5. if jQ0j > 0 then

6. P . enqueue (�D; f�0Q j �0Q 2 childð�QÞ; �Q 2 Q0
^ �Q \ �D 6¼ ;g [ ðQ�Q0Þ);

7. else if (�D is an index node) then

8. P .enqueue ð�0D;QÞ, 8�0D 2 childð�DÞ;
9. else

10. O0  O0 [ fog, where o corresponds to �D;

11. output O0;
END

The search as outlined in Algorithm 4 performs the best
first search. Here, a priority queue P maintains entries in
form of ð�D;QÞ, where �D can be an index node of TO or a
nondominance scope and Q is a set of index nodes of TQ on
query points and/or individual query points covered by �D.
The ordering of entries in P is determined by their numbers
of involved query points. In doing so, nondominance scopes
that are likely to cover the most query points are accessed
first. Initially P is enqueued with an entry containing the
roots of both TO and TQ, i.e., ðrD; frQgÞ. Then, in each
iteration (lines 2-10), an entry ð�D;QÞ is fetched from P and
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examined. To provide a precise estimated degree of

influence for �D, any index nodes of TQ partially covered

by �D, represented byQ0 are expanded and their children are

queued for later investigation (line 6). If no suchQ0 exists, �D
is expanded if �D is an index node (line 8). Otherwise (i.e., �D
is a nondominance scope) its degree of influence equals to

the number of query points covered in Q. Then, the

corresponding object o of �D is inserted to a result set O0
(line 10). When no more entries need to be examined or K

result objects are obtained (line 2), the search terminates and

O0, i.e., result objects, are returned (line 11).

4.5 SSQ Evaluation on DD

It is quite intuitive to determine a nondominance scope

DA0ðoÞ for every object o with respect to every possible

subset of attributes A0 (A0 � A) as to support SSQðq;O;A0Þ.
However, the number of nondominance scopes exponen-

tially grows with the number of nonspatial attributes.
Here, we exploit the notion of nondominance scope envelops

to determine SSQ result candidates and perform compar-

isons among candidate objects to compute an SSQ result.

Notice that DA0ðoÞ � DðoÞ does not hold for all cases. For

instance, Dfrankgðo6Þ, which is a nondominance scope

formed for hotel o6 with respect to the nonspatial attribute

“rank,” as shown in Fig. 7a, is not entirely covered by Dðo6Þ.
Thus, query points on the border of Dfrankgðo6Þ are not

actually covered by Dðo6Þ.
As formally defined in Definition 5, a nondominance

scope envelop EðoÞ covers nondominance scopes DA0ðoÞ for

an object o with respect to all possible A0 (� A). As

explained in Lemmas 2 and 3, that DA0ðoÞ is fully covered by

its envelop EðoÞ always holds.

Definition 5 (Nondominance Scope Envelop). For an object

o (2 O) and A, a nondominance scope envelop, EðoÞ, is an area

covering o’s nondominance scope DðoÞ, as formulated in the

following equation:

EðoÞ ¼
\

o02O�fog
ðEo0 ðoÞ \ SÞ: ð7Þ

Here, Eo0 ðoÞ ¼ Do0 ðoÞ [Ho;o0 .

Lemma 2. For any object o, the statement that DðoÞ should be

contained by EðoÞ holds.

Proof. According to Definition 5 and (6), Do0 ðoÞ � Eo0 ðoÞ,
8o0 2 O � fog; and hence DðoÞ � EðoÞ. tu

Lemma 3. Given an object o and a subset of attributes A0, a
nondominated scope envelop EA0ðoÞ formed with respect to A0
should be contained by EðoÞ.

Proof. Based on the attributes values of o and another object
o0, there are two cases. Case 1: 9a 2 A0 such that
o½a� < o0½a�. Then, DA0;o0 ðoÞ ¼ Do0 ðoÞ ¼ S ) EA0; o0 ðoÞ ¼
Eo0 ðoÞ (where EA0;o0 ðoÞ is a partial EA0ðoÞ formed with
respect to o0). Case 2: 8a 2 A0; o½a� � o0½a�;Do0 ðoÞ ¼ ; )
EA0;o0 ðoÞ ¼ Ho;o0 . Given the fact that Eo0 ðoÞ ¼ Do0 ðoÞ [Ho;o0 ;
EA0;o0 ðoÞ � Eo0 ðoÞ. Both cases shows that EA0;o0 ðoÞ � Eo0 ðoÞ
and hence EA0ðoÞ � EðoÞ. tu

Algorithm 5. SSQ-Search on Dominance Diagram.

Input: the root of an R-tree (r); a query point (q);

a subset of attributes A0
Local: a stack (ST );

Output: a set of result objects (C);
BEGIN

1. ST .push(r); C  ;;
2. while (ST 6¼ ;) do

3. � ST .pop();

4. if (q 62 �’s MBB) then go to 2;

5. if (� is a node N) then ST .push(c), 8c 2 childðNÞ;
6. elseif (q 2 EðoÞ, o is referred by �) then

C  C [ fog;
7. C  foijoi 2 C; 6 9oj2C�foigoj ‘q oig;
8. output C;

END

With nondominance scope envelops, a search algorithm
for an SSQ issued at q is developed and its pseudocode is
outlined in Algorithm 5. In the algorithm, an R-tree that
indexes nondominance scope envelops is traversed in
depth-first order and objects whose envelops cover q are
collected into a candidate set C (lines 1-6). Next, result
candidates are ordered based on certain monotonic scores
(e.g., the euclidean distances to q). Then, those not
subspace locationally dominated are collected (line 7)
and outputted (line 8). The algorithm can be modified to
run in parallel in two rounds. First, each processor collects
a set of result candidates. Then, each processor examines
each result candidate and discards it if it is subspace
locationally dominated.

4.6 Nondominance Scope Maintenance

This section studies and addresses the issue of nondomi-
nance scope maintenance. Without loss of generality, we
consider two major types of updates as 1) object deletion,
and 2) object insertion. Object modification can be treated as
deletion of an object followed by insertion of another object
with a modified position and/or nonspatial attribute
values. Here, we adopt an invalidate-and-recompute
strategy that nondominance scopes affected by an update
are identified and then recomputed according to an
updated object set.

To quickly identify affected nondominance scopes due to
object deletion, each object o is maintained with references
to other objects whose nondominance scopes are formed
based on o. Specifically, the nondominance scopes for those
objects have o encircled in circumcircles centering at certain
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vertices. Those references can be determined during the
computation of nondominance scopes. When an object oold
is deleted, all oold’s referenced objects need to recompute
their nondominance scopes. Fig. 8a depicts the references of
our example objects. Thus, if o5 is deleted, it can be quickly
determined that Dðo1Þ and Dðo2Þ are affected. Since one
reference corresponds to one edge of an object’s nondomi-
nance scope, the storage cost for references is linear to that
for nondominance scopes.

When a new object onew is added, affected nondominance
scopes need refined. Notice that the objects of those affected
nondominance scopes should not have better nonspatial
attributes than onew, and some circumcircles of their
nondominance scopes should enclose onew. Therefore, only
those objects with attributes worse than or equal to onew are
examined and their examinations are ordered according to
their shortest distances of their vertices to onew. When onew is
covered by any circumcircle of a nondominance scope
Dðo0Þ, Dðo0Þ is invalidated and refined with respect to onew.
As depicted in Fig. 8b, a new object onew has the same
nonspatial attributes as o2 and it is covered by a
circumcircle of Dðo2Þ. Thus, o2 recomputes its nondomi-
nance scope. In the mean time, other objects that previously
determined Dðo0Þ need to update their references according
to this update.

Since nondominance scope envelops are derived in the
same way as nondominance scopes, the discussed main-
tenance mechanisms can be directly utilized for nondomi-
nance scopes. Finally, after nondominance scopes are
updated, updated MBBs are propagated in an R-tree to
finish the update.

5 PERFORMANCE EVALUATION

This section reports the performance evaluation of our
proposed approaches, namely, augmented R-tree (ARTree)
and dominance diagram (DD). In the evaluation, elapsed time,
the length of the time duration from when a query is issued
to the time an entire result set is returned, is measured as the
performance metric.

Our experiments were conducted primarily on synthetic
data sets to test the scalability and sensitivity of our
approaches to three major factors, namely, 1) data set
cardinality (i.e., jOj), 2) number of nonspatial attributes
(dimensionality) (jAj), and 3) nonspatial attribute value

distribution. The synthetic data sets consisted of 10k, 50k,
100k, 500k, and 1,000k (i.e., one million) uniformly
distributed objects. We also included four real data sets,
namely, 1) mall, 2) school, 3) church, and 4) whrrl to test the
practicality of our approaches. The data sets mall, school,
and church (extracted from TIGER/Line) contained the
locations of 11,989 shopping malls, 46,676 schools and
108,928 churches, respectively, in the continents of the US.6

And, whrrl consisted of 171,620 points of interest crawled
from www.whrrl.com [28], a location-based social network
website. The geographical spaces for all data sets were
normalized to a square area of [10,000, 10,000]. Each object
was added with 2, 4, 6, or 8 randomly generated nonspatial
attributes. In anticorrelated (anti), independent (indp), and
correlated (corr) distributions [4], attribute values were
generated independently of object positions. In spatially
correlated (sp.corr) distribution, smaller nonspatial attri-
bute values were assigned to those objects closer to the
center of the space and were in correlated distribution.
Each value was bounded in an integer range between 1 and
V , where V was varied among 10, 50, 100, 500, and 1,000.
Table 1 lists the experiment parameters.

We implemented ARTree and DD as well as two
representative state-of-the-art approaches, namely, SaLSa
and BBS (implemented as the second extension, discussed in
Section 2) for comparison, all in GNU C++. We used TGS
bulk loading algorithm [8] to generate disk-based R-trees for
BBS, ARTree, and DD. The maximum size of an index node
(i.e., disk page) was fixed at 4 KB. To perform parallel query
evaluation based on DD and nondominance scope computa-
tion and maintenance, we used POSIX threads [5] (for a
single computer) and open MPI (for a computer cluster).7

All experiments were run on 64-bit Linux computers with
Intel Core i5 2.4-GHz quadcore CPUs, 64-GB RAM, and
SCSI hard drives.

The following subsections report the settings and the
performance of our proposed approaches in answering SQs,
RSQs, TIQs, and SSQs, and the overhead incurred for the
nondominance scope computation and update.

5.1 Performance Evaluation on SQ

The first experiment set evaluates the performance of
ARTree, DD, SaLSa, and BBS for SQs. SaLSa examines
objects sorted in nondescending order of their minimum of
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Fig. 8. References and object insertion.

TABLE 1
Experiment Parameters

Those underlined values are default values.

6. Tiger/Line: www.census.gov/geo/www/tiger.
7. Open MPI: http://www.open-mpi.org.



nonspatial attributes and distances to the query point. For
BBS, objects are indexed on their nonspatial attributes and
their aggregated spatial coordinates are maintained in index
nodes in R-trees. We evaluate the parallel version of DD
(DD-4 cores) as a process running four threads on a
quadcore CPU.8 In each setting, we run 100 SQs at different
query points. Fig. 9 presents experiment results in terms of
average elapsed time.

Figs. 9a, 9b, 9c, and 9d show elapsed time (in milli-
seconds) with respect to the four parameters, namely,

1. object set cardinality jOj,
2. dimensionality jAj,
3. distribution of nonspatial attributes, and
4. value domain range, respectively.

Unless being varied, parameters, jOj, jAj, distribution of A
and V were defaulted at 100k, 6, indp, and 100, respectively.

As we can anticipate, all the approaches took longer
times when data sets with larger cardinality, higher
dimensionality, anticorrelated (even independent) attribute
distribution were experimented. However, no significant
differences are observed when V was varied. This is because
in high dimensional space (six attributes in independent
distribution), objects are sparsely located in the space and so
many of them are not likely to be locationally dominated,
regardless of nonspatial attribute value ranges. Since it is not
significant to the performance, this factor is ignored from
the rest of the experiments.

Specifically, BBS runs slower than SaLSa, because 1) R-
tree maintains spatially far apart objects sharing similar
nonspatial attribute values in MBBs, which results in a large
number of false hits in BBS, 2) R-tree performance
deteriorates when data set dimensionality is high, and
3) extra index access overhead relative to SaLSa. ARtree can
perform slightly faster than SaLSa especially when larger
data set and lower dimensionality were evaluated, since it
could discard nonresult candidates from detailed examina-
tion. DD and DD-4 cores, on the other hand, perform at least
an order of magnitude faster than BBS, SaLSa and ARTree
that provide similar performance. It is because no expensive
dominance checks during searches. Further, DD-4 cores
exhibits an improvement over DD by parallelizing searches.

Fig. 9e reports the elapsed time for all the approaches on
real data sets. Due to a large number of attributes
(defaulted at 6) and indp value distribution, many objects
were not locationally dominated. Thus, high computational
cost (for dominance checks) and I/O cost were resulted in

SaLSa, BBS, and ARTree. Relative to SaLSa (the only
nonindexed approach in the experiments), the average
improvement of BBS, ARTree, DD and DD-4 cores is 28,
120, 370, and 1,480 percent, respectively. These numbers
indicate the outperformance of DD and DD-4 cores in
support of SQs.

5.2 Performance Evaluation on RSQ

The second experiment set evaluates the performance of
ARTree, DD, and DD-4 cores in supporting RSQs. In the
experiments, we selected 100 objects, at which we evaluated
RSQs against 1,000 randomly selected query points. The
experiment results are shown in Fig. 10.

Figs. 10a, 10b, and 10c show results about the impacts of
jOj, jAj, and the attribute value distribution, respectively.
Again, DD and DD-4 cores show superior performance,
more than two orders of magnitude faster than ARTree.
DD-4 cores is the most efficient approach.

In detail, ARTree, DD, and DD-4 cores took longer
elapsed time for larger data sets, due to higher index
access costs (see Fig. 10a). When jAj increases, a slightly
longer elapsed time was resulted, because of higher
computational cost incurred for each dominance check
(see Fig. 10b). Conversely, the performance of ARTree, DD,
and DD-4 cores does not vary much for different value
distributions, since ARTree incurs the same amount of
dominance checks with respect to the same data set size;
and DD and DD-4 cores check the same number of query
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Fig. 9. SQ performance.

8. In the implementation, a pool of four worker threads are first created
(through POSIX threading); and all the threads evaluate an SQ based on
subsets of objects in separate indexes. An SQ result is collected as the union
of results from all the threads. Fig. 10. RSQ performance.



points against a nondominance scope (see Fig. 10c).
Overall, DD performs much faster than ARTree, because
DD needs no dominance checks.

The experiment results on real data sets are depicted in
Fig. 10d. DD, which took less than 0.1 ms in most of the
data sets, exhibits at least three orders of magnitude faster
than ARTree, which consumed, on average, 432.5 ms.
Further, DD-4 cores spent about 0.04 ms on processing an
RSQ in parallel.

5.3 Performance Evaluation on TIQ

The third set of experiments evaluate the performance of
ARTree and DD in supporting TIQs with K set to 100.
We also include ARTree (no VD) that does not use
validity distances to save some SQ evaluations, and DD-4
cores that first determines local top K result candidates
from four subsets of objects and derives the global top K
result from those local results. Besides, we generated two
sets of 1,000 uniformly distributed query points, where
one query set is bounded by a square subspace of
[0.001,0.001] and the other by [0.01,0.01]. The query
points in subspace of [0.001,0.001] are spatially closer to
each other than those in subspace in [0.01,0.01].

Since ARTree (no VD) evaluates all SQs and DD and DD-
4 cores access most objects before K result objects can be
determined, their performance is the same for the two
query point sets; and thus we report their results on query
point sets bounded by [0.001,0.001] only.

We varied the data set cardinality, dimensionality and
distribution of attributes and the results are shown in
Figs. 11a, 11b, and 11c, respectively. ARTree 0.001 and
ARTree 0.01 that run ARTree with validity distance on
query point sets in [0.001,0.001] and [0.01,0.01], respec-
tively, run considerably faster than ARTree (no VD),
especially when smaller data sets, lower dimensionalities
and correlated value distributions were experimented. DD
and DD-4 cores, on the other hand, run faster than others,
because of their fast SQ evaluation. Fig. 11d plots the results
on real data sets. On average, ARTree 0.001, ARTree 0.01,
ARTree (no VD), DD, and DD-4 cores spent 49.3, 58.5, 148.7,
37.2, and 12.0 seconds.

5.4 Performance Evaluation on SSQ

The fourth set of experiments study the performance of
ARTree and DD in SSQ evaluations. Again, we included
DD-4 cores, which filters SSQ result candidates followed by
comparing candidates to determine a final SSQ result set.
We also included SaLSa, which has been shown to perform
faster than BBS in SQs, for comparison. Here, the data set
dimensionality was fixed at 6. By default, three nonspatial
attributes were queried (i.e., jA0j ¼ 3) while other para-
meters were varied.

Very different from the previous experiments, ARTree
performs faster than both DD and DD-4 cores as well as
SaLSa, for synthetic data sets with different cardinality (see
Fig. 12a) and attribute distributions (see Fig. 12c). For coor
and sp.corr, DD-4 cores performs slightly better than
ARTree, because fewer candidates are examined. Mean-
while, the performance of ARTree considerably deteriorates
when higher dimensionality was considered (see Fig. 12b).

As shown in Fig. 12d, ARTree spends 9 ms while DD and
DD-4 cores take on average 1,722 and 538 ms, respectively,
on real data sets. This can be explained that DD and DD-4
cores retrieve many result candidates, according to non-
dominance scope envelops, and perform costly dominance
check among those candidates.

5.5 Indexing Overhead

The final experiment set investigates the overhead of
computing and updating nondominance scopes. Fig. 13a
shows elapsed time taken to compute nondominance
scopes for real data sets and the largest synthetic data sets
with 1,000k objects. In addition to DD and DD-4 cores, we
implemented DD-5	4 cores that computes nondominance
scopes on a small cluster of five computers with quadcore
CPUs and the implementation was based on open MPI. As
shown, DD-5	4 cores took 3.8 seconds for the smallest data
set mall, about 3.5 and 10 minutes for larger data sets church
and whrrl, respectively, and about 66.3 minutes for the
largest synthetic data set.

Next, we examine nondominance scope update costs. In
the experiments, we selected 1,000 objects to delete and
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reinserted them in random positions near their original
locations. In the object selection, we divided all objects into
1,000 groups, each having similar sums of nonspatial
attributes and then selected one object from each group
for update. The experiments were conducted on a single
core. The resulted minimum, average, and maximum
elapsed times are shown in Fig. 13b. From the experiments,
we found that only a very small amount of objects affect
many others’ nondominance scopes. For instance, in whrrl,
only three objects can affect over 2,000 objects’ nondomi-
nance scopes. The majority of objects affect about three or
four other objects. As such, the average elapsed time
incurred for nondominance scope update is expected to be
very close to the minimum elapsed time. The overall
average update time is less than 1 second. Despite the
maximum elapsed time appears to be very long (e.g.,
28 minutes for whrrl), nondominance scope recomputations
can be sped up through parallelization.

From this evaluation, we can see that DD outperforms
ARTree in support of SQ, RSQ, and TIQ and DD can run in
parallel to further boost the search efficiency. ARTree
perform faster than DD for SSQ. They both outperform
SaLSa and BBS, the state-of-the art approaches. Besides,
nondominance scope computation and update can be
quickly performed through parallel processing.

6 CONCLUSION

The notion of locational dominance has been explored to
enrich many location-based spatial queries that search for
the best nearest spatial objects. Accordingly, several sky-
line queries, namely, SQ, RSQ, TIQ, and SSQ are
formulated and studied. In this paper, we have developed
two indexes and corresponding search algorithms based
upon different design principles as holistic solutions to
efficiently address those queries. In short, we have made
four following major contributions:

1. In addition to well-studied SQs, we have formally
defined RSQs, TIQs, and SSQs and discussed their
applications.

2. We have devised augmented R-tree and correspond-
ing algorithms to support SQs, RSQs, TIQs, and
SSQs. Besides, we have introduced the notion of
validity distance to determine whether SQs could
share an identical result, which speeds up the
computation of objects’ degrees of influence.

3. We have derived dominance diagram, a composi-
tion of (indexed) nondominance scopes. We have

detailed the formulation, computation and main-
tenance of nondominance scopes and correspond-
ing search algorithms to evaluate SQs, RSQs, and
TIQs. We have also introduced the notion of
nondominance scope envelop to support SSQs.

4. We have conducted comprehensive empirical stu-
dies to evaluate our proposed approaches in
comparison with the representative state-of-the-art
approaches. The experiment results consistently
demonstrate the good performance of our ap-
proaches. Among our proposed solutions, domi-
nance diagram is the most efficient approach for
SQs, RSQs, and TIQs, whereas augmented R-tree is
desirable to SSQs.

Thus far, we have considered stationary objects and fixed

query points in formulating the indexes supporting studied

skyline queries. We shall investigate the possibilities of our

proposed approaches for moving objects and moving query

points in the future. We also plan to study the issue of

uncertain nonspatial attributes and uncertain locations in

skyline queries [18].
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