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ROAD: A New Spatial Object Search Framework
for Road Networks

Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, Yuan Tian

Abstract—In this paper, we present a new system framework called ROAD for spatial object search on road networks. ROAD is
extensible to diverse object types and efficient for processing various location-dependent spatial queries (LDSQs), as it maintains
objects separately from an underlying network and adopts an effective search space pruning technique. Based on our analysis on the
two essential operations for LDSQ processing, namely, network traversal and object lookup, ROAD organizes a large road network as
a hierarchy of interconnected regional sub-networks (called Rnets). Each Rnet is augmented with (1) shortcuts and (2) object abstracts
to accelerate network traversals and provide quick object lookups, respectively. To manage those shortcuts and object abstracts, two
cooperating indices, namely, Route Overlay and Association Directory are devised. In this paper, we present (1) the Rnet hierarchy
and a number of properties useful in constructing and maintaining Rnet hierarchy, (2) the design and implementation of the ROAD
framework, and (3) a number of efficient search algorithms for single-source LDSQs and multi-source LDSQs. We conduct a theoretical
performance analysis and carry out an empirical study to evaluate ROAD. The analysis and experiment results show the superiority of
ROAD over the state-of-the-art approaches.

Index Terms—Location-Dependent Spatial Query, Spatial Road Network, Indexing Techniques, and Search Algorithms.

✦

1 INTRODUCTION

While location-based services (LBSs) are booming in this
decade, many vendors start to provide map and navigation
services (e.g., Garmin, GoogleMap, MapQuest, NavTeq, Ya-
hoo! Map) along with convenient geo-tagging tools that enable
the content providers (e.g., retail stores, facilities andgeneral
users) to publish location-dependent information on digital
maps [1], [2]. Here, we refer to location-dependent information
(e.g., point of interest, traffic and local events) asspatial
objects(or objects for short). We define queries that search
for spatial objects with respect to user-specified locations
as location-dependent spatial queries(LDSQs). Examples of
LDSQs for conference participants includeQ1: find hotels
within one mile from the conference venue;Q2: locate the
nearest bus station to the conference venue; andQ3: find a
restaurant closest to the hotels of the conference participants.

As we analyzed, two basic operations, namely,network
traversalandobject lookup, are involved in processing LDSQs
on a road network. The former visits network nodes and edges
according to network proximity, while the latter accesses and
checks the attributes of objects located at traversed nodesor
edges against object search criteria. Objects collected during
the course of a traversal form a query result. Logically, the
more network traversals and object lookups are involved, the
larger the query processing overhead is incurred. As shown in
Figure 1 where a network is modeled as a graph, two objects
o1 ando2 are on one side of the network. If a nearest neighbor
(NN) query is issued far away on the other side, say atnq, the
search cost is apparently higher than another NN query issued
somewhere close to the objects.

As network traversals and object placements are constrained
by the network topology, nodes and edges (i.e., the entire
network) conceptually form an objectsearch space. Since

some search subspaces (e.g., the middle portion bounded by
dashed line in Figure 1) may not have objects of interest, we
could facilitate network traversals bypruning those subspaces
without objects of interest. This observation inspires an idea
of search space pruning, based on which we design a novel,
efficient and extensible system framework, calledROAD, for
processing LDSQs on road networks.

o1

o2nq

n1 n3

n2

shortcuts

Rnet R
object abstract: 

{}

Fig. 1: Basic idea behind ROAD framework
In ROAD, a network is first formulated as a set of inter-

connected regional subnets calledRnets, each representing a
search subspace. On top of the Rnets, two kinds of additional
information are derived: (1) selective (i.e., shortest) paths
across an Rnet that enable any traversal to bypass Rnet if it
has no object of interest, and (2) the existence and/or contents
of objects that are inside Rnets to provide quick traversal
guidelines. Both (1) and (2) are further elaborated into the
notions ofshortcutsand object abstract, respectively. Revisit
Figure 1. Two highlighted shortcuts, one fromn1 to n3, and
the other fromn2 to n3, direct the NN search issued atnq

to bypass the RnetR, and enable the traversal to continue at
noden3, since RnetR has no object of interest, as indicated
by its empty object abstract.

To realize ROAD, we propose two novel index structures,
namely,Route OverlayandAssociation Directory (and ROAD
is named after these two key components). The former man-
ages the physical network structure (i.e., nodes and edges)
and the shortcuts, while the latter manipulates the mappings
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of objects and object abstracts on nodes, edges and Rnets.
In this paper, we detail the design, implementation and eval-
uation of ROAD and provide a holistic solution to several
important research issues that include organization of Rnets,
search algorithms for various LDSQs and framework updates.
We also perform an analysis and simulation to evaluate the
ROAD performance. In summary, the significant contributions
presented in this paper are seven-fold:

1) We presentROAD, a novel system framework to support
spatial object searches on road networks. ROAD cleanly
separates the road network and objects, exploits the idea
of search space pruning, and supports searches with
different distance metrics.

2) We formulate Rnet hierarchy and explore several prop-
erties to reduce indexing overhead and improve query
and update performance.

3) We devise efficient search algorithms for single-source
range queries and (k)NN queries, i.e., classical types of
LDSQs, upon the ROAD framework.

4) We devise efficient search algorithms for multi-source
range queries and (k)NN queries to illustrate the exten-
sibility of ROAD for different LDSQs.

5) We develop efficient update techniques for ROAD main-
tenance to handle object and network updates.

6) We perform a theoretical analysis on the space and time
efficiency of ROAD framework.

7) Besides, we conduct an extensive performance evalua-
tion on ROAD.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents the core concepts
behind ROAD. Section 4 and Section 5 discuss the query
processing algorithms for single-source LDSQs and multi-
source LDSQs, respectively. Section 6 discusses the frame-
work maintenance. Section 7 analyzes the ROAD performance.
Section 8 evaluates ROAD compared with existing works
through simulations. Finally, Section 9 concludes this paper.

2 RELATED WORK

Existing research works on processing LDSQs on road net-
works can be roughly categorized assolution-based ap-
proachesandextended spatial database approaches. They are
reviewed as follows.

Solution-based approaches(e.g., VN3 [3], UNICONS [4],
SPIE [5] and Distance Index [6]) utilize some pre-computed
results to evaluate queries. While VN3, UNICONS, SPIE
cater for NN queries, Distance Index supports both range and
NN queries. Distance Index precomputes forall nodes the
distances and pointers to subsequent nodes on paths towards
individual objects, and encodes them asdistance signatures.
To reduce the storage overhead of distance signatures, distance
ranges, rather than precise distances, are adopted such that
distances within one range share the same signature. Figure2
illustrates the distance signatures on objectso1 ando2 stored
at nq andnq′ , with d0 < d1 < d2 < d3. As we can observe,
distance ranges maintained at some nodes about some objects
located at nearby nodes can be very similar or even identical,
that implies redundant storage. Thus, it incurs impractically
large storage overhead.

o�[d�-d�): {}
[d�-d�): {}
[d�-d�): {o�, o�}

o�,o� [d�-d�): {}
[d�-d�): {}
[d�-d�): {o�, o�}

o�,o�
o�

n�'n�
Fig. 2: Distance Index

In general, the pitfalls of solution based approaches include
high pre-computation overhead, massive storage overhead,and
expensive result maintenance cost. Besides, they adapt poorly
to other types of queries, and to objects and network updates.

Extended spatial database approachesincorporate road
networks to existing spatial databases. Due to the coexistence
of object indices and road networks, two search strategies were
studied. The first strategy is based on the idea ofEuclidean
distance boundthat Euclidean distance is always the lower
bound of network distance between any two locations. Ap-
proaches using this strategy [7], [8] first identify all the objects
whose Euclidean distances to the query point are bounded by
a certain distance threshold as a candidate set. Thereafter, the
network distance between each candidate object and the query
point is determined based on shortest path algorithms [9], [10]
or materialized distances [11], [12]; and those with network
distances larger than the threshold are eliminated. The second
strategy is based onnetwork expansionthat gradually expands
a search range on a network until all the nodes and edges that
satisfy the search criteria are visited [7]. Along the traversal,
objects indexed by spatial indexes (e.g., R-tree) associated
with the visited nodes and edges form the result set; and
the paths from a query node to those objects are the shortest
paths. Although more efficient than Euclidean distance bound
approaches, network expansion is still inefficient due to the
slow node-by-nodeexpansion towardsall directions.

nq nq''

o2

o1Shortest Path Quad Tree of nq

Bounded area
(in spatial index) for 
objects o1 and o2.

Fig. 3: Distance browsing on road network
Recently, distance browsing [13] has been proposed based

on the idea of path coherence [14]. As studied in [14], for any
noden, all other nodes with their shortest paths fromn via
one of n’s immediate neighboring nodes are spatially close.
Based on this observation, shortest path quad-tree (SPQT) [13]
indexes all other nodes with respect to a noden. A SPQT forn
is a quad-tree, in which each quad-cellTn(n′) is a rectangular
spatial area associated with one ofn’s immediate neighboring
nodesn′ and the shortest path distance,dn(n′), from n to all
nodes inTn(n′). Then, given a noden and a target nodev, the
quad-cellTn(n′) that coversv can be located. As such,dn(n′)
can be identified as the lower bound of the path distance from
n to v and the shortest path should follow noden′ to approach
v. As shown in Figure 3, given an NN search issued atnq, it
first maps object locations tonq ’s SPQT and then traverses to
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a neighboring noden′′
q with Tnq

(n′′
q ) covering the objects and

dnq
(n′′

q ) being the smallest. It avoids blind network traversal.
However, this approach still needs to traverse the network in
a node by node fashion. Even worse, bulky SPQTs accessed
for all visited nodes make this approaches very I/O-inefficient.
Further, all-pair shortest paths need to be computed in advance
which is very computationally expensive.

Our ROAD differs from all those existing works as it
considers a road network as an object space and utilizes
search space pruning to enhance search performance, that is
not explored by those works. Also, our ROAD is scalable
to networks as it organizes a road network as a hierarchy,
similar to HEPV [11] and HiTi [12]. However, the design and
implementation of HEPV and HiTi only allow point-to-point
shortest path searches. Our ROAD facilitates fast network
expansion that can reach multiple destinations for objects,
needed for LDSQs.

3 THE ROAD FRAMEWORK

In this section, we first introduce Rnets, shortcuts and object
abstracts and discuss Rnet hierarchy formation, i.e., the key
design in support of search space pruning in ROAD. Then,
we present the core of ROAD implementation, namely,Route
Overlay andAssociation Directory.

3.1 Preliminaries

We model a road networkN as a weighted graph that consists
of a set of nodesN and edgesE, i.e.,N = (N, E). A node
n ∈ N represents a road intersection and an edge(n, n′) ∈ E
represents a road segment connecting nodesn andn′. |n, n′|
denotes the edge weight, which represents the travel distance,
or trip time, or toll of (n, n′), and we assume all distances
are positive. For simplicity, we use distance hereafter. A path
P (u, v) stands for a set of edges connecting nodesu and v
and its distance|P (u, v)| =

∑

(n,n′)∈P (u,v) |n, n′|. Among
all paths connecting nodeu and nodev, the one with the
smallest distance is referred to as theshortest path, denoted
by SP (u, v). The network distance||u, v|| betweenu and v
is the distance of their shortest pathSP (u, v), i.e., ||u, v|| =
|SP (u, v)|. Given a set of objects,O, we consider that objects
(in O) reside on edges (i.e., road segments) in a network1.
We denote a mapping functionL(n, n′) on an edge(n, n′) to
represent a set of objects on the edge. Additionally, we use
δ(o, n) (δ(o, n′)) to represent the distance between an object
o ∈ L(n, n′) and the endpointn (n′) of the edge.

In our discussion, all LDSQs are assumed to be initiated at
nodes without loss of generality2. In general, each LDSQ is
specified with a distance conditionD and an attribute predicate
A. Given O mapped onN and a query nodenq, an object,
o (in O), is collected as the answer to an LDSQ if (1) its
distance fromnq, denoted by||nq, o|| (i.e., min(||nq, n|| +
δ(o, n), ||nq, n

′|| + δ(o, n′))) satisfiesD (e.g., ||nq, o|| ≤ 10
miles); and (2) its attributes denoted byo.a satisfy A (e.g.,

1. Objects at nodes (i.e., road intersections) can be treated as they are
located at the end of the corresponding edges.

2. This assumption can be easily relaxed to handle LDSQs issued on edges
via searching objects on the edges followed by running the queries at the
ending nodes of the corresponding edges.

restauranto.cuisine = ‘Italian’). As D andA of each LDSQ
are orthogonal, they are handled independently. To facilitate
our discussion, we list the major notations in Table 1.

Notations Description
N = (N, E) a networkN with nodesN and edgesE
O a set of objects

R = (NR, ER, BR)
an RnetR with nodesNR, edgesER and
border nodesBR (see Def. 1)

L(n, n′) a subset of objects located on edge(n, n′)

L(R)
an object abstract (i.e., objects located inside an
RnetR) (see Def. 2)

||n, n′|| network distance betweenn andn′

δ(o, n) distance between an objecto to a noden

S(b, b′)
a shortcutS between border nodesb andb′ (see
Def. 3)

TABLE 1: Notations

3.2 Rnet, Shortcut and Object Abstract

First of all, we introduce a notion ofregional sub-networks
(i.e., Rnets) as in Definition 1. Each Rnet encloses a set of
edges bounded by a set ofborder nodes. Each border node
serves as the entrance to and the exit of an Rnet.

Definition 1: Rnet. In N = (N, E), an RnetR = (NR,
ER, BR) captures a search subspace, whereNR, ER andBR

stand for nodes, edges and border nodes inR, and
1) ER ⊆ E,
2) NR = {n | (n, n′) ∈ ER ∨ (n′, n) ∈ ER}, and
3) BR = NR ∩ {n|(n, n′) ∈ E′ ∨ (n′, n) ∈ E′}, where

E′=E − ER. �

As in the previous example depicted in Figure 1, when a
search reachesn1 covered by an RnetR, we need (1) a hint
about what objects are inR to decide if a detailed examination
of R is needed; and (2) an artifact atn1 connecting the
other border nodes ofR (e.g., n3) to allow the search to
bypassR and to continue the traversal thereafter. Accordingly,
we defineobject abstractsand shortcutsas in Definition 2
and Definition 3, respectively. Here, an object abstract is the
summary of objects located on enclosed edges and a shortcut
is a shortest path between two border nodes.

Definition 2: Object Abstract. The object abstract of an
RnetR, L(R) indicates all the objects residing on edges in
ER, i.e., L(R) =

⋃

e∈ER
L(e). �

Definition 3: Shortcut. The shortcut,S(b, b′), between two
border nodesb andb′ (∈ BR) of an RnetR is the precomputed
shortest pathSP (b, b′) and its distance is||b, b′||. Notice that
the edges that contribute toSP (b, b′) might not necessarily be
included inER. �

3.3 Rnet Hierarchy

In ROAD, we structure a road network as a hierarchy of Rnets,
where large Rnets at the upper levels enclose small Rnets
at lower levels. At each level, a network can be viewed as
a layer of interconnected Rnets. This design benefits search
ranges of different sizes. To derive an Rnet hierarchy, we
first treat the entire road network as a single level-0 Rnet that
has no border node, and partition it intop1 partitioned Rnets.
Definition 4 formally defines Rnet partitioning. The partitioned
Rnets are the children of the Rnet they partitioned from. At
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each subsequent leveli, we partition each Rnet intopi child
Rnets. Then, at any levelx (∈ [0, l]) wherel is the number of
levels, the network is fully covered by

∏x

i=1 pi interconnected
Rnets. As a whole, there are

∑l

h=0

∏h

i=1 pi Rnets.

Definition 4: Rnet partitioning . Partitioning of an Rnet
R = (N, E, B) forms p child Rnets,R1, R2, · · · Rp where
p > 1 and Ri = (Ni, Ei, Bi). Here, N =

⋃

1≤i≤p Ni,
E =

⋃

1≤i≤p Ei, B ⊆ ⋃

1≤i≤p Bi. Also, the following three
conditions must hold.

1) Edges of all children Rnets are disjoint, i.e.,∀1 ≤ i, j ≤
p, i 6= j ⇒ Ei ∩ Ej = ∅.

2) Nodes in an Rnet are connected by edges in the same
Rnet, i.e.,∀i ∀(n,n′)∈Ei

n ∈ Ni ∧ n′ ∈ Ni.
3) Border nodes in an Rnet are nodes, common to its parent

Rnet border nodes or nodes in its sibling Rnets, i.e.,
Bi = Ni ∩ (B ∪ ⋃

j∈([1,p]−{i}) Nj). �

As illustrated in Figure 4, a networkN is first partitioned
into three Rnets, namely,R1, R2 and R3, each of which is
then partitioned into 2 smaller Rnets,Ria andRib, i ∈ [1, 3].
Consequently,R1, R2 andR3 form the level-1 Rnets andR1a,
R1b, R2a, R2b, R3a, andR3b form the level-2 Rnets. Also,
n3, i.e., common to bothR2 andR3, is a border node between
them. Meanwhile, it is shared by bothR2b andR3a and thus
is also a border node ofR2b andR3a.

o1nq

n1 n3

n2

R1a

R2a

R3a

na

R1b

R2b R3b

R1 R2 R3

N

nf

n1

n2

n3

Network

level 1

level 2

nd

ne

shortcuts

shortcuts

o2
nb

nc

ngnq'

Fig. 4: Example Rnet hierarchy

As the goal of ROAD is to provide a general-purpose search
platform for ad hoc tagged spatial objects and various LDSQs,
we adopt a network partitioning that can generate equal-sized
Rnets and the smallest number of border nodes, which in
turn minimizes the number of shortcuts formed. This network
partitioning problem is, however, known NP-complete. Heuris-
tically, we adopt both geometric approach [15] and Kernighan-
Lin algorithm (KL algorithm) [16]. The geometric approach
first coarsely partitions a network into two by dividing edges
spatially. KL algorithm is then used to refine the partitioned
Rnets by exchanging edges between them until no further
exchanges can reduce the number of border nodes. We setpi

to be power of 2 (i.e.,pi = 2x, for x being a positive integer)
and recursively apply this binary partitioning untilpi Rnets are
formed for each leveli. This network partitioning approach is
also used in [11] as it provides a quick network partitioning
in a reasonably good quality. Alternatively, partitioningcan
be based on network semantics. For instance, a country-wide
road network can be partitioned into levels of states, counties,
cities, and townships.

After an Rnet hierarchy is formed, object abstracts and
shortcuts are constructed in a bottom-up fashion. As edges
in Rnets are fully covered by their parent Rnet according to
Definition 4, object abstracts of an Rnet can be constructed
directly from their child Rnets. Lemma 1 states this property.

Lemma 1: The object abstract of a parent RnetR fully
covers those of all its child RnetsR1, · · ·Rp, i.e., L(R) =
⋃

1≤i≤p L(Ri). �

The shortcuts from a border node to another can be deter-
mined by Dijkstra’s algorithm [10]. Here, we identify several
unique properties of the shortcuts. First, the shortcuts inlevel-
i Rnets can be calculated based on those in level-(i + 1)
Rnets. Thus, shortcuts in high-level Rnets can be presentedas
a sequence of shortcuts in immediate low-level Rnets. Second,
determined shortcuts in Rnets can be used to compute other
shortcuts of Rnets in the same level. Third, to alleviate the
storage cost for shortcuts, those shortcutsS(b, b′) that can
be regenerated by other shortcuts in the same Rnets can be
ignored. Please refer to [17] for the detailed statements and
proofs of these properties and they are skipped for space
saving.

3.4 Route Overlay and Association Directory

Based on Definition 4 that the border nodes in a parent Rnet
are always the border nodes in some of its child Rnets, we
propose a novel index structure, namelyRoute Overlay, which
naturally flattens a hierarchical network into a plain structure
to facilitate search space expansion over a network.

In Route Overlay, nodes are indexed by an one-dimensional
index with unique node IDs as search keys. In our implemen-
tation, we use B+-tree3. Each leaf entry of B+-tree points
to one node, together with ashortcut tree, i.e., a specialized
tree-based index structure that organizes shortcuts and edges
to facilitate search traversals. If a given noden is a border
node of an Rnet, all the shortcuts fromn to other border
nodes belonging to the same Rnet are captured by non-leaf
entries ofn’s shortcut tree. Also, shortcut trees preserve the
Rnets hierarchy by placing shortcuts of parent Rnets right
above those belonging to the corresponding child Rnets. On
the other hand, a leaf entry stores all the physical edges to its
neighboring nodes. This shortcut tree structure generalizes the
adjacency lists in many conventional network storage schemes.

base

base (n� ,n�)			 						n
 B
�
-tree

n� n n� n�
R��R�� S(n�,n�)

base R� R� S(n�,n�)
R��

base ���base���
R� R�

R�� S(n�,n�)
base ���base��� R�� R��

base���			
S(n�,n�)
S(n�,n�) S(n�,n�)S(n�,n�) S(n� ,n�)			 n�

(n�,n�) ������
NIL

NIL
���base

shortcut trees

S(n�,n�) n�
(n�,n�)
(n�,n�)(n�,n�) 			

(n�',n�)
shortcut tree of n�(n�',n�)

Fig. 5: Route Overlay

Figure 5 shows the Route Overlay for our network presented
in Figure 4. Take a non-border nodenq as an example. Its
shortcut tree has only one leaf entry that contains edges to

3. Besides B+-tree, alternatives such as Hash index can be used.
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nq ’s neighboring nodes, e.g.,na and n′
q. Conversely, forna

(a border node of RnetsR1a and R1b), its shortcut tree has
two levels. The root entry contains shortcuts of RnetsR1a

and R1b. SinceR1a has only one border node, no shortcuts
for R1a are kept. Below it are two physical edges tonq andn′

q.
Besides, shortcuts ton1 and n2 are kept forR1b at the top
level. Then, physical edges tonb and nc at R1b are placed
at the bottom. As will be explained later, this shortcut tree
structure can effectively facilitate search processes.

Next, we proposeAssociation Directory, an efficient object
lookup mechanism in ROAD based on a one-dimensional
index, e.g., B+-tree, with unique node IDs or Rnet IDs as
the search key. Associated with noden (n′) are objectso
in L(n, n′) together with their distancesδ(o, n) (δ(o, n′)).
Similarly, associated withR is the object abstract of an Rnet
R. As an Rnet may contain a number of objects, several
techniques such as bloom filter [18] and signature [19] can
be used to represent an object abstract with smaller storage
overheads. Besides, those nodes and Rnets that do not have
objects are not kept in the B+-tree to further reduce the storage
cost. If the search cannot find a node (Rnet) in the Association
Directory, no object is implied for the node (Rnet).

B�-tree
n� n 

o!:  (o!,n� ) o!:  (o!,n ) R" R"#
{o!,o$} {o!,o$}%&' '&() *+, -'( .')/ *+,0

Fig. 6: Association Directory
Figure 6 depicts an Association Directory for objectso1 and

o2 in our example. Objecto1 on edge(nf , ng) is pointed by
the nodesnf andng and it is associated with its corresponding
distances to the nodes. Moreover, both RnetR3b and its parent
Rnet R3 that contain objectso1 and o2 are associated with
{o1, o2} in the Association Directory. Subject to applications,
other objects can be placed into the same or different Asso-
ciation Directory to facilitate the mappings of various objects
on the same road network.

4 SINGLE-SOURCE LDSQ ALGORITHMS

This section presents search algorithms to support single-
source LDSQs that include range queries andkNN queries. A
range query finds objects of interest within a specified distance
range to the query pointnq (e.g.,Q1 in Section 1). AkNN
query returns thek objects of interest closest tonq (e.g.,Q2
in Section 1).

We first discuss the evaluation ofkNN query. To illustrate
the basic idea of our approach, we use a simple network
that consists of a chain of nodes in Figure 7. In the figure,
the network is partitioned into three Rnets and each of them
is further divided into two smaller Rnets. An NN query is
issued atn2, and two objectso1 ando2 are located on edges
(n11, n12) and(n12, n13), respectively. Nodesn3, n5, n7 and
n9 are border nodes. The search first expands fromn2 to n1

andn3 insideR1a. The traversals are shown as a sequence of
annotated arrows (as arranged vertically) in the figure.

Since n3 is the border node of RnetsR1a and R1b, the
object abstract associated withR1b is checked. As it indicates

n1 o1o2R23 R24 R13 R14 R53 R54R5
local edges inside R23 S(n5,n6), bypass R24n2 n7 n6 n8 n9n5 n: n; n2< n21n22 n25

S(n6,n9), bypass R1 S(n9,n22),bypass R53 reach o2on edge (n22,n21)
q S(n5,n6) S(n6,n9) S(n9,n22)R1R2

(n2,n1)
Fig. 7: Example single-source 1NN query

no object of interest withinR1b, the shortcutS(n3, n5) is
taken to bypassR1b. Next, the search resumes at noden5, i.e.,
the border node of RnetsR2 and R2a. Based on the object
abstract, the shortcutS(n5, n9) is taken to bypassR2 and
reachn9. Similarly, the search follows the shortcutS(n9, n11)
to reachn11. Now, asR3b contains objects, a traversal within
R3b is needed. The traversal follows the physical edges to
find objecto1. Here, we can see the search only takes three
jumps from n3 to n11, that significantly saves the traversal
cost, compared with the gradual network expansion.

Following the basic logic of network expansion, Algo-
rithm kNNSearch incorporates shortcuts in Route Overlay
and object abstracts in Association Directory for speedup.
It repeatedly expands the search in the network fromnq by
visiting the closest unexplored node to guarantee that the first
k qualified objects visited are thekNN objects. We maintain a
priority queueP to sort pending entries in the non-descending
distance order fromnq. Each entry(ε, d) in P records a node
or an object (ε) and its distance (d) from nq.

The algorithm takes the Route Overlay (RO), Associate
Directory (AD), a query node (nq), and a desired number
of NNs (k) as inputs, and defaults all nodes and objects
as “unvisited”. To start with, P is initialized with (nq, 0).
Then, the algorithm repeatedly examines the head entry(ε, d)
from P until k answer objects are retrieved or the network
is completely traversed. Since nodes and objects could be
reached more than once via different paths,ε already marked
with “visited” is discarded. Otherwise, the examination ofε
begins. Ifε refers to a node, two tasks need to be performed.
AD is first accessed for objectso associated with the nodeε,
which will be put toP as(o, d+δ(o, ε)) for later examination.
Next, AlgorithmChoosePathis invoked to decide subsequent
nodes to continue the network expansion fromε that will be
discussed next. Ifε is an object, it is collected into a result
setRes. After examination,ε is marked “visited”. Finally, the
answer objects are outputted and the search completes.

With shortcut trees organizing shortcuts and edges in ac-
cordance with the Rnet hierarchy, AlgorithmChoosePathcan
quickly identify appropriate shortcuts and edges to expandthe
search range from a noden. In brief, it examines the shortcut
tree of the noden in Route Overlay in the depth-first traversal
order. If n is a border node, the shortcut tree must have
multiple levels. For every non-leaf level, an RnetR is checked
against Association Directory. If no object of interest is found,
R, together with all its child Rnets, are bypassed. The border
nodes reached by the shortcuts are enqueued toP . Otherwise
(i.e., R contains objects of interest), the lookup goes down
to the next lower level to examine its child Rnets in a similar
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fashion. When the search reaches the leaf level, all neighboring
nodes connected by physical edges are collected. Ifn is a
non-border node, its shortcut tree contains only one level (i.e.,
physical edges) and all the corresponding neighboring nodes
are put intoP . Please refer to [17] for the detailed pseudo-
codes of AlgorithmkNNSearchand AlgorithmChoosePath.

Algorithm RangeSearchthat supports range queries resem-
bles AlgorithmkNNSearchexcept that the search ends when a
portion of the network within the distance bound (as specified
by a query) is completely traversed. All visited objects arethe
answer objects. To save space, we omit the discussion of this
approach.

5 MULTI-SOURCE LDSQ ALGORITHMS

A multi-source LDSQ finds objects with respect tom query
nodes, i.e.,nq1, · · · nqm

(m > 1). A multi-sourcekNN query
finds k objects whose maximum distances from all query
nodes (i.e.,max({di, i ∈ [1, m]})) are the minimum, where
di = ||nqi

, o||. Q3 discussed in Section 1 is an example.
A multi-source range query retrieves all objects of interest
within distance ranger with respect to all query nodes (i.e.,
∀i∈[1,m]di ≤ r). In the literature, [8] suggests to process
multi-source LDSQs as Euclidean distance bound approach
that first estimates candidate objects based on their Euclidean
distances, calculates the candidates’ network distances through
network traversals and filters out the false candidate objects.
This approach covers a larger search space and incurs longer
processing times than necessary.

5.1 Concurrent Network Expansion
ROAD adopts aconcurrent approachthat expands a search
space from all query nodes by exploring nodes with the
minimal overall network expansion, until all result objects are
obtained or the search range is completely traversed. Hereafter,
we call an expansion started from each query node,nqi

, as a
subquery, qi. We first discuss our algorithm for multi-source
kNN query. It concurrently expands the search space from
individual query nodes. According to Lemma 2, thek first
visited objects are guaranteed to be the answer objects.

Lemma 2: With concurrent expansion, the firstk objects
visited by all subqueries are thekNN objects. �

Proof. We prove this lemma by contradiction. Assume there
arek objects, i.e.,o1, · · · ok, just visited by all the subqueries.
We assume thatoi (i ∈ [1, k]) is not one ofkNN as there
will be another objectoj (j 6∈ [1, k]) such thatoj ’s maximum
distance to query points is smaller than that ofoi. Suppose the
last subqueries visitingoi andoj are qa andqb, respectively.
Since qa visited oi before qb visits oj , the distance ofoi

from nqa
, i.e., its maximum distance (see Lemma 3) should

not be greater than that ofoj from nqb
. This contradicts the

assumption. Hence,oj should not be a part ofkNN query
result. �

Lemma 3: With concurrent expansion, the maximum dis-
tance of an object to all query nodes is determined by the last
subquery that visits it. �

Proof. The distances of an object,o, to all m query nodes are
d1, · · · dm. By concurrent expansion,di ≤ dj if the respective
subqueryqi reacheso earlier thanqj . Thus, if qj is the last
subquery visitingo, dj should be the largest. �

5.2 Rnet Visited Set and Border Node Visited Set

Figure 8 shows a two-source 1NN query based on the previous
example network but with different objects. The result object
is ob on (n5, n6). Two subqueries,q1 andq2 proceed fromn2

andn11, respectively. However, as shown in the figure, before
they reachob, q1 (q2) may enter RnetR1b (R3b) for an object
oa (oc) based on the idea of single-source LDSQs. However,
oa and oc are not the answer objects and thus the traversal
inside those Rnets is a waste.

n= o> o?R@A R@> R=A R=> RBA RB>RB
n@ nC nD nE nFnB nG nH n@I n@=n@@ n@Bq@ S(nB,nD) S(nD,nF) S(nF,n@@)R=R@

oA q=
Fig. 8: Example two-source 1NN query

From this, we observe that the guidance of traversals by
object abstracts alone isinadequatefor multi-source LDSQs.
Instead, an Rnet is worth exploring only if it contains objects
of interest and it is reached by all subqueries. In our example,
R2 is the first Rnet visited by bothq1 andq2. According to the
latter condition, we introduce two additional data structures,
namely,Rnet visited set(RV ), and border node visited set
(BV ). An Rnet visited set is to keep track of subqueries that
have visited or reached a given Rnet. Referring to our example,
we keepq1 with R1 andR1a

andq2 with R3 andR3a
in RV .

Now, as no Rnets are visited by bothq1 and q2, no detailed
traversals within any Rnets are needed.

Conversely, RnetsR would be visited by allm subqueries at
different times. Somem−1 subqueries have already bypassed
R and need to resume some of traversals inR whenR is found
to be reached by all subqueries. This traversal resumption is
called backtracking. To enable such backtracking, a border
node visited set is designed to keep track of the border nodes
of R via which each subqueryqi bypassedR. Thus, whenever
a backtracking of an Rnet is triggered, each subquery knows
the border node to resume the network traversals.

5.3 Search Algorithm

Our Algorithm MultiSourcekNNSearch exploits all the
above-discussed techniques for multi-sourcekNN query and
its pseudo-code is listed in Figure 9. The algorithm main-
tains a priority queueP to sort pending entries in a non-
decreasing distance order from respective query nodes. Every
entry(ε, d, qi) in P records a node or an object (ε), its distance
from nqi

(d) and the respective subquery (qi). We also keep
an Rnet visited list (RV ) and a border visited set(BV ). An
entry (R, qi) in RV indicates thatR has been visited byqi.
An entry (R, b, d, qi) in BV records that a subqueryqi has
reachedR via the border nodeb, andd = ||b, nqi

||. Similar
to RV , we keep an object visited set,OV , to record which
objects have been visited by which subqueries.

Initially, all nodes and objects are marked “unvisited byqi”
(i ∈ [1, m]) and all the query nodes are enqueued as entries
into P (lines 1-2). Then, the search repeatedly evaluates the
head entry(ε, d, qi) from P until k answer objects are retrieved
or the entire network is completely traversed (line 3-20). If ε
has been visited by the same subqueryqi, the evaluation onε
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Algorithm MultiSourcekNNSearch(RO, AD, {nq1 , · · ·nqm}, k)
Input . Route Overlay (RO), Association Directory (AD),

A set of m query nodes ({nq1 , · · ·nqm}), No. of NNs (k)
Local. Priority Queue (P ), Rnet Visited Set (RV ),

Object Visited Set (OV ), Border Visited Set (BV );
Output. Result set (Res)
Begin
1. foreach nqi

∈ {nq1 , · · ·nqm} do
2. enqueue(P , (nqi

, 0, qi));
3. while (P is not emptyAND |Res| < k) do
4. (ε, d, qi)← dequeue(P );
5. if (ε is marked “visited byqi”) then goto 3;
6. if (ε is a node)then

7. O ← SearchObject(AD,ε); // find objects withε
8. foreach (o, δ(o, ε)) ∈ O do
9. enqueue(P , (o, d + δ(o, ε), qi));

10. foreach RnetR containingε, add (R, qi) to RV ;
11. foreach RnetR visited by all subqueriesthen
12. get (R, ε′, d′, q′) in BV , ε′ is the border nodes ofR;
13. enqueue(P , (ε′, d′, q′));
14. markε′ “unvisited byq′”; // this allows revisit toε′.
15. MultiSourceChoosePath(RO, AD, ε, qi, d, P , RV , BV );

16. else // ε is an object.
17. adding(ε, qi) to OV ;
18. if (ε is visited by all subqueries)then
19. Res← Res ∪ {ε};
20. markε “visited by qi”;
21. output Res;
End.

Fig. 9: Algorithm MultiSourcekNNSearch

is skipped (line 5). Otherwise, a detailed examination begins.
If ε is a node, three tasks need to be performed. First, its
associated objects are fetched from Association Directoryand
enqueued toP for later examination (lines 7-9). Second, it
records all Rnets thatε belongs to inRV (line 10), followed
by checking whether the visit of current node triggers the
backtracking of any RnetR (lines 11-14). If so, it resumes
the traversal ofR for all the subqueries at the border nodes
b of (R, b, d′, q′) maintained inBV (lines 12-13). Since
border nodesb visited by each subqueryq′ have been marked
“visited by q′”, we restore them to “unvisited byq′” to allow
the revisit of the nodes (line 14). Third, the search range is
expanded from the current nodeε with the aid of Algorithm
MultiSourceChoosePath(line 15).

Whenε refers to an object, we updateOV to indicate that
object ε has been accessed by the current subqueryqi (line
17). If it has been visited by all the subqueries,ε is inserted
to the result setRes (lines 18-19) which is outputted after the
search completes (line 21). At the end of each iteration,ε is
marked “visited byqi” (line 20).

Figure 10 outlines the pseudo-code of AlgorithmMul-
tiSourceChoosePath. The algorithm visits a shortcut tree
associated with an input noden based on depth-first order and
identifies appropriate shortcuts and edges to expand the search
range. If an RnetR in n’s shortcut tree (1) contains no object
of interest as indicated byAD; or (2) has not been visited by
all the subqueries as tracked inRV , the search keepsn and its
distance fromnqi

in BV and takes the corresponding shortcuts
to bypassR (line 7-9). Otherwise, the search continues to
examineR’s child Rnets in the shortcut tree (line 10-11).
When the leaf level is reached, all nodes connected by physical
edges are collected.

Algorithm MultiSourceChoosePath(RO, AD, n, q, d, P , RV , BV )
Input . Route Overlay (RO), Association Directory (AD),

a node (n), a subquery (q), distance fromnq (d),
Priority Queue (P ), Rnet Visited Set (RV ),
Border Visited Set (BV )

Local. Stack (S);
Begin
1. T ← LoadShortcutTree(RO,n);
2. push(S,T.root);
3. while (S is not empty)do
4. s← pop(S);
5. if (s is not leaf) then
6. foreach (R ∈ s) do
7. if (SearchObject(AD,R) has no objectOR

R is not visited by all subqueries inRV ) then
8. add shortcuts (n, b′) (i.e., (b′, d + ||n, b′||, q)) to P ;
9. add (R,n, d, q) to BV ;
10. else
11. push all s’s children toS;
12. else
13. add all edges(n, n′) in s as ((n′, d + |n, n′|, q)) to P ;
End.

Fig. 10: Algorithm MultiSourceChoosePath

To illustrate AlgorithmMultiSourcekNNSearch, we revisit
the example as shown in Figure 8. First, subqueries,q1 andq2,
expand from nodesn2 andn11, respectively. Each expansion
is shown as an annotated arrow in Figure 11. Atn2, q1 records
its visit by adding(R1a, q1) and(R1, q1) to RV . Similarly, at
n11, q2 puts(R3a, q2), (R3b, q2) and(R3, q2) to RV and puts
(R3a, n11, 0, q2) and (R3b, n11, 0, q2) to BV . Through local
edges,q1 reachesn3, a border node ofR1b, and updatesBV
and RV 4. As R1b is not yet visited by all the subqueries as
informed byRV , q1 bypasses it although it contains object
oa. Then, q2 skips R3a and R3b since they have no object
and are not visited by all the subqueries, respectively.

n2

ob oc

R1a R1b R2a R2b R3a R3b

R3

local edges 
inside R1a S(n3,n5), 

bypass R1b
as q2 not yet 
arrived 

n1 n4 n5 n7 n9n3 n6 n8 n10 n12n11 n13

S(n5,n9), 
bypass R2

S(n7,n9),
bypass R2b

reach ob on 
edge (n5,n6)

q1 S(n3,n5)
S(n5,n9) S(n9,n11)

R2R1

oa

S(n5,n7), 
bypass R2a

reach ob on 
edge (n5,n6)

q2 restarts at n9.

q1 restarts at n5.

q2

S(n9,n10), 
bypass R3a

Fig. 11: Example two-source 1NN query (in detail)
Then, q2 continues the traversal fromn9 to n5 as at this

moment,q1, has not yet reachedR2. Here,(n5, ||n5, n11||, q2)
is pending inP for next access. Thereafter,q1 reachesn5,
a border node ofR2. It learns fromRV andAD that R2 is
visited by bothq1 andq2 and it contains objects. Consequently,
R2 needs detailed examination and its child Rnets are visited.
As R2a is not visited byq2, the shortcut is taken to bypass it
andn7 is enqueued toP for later evaluation. Meanwhile,q2

resumes its traversal ofR2 at the border noden9, as indicated
by BV . It takes the shortcut ton7 to visit R2a. As R2a is

4. For brevity, we omit the descriptions of updatingBV , RV and OV
hereafter.
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already visited byq1, q2 navigates insideR2a andq1 resumes
the traversal atn5. Finally, the answer objectob is reached by
both subqueries and the search finishes.

Similar to Algorithm MultiSourcekNNSearch, Algorithm
MultiSourceRangeSearchfor multi-source range query tra-
verses a network when all unexamined entries that include
nodes or objects in the queue are beyond a specified distance
range. Finally, the result objects are those visited by all the
subqueries. We skip the algorithm details due to limited space.

6 ROAD FRAMEWORK MAINTENANCE

In this section, we present the ROAD maintenance in presence
of network and object updates.

6.1 Object Update

Object changes are handled in Association Directory only.
To insert an object on a certain edge(n, n′) in Rnet R, we
associate the object to nodesn andn′ and update the object
abstracts ofR and R’s ancestor Rnets in an Association Di-
rectory. For object deletion, we simply remove the association
of the objects from corresponding nodes and from the object
abstracts of corresponding Rnets in an Association Directory.
On the other hand, for the changes of object attributes, we
update the object abstract associated with nodes and Rnets.

6.2 Network Update

Road condition and road network structure change over time.
Instead of immediately rebuilding a Route Overlay upon
changes, which is expensive, we develop several techniques
to incrementally update Route Overlay foredge distance
changes, andnetwork structure changes.

6.2.1 Change of Edge Distance

When the distance of an edge changes (increases or decreases),
some shortcuts have to be updated. To save unnecessary short-
cut re-computations, ROAD adopts afiltering-and-refreshing
approach. In the “filtering” phase, shortcuts possibly affected
by an edge change are identified. Only the identified shortcuts
will be considered to be updated. Then, in the ”refreshing”
phase, we perform necessary re-evaluations to update the
shortcuts. According to Rnet properties stated in Section 3, the
update of shortcuts related to leveli Rnets in an Rnet hierarchy
is not necessary unless shortcuts related to leveli+1 Rnets are
updated. Thus, we only explain how to re-compute shortcuts in
the bottom level. The same idea can be applied to upper levels.
Similarly, an edge, which is not covered by shortcuts in its own
Rnet, is definitely not covered by shortcuts in other Rnets at
the same level. Therefore, we examine the shortcuts in an Rnet
that encloses the changed edge first. If no shortcut update is
incurred, the update can be safely terminated. Suppose the
distance|n, n′| of an edge is changed fromd to d′, detailed
update procedures are as folows:
Edge distance increased(i.e., d < d′). When an edge(n, n′)
in an RnetR increases its distance fromd to d′, only those
shortcuts that cover(n, n′) might become invalid and need
refreshed. In the filtering phase, we identify shortcuts that pass
through (n, n′). Observing that a shortcutS(b, b′) covering
(n, n′) should have||b, b′|| equal to||b, n||+ |n, n′|+ ||n′, b′||

(where we consider|n, n′| before update, i.e.,d), we search
affected shortcuts by finding the shortest paths from both
ending nodesn andn′ to the border nodes inR and identifying
shortcuts whose distances are equal to the path passing through
(n, n′). In the refreshing phase, all the identified shortcuts are
re-evaluated. Updates if any are then propagated to the parent
level.
Edge distance decreased(i.e.,d > d′). When an edge(n, n′)
in an RnetR decreases its distance fromd to d′, it may
contribute to paths shorter than some existing shortcuts. In
the first filtering step, we test if the distance of a path from
border nodeb via (n, n′) to another border nodeb′ (with
|n, n′| = d′, the new edge distance) is shorter than the distance
of the shortcutS(b, b′). Here we expand fromn and n′ to
reach border nodes and to determine the distances as shown
in Figure 12(a). Once||b, n|| + |n, n′| + ||n′, b′|| < ||b, b′||,
S(b, b′) is identified to be affected. In the refreshing phase,
those identified paths are replaced by the new paths passing
by edge(n, n′). Again, updates are propagated to the upper
level if shortcuts are updated.

6.2.2 Change of Network Structure

When new roads are constructed or existing roads are closed,
the corresponding network topology is changed. We model
these changes as addition or deletion of nodes and edges. Here,
we treat changes of nodes as special cases of changes of edges,
and only consider addition and deletion of edges below. Again,
we update the network at the bottom level first and propagate
the updates to the parent levels when necessary.
Addition of a new edge. A newly added edge(n, n′) directly
connects nodesn and n′, assuming thatn and n′ belong to
RnetsR andR′, respectively. Two possible cases: (1)R = R′

and (2)R 6= R′ are handled as follows.

• Case 1: R = R′. Adding an edge connecting two nodes
(e.g.,(na, nb) in Figure 12(b)) can be treated as changing
the edge distance from infinity to the current distance.
Edge distance update mechanism discussed previously
can be applied here. Accordingly, the Route Overlay
stores the new edge.

• Case 2: R 6= R′. Since an edge can only be included by
one Rnet (sayR), the noden′ which does not belong to
R, has to be promoted to a border node betweenR and
R′. In Figure 12(b), the introduction of(nc, nd) to R1

getsnd promoted to a border node. Also, the new edge
(n, n′) might affect some shortcuts. The update approach
for the change of edge distance is applied here. As a new
border node is introduced, new shortcuts linking the new
border node to other border nodes in the same Rnet have
to be created.

Deletion of an existing edge. Deleting an edge(n, n′) breaks
the link between two nodesn and n′. Consider deleting
(ne, nf) in R2 in Figure 12(b). Its deletion can be managed
as handling the change of its edge distance to infinity and
updating affected shortcuts. In addition, it is possible that one
end node of a deleted edge is a border node. If all the edges
of n are within one Rnet after the deletion of edge(n, n′), n
is no longer a border node. As shown in Figure 12(b), after
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n n'

|n,n'| = d'
(new edge distance)

b b'

Rnet R
||b,n|| ||n',b'||

||b,b'||

Border nodes
(a) Edge dist. decrease

nJ
nK
nL nM

nN nOnP border
nodes

add (nQ,nR)
delete (nS,nT )delete (nT ,nU)add (nV,nW)

Rnet RX Rnet RY
(b) Edge addition and deletion

Fig. 12: Network changes

deleting(nf , ng), ng becomes a non-border node. Then, the
shortcut trees ofn and other border nodes in related Rnets in
Route Overlay have to be updated.

7 PERFORMANCE ANALYSIS

In this section, we analyze the performance of ROAD, in
terms of (1) storage cost, (2) construction time, and (3)
query processing cost. Since the cost for maintaining an
Association Directory is much smaller than that for Route
Overlay, we focus our analysis only on the latter. To facilitate
our analysis, we make an assumption that is commonly used
in the literature [6], [13]. We assume the road networkN is
in form of a two-dimensional Manhattan network in an square
areaA consisting of only horizontal and vertical edges; and
N is formulated as an(l + 1)-level Rnet hierarchy. At each
non-bottom leveli (i < l), each Rnet is partitioned intop
equal-sized child Rnets. At any leveli (0 ≤ i ≤ l), there are
pi Rnets.

7.1 Storage Cost for Shortcuts

First, we examine the storage cost for keeping all the shortcuts
in an Rnet hierarchy. Assume Rnets of a given leveli are
equally sized. Each Rnet,R, covers an expected area of
A/pi. The number of border nodes forR can therefore
be approximated as the length of the perimeter ofR, i.e.,
(4 ·

√

A/pi). Accordingly, the number of shortcuts inR is
(16 · A/pi). As such, at leveli, pi Rnets result in(16 · A)
shortcuts.

As we have explained in Section 3, in an Rnet hierarchy, the
shortcuts at the bottom level (i.e., levell) cover physical edges,
whereas those at upper levels cover shortcuts in immediately
lower level Rnets. Hence, the cost for shortcuts at levell is
different from that of other levels. Consider that at the bottom
level, shortcuts are simply straight paths from one side to
another in an Rnet,R. The number of physical edges, in this
case, is the perimeter ofR, i.e.,

√

A/pl. On the other hand,
shortcuts at upper levels cover those in child Rnets. While
there arep child Rnets on the two-dimensional area, a shortcut
covers those across a row (or column) of

√
p child Rnets. Thus,

the storage cost for a shortcut is
√

p. To sum up, we express
the storage costCsto for all shortcuts in Equation (1).

Csto = 16 ·A · (
√

A/pl +

l−1
∑

i=1

√
p) = O(A · (

√

A/pl + l ·√p))

(1)

As the storage overhead of shortcut trees highly depends on
the storage cost of shortcuts, we can see from Equation (1) that
given a fixedpl for certain desired finest Rnet sizes, a smaller
l together with a correspondingly largerp (as in the terml ·√

p) can reduce the storage overhead incurred by shortcuts.
This observation is validated through experiments with real
datasets presented in Section 8. Though it is used to estimate
the storage cost,A can be reexpressed in terms of the number
of nodes|N | as nodes are assumed to be uniformly distributed
within A. In the following discussion, we keep usingA to
formulate the cost and performance for simplicity.

7.2 Construction Time for Shortcuts

Next, we estimate the time for shortcut construction. In this
analysis, we assume that Dijkstra’s algorithm is used, which
has a run time complexity ofO(V ·log V ) with V denoting the
number of nodes traversed. At levell (i.e., the bottom level),
each RnetR hasA/pl nodes among which(4 ·

√

A/pl) are
border nodes. By Dijkstra’s algorithm, the time complexityto
compute all shortcuts inR is O(

√

A/pl · (A/pl) log (A/pl)).
Hence, the time complexity for deciding all that shortcuts at
level l havingpl Rnets isO(A

√

A/pl · log (A/pl)).
On the other hand, the time complexity for computing a

shortcut in an Rnet,R, at upper leveli is O(
√

A/pi−1 ·
log

√

A/pi−1), because there areO(
√

A/pi−1) border nodes
in R’s child Rnets. Again, there are(4 ·

√

A/pi) border nodes
in R. As a result, the time complexity for shortcut computation
at level i with pi Rnets is O(A · √p · log

√

A/pi−1). In
summary, Equation (2) formulates the time complexityCspt

for shortcut computation.

Cspt = O(
A
√

A
√

pl
· log A

pl
) +

l−1
∑

i=1

O(A · √p · log
√

A

pi−1
)

= O(
A
√

A
√

pl
· log A

pl
+ A · √p ·

l−1
∑

i=1

log

√

A

pi−1
) (2)

We can see from Equation (2) that the computation time
for shortcuts in the bottom level is the predominant factor
to the total Rnet hierarchy construction time. This is also
consistent with what we observed in our implementation. With
bottom-up shortcut construction, time consumed for shortcut
computation is the longest in the bottom level and then the
time is significantly shortened in later upper levels.

7.3 LDSQ Processing Time

Next, we estimate the processing time for LDSQs. Here,
we only consider single-source LDSQs. Typically, a query
involves two phases, namely, (1) anexpansion phasethat
expands a search range from a local smallest Rnet where
a query is issued to larger Rnets that cover target objects,
and (2) a drill-down phase that narrows down the search
from large Rnets to the smallest Rnets that contain required
objects. Assume that search expands up to Rnets in level
t, expecting that some level-t Rnets cover an object. By
means of Dijkstra’s algorithm alike expansions, the processing
time in terms of node visits in expansion phase, therefore,
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is O( A
pl log A

pl +
∑l−1

i=t

√

A
pi−1 log

√

A
pi−1 ). Here, the first

term A
pl log A

pl denotes the time complexity for expanding
physical edges and the second term does that for shortcuts in
upper levels. Because it is symmetric to an expansion, drill
down phrase results in the same time complexity. Further, we
estimatet, the level of Rnet hierarchy that a search space needs
to cover. Let|O| be the number of objects evenly distributed
in a network. Consider an NN query. We can expect that at
the lowest levelt, each Rnet with an areaA

pt covers an NN
object for a query. Hence, aspt = |O|, t = logp|O|. Putting
all of them together, we obtain the time complexityCNN in
performing a single-source NN search as in Equation (3).

CNN = O(
A

pl
log

A

pl
+

l−1
∑

i=logp|O|

√

A

pi−1
log

√

A

pi−1
) (3)

From Equation (3), we can see that ifpl is fixed, the first
term is invariant but the second term will increase forl while
p is reduced accordingly. We validated this observation in our
experiments. Also, when|O| is very large, we can anticipate
that the second term will become very small, thus making NN
searches more efficient. Meanwhile, for a single-source range
query with a searched area ofa, t is determined aslogp

A
a

such as the area of an Rnet at levelt, i.e., A/pt sufficiently
coversa.

8 PERFORMANCE EVALUATION

This section evaluates our proposed ROAD framework in
terms of both indexing overhead and query performance. We
applied ROAD (labeled asROAD, hereafter) on four real road
networks, namely, CA, NA, SF and PRS5. CA and NA consist
of highways in California and North America, respectively.SF
and PRS correspond to streets and roads in San Francisco
and Paris, respectively. Over those road networks are 100
to 100,100 objects following either uniform distribution or
clustered distribution. To simulate clustered distribution, we
select a set of nodes as cluster centroids and distribute objects
within 10 nodes around them, with each cluster sharing the
same number of objects. Table 2 lists all the evaluation
parameters, their values and defaults used in the experiments.

Parameter Value Default
Network (N ) CA (21,048, 21,693) NA
(nodes,edges) NA (175,813, 179,179)

SF (174,956, 223,001)
PRS (327,402, 451,760)

# objects (|O|) 100, 1000, 10,000, 100,000, 10,000
Distribution 10, 100, 1,000 clusters, Uniform 100 clusters
Partition factor (p) 2, 4, 16 4
# levels (l) 2, 4, 8 4 for CA

8 for others
Query single-sourcekNN/range query, single-source

multi-sourcekNN/range query kNN
# NNs (k) 1, 10, 100, 1,000 10
Search range (r) 0.1 of net. diameter 0.1
# sources (m) 2, 4, 6 2

TABLE 2: Evaluation parameters

5. CA, NA and SF are obtained from [20] and PRS is from [21].

Additional to ROAD, we implemented network expan-
sion [7], Euclidean-based approach [7], [8], Distance Index [6]
and Distance Browsing [13] (labeled asNetExp, Euclidean,
DistIdx and DistBrws, respectively), all in GNU C++ for
comparison.NetExp serves as the baseline approach in our
evaluation. We adopt CCAM [22] to organize network nodes
in disk storage for all the approaches. ForNetExp, objects
are stored with network nodes. ForEuclidean, objects are
indexed by an R-tree and A* algorithm [9] is used to determine
objects’ network distances from query nodes. ForDistIdx and
DistBrws, distance signatures and shortest path quad-trees are
stored with network nodes, respectively. ForDistIdx, we adopt
exact object distances in the distance signature to provideits
optimal search performance.

Four performance metrics are measured in this evaluation.
They are 1)index construction time: the time to construct
an index; 2) index size: storage used to store an index; 3)
query processing time: time duration from the time a query
is initiated to the time a complete result is obtained; and 4)
index update time: the time spent in maintaining the underlying
indices when a update (either object update or network update)
is experienced. All experiments were conducted upon Linux
2.6.9 servers with Intel Xeon 3.2GHz CPU and 4GB RAM.
Unless stated explicitly, each experiment presented below
evaluates one parameter while using the default values for
other parameters.

8.1 Index Construction

The first experiment set evaluates the index construction time
and index sizes for all the approaches with various number of
objects and networks. Here, we use defaultp andl for ROAD

and leave the evaluation of their impacts in the final set of
experiments. Figure 13 shows the index construction time (in
hours) and index sizes (in megabyte) for various number of
objects on NA. Since the construction time is not affected by
the object distribution, the experiment results are not presented
here. In the figure,NetExp and Euclidean incur the smallest
index construction times (in a few minutes) and index size (in
a few MBs). ROAD takes around 1 hour construction time
and about 20MB storage space. In contrast, due to the bulky
shortest path quad-trees,DistBrws takes an extremely long
construction time (over 100,000 hours) and a huge storage
(over 10GB), though it is almost invariant to the number of
objects. As forDistIdx, both the construction time and index
size increase drastically as the number of objects evaluated
increases. When 100,000 objects are experimented,DistIdx

consumes 100GB storage size and takes more than 10,000
hours to build the index!6 This experiment result reveals that
bothDistBrws andDistIdx are impractical in real applications
and the idea of query pre-computation and materialization of
all-pair shortest paths and shortest paths towards objectsis not
appealing.

Figure 14 shows the index construction times and index
sizes for different networks with the number of objects fixedat

6. In our implementation, we construct indices forDistBrws andDistIdx

using multiple computers as the construction of shortest path quad-trees and
distance indices for different nodes can be divided. The total machine time
used is reported here.
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Fig. 13: Index construction (varying no. of objects on NA)

10,000 and the number of clusters fixed at 100, i.e., 100 objects
per cluster. As shown in the figure,NetExp and Euclidean

incur the shortest index construction times and smallest storage
overhead. However, they both are not query efficient as will
be evaluated next. On the other hand,DistIdx, DistBrws and
ROAD incur different index construction time and index size
as networks change butROAD always outperforms the other
two. For example, when the largest network PRS is evaluated,
DistIdx takes over 1,000 hours to build the index and 10GB
to store it; whileDistBrws takes over a month to build the
index and more than 15GB to store it. Differently,ROAD

incurs significantly shorter construction time (less than 1
hour) and consumes less storage (about 18MB). Compared
with DistIdx, ROAD only requires around 0.6% of its index
construction time and 0.03% of its index size. In addition, the
cost of DistIdx increases as the number of included objects
increases. However, the index construction cost forROAD is
mainly attributed to the formation of Route Overlay, which is
independent of the number of objects included.
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(a) Index construction time
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Fig. 14: Index construction (CA, NA, SF, PRS)

8.2 Query Performance

The second set of experiments evaluate the search performance
of ROAD and other approaches in answering single-source
LDSQs and multi-source LDSQs on different (1) networks,
(2) numbers of objects, (3) object distributions, (4) query
parameters, and (5) the number of sources for multiple-source
LDSQs. In the experiments, we generate 100 random queries
and report the average query processing time.

8.2.1 Experiments on Single-source kNN Query

First, we evaluate single-sourcekNN queries. As depicted
in Figure 15(a), when different networks are considered,
Euclidean performs the worst because of exhaustive shortest
path searches for a possibly large number of candidate objects.
This is consistent with the observations made in [7]. Fur-
ther, bothDistIdx and DistBrws perform worse thanNetExp

and ROAD due to the accesses of bulky distance signatures
and shortest path quad-trees and slow node-by-node network
traversals. As expected,ROAD consistently performs the best.
For clustered objects,ROAD can effectively bypass those
Rnets with no object of interest. The improvement ofROAD

over NetExp ranges from1.6 (for CA) to 5.1 (for PRS).

Then, we evaluate the impact of object cardinalities and
object distributions. With fewer objects and/or fewer clusters,
more subspaces with no object of interest can be pruned
so thatROAD can achieve a better performance. When we
increase the number of objects from 100 up to 100,000 with
the number of clusters fixed at 100, all the approaches (except
Euclidean) have their search performance improved, as shown
in Figure 15(b). This is because a larger object cardinality
implies a higher density. Consequently, the average distance
between query points and theirk-th NN object becomes
shorter which in turn cuts down the network traversal cost
for kNN searches.ROAD consistently demonstrates the best
performance. For example, it only requires 33% ofNetExp’s
processing time when 100,000 objects are evaluated. Besides,
we evaluate the impact of objects distribution via varying the
number of clusters from 10 up to 1,000 and examining the
uniform distribution. Figure 15(c) plots the experiment results
when10, 000 objects are evaluated. When objects are scattered
in the network, the average distance from query points to
objects is also shortened. As such, the performance of all the
approaches is improved. When 10 clusters are experimented,
ROAD takes only 1% processing time ofNetExp.

Finally, we examine the impact of query parameterk (from
1 to 1,000) and the result is plotted in Figure 15(d). While all
the approaches take more time whenk is increased,ROAD

consistently performs the best due to its strong pruning power.
Whenk is 1, ROAD takes 1.7% processing time ofNetExp.

8.2.2 Experiments on Single-source Range Query
Second, we examine the performance of different approaches
for single-source range queries. As observations are very sim-
ilar to those forkNN queries, we only report the performance
over different networks and different object cardinalities for
space saving, shown in Figure 16(a) and Figure 16(b) respec-
tively. From the figures, we can see thatROAD consistently
outperforms all the others and it benefits more from a larger
network with a smaller number of objects. Again,Euclidean

performs the worst as it has to examine a large number of
candidate objects. Also, compared withNetExp, DistBrws and
DistIdx do not improve the search performance as they both
suffer from the massive access overhead for large networks
and large numbers of objects.
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Fig. 16: Single-source range query performance
8.2.3 Experiments on Multi-source kNN Query
Third, we study the performance of the various approaches
for multi-source kNN queries. The results over different (1)
networks, (2) numbers of objects, (3) object distributions, (4)
query parameterk and (5) numbers of sources are shown
in Figure 17. As there are no approaches on top ofDistIdx

and DistBrws presented in the literature can support multi-
source LDSQs, we ignore them in the following experiments
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Fig. 15: Single-sourcekNN query performance
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Fig. 17: Multi-sourcekNN query performance

on multi-source LDSQs. In first four experiments, we fixm at
two (i.e., two-source kNN queries), as shown in Figure 17(a)
through Figure 17(d), and the last experiment studies the
impact ofm with k set to one (i.e., multi-source NN queries),
as shown in Figure 17(e). As observed from the results,ROAD

consistently performs better thanNetExp andEuclidean. This
is becauseNetExp has to explore all the sub-networks (i.e.,
edges and nodes) around query points; whileEuclidean has
to invoke multiple network traversals to determine the net-
work distances of candidate objects. Differently,ROAD can
effectively prune away some search spaces that have no result
objects.

8.2.4 Experiments on Multi-source Range Query
Then, we evaluate the performance when multi-source range
queries are issued. To save space, we focus on the impacts
of networks and numbers of objects only with the number
of sources fixed at two and the search range fixed at 0.1 of
the network distance. The results are reported in Figure 18(a)
and Figure 18(b) respectively. By pruning away those Rnets
without objects of interest,ROAD outperforms the other
approaches. When different networks are evaluated,ROAD, on
average, takes only 4%-12% processing time ofNetExp. When
the number of objects changes,ROAD takes consistently 13%
processing time ofNetExp in NA with a fixed number of
clusters (i.e., 100). This is because range queries requestto
explore all the nodes/edges within the search range, that is
independent on the number of objects. As the search range
is fixed, the search performance does not change even when
the number of objects varies. Again,Euclidean performs the
worst due to exhaustive candidate object distance searches.
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Fig. 18: Multi-source range query performance

8.3 Index Update

Further, we evaluate the index update cost upon object changes
and/or network changes. First, we simulate object changes by

removing 100 randomly-chosen objects from 10,000 installed
objects and then inserting them back one by one. Each deletion
and addition involves only one single object. We measure the
time taken and report the average performance of deletions
and insertions in Figure 19(a). As shown, the update cost
incurred byDistIdx is several orders of magnitude higher than
that of others, asDistIdx has to update the massive distance
signatures. For NA, SF and PRS, it takes about 10 and 18
minutes to finish one object deletion and addition, respectively.
In contrast,NetExp, Euclidean, DistBrws and ROAD can
handle an update within 10 milliseconds for all the networks
since they store objects separately from networks.
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Fig. 19: Index updates

On the other hand, we simulate network changes by set-
ting 100 edge distances to infinity and later recovering their
original edge distances. Each edge update involves one edge
only. The average performance of 100 trials is presented
in Figure 19(b).DistBrws is not examined as no efficient
shortest path quad-tree update mechanism is reported. The
edge change has almost unobservable impacts onNetExp and
Euclidean. However, forDistIdx, the distance signatures of
many nodes need reexamination and update, resulting in large
processing times. In contrast,ROAD only needs to update
affected shortcuts of certain border nodes of Rnets and it has
considerably much lower update costs (within 5 seconds) than
DistIdx (about 20 minutes).

8.4 Evaluation on p and l

Last but not least, we examine the impacts of factorsp and
l on the Rnet hierarchy formation, which in turn affects the
performance ofROAD. In this experiment, we try different
〈p, l〉 pairs with pl fixed at 256 (i.e., 28, 44, and 162) for
CA and 65536 (i.e., 216, 48, and164) for NA, SF and PRS.
The results in terms of query processing times for single-
sourcekNN queries (k=10) and indexing overhead in terms
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of index construction times and sizes are plotted in Figure 20.
We can observe thatROAD performs similarly in terms of
query processing times under different〈p, l〉 pairs. Meanwhile,
a smallerl (with a corresponding largerp) results in a smaller
index that takes a shorter construction time. This finding
suggests the design of ROAD should adopt a smallerl and
a largerp, given a fixed number of finest Rnets targeted (i.e.,
pl). Both observations are consistent with those made in our
performance analysis discussed in the previous section.
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Fig. 20: Combinations ofp and l

From this evaluation, we can see the efficiency ofROAD to
support single-source and multi-source LDSQs. It outperforms
competitive approaches, namely,NetExp, Euclidean, DistIdx

and DistBrws, owing to its effective search space pruning
capability that is not explored by any of existing approaches.
Meanwhile,ROAD provides moderate and very practical con-
struction and maintenance cost compared with the state-of-the-
art approaches,DistIdx andDistBrws.

9 CONCLUSION

The rapid growth of LBSs fosters a need of efficient search
algorithms for LDSQs. In the mean time, the on-going trend
of web-based LBSs demands a system framework that can
be extended to accommodate diverse objects, provide efficient
processing of various LDSQs, and support different distance
metrics. To meet these needs, we propose ROAD, a new
system framework for LDSQ processing, in this paper. The
design of ROAD achieves aclear separationbetween objects
and network for better system extensibility. It also exploits
search space pruning, an effective and powerful technique for
efficient object search. Upon the framework, efficient search
algorithms for single-source and multi-source LDSQs are
devised. Via a comprehensive performance evaluation on real
road networks, ROAD is shown to significantly outperform the
state-of-the-art techniques.

Recently, various LDSQs, such as continuous queries [4],
skyline queries [23] and optimal location queries [24], were
researched. However, existing works addressed them based
on the solution-based approaches or extended spatial database
approaches and thus suffered from the shortcomings of those
approaches. In the future, we are going to extend our ROAD
framework to support those emerged LDSQs.
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