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ROAD: A New Spatial Object Search Framework
for Road Networks

Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, Yuan Tian

Abstract—In this paper, we present a new system framework called ROAD for spatial object search on road networks. ROAD is
extensible to diverse object types and efficient for processing various location-dependent spatial queries (LDSQs), as it maintains
objects separately from an underlying network and adopts an effective search space pruning technique. Based on our analysis on the
two essential operations for LDSQ processing, namely, network traversal and object lookup, ROAD organizes a large road network as
a hierarchy of interconnected regional sub-networks (called Rnets). Each Rnet is augmented with (1) shortcuts and (2) object abstracts
to accelerate network traversals and provide quick object lookups, respectively. To manage those shortcuts and object abstracts, two
cooperating indices, namely, Route Overlay and Association Directory are devised. In this paper, we present (1) the Rnet hierarchy
and a number of properties useful in constructing and maintaining Rnet hierarchy, (2) the design and implementation of the ROAD
framework, and (3) a number of efficient search algorithms for single-source LDSQs and multi-source LDSQs. We conduct a theoretical
performance analysis and carry out an empirical study to evaluate ROAD. The analysis and experiment results show the superiority of
ROAD over the state-of-the-art approaches.

Index Terms—Location-Dependent Spatial Query, Spatial Road Network, Indexing Techniques, and Search Algorithms.
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1 INTRODUCTION some search subspaces (e.g., the middle portion bounded by
dashed line in Figure 1) may not have objects of interest, we
While location-based services (LBSs) are booming in thiguld facilitate network traversals runingthose subspaces
decade, many vendors start to provide map and navigatigfthout objects of interest. This observation inspires deai
services (e.g., Garmin, GoogleMap, MapQuest, NavTeq, Ygf search space pruningased on which we design a novel,

hoo! Map) along with convenient geo-tagging tools that émabefficient and extensible system framework, calROAD, for
the content providers (e.g., retail stores, facilities gederal processing LDSQs on road networks.

users) to publish location-dependent information on digit
maps [1], [2]. Here, we refer to location-dependent infatiora
(e.g., point of interest, traffic and local events) gzatial
objects(or objectsfor short). We define queries that search
for spatial objects with respect to user-specified location
aslocation-dependent spatial queri¢sDSQs). Examples of
LDSQs for conference participants includgl: find hotels
within one mile from the conference venu®2: locate the Fig. 1: Basic idea behind ROAD framework
nearest bus station to the conference venue; @8dfind a In ROAD, a network is first formulated as a set of inter-
restaurant closest to the hotels of the conference paatitp connected regional subnets callBedets each representing a

As we analyzed, two basic operations, nameigfwork search subspace. On top of the Rnets, two kinds of additional
traversalandobject lookupare involved in processing LDSQsinformation are derived: (1) selective (i.e., shortestihpa
on a road network. The former visits network nodes and edggsross an Rnet that enable any traversal to bypass Rnet if it
according to network proximity, while the latter accesses ahas no object of interest, and (2) the existence and/or ntnte
checks the attributes of objects located at traversed nodesf objects that are inside Rnets to provide quick traversal
edges against object search criteria. Objects collectetiglu guidelines. Both (1) and (2) are further elaborated into the
the course of a traversal form a query result. Logically, theotions ofshortcutsand object abstragtrespectively. Revisit
more network traversals and object lookups are involved, tFigure 1. Two highlighted shortcuts, one fram to ns, and
larger the query processing overhead is incurred. As showntie other fromn, to ng, direct the NN search issued at
Figure 1 where a network is modeled as a graph, two objegésbypass the RneR, and enable the traversal to continue at
o1 andoy are on one side of the network. If a nearest neighbabdens, since RnetR has no object of interest, as indicated
(NN) query is issued far away on the other side, sayathe by its empty object abstract.
search cost is apparently higher than another NN querydssue To realize ROAD, we propose two novel index structures,
somewhere close to the objects. namely,Route Orerlay andAssociation Drectory (and ROAD

As network traversals and object placements are constraing named after these two key components). The former man-
by the network topology, nodes and edges (i.e., the entmges the physical network structure (i.e., nodes and edges)
network) conceptually form an objecearch spaceSince and the shortcuts, while the latter manipulates the mapping




[do-d): {}
[di-d>): {}
[dx-d3): {0}, 02}

[do-d)): {}
[di-d>): {}
[da-ds): {01, 02}

of objects and object abstracts on nodes, edges and Rnets.
In this paper, we detail the design, implementation and-eval:
uation of ROAD and provide a holistic solution to sever()
important research issues that include organization oftfne
search algorithms for various LDSQs and framework update :
We also perform an analysis and simulation to evaluate the
ROAD performance. In summary, the significant contribusion
presented in this paper are seven-fold:

1) We presenROAD, a novel system framework to support In general, the pitfalls of solution based approaches delu
spatial object searches on road networks. ROAD clearm)gh pre-computation overhead, massive storage overhedd,
separates the road network and objects, exploits the id@gensive result maintenance cost. Besides, they adapypoo
of search space pruning, and supports searches werother types of queries, and to objects and network updates
different distance metrics. Extended spatial database approachesncorporate road

2) We formulate Rnet hierarchy and explore several propetworks to existing spatial databases. Due to the coexiste
erties to reduce indexing overhead and improve queoy object indices and road networks, two search strategige w
and update performance. studied. The first strategy is based on the ide&oflidean

3) We devise efficient search algorithms for single-sourehstance boundhat Euclidean distance is always the lower
range queries andcNN queries, i.e., classical types ofbound of network distance between any two locations. Ap-
LDSQs, upon the ROAD framework. proaches using this strategy [7], [8] first identify all thejects

4) We devise efficient search algorithms for multi-sourc&hose Euclidean distances to the query point are bounded by
range queries and:JNN queries to illustrate the exten-a certain distance threshold as a candidate set. Therethfter

Fig. 2: Distance Index

sibility of ROAD for different LDSQs. network distance between each candidate object and thg quer

5) We develop efficient update techniques for ROAD mairpoint is determined based on shortest path algorithms19], [
tenance to handle object and network updates. or materialized distances [11], [12]; and those with nefwor

6) We perform a theoretical analysis on the space and tirdistances larger than the threshold are eliminated. Thensec
efficiency of ROAD framework. strategy is based ametwork expansiothat gradually expands

7) Besides, we conduct an extensive performance eval@asearch range on a network until all the nodes and edges that
tion on ROAD. satisfy the search criteria are visited [7]. Along the traed

The rest of the paper is organized as follows. Sectiondbjects indexed by spatial indexes (e.g., R-tree) assambiat
reviews related works. Section 3 presents the core concepith the visited nodes and edges form the result set; and
behind ROAD. Section 4 and Section 5 discuss the queihye paths from a query node to those objects are the shortest
processing algorithms for single-source LDSQs and mulfpaths. Although more efficient than Euclidean distance doun
source LDSQs, respectively. Section 6 discusses the frampproaches, network expansion is still inefficient due ® th
work maintenance. Section 7 analyzes the ROAD performansw node-by-nod@xpansion towardall directions.
Section 8 evaluates ROAD compared with existing works
through simulations. Finally, Section 9 concludes thisgrap Bounded area TOZ

| |

(in spatial index) for
objects 0; and 0.

2 R ELATED WO RK Shortest Path Quad Tree of 7, ]
Existing research works on processing LDSQs on road |, "

ilane NS N
works can be roughly categorized awlution-based ap- KRC
proachesandextended spatial database approachBsey are &@)/M \é\\d (\) \é

reviewed as follows.

Solution-based approachege.g., VN* [3], UNICONS [4], Fig. 3: Distance browsing on road network

SPIE [5] and Distance Index [6]) utilize some pre-computed Recently, distance browsing [13] has been proposed based
results to evaluate queries. While YNUNICONS, SPIE on the idea of path coherence [14]. As studied in [14], for any
cater for NN queries, Distance Index supports both range amolde n, all other nodes with their shortest paths frenvia

NN queries. Distance Index precomputes &f nodes the one ofn’s immediate neighboring nodes are spatially close.
distances and pointers to subsequent nodes on paths tow&aksed on this observation, shortest path quad-tree (SPQT) [
individual objects, and encodes them distance signatue indexes all other nodes with respect to a nadé SPQT forn

To reduce the storage overhead of distance signatureandest is a quad-tree, in which each quad-cEll(»’) is a rectangular
ranges, rather than precise distances, are adopted such gpatial area associated with onerdd immediate neighboring
distances within one range share the same signature. R2gumreodesn’ and the shortest path distanekg,(n’), from n to all
illustrates the distance signatures on objegt&nd o, stored nodes inT;,(n’). Then, given a node and a target node, the
atn, andng, with dy < di < da < ds. As we can observe, quad-cellT,, (n") that covers) can be located. As suchi,, (n')
distance ranges maintained at some nodes about some obje&isbe identified as the lower bound of the path distance from
located at nearby nodes can be very similar or even identicalto v and the shortest path should follow nodeto approach
that implies redundant storage. Thus, it incurs impraltiicav. As shown in Figure 3, given an NN search issuea gtit
large storage overhead. first maps object locations te,’s SPQT and then traverses to




a neighboring node; with 7, (n;) covering the objects and restauranb.cuisine = ‘ltalian’). As D and A of each LDSQ
dn,(n; ) being the smallest. It avoids blind network traversaare orthogonal, they are handled independently. To fatalit
However, this approach still needs to traverse the networkdur discussion, we list the major notations in Table 1.

a node by node fashion. Even worse, bulky SPQTs accessed

for all visited nodes make this approaches very 1/O-inegfici [_Notations | Description |
Further, all-pair shortest paths need to be computed inraxva /(\9/ =W.E) 222:";?”(;&; (\;Tsth nodesN and edgesy
which is very Co_mputatlonally expensive. T an Rnel® with nodes N, edges B and

Our ROAD differs from all those existing works as if = (Nr, Er, BR) | porder nodesBr (see Def. 1)
considers a road network as an object space and utilize&™. ") aS“E_SettObef’Je‘its(_'ocatgd on lec@t%z'_) -

. . an opject apstract (l.e., objects located Inside|an

search space pruning to enhance search performance, thlatusz) RnetR) (see Def. 2)
not explored by those works. Also, our ROAD is scalableffs, »7] network distance betweem andn/
to networks as it organizes a road network as a hierarchy(o,n) distance between an objectto a nodenl
similar to HEPV [11] and HiTi [12]. However, the design and s, ) g:}[‘oé;‘?“ts between border nodésand?’ (see

implementation of HEPV and HiTi only allow point-to-point -
shortest path searches. Our ROAD facilitates fast network TABLE 1: Notations
expansion that can reach multiple destinations for objec&2 Rnet, Shortcut and Object Abstract

needed for LDSQs. First of all, we introduce a notion aiegional sub-networks
(i.e., Rnets) as in Definition 1. Each Rnet encloses a set of

3 THE ROAD FRAMEWORK edges bounded by a set bbrder nodesEach border node

In this section, we first introduce Rnets, shortcuts andaibjeserves as the entrance to and the exit of an Rnet.

abstracts and discuss Rnet hierarchy formation, i.e., 8y K 00 1 Rnet. In N = (N,E), an RnetR = (Ng,

design in support of search space pruning in ROAD. TheE. B
. . captures a search subspace, whérg Fr andB
we present the core of ROAD implementation, namBly,ite %, Br) captu ubsp W R R

Overlay and Association Drectory. stand for nodes, edges and border nodeR jrand

1) Er CE,
3.1 Preliminaries 2) Nr ={n|(n,n') € LTR v (”:v") < Er}, an/d
We model a road network” as a weighted graph that consists 3) gi; i\]j;; {n|(n,n) € E"V (n';n) € E'}, Wheée

of a set of nodesV and edge<, i.e., N = (N, E). A node
n € N represents a road intersection and an edge’) € E As in the previous example depicted in Figure 1, when a
represents a road segment connecting nedasdn’. |n,n/| Search reaches, covered by an Rnek, we need (1) a hint
denotes the edge weight, which represents the travel distarfbout what objects are iR to decide if a detailed examination

or trip time, or toll of (n,n’), and we assume all distance®f R is needed; and (2) an artifact at connecting the

are positive. For simplicity, we use distance hereafterathp other border nodes of? (e.g., n3) to allow the search to
P(u,v) stands for a set of edges connecting nodesnd v bypassR and to continue the traversal thereafter. Accordingly,
and its distanceP(u,v)| = >, .yepw) |77 Among  We defineobject abstractsand shortcutsas in Definition 2

all paths connecting node and nodev, the one with the and Definition 3, respectively. Here, an object abstrachés t
smallest distance is referred to as stertest pathdenoted summary of objects located on enclosed edges and a shortcut
by SP(u,v). The network distancélu, v|| betweenu andv is @ shortest path between two border nodes.

is the distance of their shortest pa#tP(u,v), i.e., ||u,v|| = Definition 2: Object Abstract. The object abstract of an
|SP(u,v)|. Given a set of object%), we consider that objectsRnet R, L(R) indicates all the objects residing on edges in
(in O) reside on edges (i.e., road segments) in a networkyy,, .8, L(R) = U.ep, Lle). ]

H H !/ !/
We denote a mapping functio(n, n’) on an edgén, n’) o Definition 3: Shortcut. The shortcutS(b, v’), between two

represent a set of objects on the edge. Additionally, we uégrder nodes andb’ (¢ Br) of an RnefR is the precomputed

f . :
9(0,m) (5(0,n")) to represent the distance between an Objes ortest pattb'P(b,0’) and its distance igb, b’||. Notice that

the edges that contribute £P (b, ') might not necessarily be

included inEx. O

o € L(n,n’) and the endpoint (n’) of the edge.

In our discussion, all LDSQs are assumed to be initiated
nodes without loss of generalftyln general, each LDSQ is
specified with a distance conditidn and an attribute predicate .

) : 3.3 Rnet Hierarchy
A. Given O mapped on\V and a query node,, an object, _
o (in 0), is collected as the answer to an LDSQ if (1) itd" ROAD, we structure a road network as a hierarchy of Rnets,

distance fromn,, denoted by||n,, o|| (i.., min(||ng, n|| + where large Rnets at the upper levels enclose small Rnets
5(0,n), [|ng,n'|| + 6(0,n’))) satisfiesD (e.g.,[|nq, 0| < 10 @t lower levels. At each level, a network can be viewed as

miles); and (2) its attributes denoted by: satisfy A (e.g., @ layer of interconnected Rnets. This design benefits search
ranges of different sizes. To derive an Rnet hierarchy, we
1. Objects at nodes (i.e., road intersections) can be treatethey are first treat the entire road network as a single level-0 Rnat th

located at the end of the corresponding edges. has no border node, and partition it intp partitioned Rnets.
2. This assumption can be easily relaxed to handle LDSQedssn edges

via searching objects on the edges followed by running therigs at the Definition 4 forma_”y defines Rnet partitioning. T_he pa[IifEd
ending nodes of the corresponding edges. Rnets are the children of the Rnet they partitioned from. At



each subsequent levél we partition each Rnet intp; child After an Rnet hierarchy is formed, object abstracts and
Rnets. Then, at any level (€ [0,]) wherel is the number of shortcuts are constructed in a bottom-up fashion. As edges
levels, the network is fully covered bjy;_, p; interconnected in Rnets are fully covered by their parent Rnet according to
Rnets. As a whole, there aEiz:O H?lei Rnets. Definition 4, object abstracts of an Rnet can be constructed

Definition 4: Rnet partitioning . Partitioning of an Rnet directly from their child Rnets. Lemma 1 states this propert

R = (N, E, B) formsp child Rnets,R, R, - -+ R, where Lemma 1: The object abstract of a parent Rrigt fully
p > 1and R, = (N;,E;,B;). Here, N = U1<i<p N;, covers those of all its child Rnet®,,---R,, i.e.,, L(R) =
E = U <<, Bi» B € U, <<, Bi- Also, the following three U, <;<, L(R:). O

conditions must hold. The shortcuts from a border node to another can be deter-

1) Edges of all children Rnets are disjoint, i¢1,<i,j < mined by Dijkstra’s algorithm [10]. Here, we identify sesr

P F ] = E;NE;=0. ) unique properties of the shortcuts. First, the shortcutsval-
2) Nodes in an Rnet are connected/by edges in the samRnets can be calculated based on those in level-{)
Rnet, i.e.,V; Vi, nyep, n€ NiAn' €N Rnets. Thus, shortcuts in high-level Rnets can be presested

3) Border nodes in an Rnet are nodes, common to its pargidequence of shortcuts in immediate low-level Rnets. Skcon
Rnet border nodes or nodes in its sibling Rnets, i.¢jetermined shortcuts in Rnets can be used to compute other
Bi = Ni N (BUUjep—gip) Ni)- U shortcuts of Rnets in the same level. Third, to alleviate the

storage cost for shortcuts, those shortct$,’) that can

be regenerated by other shortcuts in the same Rnets can be

ignored. Please refer to [17] for the detailed statements an

proofs of these properties and they are skipped for space

As illustrated in Figure 4, a network is first partitioned
into three Rnets, namelR;, R, and R3, each of which is
then partitioned into 2 smaller Rnet®;, and R;;, ¢ € [1, 3].
ConsequentlyR?;, R, and R3 form the level-1 Rnets ang&; ,, )
Ry, Rag,, Roy, Rs,, and Rg,, form the level-2 Rnets. Also, saving.
ns, i.e., common to botlk, andR3, is a border node between3.4 Route Overlay and Association Directory
them. Meanwhile, it is shared by bof®,, and R3,,

, and thus  gased on Definition 4 that the border nodes in a parent Rnet
is also a border node dk,;, and R3,,.

are always the border nodes in some of its child Rnets, we
propose a novel index structure, namBlyute Overlaywhich
naturally flattens a hierarchical network into a plain stiue

to facilitate search space expansion over a network.

In Route Overlay, nodes are indexed by an one-dimensional
index with unique node IDs as search keys. In our implemen-
tation, we use B-tre€’. Each leaf entry of B-tree points
to one node, together with shortcut tree i.e., a specialized
tree-based index structure that organizes shortcuts agelsed
to facilitate search traversals. If a given nodes a border
node of an Rnet, all the shortcuts fromto other border
nodes belonging to the same Rnet are captured by non-leaf
Fig. 4: Example Rnet hierarchy entries ofn’s shortcut tree. Also, shortcut trees preserve the

As the goal of ROAD is to provide a general-purpose searf}ets hierarchy by_placing shortcuts of _paren'F Rnets right
platform for ad hoc tagged spatial objects and various LDS(Z)“?OVG those belonging to the corresponding child Rnets. On
we adopt a network partitioning that can generate equabisiZ€ Other hand, a leaf entry stores all the physical edgeis to i
Rnets and the smallest number of border nodes, which Nighboring nodes. This shortcut tree structure genesatize
turn minimizes the number of shortcuts formed. This netwofdiacency lists in many conventional network storage seisem
partitioning problem is, however, known NP-complete. Hgur
tically, we adopt both geometric approach [15] and Kernighal ¢
Lin algorithm (KL algorithm) [16]. The geometric approac
first coarsely partitions a network into two by dividing edge
spatially. KL algorithm is then used to refine the partitidne
Rnets by exchanging edges between them until no furthe
exchanges can reduce the number of border nodes. Wg set
to be power of 2 (i.e.p; = 2%, for x being a positive integer)
and recursively apply this binary partitioning untjl Rnets are
formed for each level. This network partitioning approach is Fig. 5: Route Overlay

also used in [11] as it provides a quick network partitioning rjq, re 5 shows the Route Overlay for our network presented
in a reasonably good quality. Alternatively, partitionicgn in Figure 4. Take a non-border nodg, as an example. lts

be based on network ser_n_antlcs: For instance, a cour_wtry-w%rtcut tree has only one leaf entry that contains edges to
road network can be partitioned into levels of states, deant

cities, and townships. 3. Besides B -tree, alternatives such as Hash index can be used.

shortcut trees



| »
ny's neighboring nodes, e.gu, andn;. Conversely, form, R, B Roy R, ke Rop R, Bs Ra {
(a border node of Rnet®,;, and }_%1 p), its shortcut tree has,,, ,,) ¢ S(nyns) ":_,_._-.:9(115,;19) e S !

two levels. The root entry contains shortcuts of Rn&ts, \ W 7 o T T TN T

S

and Ry,. Since Ry, has. only one border node, no shortcu S M s ng o s ny mg omg A g
for Ry, are kept. Below it are two physical edges#pandn;,. local edges *S-(-n--r;-)--z ,,,,,,,,,,,,,,,,,,, . .
Besides, shortcuts to; andn, are kept forR;; at the top insideR o5 ﬁ%a?é)kz (i), “rench oron
i bypass R
level. Then, physical edges to, andn. at R;;, are placed Ypass Ksa - edge (n11,n12)

at the bottom. As will be explained later, this shortcut tree
structure can effectively facilitate search processes.

Next, we proposéssociation Directoryan efficient object
lookup mechanism in ROAD based on a one-dimensioriz® object of interest withinR,;, the shortcutS(ns, ns) is
index, e.g., B-tree, with unique node IDs or Rnet IDs adaken to bypas#;,. Next, the search resumes at nodgi.e.,
the search key. Associated with node(n’) are objectso the border node of RnetB; and R,,. Based on the object
in L(n,n’) together with their distance§(o,n) (6(o,n’)). abstract, the shortcut(ns,ng) is taken to bypassi, and
Similarly, associated wittR is the object abstract of an Rnetreachng. Similarly, the search follows the shortctitng, 111)

R. As an Rnet may contain a number of objects, sevel® reachn;;. Now, asR3, contains objects, a traversal within
techniques such as bloom filter [18] and signature [19] cdfs; iS needed. The traversal follows the physical edges to
be used to represent an object abstract with smaller stordigé objecto;. Here, we can see the search only takes three
overheads. Besides, those nodes and Rnets that do not HeR®s fromns to nqy, that significantly saves the traversal
objects are not kept in the'Btree to further reduce the storagecost, compared with the gradual network expansion.

cost. If the search cannot find a node (Rnet) in the Assodiatio Following the basic logic of network expansion, Algo-

Fig. 7: Example single-source 1NN query

Directory, no object is implied for the node (Rnet). rithm kNNSearch incorporates shortcuts in Route Overlay
+ and object abstracts in Association Directory for speedup.
" (onggde%;ﬁiﬁ?emmk 3 Y It repeatedly expands the search in the network fromby
e PP visiting the closest unexplored node to guarantee that the fi

k qualified objects visited are tHeNN objects. We maintain a
priority queueP to sort pending entries in the non-descending
distance order from,. Each entry(¢, d) in P records a node

_ ) o : ) or an object §) and its distanced) from n,.

Figure 6 depicts an Association Directory for objeetsand The algorithm takes the Route Overlaf@), Associate

02 in our example. Objecd; on edge(n;, ny) is pointed by pyractory"(4D), a query node 1,), and a desired number
the nodes:; andn, and it is associated with its cor_respondln%f NNs (k) as inputs, and defaults all nodes and objects
distances to the nodes. Moreover, both RRgj and its parent o« visited To start with, P is initialized with (n,, 0).

Rnet R that contain object®; and o, are associated with Then, the algorithm repeatedly examines the head entri)

{o1,00} i_n the Association Dir_ectory. Subject to 6HOp"Caﬁonsf’rom P until k& answer objects are retrieved or the network
o.thgr Ob].eCtS can be plgced into the same or d|.fferent .Asﬁg'completely traversed. Since nodes and objects could be
ciation Directory to facilitate the mappings of various etis reached more than once via different pathajready marked
on the same road network. with “visited' is discarded. Otherwise, the examination eof
begins. Ife refers to a node, two tasks need to be performed.
4 SINGLE-SOURCE LDSQ ALGORITHMS AD is first accessed for objectsassociated with the node
This section presents search algorithms to support singwhich will be put toP as(o, d+d(o, €)) for later examination.
source LDSQs that include range queries ahiN queries. A Next, AlgorithmChoosePathis invoked to decide subsequent
range query finds objects of interest within a specified dista nodes to continue the network expansion frerthat will be
range to the query point, (e.g.,Q1 in Section 1). AkNN discussed next. It is an object, it is collected into a result
query returns thé objects of interest closest ta, (e.g.,Q2 setRes. After examinatione is marked Visited'. Finally, the
in Section 1). answer objects are outputted and the search completes.

We first discuss the evaluation &NN query. To illustrate ~ With shortcut trees organizing shortcuts and edges in ac-
the basic idea of our approach, we use a simple netwar&rdance with the Rnet hierarchy, AlgorithBhoosePathcan
that consists of a chain of nodes in Figure 7. In the figurgquickly identify appropriate shortcuts and edges to exghed
the network is partitioned into three Rnets and each of thesearch range from a node In brief, it examines the shortcut
is further divided into two smaller Rnets. An NN query igree of the node: in Route Overlay in the depth-first traversal
issued atns, and two object®; ando, are located on edgesorder. If n is a border node, the shortcut tree must have
(n11,m12) and(ni2,n13), respectively. Nodess, ns, ny and multiple levels. For every non-leaf level, an Rrieis checked
ng are border nodes. The search first expands frento n;  against Association Directory. If no object of interestasifid,
andng inside R, ,. The traversals are shown as a sequence Bf together with all its child Rnets, are bypassed. The border
annotated arrows (as arranged vertically) in the figure. nodes reached by the shortcuts are enqueudd Otherwise

Sincens is the border node of RnetR,, and Ry, the (i.e., R contains objects of interest), the lookup goes down
object abstract associated with , is checked. As it indicates to the next lower level to examine its child Rnets in a similar

or:5(0ny) or:8(01,ng) {or02} ‘ {01,032} ‘

Fig. 6: Association Directory



fashion. When the search reaches the leaf level, all nefyidpo 5.2 Rnet Visited Set and Border Node Visited Set

nodes connected by physical edges are collected.  a rigyre 8 shows a two-source 1NN query based on the previous

non-border node, its shortcut tree contains only one lével ( example network but with different objects. The result obje

physmalledges) and all the corresponding neighboring $04g ,, on (ns,ng). Two subqueriesy; andgs proceed fromn,

are put intoP. Please refer to [17] for the detailed pseudosngy,,,, respectively. However, as shown in the figure, before

codes of AlgorithmkNNSearchand AlgorithmChoosePath they reacho,, ¢1 (¢2) may enter RneRz;, (R3;) for an object
Algorithm RangeSearchthat supports range queries reseny; (o.) based on the idea of single-source LDSQs. However,

bles AlgorithmikNNSearchexcept that the search ends when 8, and o. are not the answer objects and thus the traversal
portion of the network within the distance bound (as spetifig,cige those Rnets is a waste.

by a query) is completely traversed. All visited objects e
answer objects. To save space, we omit the discussion of thiﬂ‘[F 2, ﬂRL y R P Py Rs P {‘
approach. 7 .

Sy | SO
5 MULTI-SOURCE LDSQ ALGORITHMS 00 oy T
A multi-source LDSQ finds objects with respecti#o query ™ "™ ™ e e s e e Tz s

nodes, i.e.nqy, - - nq,,, (m > 1). A multi-sourcekNN query Fig. 8: Example two-source 1NN query
finds k objects whose maximum distances from all query

gédfs ("e"max(géi’é.sec [l;;nc]i})zl aSrzcihoen rrilnlsmum, wherel object abstracts alone isadequatefor multi-source LDSQs.

Az r;mL'Z%hi':'e ran eI Lljjer reltrieveslall obl'ec?sn §X§1T§§h3tead' an Rnet is worth exploring only if it contains otijec
e ge query ) CTC3f interest and it is reached by all subqueries. In our exampl

within distance range with respect to all query nodes (|.e.,R2 is the first Rnet visited by botly, andg,. According to the

Vie[lgm]di < 7). In the I|terat_ure, [8.] suggests to ProCese, er condition, we introduce two additional data struegy
multi-source LDSQs as Euclidean distance bound approgg ely, Rnet visited se{RV), and border node visited set

that first estimates candidate objects based on their Easlid (BV). An Rnet visited set is to keep track of subqueries that

distances, calculates the candidates’ network distahcesgh have visited or reached a given Rnet. Referring to our exampl

network traversals and filters out the false candidate m')jecwe keepg, with Ry and Ry andgs with Rs and Rs, in RV

This approagh covers a larger search space and incurs Ior}qg\yv’ as no Rnets are visited by bogh and g», no detailed
processing times than necessary. traversals within anv Rnet ded
y Rnets are needed.

5.1 Concurrent Network Expansion Conversely, Rnet® would be visited by alln subqueries at
ROAD adopts aconcurrent approactthat expands a searchdifferent times. Some: — 1 subqueries have already bypassed
space from all query nodes by exploring nodes with th® and need to resume some of traversalRiwhenR is found
minimal overall network expansion, until all result objgere to be reached by all subqueries. This traversal resumpsion i
obtained or the search range is completely traversed. Herega called backtracking To enable such backtracking, a border
we call an expansion started from each query nege,as a node visited set is designed to keep track of the border nodes
subquery q;. We first discuss our algorithm for multi-sourceof R via which each subquenry bypassed?. Thus, whenever
kNN query. It concurrently expands the search space frombacktracking of an Rnet is triggered, each subquery knows
individual query nodes. According to Lemma 2, thefirst the border node to resume the network traversals.
visited objects are guaranteed to be the answer objects. .

Lemma 2: With concurrent expansion, the firstobjects -3 Search Algorithm
visited by all subqueries are thé\NN objects. OO Our Algorithm MultiSource kNNSearch exploits all the
Proof. We prove this lemma by contradiction. Assume ther@bove-discussed techniques for multi-souk®N query and
arek objects, i.e.p1, - - - o, just visited by all the subqueries.its pseudo-code is listed in Figure 9. The algorithm main-
We assume thab; (i € [1,k]) is not one ofkNN as there tains a priority queueP to sort pending entries in a non-
will be another objecb; (j & [1, k]) such thato;'s maximum decreasing distance order from respective query nodesy Eve
distance to query points is smaller than thabpfSuppose the entry (e, d, ¢;) in P records a node or an objee) (its distance
last subqueries visiting; and o; are ¢, andg,, respectively. from n,, (d) and the respective subquery;)i We also keep
Since ¢, visited o; before g, visits o;, the distance ofo; an Rnet visited list RV)) and a border visited s¢3V'). An
from n,,, i.e., its maximum distance (see Lemma 3) shoukehtry (R,¢;) in RV indicates that has been visited by;.
not be greater than that of from n,,. This contradicts the An entry (R,b,d, ¢;) in BV records that a subquery has
assumption. Hencey; should not be a part oENN query reachedR via the border nodé, andd = ||b,n,,||. Similar
result. B to RV, we keep an object visited sedV, to record which

Lemma 3: With concurrent expansion, the maximum dis@Pjects have been visited by which subqueries.
tance of an object to all query nodes is determined by the lastnitially, all nodes and objects are markedhisited byg,”
subquery that visits it. 0 (2 € [1,77_1]) and all the query nodes are enqueued as entries
Proof. The distances of an objet, to all m query nodes are into P (lines 1-2). Then, the search repeatedly evaluates the
dy, - -- d,. By concurrent expansion; < d, if the respective head entr)_(e, d, q;) from P until k£ answer objects are retrieved
subqueryg; reacheso earlier thang;. Thus, if ¢; is the last Or the entire network is completely traversed (line 3-20}. |
subquery visitingo, d; should be the largest. m has been visited by the same subqugrythe evaluation om

2

Oc¢

From this, we observe that the guidance of traversals by



Algorithm MultiSourcé&kNNSearchRO, AD, {ng,, - ngm, } k) Algorithm MultiSourceChoosePatRO, AD, n, ¢, d, P, RV, BV)

Input. Route Overlay RO), Association Directory A D), Input.  Route Overlay RO), Association Directory A D),
A set of m query nodes{ng, , - - - ng,, }), No. of NNs {) a node ), a subquery ), distance fromnq (d),
Local. Priority Queue £), Rnet Visited SetRV), Priority Queue £), Rnet Visited Set RV),
Object Visited Set@V’), Border Visited Set BV); Border Visited Set BV)

Output.  Result set Res) Local. Stack ();

Begin Begin

1. foreach ng; € {ng,, - -ng,, } do 1. T — LoadShortcutTregRO,n);

2 enqueudP, (ng,;,0,q:)); 2. push(S,T.root);

3. while (P is not emptyAND |Res| < k) do 3. while (S is not empty)do

4 (¢,d, g;) — dequeudP); 4. s — pop(S);

5. if (e is marked “visited byg;”) then goto 3; 5. if (s is not leaf)then

6 if (e is a node)then 6. foreach (R € s) do

7 O — SearchObject{D,e); /I find objects withe v if (SearchObjeci D,R) has no objecOR

8 foreach (o, 5(o, €)) € O do R is not visited by_aII subqueries iRV') then

9. enqueudP, (o,d + 8(o, €), q;)); 8. add shortcutsr, t') (i.e., ¢, d + ||n, V]|, q)) to P;

L 9. add R,n,d,q) to BV;

10. foreach Rnet R containinge, add R, ¢;) to RV 10. else
11. foreach Rnet R visited by all subqueriethen , ; .
12. get R, €, d', ¢') in BV, € is the border nodes aR; E else pushaall 5's children to.5;
13. enqueugP, (<', d',a')); 13, addall edges(n,n’) in s as (@', d + [n,n'|, q)) to P;
14. marke’ “unvisited byq’”; /I this allows revisit toe’. End ’ ’ B '
15. MultiSourceChoosePaiRQ, AD, ¢, q;, d, P, RV, BV); :
16.  else Il €is an object. Fig. 10: Algorithm MultiSourceChoosePath
17. adding(e, g;) to OV;;
18. if (e is visited by all subquerieghen
19. Res — Res U {e}; To illustrate AlgorithmMultiSource ksNNSearch we revisit
20. marke “visited by ¢;"; . . . i
21, output Res: the example as shown in Figure 8. First, subquetieandgs,
End. expand from nodes, andn;;, respectively. Each expansion

is shown as an annotated arrow in Figure 11n#tq; records
its visit by adding(R1,,¢1) and(R1,¢1) to RV. Similarly, at
. . . ) ) ) . n11, 2 pUtS(R3a, QQ), (Rgb, QQ) and (Rg, QQ) to RV and puts
is skipped (line 5). Otherwise, a detailed examination &gi (Rs,,n1,0, ¢2) and (Rsy,n11,0,¢2) to BV. Through local
If € is a node, three tasks need to be performed. First, #8gesy, reachesus, a border node oRR;,, and update&3V
associated objects are fetched from Association Dire@ad/ and RV*. As R, is not yet visited by all the subqueries as
enqueued taP for later examination (lines 7-9). Second, iinformed by RV, ¢; bypasses it although it contains object
records all Rnets that belongs to inRV (line 10), followed o,. Then, ¢, skips R3, and Rs, since they have no object

by checking whether the visit of current node triggers thend are not visited by all the subqueries, respectively.
backtracking of any RneR (lines 11-14). If so, it resumes

the traversal ofR for all the subqueries at the border node{L R, & R R, o Ro Rs, & Ry %
b of (R, b, d, ¢) maintained inBV (lines 12-13). Since q |

border node# visited by each subquery have been marked
“visited by ¢’", we restore them tounvisited byg’” to allow

Fig. 9: Algorithm MultiSourcéNNSearch

Leem Tl COCCE R Lemmmmtiyg ememmell!

o X . ny n; n3 ny ns s N7 ng ng np Ny np N3
the revisit of the nodes (line 14). Third, the search range, %}Jeﬁgé;’. ________ N T S(on),
expanded from the current nodewith the aid of Algorithm inside R;, g(ng,nj)k T bypass R,
MultiSourceChoosePath(line 15). a8 ganotyet o __ . bypass k)

Whene refers to an object, we upda@V’ to indicate that arrived = He T e e
objecte has been accessed by the current subqgeifine | g restarsatne —ou bypass Rz
17). If it has been visited by all the subqueriess inserted reach opon «-__.
. L edge (ns5,n5) reach o,on
to the result seRes (lines 18-19) which is outputted after the edge (n5,15)

search completes (line 21). At the end of each iteratiois, Fig. 11: Example two-source 1NN query (in detail)

marked Yisited byg;” (line 20). . .
. g . Then, ¢o continues the traversal fromy to n5 as at this
Figure 10 outlines the pseudo-code of Algorithwul-
moment,g,, has not yet reachell,. Here,(ns, ||ns, n11]], g2)

tiSourceChoosePath The algorithm visits a shortcut tree. ST
s pending inP for next access. Thereafter, reachesns,

assoq_ated with an input nodebased on depth-first order andla border node ofz,. It learns fromRV and AD that Ry is
identifies appropriate shortcuts and edges to expand tlnekse%isited by bothy, andg, and it contains objects. Consequentl
range. If an RneR in n’s shortcut tree (1) contains no object y ! 12 ) i q Y.

of interest as indicated by D: or (2) has not been visited byR2 needs detailed examination and its child Rnets are visited.

. .. 2 As is not visited bygs, the shortcut is taken to bypass it
all the subqueries as trackeditV’, the search keepsand its RQ“. Y2 . yp
. : ! andnr is enqueued taP for later evaluation. Meanwhiley,
distance fromm,, in BV and takes the corresponding shortcuts

to bypassR (line 7-9). Otherwise, the search continues tresumes its traversal dt, at the border nodeg, as indicated

examine R’s child Rnets in the shortcut tree (line 10-11).By BV It takes the shortcut ta o Visit Ry, AS Ry, i

When the leaf level is reached, all nodes connected by pdilysic 4 ror previty, we omit the descriptions of updatidéy’, RV and OV
edges are collected. hereafter.



already visited by, g2 navigates inside?,, andg; resumes (where we considefn, n’| before update, i.ed), we search
the traversal at5. Finally, the answer objeet, is reached by affected shortcuts by finding the shortest paths from both
both subqueries and the search finishes. ending nodes andn’ to the border nodes iR and identifying
Similar to Algorithm MultiSource kNNSearch Algorithm shortcuts whose distances are equal to the path passingthro
MultiSourceRangeSearchfor multi-source range query tra- (n,n’). In the refreshing phase, all the identified shortcuts are
verses a network when all unexamined entries that includeevaluated. Updates if any are then propagated to thetare
nodes or objects in the queue are beyond a specified distalesel.
range. Finally, the result objects are those visited by ladl t Edge distance decreasel.e.,d > d’). When an edgén,n’)
subqueries. We skip the algorithm details due to limiteccspain an RnetR decreases its distance frothto d’, it may
contribute to paths shorter than some existing shortcuats. |

6 ROAD FRAMEWORK MAINTENANCE the first filtering step, we test if the distance of a path from

In this section, we present the ROAD maintenance in preser@@der nodeb via (n,n’) to another border nod# (with

of network and object updates. |n,n/| = d’, the new edge distance) is shorter than the distance
of the shortcutS(b,?’). Here we expand fromn and n’ to

6.1 Object Update reach border nodes and to determine the distances as shown

Object changes are handled in Association Directory oni Figure 12(a). Once|b, n|| + [n,n'| + [|n’,0'|| < [[b,V|],

To insert an object on a certain ed@ge n’) in Rnet R, we S(b,0) is identified to be affected. In the refreshing phase,
associate the object to nodesandn’ and update the objectthose identified paths are replaced by the new paths passing
abstracts ofR and R’s ancestor Rnets in an Association Diby edge(n,n’). Again, updates are propagated to the upper
rectory. For object deletion, we simply remove the assimriat level if shortcuts are updated.

of the objects from corresponding nodes and from the object

abstracts of corresponding Rnets in an Association Dirgcto6.2.2 Change of Network Structure

On the other hand, for the changes of object attributes, Wehen new roads are constructed or existing roads are closed,
update the object abstract associated with nodes and Rnetge corresponding network topology is changed. We model
6.2 Network Update these changes as addition or deleti_on of nodes and edges. Her
we treat changes of nodes as special cases of changes of edges
Road condition and road network structure change over timgg only consider addition and deletion of edges below. Agai
Instead of immediately rebuilding a Route Overlay upoge update the network at the bottom level first and propagate
changes, which is expensive, we develop several techniqygs updates to the parent levels when necessary.
to incrementally update Route Overlay fedge distance addition of a new edge A newly added edgén, »’) directly
changesandnetwork structure changes connects nodes andn’, assuming that andn’ belong to
RnetsR andR/, respectively. Two possible cases: @)= R’

6.2.1  Change of Edge Distance and (2)R # R’ are handled as follows.

When the distance of an edge changes (increases or dec)rease.s Case 1 R = R'. Adding an edge connecting two nodes
some shortcuts have to be updated. To save unnecessary short L )
(e.g.,(nq, np) in Figure 12(b)) can be treated as changing

cut re-computations, ROAD adoptsfitering-and-refreshing the edge distance from infinity to the current distance.

approach. In the "filtering” phase, shortcuts possibly id Edge distance update mechanism discussed previously
by an edge change are identified. Only the identified shartcut can be applied here. Accordingly, the Route Overlay

will be considered to be updated. Then, in the "refreshing”

. stores the new edge.
phase, we perform necessary re-evaluations to update the Case 2 R + R'. Since an edge can only be included b
shortcuts. According to Rnet properties stated in Sectjghe8 ~ ° . ) ge y y

. ; . one Rnet (sayR), the noden’ which does not belong to

update of shortcuts related to levéRnets in an Rnet hierarchy
. . R, has to be promoted to a border node betwgeand
is not necessary unless shortcuts related to lexvERnets are ; . . :

. . R'. In Figure 12(b), the introduction dfr.,nq) to Ry
updated. Thus, we only explain how to re-compute shorteuts i ots romoted to a border node. Also. the new edge
the bottom level. The same idea can be applied to upper levels 9 7,” P : ' w edg

o . S (n,n’) might affect some shortcuts. The update approach
Similarly, an edge, which is not covered by shortcuts ins o : . .
. e . for the change of edge distance is applied here. As a new
Rnet, is definitely not covered by shortcuts in other Rnets at . S
. . border node is introduced, new shortcuts linking the new
the same level. Therefore, we examine the shortcuts in ah Rne .
' . border node to other border nodes in the same Rnet have
that encloses the changed edge first. If no shortcut update is
: . to be created.
incurred, the update can be safely terminated. Suppose the
distancejn,n’| of an edge is changed fromto d’, detailed Deletion of an existing edgeDeleting an edgén, n’) breaks
update procedures are as folows: the link between two nodes and n/. Consider deleting
Edge distance increasedi.e.,d < d’). When an edgén,n’) (n.,ns) in Ry in Figure 12(b). Its deletion can be managed
in an RnetR increases its distance fromto d’, only those as handling the change of its edge distance to infinity and
shortcuts that covefn,n’) might become invalid and needupdating affected shortcuts. In addition, it is possibigt thne
refreshed. In the filtering phase, we identify shortcuts flass end node of a deleted edge is a border node. If all the edges
through (n,n’). Observing that a shortcui(b,b’) covering of n are within one Rnet after the deletion of edgen’), n
(n,n) should havd|b, v’|| equal to||b, n|| + |n,n'| +||n/,b’|| is no longer a border node. As shown in Figure 12(b), after



(new‘Za';l disdtance) As the storage overhead of shortcut trees highly depends on

the storage cost of shortcuts, we can see from Equationdt) th

given a fixedp' for certain desired finest Rnet sizes, a smaller

[ together with a correspondingly larggr(as in the term -

/p) can reduce the storage overhead incurred by shortcuts.

This observation is validated through experiments witH rea

datasets presented in Section 8. Though it is used to estimat

the storage costd can be reexpressed in terms of the number
Fig. 12: Network changes of nodes N| as nodes are assumed to be uniformly distributed

within A. In the following discussion, we keep using to

deleting(ny,ny), ny becomes a non-border node. Then, thiormulate the cost and performance for simplicity.

shortcut trees ofi and other border nodes in related Rnets in ) )

Route Overlay have to be updated. 7.2 Construction Time for Shortcuts

add (nans)  delete (ngn,) delete (neny)

(a) Edge dist. decrease (b) Edge addition and deletion

Border nodes

Next, we estimate the time for shortcut construction. Irs thi
analysis, we assume that Dijkstra’s algorithm is used, whic
has a run time complexity @@(1 -log V') with V' denoting the
In this section, we analyze the performance of ROAD, inumber of nodes traversed. At leve{i.e., the bottom level),
terms of (1) storage cost, (2) construction time, and (3ach RnetR has A/p' nodes among whicli4 - \/W) are
query processing cost. Since the cost for maintaining &drder nodes. By Dijkstra’s algorithm, the time complexiy
Association Directory is much smaller than that for Routeompute all shortcuts i is O(y/A/p' - (A/p') log (A/p')).
Overlay, we focus our analysis only on the latter. To faaiét Hence, the time complexity for deciding all that shortcuts a
our analysis, we make an assumption that is commonly usedel / havingp' Rnets isO(A+/A/p - log (A/p')).
in the literature [6], [13]. We assume the road netwarkis On the other hand, the time complexity for computing a
in form of a two-dimensional Manhattan network in an squashortcut in an RnetR, at upper leveli is O(,/A/pi—1 -
areaA consisting of only horizontal and vertical edges; anghg \/W), because there a@(W) border nodes
N is formulated as arfl + 1)-level Rnet hierarchy. At eachin R’s child Rnets. Again, there ar@ - \/W) border nodes
non-bottom leveli (i < [), each Rnet is partitioned intp in R. As a result, the time complexity for shortcut computation
equal-sized child Rnets. At any leve0 < i <), there are at |evel i with p’ Rnets is O(A - /p - log\/W). In
p" Rnets. summary, Equation (2) formulates the time complexity,,

for shortcut computation.

7 PERFORMANCE ANALYSIS

7.1 Storage Cost for Shortcuts

First, we examine the storage cost for keeping all the shtstc AVA A =l A
in an Rnet hierarchy. Assume Rnets of a given levgre Cspt = 0(7 '10917) +ZO(A ' \/73'109\/ F)
equally sized. Each RnetR, covers an expected area of \f_ =1 1
A/pt. The number of border nodes fakR can therefore AV A A — [ A
be approximated as the length of the perimeteridfi.e., - O(W 'loyﬁ +A'\/§';l"g F) @)
(4 - +/A/p?). Accordingly, the number of shortcuts iR is B
(16 - A/p’). As such, at level, p’ Rnets result in(16 - A) We can see from Equation (2) that the computation time
shortcuts. for shortcuts in the bottom level is the predominant factor
As we have explained in Section 3, in an Rnet hierarchy, ti@ the total Rnet hierarchy construction time. This is also
shortcuts at the bottom level (i.e., levgkover physical edges, consistent with what we obse_rved in our implementationhWit
whereas those at upper levels cover shortcuts in immeyiatBPttom-up shortcut construction, time consumed for shibrtc
lower level Rnets. Hence, the cost for shortcuts at Iéviel computation is the longest in the bottom level and then the
different from that of other levels. Consider that at thetbot  time is significantly shortened in later upper levels.
level, shortcuts are simply straight paths from one side to , ,
another in an RnetRk. The number of physical edges, in this/-3 LDSQ Processing Time
case, is the perimeter &, i.e., \/A/pl. On the other hand, Next, we estimate the processing time for LDSQs. Here,
shortcuts at upper levels cover those in child Rnets. Whitee only consider single-source LDSQs. Typically, a query
there arep child Rnets on the two-dimensional area, a shortciitvolves two phases, namely, (1) axpansion phasehat
covers those across a row (or column) g child Rnets. Thus, expands a search range from a local smallest Rnet where
the storage cost for a shortcut jg. To sum up, we expressa query is issued to larger Rnets that cover target objects,
the storage cosf,, for all shortcuts in Equation (1). and (2) adrill-down phasethat narrows down the search
from large Rnets to the smallest Rnets that contain required
1 objects. Assume that search expands up to Rnets in level
16 A ! _ ) 7. t, expecting that some level-Rnets cover an object. By
Cuto = 16-4-(/A/p +; VP = Ol (Y A/ 1 p) means of Dijkstra’s algorithm alike expansions, the preites
- (1) time in terms of node visits in expansion phase, therefore,
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is O(% log & + > .—, +/=41 log /==1). Here, the first itional to ROAD, we implemented network expan-
'O;“l ﬁ_i pAl pA H he fi Additional impl d k
term 4 log 4 denotes the time complexity for expandingion [7], Euclidean-based approach [7], [8], Distance kié¢

i e ¢ Distance Browsing [13] (labeled &tExp, Euclidean
physical edges and the second term does that for shortcut&'fi . ! : - ’
upper levels. Because it is symmetric to an expansion, diffstldx and DistBrws, respectively), all in GNU C++ for
down phrase results in the same time complexity. Further, w@mparison.NetExp serves as the baseline approach in our
estimate., the level of Rnet hierarchy that a search space negd@luation. We adopt CCAM [22] to organize network nodes
to cover. Let|O| be the number of objects evenly distributed disk storage for all the approaches. RéetExp, objects
in a network. Consider an NN query. We can expect that &f€ stored with network nodes. Féuclidean, objects are
the lowest levek, each Rnet with an ared covers an NN indexed by an R-tree and A* algorithm [9] is used to determine
object for a query. Hence, ag = |0], ¢ :”logp|0|_ Putting objects’ network distances from query nodes. Batldx and
all of them together, we obtain the time complexit;x in DistBrws, distance signatures and shortest path quad-trees are

performing a single-source NN search as in Equation (3). stored Wi_th net_work nod_es, respectively. _FEI)'stIdx, we adept
exact object distances in the distance signature to pratsde

optimal search performance.

A 4 = A A Four performance metrics are measured in this evaluation.
Cnn=0(5 log 5+ Y (== log [=——) (3 They are 1)index construction timethe time to construct
p P P P . e ) : _
i=logp|O| an index; 2)index size storage used to store an index; 3)
query processing timegime duration from the time a query
is initiated to the time a complete result is obtained; and 4)
index update timehe time spent in maintaining the underlying

pis reduced accordingly. We validated this observatien in Othdices when a update (either object update or network efpdat
experiments. Also, Wh?f@ is very large, we can ant|c.|pateis experienced. All experiments were conducted upon Linux
that the second term will become very small, thus making NH6 9 servers with Intel Xeon 3.2GHz CPU and 4GB RAM

searches more efficient. Meanwhile, for a single-sourcgean j,ess stated explicitly, each experiment presented below

i af i i A
query with a searched area of ¢ is determined asog, ¢ evaluates one parameter while using the default values for

; g
such as the area of an Rnet at level.e., A/p" sufficiently ., o parameters.
coversa.

[FSEERS

From Equation (3), we can see thatyif is fixed, the first
term is invariant but the second term will increase faovhile

8.1 Index Construction

8 PERFORMANCE EVALUATION The first experiment set evaluates the index construction ti

and index sizes for all the approaches with various number of
jects and networks. Here, we use defaudind! for ROAD

fid leave the evaluation of their impacts in the final set of

experiments. Figure 13 shows the index construction time (i

hours) and index sizes (in megabyte) for various number of

.ogects on NA. Since the construction time is not affected by

This section evaluates our proposed ROAD framework
terms of both indexing overhead and query performance.
applied ROAD (labeled aROAD, hereafter) on four real road
networks, namely, CA, NA, SF and PREA and NA consist
of highways in California and North America, respective&y
and PRS correspo_nd to streets and roads in San Franc object distribution, the experiment results are nos@néed
and Paris, respectively. Over those road networks are

) . . . o re. In the figureNetExp and Euclidean incur the smallest
o 100’100. ob.jectls folIowmg either uniform d-|str_|but.|onr %index construction times (in a few minutes) and index sire (i
clustered distribution. To simulate clustered distribnti we

) - .a few MBs). ROAD takes around 1 hour construction time
select a set of nodes as cluster centroids and distribueetsbj and about 20MB storage space. In contrast, due to the bulky

within 10 ngdes ?rog_n d tthe_lrp ’b\INIch el‘?“ih Clllljszﬁr Shar'lngt_tgﬁortest path quad-treeBjstBrws takes an extremely long
same nhumpber ot objects. lable SIS a € evalualiynstruction time (over 100,000 hours) and a huge storage
parameters, their values and defaults used in the eXpaBmefbver 10GB), though it is almost invariant to the number of

objects. As forDistldx, both the construction time and index

Parameter Value Default . . . .
| Network (V) | CA (21045 21693) | A | size increase drastically as the number of objects evaluate
(nodes,edges) NA (175,813, 179,179) increases. When 100,000 opjects are experimeridéd|dx
SF (174,956, 223,001) consumes 100GB storage size and takes more than 10,000
. PRS (327,402, 451,760) hours to build the indef This experiment result reveals that
# objects [O)) 100, 1000, 10,000, 100,000 10,000
Distribution 10, 100, 1,000 clusters, Uniform 100 clusters |  POth DistBrws andDistldx are impractical in real applications
Partition factor p) | 2, 4, 16 4 and the idea of query pre-computation and materialization o
# levels () 2,4,8 ‘B‘IOT th]\ all-pair shortest paths and shortest paths towards ohigntst
or others .
Query single-sourcekNN/range query, | single-source appeallng. . . . .
multi-sourcekNN/range query | kNN Figure 14 shows the index construction times and index
# NNs (k) 1, 10, 100, 1,000 10 sizes for different networks with the number of objects fia¢d
Search ranger] 0.1 of net. diameter 0.1
# sources 12) 2,46 2 6. In our implementation, we construct indices fistBrws and Distldx

TABLE 2: Evaluation parameters using multiple computers as the construction of shorteit paad-trees and
distance indices for different nodes can be divided. Thal totachine time
5. CA, NA and SF are obtained from [20] and PRS is from [21]. used is reported here.
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Index constructionJNA) Index construction (NA)
x

ooy Bbtoes DROAD ooooog | NEER  HEudldean  WDistdx Then, we evaluate the impact of object cardinalities and
e object distributions. With fewer objects and/or fewer téus,
more subspaces with no object of interest can be pruned
so thatROAD can achieve a better performance. When we
increase the number of objects from 100 up to 100,000 with
. . , : the number of clusters fixed at 100, all the approaches (éxcep
Fig. 13: Index construction (varying no. of objects on NA) g, jijean) have their search performance improved, as shown
in Figure 15(b). This is because a larger object cardinality
10,000 and the number of clusters fixed at 100, i.e., 100 thjegnplies a higher density. Consequently, the average distan
per cluster. As shown in the figuréletExp and Euclidean between query points and thek-th NN object becomes
incur the shortest index construction times and smallesage shorter which in turn cuts down the network traversal cost
overhead. However, they both are not query efficient as wilr kNN searchesROAD consistently demonstrates the best
be evaluated next. On the other haidstldx, DistBrws and performance. For example, it only requires 33%NaftExp’s
ROAD incur different index construction time and index siz@rocessing time when 100,000 objects are evaluated. Beside
as networks change bROAD always outperforms the otherwe evaluate the impact of objects distribution via varyihg t
two. For example, when the largest network PRS is evaluategimber of clusters from 10 up to 1,000 and examining the
Distldx takes over 1,000 hours to build the index and 10G@niform distribution. Figure 15(c) plots the experimerguls
to store it; while DistBrws takes over a month to build thewhen10, 000 objects are evaluated. When objects are scattered
index and more than 15GB to store it. DifferentROAD in the network, the average distance from query points to
incurs significantly shorter construction time (less than dbjects is also shortened. As such, the performance of all th
hour) and consumes less storage (about 18MB). Compatgshroaches is improved. When 10 clusters are experimented,
with Distldx, ROAD only requires around 0.6% of its indexROAD takes only 1% processing time dletExp.
construction time and 0.03% of its index size. In additid®, t  Finally, we examine the impact of query paraméigfrom
cost of Distldx increases as the number of included objectsto 1,000) and the result is plotted in Figure 15(d). While al
increases. However, the index construction costROAD is the approaches take more time wheris increasedROAD
mainly attributed to the formation of Route Overlay, whish iconsistently performs the best due to its strong pruninggsow
independent of the number of objects included. Whenk is 1, ROAD takes 1.7% processing time bfetExp.

100 1000 10000 100000 100 1000 10000 100000

(a) Index construction time (b) Index size

, ! 8.2.2 Experiments on Single-source Range Query
mNetexp Index construction Index consfructlon ] )
sooooo0 | @Ot o000 | o oRoro Second, we examine the performance of different approaches

190000 istBrws . . . A
I BEH . o for single-source range queries. As observations are \ery s
5 _:ﬂj "I(I]] ilar to those forkNN queries, we only report the performance
CA NA SF PRS CcA NA SF PRS

over different networks and different object cardinatitifor

(a) Index construction time (b) Index size space saving, shown in Figure 16(a) and Figure 16(b) respec-
Fig. 14: Index construction (CA, NA, SF, PRS) tively. From the figures, we can see tHR®MAD consistently
outperforms all the others and it benefits more from a larger
8.2 Query Performance network with a smaller number of objects. Agaljclidean

The second set of experiments evaluate the search perfoem{nzr:fgirdr:etgs.evzgsi\é 2 I::(?ris ;?eg)\mglge a[;"?“the nuan;llzjer of

of ROAD and other approaches in answering single-sourBe JECIS. ' P P, ISEETWS

LDSQOs and multi-source LDSQs on different (1) networks istldx do not improve the search performance as they both
. . e suffer from the massive access overhead for large networks

(2) numbers of objects, (3) object distributions, (4) quer nd large numbers of obiects

parameters, and (5) the number of sources for multipleesour 9 I '

LDSQs. In the experiments, we generate 100 random qUE*~~  gi.ee  Range query Range query

1000000000 - [ Eyclidean mNetExp O Euclidean

and report the average query processing time. 100000000 - g g 000000 | mDistidx & DistBrws
1000000 | @ DistBrws 1000000 | [JROAD
. . 103%3 COROAD 100000
8.2.1 Experiments on Single-source kNN Query B Ji] 1000 ']]
; 10 E 0 !
NA SF PRS 100 10000

First, we evaluate single-sourdeNN queries. As depictec 1000 100000
in Figure 15(a), when different networks are considered,
Euclidean performs the worst because of exhaustive shortest ) )
path searches for a possibly large number of candidatetsbjec Fig. 16: Single-source range query performance

This is consistent with the observations made in [7]. Fuf-2.3 Experiments on Multi-source kNN Query

ther, bothDistldx and DistBrws perform worse thametExp Third, we study the performance of the various approaches
and ROAD due to the accesses of bulky distance signaturs multi-source KNN queries. The results over different (1
and shortest path quad-trees and slow node-by-node netwoekworks, (2) numbers of objects, (3) object distributio@3
traversals. As expecteBOAD consistently performs the best.query parametek and (5) numbers of sources are shown
For clustered objectsROAD can effectively bypass thosein Figure 17. As there are no approaches on tostldx
Rnets with no object of interest. The improvementR€AD and DistBrws presented in the literature can support multi-
over NetExp ranges froml.6 (for CA) to 5.1 (for PRS). source LDSQs, we ignore them in the following experiments

milliseconds
milliseconds

CA

(a) Networks (b) No. of objects (NA)
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kNN query kNN query kNN query kNN query
1000000 . @ N_etExp OEuclidean "M Distldx 1000000 , M NetExp DEuclidean W Distldx 1000000 m NetExp @ Euclidean 100000 W NetExp OEuclidean @ Distldx
100000 . MDistBrws 0O ROAD 100000 | MDistBrws  CJROAD w 100000 | mDistldx @ DistBrws « 100000 | BDistBrws CIROAD
§ 10000 é 10000 2 10000 CROAD E 10000 |
1000 - o o
8 10 S 1000 $ 1000 8 1000
2 1 2 100 2 100 2 o
= 1 = 10 E 10 E 10
E o1 . E 11 ) N 1
A NA SF PRS 100 1000 10000 100000 10 100 1000 Uniform 1 10 100 1000
(a) Networks (b) No. of objects (NA) (c) Distributions (NA) (d) & (NA)
Fig. 15: Single-sourcéNN query performance
Multi-source kNN query Multi-source kNN query Multi-source kNN query Multi-source kNN query Multi-source kNN query
10000000 | M NetExp 10000000 | M NetExp OEuclidean O ROAD 10000000 , @ NetExp DEuclidean OROAD 10000000 | M NetExp [ Euclidean CROAD 100000000 - W NetExp O Euclidean COJROAD
1000000 - O Euclidean 1000000 1000000 1000000 10000000
14 100000 - CROAD 4 100000 - 8 100000 8 100000 «» 1000000
£ 10000 £ 10000 £ 10000 S 10000 - @ 100000
§ 1000 § 1000 § 1000 § 1000 S “l)g%
@2 100 2 100 2 100 2 100 2 100
é 1‘1] ‘ é 1(1! ) | é 1(1) | | g 1(11 E 1(}
NA S PRS 100 1000 10000 100000 10 100 1000 Uniform 1 10 100 1000 1 2 4 6
(a) Networks (b) No. of objects (NA) (c) Distributions (NA) (d) & (NA) (e) No. of sources (NA)

Fig. 17: Multi-sourcekNN query performance

on multi-source LDSQs. In first four experiments, wesfixat removing 100 randomly-chosen objects from 10,000 installe
two (i.e., two-source kNN queries), as shown in Figure 17(apjects and then inserting them back one by one. Each deletio
through Figure 17(d), and the last experiment studies thad addition involves only one single object. We measure the
impact ofm with k£ set to one (i.e., multi-source NN queries)time taken and report the average performance of deletions
as shown in Figure 17(e). As observed from the resRIBAD and insertions in Figure 19(a). As shown, the update cost
consistently performs better thadetExp andEuclidean. This incurred byDistldx is several orders of magnitude higher than
is becauseNetExp has to explore all the sub-networks (i.e.that of others, a®istldx has to update the massive distance
edges and nodes) around query points; whilglidean has signatures. For NA, SF and PRS, it takes about 10 and 18
to invoke multiple network traversals to determine the netninutes to finish one object deletion and addition, respelsti
work distances of candidate objects. DifferenfAD can In contrast, NetExp, Euclidean, DistBrws and ROAD can
effectively prune away some search spaces that have nd rekahdle an update within 10 milliseconds for all the networks

objects. since they store objects separately from networks.
i i- Object updat: Network updat
8.2.4 Experiments on Multi-source Range Query anein, Cblectupdates ey owork updates |

Then, we evaluate the performance when multi-source rag =« ***§" "
queries are issued. To save space, we focus on the imgg l]]]ll]]ll]][l]] l]]]ll]]ll]][l]]

of networks and numbers of objects only with the numk® *

S Lk

CA NA SFPRS CA NA SFPRS CA NA SFPRS CA  NA SF PRS

milliseconds

of sources fixed at two and the search range fixed at 0.1 ..  Objectdeletion Object addition Edge deletion Edge addition
the network distance. The results are reported in Figura)18( (a) Object update (b) Edge update
and Figure 18(b) respectively. By pruning away those Rnets Fig. 19: Index updates

without objects of interestROAD outperforms the other )
approaches. When different networks are evalu®eD, on  On the other hand, we simulate network changes by set-
average, takes only 4%-12% processing tim&lefExp. When tm_g_lOO edge (_Jllstances to infinity and Iater_ recoveringrthei
the number of objects changéROAD takes consistently 13% original edge distances. Each edge update_mvol_ves one edge
processing time oNetExp in NA with a fixed number of Only. The average performance of 100 trials is presented
clusters (i.e., 100). This is because range queries reqaest? Figure 19(b).DistBrws is not examined as no efficient
explore all the nodes/edges within the search range, thaSfiortest path quad-tree update mechanism is reported. The
independent on the number of objects. As the search ra/fi9€ change has almost unobservable impactsesBxp and

is fixed, the search performance does not change even wikgfilidean. However, forDistldx, the distance signatures of
the number of objects varies. AgaiBuclidean performs the Many nodes need reexamination and update, resulting ia larg

worst due to exhaustive candidate object distance searche8T0Cessing times. In contrasROAD only needs to update
affected shortcuts of certain border nodes of Rnets andsit ha

Multi-source range query Multi-source Range query considerably much lower update costs (within 5 seconds) tha
10000000 | MNetExp @ Euclidean CROAD 100000000 | mNetExp  DEuclidean  CIROAD Di .
istldx (about 20 minutes).

LD L o omonon
(a) Networks (b) No. of objects (NA) [ on the Rnet hierarchy formation, which in turn affects the

woo w0 || gst but not least, we examine the impacts of factosnd
performance ofROAD. In this experiment, we try different

(p,1) pairs with p! fixed at 256 (i.e., 28, 4%, and 162) for

8.3 Index Update CA and 65536 (i.e., 216, 48, and16%) for NA, SF and PRS.

Further, we evaluate the index update cost upon object @sanghe results in terms of query processing times for single-
and/or network changes. First, we simulate object changesdourcekNN queries £=10) and indexing overhead in terms

milliseconds
milliseconds

Fig. 18: Multi-source range query performance



of index construction times and sizes are plotted in Figlre 25]
We can observe thaROAD performs similarly in terms of
query processing times under differépti) pairs. Meanwhile, [6]
a smallerl (with a corresponding largen results in a smaller [7]
index that takes a shorter construction time. This findir}g]
suggests the design of ROAD should adopt a smallend
a largerp, given a fixed number of finest Rnets targeted (i.e.,
p'). Both observations are consistent with those made in dl
performance analysis discussed in the previous section. [10]

Index construction
time mmmp=2
size =o=p=2

[11]

§

p=4
——p=4

==p-16

mp=2
i —0—p-16

Op=4
dp=16

400
300

-
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@
200 3

-

100

Query time (kNN query)
M|

il

(a) Query time ENN)

Fig. 20: Combinations op and!

From this evaluation, we can see the efficienclR&FAD to
support single-source and multi-source LDSQs. It outperfo
competitive approaches, nameNetExp, Euclidean, Distldx
and DistBrws, owing to its effective search space prunin
capability that is not explored by any of existing approach
Meanwhile,ROAD provides moderate and very practical con-
struction and maintenance cost compared with the statkesf- [17]
art approached)istldx and DistBrws.

milliseconds

[12]

o
a

CA NA SF

»

43

2

2 10

£ 1
PRS

(b) Index overhead [13]

[14]

[15]

(18]

9 CONCLUSION

The rapid growth of LBSs fosters a need of efficient search
algorithms for LDSQs. In the mean time, the on-going trerlgl
of web-based LBSs demands a system framework that
be extended to accommodate diverse objects, provide efficie
processing of various LDSQs, and support different distan@?]
metrics. To meet these needs, we propose ROAD, a new
system framework for LDSQ processing, in this paper. Thes]
design of ROAD achieves elear separatiorbetween objects
and network for better system extensibility. It also exsloi [24]
search space pruningn effective and powerful technique for
efficient object search. Upon the framework, efficient searc
algorithms for single-source and multi-source LDSQs are
devised. Via a comprehensive performance evaluation dn rea
road networks, ROAD is shown to significantly outperform the
state-of-the-art techniques.

Recently, various LDSQs, such as continuous queries [4],
skyline queries [23] and optimal location queries [24], &ver
researched. However, existing works addressed them based
on the solution-based approaches or extended spatialadatab
approaches and thus suffered from the shortcomings of those
approaches. In the future, we are going to extend our ROAD
framework to support those emerged LDSQs.

[19]

REFERENCES

[1] Garmin, “POI Loader,’htt p: / / ww8. gar m n. cond pr oduct s/

poi | oader.

[2] Google, “Map Maker,’ht t p: / / www. googl e. conf mapnaker .

[3] M. R. Kolahdouzan and C. Shahabi, “Voronoi-Based K Nstideigh-
bor Search for Spatial Network Databases,”"MhDB, 2004, pp. 840—
851.

[4] H.-J. Cho and C.-W. Chung, “An Efficient and Scalable Aggeh to

CNN Queries in a Road Network,” iNLDB, 2005, pp. 865-876.

3} NAVTEQ,

13

H. Hu, D. L. Lee, and J. Xu, “Fast Nearest Neighbor SearnhRoad
Networks,” in EDBT, 2006, pp. 186-203.

H. Hu, D. L. Lee, and V. C. S. Lee, “Distance Indexing on Roa
Networks,” in VLDB, 2006, pp. 894-905.

D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “QuerycEssing in
Spatial Network Databases,” MLDB, 2003, pp. 802-813.

M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate Nesrdeighbor
Queries in Road NetworksfEEE TKDE, vol. 17, no. 6, pp. 820-833,
2005.

R. Dechter and J. Pearl, “Generalized Best-First Se&trategies and
the Optimality of A*” J. ACM vol. 32, no. 3, pp. 505-536, 1985.

E. W. Dijkstra, “A Note on two Problems in Connexion wi@raphs,”
in Numerische Mathematikl959, pp. 269-271.

N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hiehacal Encoded
Path Views for Path Query Processing: An Optimal Model ared It
Performance EvaluationfEEE TKDE, vol. 10, no. 3, pp. 409-432,
1998.

S. Jung and S. Pramanik, “An Efficient Path Computationds! for
Hierarchically Structured Topographical Road MapffEE TKDE
vol. 14, no. 5, pp. 1029-1046, 2002.

H. Samet, J. Sankaranarayanan, and H. Alborzi, “Stal&etwork
Distance Browsing in Spatial Databases,"3ltGMOD Conf, 2008, pp.
43-54.

J. Sankaranarayanan, H. Alborzi, and H. Samet, “Effici@uery Pro-
cessing on Spatial Networks,” IACM GIS 2005, pp. 200-209.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner, “EffeetiGraph
Clustering for Path Queries in Digital Map Databases,AitM CIKM,
1996, pp. 215-222.

] B. Kernighan and S. Lin, “An Efficient Heuristic Procedufor Par-

titioning Graphs,”Bell Systems Technical Jourpnalol. 49, no. 2, pp.
291-308, 1970.

K. C. K. Lee, W.-C. Lee, and B. Zheng, “Fast Object SeanchRoad
Networks,” in EDBT, 2009, pp. 1018-1029.

B. H. Bloom, “Space/Time Trade-offs in Hash Coding wafiowable
Errors,” Comm. of ACMvol. 13, no. 7, pp. 422-426, 1970.

C. Faloutsos and S. Christodoulakis, “Signature Filds Access
Method for Documents and Its Analytical Performance Ewédug
ACM TOIS vol. 2, no. 4, pp. 267-288, 1984.

F. Li, “Li's Collections of Real Road Network Datafitt p: / / vwww.
rtreeportal.org.

“Development
http://devel oper. navteq. com
S. Shekhar and D.-R. Liu, “CCAM: A Connectivity-Clustel Access
Method for Networks and Network Computationt?EE TKDE vol. 9,
no. 1, pp. 102-119, 1997.

K. Deng, X. Zhou, and H. T. Shen, “Multi-source Skylineu€yy
Processing in Road Networks,” I€DE, 2007, pp. 796—805.

Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Quérin SSTD
2005, pp. 163-180.

Resources,”



BIOGRAPHY

Ken C. K. Lee is currently an assistant professor at
Department of Computer and Information Science, Universit
of Massachusetts Dartmouth. In Fall 2009, he received his
Ph.D. degree from the Pennsylvania State University. Bssid
he obtained his BA and MPhil degrees from the Hong Kong
Polytechnic University. He is now a member of the ACM and
the IEEE.

Wang-Chien Lee is an Associate Professor of Computer
Science and Engineering at Pennsylvania State Univeksity.

received his B.S. from the Information Science Department,
National Chiao Tung University, Taiwan, his M.S. from

the Computer Science Department, Indiana University, and
his Ph.D. from the Computer and Information Science
Department, the Ohio State University. Prior to joining
Penn State, he was a principal member of the technical
staff at Verizon/GTE Laboratories, Inc. Dr. Lee leads the

Pervasive Data Access (PDA) Research Group at Penn State

University to pursue cross-area research in databasensyste
pervasive/mobile computing, and networking.

Baihua Zheng received her B.S. degree from Zhejing
University and her PhD in computer science from Hong Kong
University of Science and Technology. She is a member
of the IEEE and the ACM. Currently, she is an assistant
professor in the School of Information Systems at Singapore
Management University. Her research interests includeilmob
and pervasive computing, and spatial databases.

Yuan Tian received her BE degree in electrical engineering
from Tsinghua University, China. She is currently working
towards the PhD at the Department of Computer Science and
Engineering, the Pennsylvania State University. Her metea
interests include spatial database, location based ssraiod
social network.

14



	ROAD: A New Spatial Object Search Framework for Road Networks
	Citation

	tkde-road.dvi

