Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

6-2010

Z-SKY: An Efficient Skyline Query Processing Framework Based
on Z-Order

Ken C. K. LEE
Pennsylvania State University

Wang-chien LEE
Pennsylvania State University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Huajing LI
Pennsylvania State University

Yuan TIAN
Pennsylvania State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific
Computing Commons

Citation

LEE, Ken C. K.; LEE, Wang-chien; ZHENG, Baihua; LI, Huajing; and TIAN, Yuan. Z-SKY: An Efficient Skyline
Query Processing Framework Based on Z-Order. (2010). VLDB Journal. 19, (3), 333-362.

Available at: https://ink.library.smu.edu.sg/sis_research/1985

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published in VLDB Journal, June 2010, Volume 19, Issue 3, pp. 333-362.

http://dx.doi.org/10.1007/s00778-009-0166-x

Z-SKY: an efficient skyline query processing framework based

on Z-order

Ken C. K. Lee - Wang-Chien Lee -
Huajing Li - Yuan Tian

Baihua Zheng -

Abstract Given a set of data points in a multidimensional
space, a skyline query retrieves those data points that are not
dominated by any other point in the same dataset. Observ-
ing that the properties of Z-order space filling curves (or
Z-order curves) perfectly match with the dominance relation-
ships among data points in a geometrical data space, we, in
this paper, develop and present a novel and efficient process-
ing framework to evaluate skyline queries and their variants,
and to support skyline result updates based on Z-order curves.
This framework consists of ZBitree, i.e., an index structure
to organize a source dataset and skyline candidates, and a
suite of algorithms, namely, (1) ZSearch, which processes
skyline queries, (2) Zlnsert, ZDelete and ZUpdate, which
incrementally maintain skyline results in presence of source
dataset updates, (3) ZBand, which answers skyband que-
ries, (4) ZRank, which returns top-ranked skyline points, (5)
k-ZSearch, which evaluates k-dominant skyline queries, and
(6) ZSubspace, which supports skyline queries on a subset of
dimensions. While derived upon coherent ideas and concepts,
our approaches are shown to outperform the state-of-the-art

K.C.K. Lee (X)) - W.-C. Lee - H. Li - Y. Tian

The Department of Computer Science and Engineering,
The Pennsylvania State University, University Park,
PA 16802, USA

e-mail: cklee @cse.psu.edu

W.-C. Lee
e-mail: wlee@cse.psu.edu

H.Li
e-mail: huali@cse.psu.edu

Y. Tian
e-mail: yxt144@cse.psu.edu

B. Zheng

School of Information Systems,

Singapore Management University, Singapore, Singapore
e-mail: bhzheng @smu.edu.sg

algorithms that are specialized to address particular skyline
problems, especially when a large number of skyline points
are resulted, via comprehensive experiments.

Keywords Skyline query - Skyline query result update -
Index - Search algorithm - Z-order space filling curve

1 Introduction

Given two data points p and p’ in a multidimensional space,
pissaid to dominate p’ if p is strictly better than p’ on at least
one dimension and p is not worse than p’ on the other dimen-
sions. To illustrate the idea of dominance relationships, Fig. 1
gives a hotel finding example (i.e., our running example) in
which a conference participant looks for a hotel based on two
criteria, price per night and distance to the conference venue.
Figure 1a lists 9 hotel records and their values and Fig. 1b
depicts the geometrical representation of the hotels in a 2D
space with each dimension representing one criterion. Hotels
P4, p7, pg and pg are all dominated. For instance, p7 is dom-
inated by ps as it is more expensive than ps, although both of
them are equally good in terms of distance to the conference
venue. In database systems, queries specialized to search for
those non-dominated data points are named skyline queries,
and their corresponding results are called skyline results. In
the example, hotels p1, p2, p3, ps and pe form a skyline
result. Individual data points in a skyline result are skyline
points.

With a very wide application base in various domains such
as multi-preference analysis and decision making, skyline
queries have received a lot of attentions [4,5,9,13,16,22,
26,29,31,34]. Most of the existing works in the literature
proposed and examined different techniques to improve the
skyline search performance [4,16,22,26] and to efficiently



334

K. C. K. Lee et al.

Price

Hotel
(x 100)

Distance
(x 0.1)

b1
P2
p3
P4
ps
Pe
p7
P8
y4)

distance to conference (X 0.1 mile)

skvlme points —

L . T
1 2 3 4 5 6 7
price (x100)

(a) (b)

QNB [ N[ W[ 19— W
QN[ = | B[OV | W2

Fig. 1 Anexample skyline query (our running example): a hotel (price,
distance), b price, distance space

update cached skyline results [22,31] in presence of dataset
updates. Besides, skyline query variants, such as skyband
query [22], top-ranked skyline query, k-dominant skyline
query [5] and subspace skyline query [9,29] have been
recently derived. A skyband query returns data points that
are not dominated by more than b other data points (where
b specifies the width of a skyband query result interested
by users). A top-ranked skyline query finds ¢ skyline points,
each of which dominates the most data points, where 7 is a
query parameter. A k-dominant skyline query retrieves a rep-
resentative subset of skyline points from a high-dimensional
data set by considering dominant relationships on arbitrary k
dimensions rather than all d dimensions (where k < d). Last
but not least, a subspace skyline query performs a skyline
search on a specified subset of dimensions. We will discuss
them in details in the next section.

Skyline query processing and skyline result updates are
expensive operations. Their costs are mainly constituted by
I/0O costs in accessing data from a tertiary storage (e.g., disks)
and CPU costs spent on dominance tests. In particular, the
CPU costs can be very high due to exhaustive data point com-
parisons. Hence, search efficiency and update efficiency are
the two most important performance criteria to skyline query
processing and skyline result maintenance. In addition, as
skyline queries have been considered as an analytical tool in
some commercial database systems [6], it is definitely impor-
tant to develop a skyline query processing framework that can
be easily extended to deal with different skyline query vari-
ants. Although various techniques have been recently pro-
posed to address different but closely related research issues
raised in skyline queries, almost all of them are developed
independently and lack of provisioning a generic framework
to tackle all those issues in a seamlessly integrated fashion.
Therefore, techniques tailored to facilitate some particular
skyline query variants would introduce performance burdens
to others and/or skyline result updates, if a framework needs
to support skyline queries, skyline result updates and skyline
query variants, simultaneously.

dataset
updates

skyline
points

Algorithm library

( ZSearch )( ZDelete )( ZBand ><k ZSeurch)
C Zlnsert )( ZUpdate >< ZRank ><Z§ubspau> N

1L

Dominance test -

C conyentional ) Cdommunce test Skyline

dominance test and counting candidates

k- dl)mmmue subspace - (Zbtree)
dommam e test

Z-SKY

Data source
(ZBtree)

Fig. 2 The Z-SKY skyline query processing framework

Based on our preliminary studies [17], accessing and
organizing data points based on a Z-order space filling curve
(or Z-order curve, in short) can improve the skyline query
evaluation and skyline result update performance, and can
support skyline query variants, simultaneously, because of
the following three reasons:

1. Z-order curve provides the monotonic access order of
data points. This access order can help identifying data
points, which are likely to be a part of skyline result and
that can dominate many data points, early. Moreover, this
avoids candidate reexaminations that removes false hits,
and provides progressive result delivery.

2. Z-order curve clusters data points based on their loca-
tions in a multidimensional space. With data points clus-
tered and represented as blocks, the dominance tests
between groups of data points in terms of blocks are
accelerated. This frue block-to-block dominance test
cannot be achieved by any existing work. Search space
pruning is also facilitated by such block-based domi-
nance tests.

3. Z-order curve is one of the widely adopted dimension
reduction techniques [11,24]. Skyline algorithms devel-
oped based on Z-order curves are therefore inherently
scalable to high data dimensionality.

Motivated by the demand of an efficient and extensible frame-
work for skyline queries and inspired by an observed strong
connection between Z-order curves and the dominance rela-
tionships among data points in a geometrical data space, we
develop and present a novel skyline query processing frame-
work named Z-SKY for skyline queries and variants, and sky-
line result maintenance based on Z-order curves, in this paper.
To the best of our knowledge, this is the first work reported in
the literature that addresses both the efficiency of processing
skyline queries, especially for large datasets with high data
dimensionality, and the extensibility of a processing frame-
work to support skyline query variants.

The high-level view of our Z-SKY framework is depicted
in Fig. 2. It consists of four main components, namely,
(i) a data source (SRC), (ii) a set of skyline candidates
(SL), (iii) an algorithm library, and (iv) dominance tests.



Specifically, SRC is a set of source data points indexed by
a ZBtree. ZBtree indexes data points based on their values
on a Z-order curve. Second, S£ maintains skyline candi-
dates indexed by another ZBtree. Third, the dominance tests
provide different types of dominance relationship tests, such
as (conventional) dominance tests, dominance and count-
ing that determines the number of dominating points for a
data point, k-dominance tests and subspace dominance tests
that support k-dominant skyline queries and subspace skyline
queries, respectively. Fourth, the algorithm library maintains
a suite of algorithms, namely, (1) ZSearch, which processes
skyline queries, (2) ZInsert, ZDelete and ZUpdate, which
incrementally update skyline query results, (3) ZBand, which
evaluates skyband queries, (4) ZRank, which returns skyline
points that dominate the most data points, (5) k-ZSearch,
which answers k-dominant skyline queries and (6) ZSub-
space, which performs skyline searches on specified subsets
of dimensions. Upon receiving a skyline query (or its vari-
ant), a corresponding algorithm is then invoked to access and
examine data points from SRC with corresponding domi-
nance tests. The candidates are kept in SL. After evalua-
tions, skyline points are delivered. Likewise, to maintain a
skyline result in presence of dataset updates, a skyline result
update algorithm is triggered that determines the change of
a result preserved in SL and accesses required data points
from SRC if needed. It is noteworthy that the underlying
operations and data structures follow a coherent idea and
concept developed based on Z-order curves. Finally, to eval-
uate our Z-SKY framework, we conducted a comprehensive
performance evaluation and compared our approaches with
the state-of-the-art algorithms.

The rest of this paper is structured as follows. In Sect. 2,
we discuss the skyline query properties and review exist-
ing works. In Sect. 3, we analyze why Z-order curve per-
fectly matches with dominance relationships among data
points that in turn leads to the introduction of ZBtree and
discuss its manipulations. Section 4 details the ZSearch algo-
rithm to evaluate skyline searches. Section 5 presents the
Znsert, ZDelete and ZUpdate algorithms to handle skyline
result updates. Section 6 discusses the ZBand, ZRank,
k-ZSearch and ZSubspace algorithms to support skyline
query variants, namely, skyband queries, top-ranked
skyline queries, k-dominance skyline queries and subspace
skyline queries, respectively. Section 7 evaluates the per-
formance of our proposed algorithms in comparison with
the start-of-the-art approaches. Finally, Sect. 8 concludes the

paper.
2 Preliminaries

In this section, we formulate the skyline queries and identify
their properties and then define those skyline query variants

to be addressed in this paper, followed by a review of some
related works.

2.1 Definitions and properties

Given a d-dimensional space S = {s1, 52, ..., 54} thatcovers
a set of data points P = {p1, pa, ..., pn} (such thatevery p;
is adata point in S), the dominance relationship between data
points and the skyline queries are defined in Definitions 1 and
2, respectively. We use p;.s; to denote the jth dimensional
value of p;, and assume the existence of a total order rela-
tionship, either ‘<’ or ‘>’, on each dimension. Without loss
of generality, we consider that p - s; is better than p’ - s; if
p-sj < p'-s;j, throughout the paper.

Definition 1 Dominance. Given p, p’ € P, p dominates p’
(denotedby p = p")iff Vs; € S, p-s; < p'-sinTsj € S, p-s;
< p’ - sj; otherwise, p does not dominate p’ (denoted by
p Y pH.

Definition 2 Skyline query. A skyline query retrieves those
data points in P that are not dominated by any other point.
We denote a skyline result by U, and formally, U = {p €

P| Ap' e P —{p}, p'F p}

We observe two skyline query properties, namely, transi-
tivity and incomparability, which provide important insights
to facilitate the development of our index and algorithms, as
stated below.

Property 1 Transitivity. Given p, p’, p” € P, if p dom-
inates p’ and p' dominates p”, then p dominates p”, i.e.,
p}_p//\pll_p//:}pl_p//-

Property 2 Incomparability. Given p, p’ € P, p and p’
are incomparable if they do not dominate each other, i.e.,
pYp AP P

Based on the transitivity property, if dominating points
are always processed before their dominated data points,
any data point, which passes the dominance tests against
all the skyline points obtained ahead of it, is guaranteed to
be a skyline point. This property inspires the sorting-based
approaches [8,13]. On the other hand, if two data points
are known to be incomparable in advance, dominance tests
between them can be avoided. This incomparability inspires
the divide-and-conquer approaches [4].

Generally speaking, a skyline query classifies data points
into a set of skyline points (U) and a set of non-skyline points
(P-U) and returns U. Some non-skyline points may be dom-
inated by only a few data points and they are incomparable
to all the remaining skyline points. Revisit our hotel example
in Fig. 1. Hotel p7 is only dominated by hotel ps. In other
words, p7 is not dominated by all the other skyline points,
namely, p1, p2, p3 and pe. In this case, if the user is interested



in ps butitis not available, p; could be the next candidate for
her to consider. To retrieve data points that are not dominated
by more than a certain number of data points, the skyband
queries are defined in Definition 3.

Definition 3 Skyband query. Let D), represent the set of
data points that dominate p, i.e., D, = {p' € P —{p}| p' -
p}. Given an integer b (where b > 1), a skyband query
retrieves all the points p which are dominated by b or less
other points. We denote the skyband result of the query by
Upand Uy = {p € P | |D,| < b}.

Besides, the conventional skyline query ignores a fact that
skyline points might have different number of dominated
data points. In many cases, skyline points that have smaller
number of dominated data points are those which have a few
better attributes and have many less competitive attributes. In
our hotel example, pg has no dominated point at all because
of its extremely high price though being the closest to the
conference. Referring one’s number of dominated points to
as its dominating power, we consider those skyline points
with the greatest dominating power (with the most domi-
nated data points) to be the most representative. Then, given
a desired number of returned top-ranked skyline points, ¢,
the top-ranked skyline queries are defined in Definition 4 to
retrieve ¢ skyline points that dominate the most data points.

Definition 4 Top-ranked skyline query. Let £, represent
a set of data points that are dominated by p,i.e., E, = { p e
P | p F p'}. A point p is said to have greater dominating
power than p’ if |E,| > |E,|. Given an integer ¢, a top-
ranked skyline query retrieves ¢ skyline points from U that
have the largest dominating power. We denote the top-ranked
skyline result of the query by U; such that U; C U, |U,| <t

andVp € U;,Vp' € (U —U)), |E,| > |Ey|.!

Another variant is the k-dominant skyline queries that fil-
ter out skyline points with only a few good attributes. Instead
of all the d dimensions, a k-dominance relationship considers
arbitrary k out of all the d dimensions, as defined in Defi-
nition 5. With a small k, the size of a skyline result can be
reduced [5]. The definition of k-dominant skyline queries is
provided in Definition 6.

Definition 5 k-dominance. Given p, p’ € P, p k-domi-
nates p’ (denoted by p - p)iffas’ C S, |S'| =k, Vs; € §,
p.si < p'sindsj €S, p.sj < p'.sj; otherwise, p does not
k-dominate p’ (denoted by p 4 p).

Definition 6 k-dominantskyline query. A k-dominant sky-
line query retrieves a subset of data points in P that are not
k-dominated by any other point. We denote a k-dominated
skyline result of the query by Uy and Uy is {p € P |Vp' €
P —{p}, p' V& P}

VIf |U| < 1, we collect U, as the entire U.

According to the k-dominance relationship, skyline points
that are only good at a few dimensions are very likely to
be k-dominated by others and hence the k-dominant skyline
result size is smaller than a conventional skyline result. It is
important to note that data points may get dominated by other
data points sorted behind them according to any monotonic
access order. This is because a data point p k-dominating
another point p’ can also get k-dominated by p’ at the same
time, but in different £ dimensions. This is so-called cyclic
dominance [5]. In this case, p and p’ are not k-dominant
skyline points. Thus, candidate reexaminations are needed
which incurs larger processing overhead. Further, determin-
ing whether p k-dominates p’ requires to compare at least k
dimensional values. Meanwhile, examining whether p does
not k-dominate p’ needs to examine no less than (d — k + 1)
dimensional values.? Therefore, each dominance test based
on the k-dominance relationship incurs a larger processing
overhead than the conventional dominance test.

Different from k-dominant skyline queries, subspace sky-
line queries retrieve data points that are not dominated by
others based on a specified subset of d dimensions (or called
a subspace). Accordingly, Definition 7 defines a subspace-
dominance relationship between points and Definition 8 for-
malizes these subspace skyline queries.

Definition 7 Subspace dominance. Given p, p’ € P on a
subspace S’ (C S), p §’-dominates p’ (denoted by p g p’)
iff Vs; € S’ p.si < p'si A3sj e S, psj < plsj; other-
wise, p does not S’-dominate p’ (denoted by p tg p’).

Definition 8 Subspace skyline query. A subspace skyline
query retrieves a subset of data points in P that are not
S’-dominated by any other points. We denote the subspace
skyline result of the query by Us and Us = {p € P |

Vp' e P —{p}.p' Vs p}.

The evaluation of subspace skyline queries would be intu-
itively treated as conventional skyline queries, except only
certain dimensions are considered. However, it is not trivial
to have a single data organization to support subspace sky-
line queries on all possible subsets of dimensions, simulta-
neously. Recall our example. A subspace skyline query on the
price dimension can be facilitated if data points are arranged
in an ascending price order, i.e., p2, p3, p4, etc. Likewise,
another subspace skyline query for the distance dimension
prefers objects sorted according to their distances. Clearly,
these orders are different and not favorable to conventional
skyline queries that consider both the dimensions.

2 Among the k dimensions, p has at least one dimensional value better
than p’ and the rest of p is not worse than that of p’. Meanwhile, as p

has d — k + 1 dimensional values worse than p’, p does not k-dominates
/

p-



Table 1 Representative skyline

i ) BNL, Bitmap D&C SFS, Sal.Sa, LESS Index, NN, BBS
query algorithms
D&C X v X v
Sorting X X v v
2.2 Related work y maimal point 2
74 Dp., of the space 77 D4
. . . . . 64 @ O 64 ®
Next, we review representative algorithms for skyline queries P2 P P2 o
. . . 5 54
and skyline updates as well as skyline variants, such as sky- 2 . ps i | ps
. . . . . 4 O 4+ °
band queries, top-ranked skyline queries, k-dominant skyline 5 pr regionof p; 5 &
queries and subspace skyline queries. B, P
2+ ® o 2 4 ¢)
ps  P7 P s P7 Ps
) ) 14 ° 1A
2.2.1 Skyline query processing o Po By
T T T T T T T T T T T T
0 I 23 456 7x o0 I 23 56 7 x

Existing skyline query processing algorithms that include
Block-Nested Loop (BNL) [4], Bitmap [26], Divide-and-
Conquer (D&C) [4], Sort-Filter-Skyline (SFS) [8], SaLSa [2],
LESS [13], Index [26], Nearest Neighbor (NN) [16], and
Branch and Bound Search (BBS) [22], can be roughly classi-
fied based on the adoption of two popular techniques, namely,
divide-and-conquer (D&C) and/or sorting. Table 1 gives a
short summary. BNL and Bitmap are brute force algorithms.
In the following, we review representative divide-and-con-
quer, sorting, and hybrid algorithms.

D&C algorithms. D&C divides a dataset into several par-
titions small enough to be loaded into the main memory for
processing [4]. A local skyline for each partition is computed.
The global skyline is obtained by merging all local skylines
and removing dominated data points.

Sorting-based algorithms. SFS [8] is devised based on an
observation that by having a dataset presorted according to a
certain monotone scoring function such as the entropy, sum
or minimum of attribute values, it is guaranteed that data
points must not be dominated by others sorted behind them
and the partial query result can be delivered immediately.
SFS sequentially scans the sorted dataset and keeps a set of
skyline candidates. Those not dominated by skyline candi-
dates should be a part of the skyline. Sal.Sa [2] presorts a
dataset based on the records’ minimum attribute values and
it improves SFS by terminating a search whenever an exam-
inee data point whose minimum attribute value is greater
than the MiniMax (i.e., the minimum among the maximum)
of examined data points’ attribute values is reached. This
termination condition guarantees that all later examined data
points should not be skyline points; and this early termination
avoids scanning the entire dataset. However, SFS and Sal.Sa
have no or limited search space pruning capability and inevi-
tably examine and compare all the individual data points in a
pairwise fashion. Also, dominance tests in SFS and Sal.Sa are
based on an exhaustive scan on existing skyline candidates.
Unless the number of skyline points is very small, they tend

p
(@) (b)

Fig. 3 BBS and main memory R-tree. a BBS, b main memory R-tree

to be CPU-bound. LESS [13] combines external sort and sky-
line search in a multi-pass fashion. It reduces the sorting cost
and provides an attractive asymptotic best-case and average-
case performance based on an assumption that the number
of skyline points is small.

Hybrid algorithms. Index [26], NN [16] and BBS [22] are
hybrid approaches that use both divide-and-conquer and sort-
ing techniques in skyline query processing. Here, we review
BBS, i.e., currently the most efficient online skyline search
algorithm. BBS is based on iterative nearest neighbor search
[14]. In Fig. 3a that illustrates BBS with the nine hotel exam-
ple points, pp, the nearest neighbor (nn) to the origin in the
whole space, is identified as the first skyline point since the
empty vicinity circle that centers at the origin and touches p
ensures that there is no data points dominating p;. Then, data
points (i.e., p4, pg and po) fallen into the dominance region
of p1, i.e., the region bounded by p; and the maximal point
of the entire space, are not skyline points and can be safely
discarded from a detailed examination. Based on the same
idea, the second nn to the origin, p3, not dominated by pj,
is another skyline point. Next, ps, the third nn, is retrieved
and its dominated point p7 is removed. Finally p» and p¢ are
retrieved and the search terminates.

BBS adopts one R-tree to index the source dataset because
R-tree can facilitate iterative nn search. It also uses a heap
to keeps track of unexamined index nodes and data points in
non-decreasing distance order with respect to the origin of
the space so that repeated accesses of R-tree nodes can be
alleviated, and a main memory R-tree to index the dominance
regions of all skyline points. Via an additional main memory
R-tree, BBS performs dominance tests on every examinee
(i.e., data point or index node) by issuing an enclosure query.
If an examinee is entirely enclosed by any skyline candidate’s
dominance region, it is dominated. In Fig. 3b, pg, an exam-



inee data point, is compared with B, and Bj, the minimum
bounding boxes of two leaf nodes in the main memory R-tree.
Asitisin By, not By, pg is possibly dominated by some data
points enclosed by B, but certainly not B. Next, pg is com-
pared with the dominance regions of all the data points inside
B, and found to be dominated by p; (and p3).

However, as data dimensionality increases, the perfor-
mance of R-trees and main-memory R-trees that BBS
depends on deteriorates (due to curse of dimensionality [3]).
Even worse, some data points (or index nodes) that are far
away from the origin are loaded into the heap as their enclos-
ing nodes (or parent nodes, respectively) appeared the closest
to the origin. As aresult, BBS, sometimes, loads some entries
earlier than they are needed. Thus it imposes a high conten-
tion on the runtime memory. Besides, dominance tests based
on main-memory R-trees are actually not efficient because
the examinee data points or index nodes have to reach the
bottom level to determine by what skyline candidates it is
dominated. In other words, dominance tests are performed
based on point-to-block comparison, which is clearly less
efficient than block-to-block comparison as provided by our
proposed algorithms.

Our ZSearch algorithm (to be presented in Sect. 4) is also
a hybrid approach. It processes a skyline query by access-
ing data points arranged on a Z-order curve. With effective
block-based dominance tests, ZSearch can efficiently assert
if a block of data points is dominated by a single data point or
a block of skyline points. This significantly improves both
the overall processing time and the runtime memory con-
sumption.

2.2.2 Skyline result updates

Skyline result update is another challenging research prob-
lem. In general, dataset updates include insertions and dele-
tions. Insertions of a new data point may bring in new skyline
points. In BBS-Update [22],® a new data point is compared
with the dominance regions of existing skyline points. If the
data point is dominated, it is not included in the skyline result.
Otherwise, it is admitted to the main memory R-tree. There-
after, those existing skyline points dominated by this new
point are removed. However, main memory R-trees are inef-
ficient to identify those current skyline points dominated by
a given new data point. For example, in Fig. 3b, p is a new
skyline point and its dominance region intersects with B,
and By, implying that some of their enclosed data points
may be dominated by p. Thus, p has to be compared with
all of the enclosed data points. Our ZInsert algorithm utilizes
the ordering property of Z-order curves to quickly figure out

3 We use BBS-Update to refer to the update algorithm derived from the
BBS algorithm.

portions of skyline points possibly dominated by a newly
inserted point, and to identify portions potentially dominat-
ing the inserted point. Besides, it can support result update
with multiple insertions simultaneously.

Deletions are more complicated to handle than insertions
since data points previously dominated by a deleted skyline
point may no longer be dominated and thus need to be pro-
moted into a skyline result. BBS-Update defines Exclusive
Dominance Region (EDR) for each skyline point, i.e., the
region inside which all the points are exclusively dominated
by the corresponding skyline point. However, in high dimen-
sional spaces, EDRs are in irregular and complex shapes.
To efficiently determine whether a data point p (or an index
node) is exclusively dominated by the deleted point, Delta-
Sky [31], an extension of BBS-Update, maintains d sorted
lists, each corresponding to one dimension. Each sorted list
orders the skyline points according to their values on arespec-
tive dimension. If p is dominated, its dominating skyline
point(s) should be smaller than or equal to p in all the d sorted
lists. Based on this property, DeltaSky performs a negative
test. It scans all the lists and determines if all skyline points
are greater than p for all the lists. However, DeltaSky also
suffers from a serious scalability problem to high data dimen-
sionalities. First, it needs to scan all of the d lists in a high-
dimensional space. The number of skyline points is expected
to be large [5], which considerably extends the length of all
sorted lists. Second, DeltaSky does not address insertions.
Sorted lists favor deletions but they incur update overheads
to insertions. Our ZDelete algorithm can efficiently find out
data points for promotion when some existing skyline points
are deleted. More importantly, it can handle batched deletions
that none of the existing works can support. Further, our ZUp-
date algorithm, which is made up of both ZInsert and ZDelete
algorithms, can efficiently handle both insertions and dele-
tions as well as multiple updates simultaneously. The details
will be discussed in Sect. 5.

2.2.3 Skyline query variants

Based on revised search criteria and dominance conditions,
several skyline query variants have been recently proposed
to retrieve “good” data points in different perspectives. Here,
we discuss four major variants, namely, skyband queries,
top-ranked skyline queries, k-dominant skyline queries and
subspace skyline queries

Skyband query processing. A skyband query retrieves data
points dominated by no more than b other data points. In
Fig. 4a that illustrates a skyband query example, pg is domi-
nated by pj and p3 and hence its count of dominating points
is 2, as shown in the associated brace. Based on these counts, a
skyband query with b setto 2 returns { p1, p2, p3, Ps, P6, P7}-



y dominated by y
7 both p,, p>and p3 7 o
P4(3) P+
6 - (0] 6 @] @)
Py(6) P2(2) Py
5 5
p;(3)  Ps
4 O
/ 3)
34 / pi(
e
2 -
Top-ranked D
1 | skyline points ps() P71 o
=2 ps(0)
T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 X 0 1 2 3 5 6 7 X

Fig. 4 A skyband query and a top-ranked skyline query. a a skyband
skyline query, b a top-ranked skyline

The other data points, p4, pg and pg are excluded as they are
dominated by 3, 2, and 6 other data points, respectively.

It is quite straightforward to extend existing skyline algo-
rithms such as SFS [8] and BBS [22] to keep track of data
points not dominated by no more than b data points as sky-
band candidates. However, increasing b to a larger value will
definitely result in more skyband candidates and thus incur
a higher computational cost in dominance tests. Our ZBand
algorithm improves the skyband search efficiency based on
the advantage of block-based dominance tests. Specifically,
we associate each block of skyband candidates with a count
to indicate enclosed skyband candidates. If an examinee (that
could be a data point or a block of data points) is found to
be dominated by some blocks of skyband candidates and the
sum of their counts greater than or equal to b, the examinee
is certainly dominated by b or more data points and it can
be safely discarded. However, the idea of associating counts
is not applicable to main-memory R-trees, thus unable to
improve BBS performance. The detailed description of the
ZBand algorithm is in Sect. 6.2.

Top-ranked skyline query processing. To quantify the
importance of a data point p based on the idea of the domi-
nance relationship, as suggested in [22], the number of data
points that are dominated by p is used to indicate the impor-
tance of p. The more data points p dominates, the more
important p is considered to be. Based on this metric,
K -dominating query has been proposed [22,33] to retrieve
those data points that dominate the most data points. How-
ever, K-dominating query returns data points that can be
dominated by some other points. Strictly speaking, this K-
dominating query is not a skyline query variant. Also, a
research work in [20] finds the k most representative sky-
line points whose dominated data points cover most (if not
all) of the dominated data points in a dataset. In [27], a subset
of skyline points are collected that can approximately present
the distribution of an entire set of skyline points. However,
these works cannot tell which skyline points can dominate
the most. In this paper, we present a top-ranked skyline query
that returns a subset of skyline points that can dominate most

Fig. 5 An example for [ [ s1 [ s2 ] s3]

k-dominant and subspace p1 9 11 2

skyline queries pe | 2 | 11 [ 11
D3 8 8 8
pa | 1 |25 1

of other data points. In Fig. 4b, we can see that p; dominates
P4, ps, and pg so that its number of dominated data points
is 3 (as marked inside the brace). Similarly, the number of
data points dominated by p», p3, ps and pg are 2, 3, 2, and
0, respectively. Based on these numbers, p; and p3 are con-
sidered to be the most important while pg is the least since it
dominates zero data point. Given a parameter ¢, a top-ranked
skyline query finds ¢ skyline points whose counts of dom-
inated data points are the largest. In Fig. 4b, a top-ranked
skyline query with t = 2 returns p; and p3.

Existing skyline search algorithms can be extended to sup-
port top-ranked skyline queries by counting the number of
points dominated by each skyline point. Correspondingly,
dominance tests that decide whether a data point is domi-
nated should also be extended to count the numbers of data
points dominated by individual skyline candidates. However,
since data points can be dominated by more than one skyline
candidate simultaneously, to record the number of dominated
data points for all skyline candidates, exhaustive comparisons
between each examinee to all skyline candidates are inevi-
table. Our ZRank algorithm explores clustering properties
of Z-order curve to place skyline candidates as blocks. Very
often, a block of skyline candidates dominate some common
examinees. By keeping track of the numbers of data points
dominated by blocks other than individual skyline points,
some comparison overheads can be alleviated. The details of
our ZRank algorithm are provided in Sect. 6.3.

k-Dominant skyline query processing. By considering arbi-
trary k among d dimensions, k-dominant skyline queries [5]
reduce the size of skyline result set. However, data points
can k-dominate each other simultaneously. Figure 5 lists four
three-dimensional data points, namely, pi, p2, p3, and pa,
which are all skyline points based on the conventional dom-
inance condition. If we consider a 2-dominant relationship,
p1 and py 2-dominate each other. This cyclic dominance
relationship violates the transitivity property, making all the
existing skyline search algorithms inapplicable.

As reported in [S], Two-Scan-Algorithm (TSA) is cur-
rently the most efficient algorithm to k-dominant skyline
queries. TSA scans the dataset twice. The first scan collects
candidate skyline points, which might include false hits, and
the second scan eliminates those false hits. As an example in
Fig. 5, p is first picked and it 2-dominates p, and p3 but not
p4. After the first scan, p; and p4 are retained. In the sec-
ond scan, pj is checked against p, and gets dominated. It is
removed from the candidate set. A data point p4, not 2-dom-
inated after the second scan, is the 2-dominant skyline. With



the relaxed k-dominant relationship, more data points can
be dominated. The search space should therefore be signifi-
cantly shrunk. However, TSA and other existing approaches,
without being conscious of this fact, access all individual
data points. In the example as shown in Fig. 5, data points
p1, p2 and p3 can be grouped as a block and represented
by their lower and upper bounds for each dimension (i.e.,
({(2,9), (8, 11), (2, 11))) in the search space. It is easy to see
that p4 2-dominates the entire block, which eliminates the
pairwise dominance tests between ps4 and all the enclosed
data points. Our k-ZSearch algorithm (that will be presented
in Sect. 6.4) tackles this k-dominant skyline query problem
by exploiting the clustering property of Z-order curve. When-
ever a cluster of data points is found to be k-dominated, the
examination of all the enclosed points is avoided, thus speed-
ing up the search.

Subspace skyline query processing. To address this sub-
space skyline search problem, SUBSKY [29] has been
recently proposed. It presorts a dataset based on records’
minimum attribute values, and it sequentially scans the sorted
dataset until the MiniMax of all examined records’s attribute
values is smaller than the minimum attribute values of all
the remaining unexamined records or the dataset is com-
pletely scanned. To improve the search efficiency, it groups
data points into regions. An entire region is skipped from
detailed examinations if it is found to be dominated by the
MiniMax of the existing skyline points.

However, SUBSKY can be very inefficient especially
when the number of skyline points is large. First, since early
examined data points may get dominated by those data points
that are accessed later, SUBSKY needs to preserve a buffer
of skyline candidates and maintains the buffer when a new
skyline candidate is collected. Suppose that a subspace sky-
line query concerning s> is issued on data points illustrated in
Fig. 5. First, p4 (with its minimum attribute value of 1) is first
accessed but later it is replaced with p; and p» whose mini-
mum attribute values are both 2. Then p; and p; are removed
as p3, the skyline point, is accessed. Thus, this sorting is
not appealing. Also, SUBSKY adopts point-to-point domi-
nance tests and the effectiveness of its pruning degrades when
many data points cannot be dominated. Instead, our ZSub-
space algorithm as will be presented in Sect. 6.5 utilizes the
block-based dominance test to enhance the search efficiency.
For example, for the same set of data points, p1, p> and ps
are bounded by a block ((1,9), (11, 25), (1, 11)). Suppose
that p3 is accessed first. By projecting values on s7, these
points are bounded by ({11, 25)). From this, we can quickly
assert that the block is dominated by p3 without exploring
it. Further, accessing data points along Z-addresses usually
reaches data points close to the origin of the data space prior
to others. Those data points typically can dominate many
other data points projected on a search subspace.

2.2.4 Other related works

Besides, other research studies the evaluations of skyline
queries in various environments, e.g., Web [1], distributed
databases [32], data stream [19,28], MANET [15], spatial
database [25,35], peer-to-peer system [18,30], probabilistic
data [23], metric space [7,10], etc. In this paper, our focus
is mainly on developing an efficient framework for skyline
queries and updates in centralized databases.

3 Z-SKY framework based on Z-order

In this section, we first state the properties of Z-order curves
that are found to match perfectly well with the dominance
relationship among data points in a data space. This observa-
tion inspires our Z-SKY framework development. We then
present ZBtree, an index structure developed based on the
idea of Z-order curves that facilitate skyline searches and
result updates as well as index manipulations.

3.1 Skyline query and Z-order curve

The efficiency of skyline query processing and skyline result
updating is highly dependent on two factors, i.e., the access
order of the data points and the organization of skyline candi-
dates that facilitates dominance tests. An appropriate access
order can early identify skyline points that dominate lots of
other data points. Thus, this can eliminate unneeded dom-
inance tests and candidate reexaminations [8]. It is desir-
able to adopt block-based dominance tests if possible, instead
of pairwise data point comparisons. To enable block-based
dominance tests, data points should be clustered. As will be
shown below, Z-order curves can satisfy all those needs.
Figure 6a depicts our nine example 2D data points, i.e.,
P1, ... po. Suppose we partition the entire space into four
equal-sized quadrants, i.e., regions I, II, IIl and IV, along the
directions parallel to the two axis. Data points in Region I are

y
7,
I 2]
6 Op2
5,
4 P3O O
3 O
Pi
2,
1,
I
T T T T
0 1 2 3 4
(a)

Fig. 6 A Z-order curve example. a nine points in a 2D data space,
b a Z-order curve



definitely not dominated by those in the other three regions.
On the contrary, all data points in Region IV are dominated
by any data point in Region I. Meanwhile, Region II and III
are diagonally opposite to each other, and their data points
are incomparable. Dominance tests between them are not
needed. However, data points in Regions II or III may get
dominated by some data points in Region I while they may
dominate some data points in Region IV. Finally, those in
Region IV cannot dominate any data point in the other three
regions.

These observations not only provide excellent heuristics
for dominance tests in regional (i.e., block) level, but also
lead to a natural access order of the regions (and their data
points) for processing skyline queries, i.e., Region I should
be accessed first, followed by Region II, then Region III (or
Region III, then Region IT) and finally Region IV.* The same
principles are also applicable to subregions divided from each
region. The finest subregion can be just a single coordinate
in the space. This access sequence exactly follows a (rotated)
Z’ order, which is the well known Z-order space filling curve.
Figure 6b shows the Z-order curve, which starts at the origin
and passes through all coordinates (and data points) in the
space.

A Z-order curve maps multi-dimensional data points into
a one-dimensional space, with each point represented by a
unique position, called Z-address. A Z-address is a bit string
calculated by interleaving the bits of all the coordinate values
of a data point. For a d-dimensional space with ([0, 2V-1])
as the coordinate value ranges, the Z-address of a data point
contains dv bits, which can be considered as v d-bit groups.
The ith bit of a Z-address is contributed by the (i /d)th bit of
the (i %d)th coordinate.® In our example, the Z-address of p,
(1,6) (i.e.,(001,110) in binary) is 0101 10. Here, 01, 01, 10 are
the three 2-bit groups. Similarly, the Z-address of ps4 (3,7)
(i.e.,(011,111) in binary) is 011111 and 01, 11, 11 are the
three 2-bit groups. This Z-address calculation is reversible
so that original coordinates in the multi-dimensional space
can be recovered by distributing bit values to corresponding
dimensions.®

Besides, Z-addresses are hierarchical in nature. Given a
Z-address with v d-bit groups, the first bit group partitions the
search space into 2¢ equal-sized sub-spaces, the second bit
group partitions each sub-space into 2¢ equal-sized smaller
sub-spaces, and so on. For instance, py and p4 share the same
first bit group (i.e., 01), and hence both of them fall inside the
left part along x-axis and upper part along y-axis (i.e., the
Region IT in Fig. 6a). With data points arranged according to

4 The visiting order of Region IT and TIT does not affect the correctness
of the skyline result.

5 ¢/ and ‘%’ are divider and modulus operators, respectively.

6 We may use Z-address and coordinate interchangeably when the con-
text is clear.

their Z-addresses, Z-order curves bear two important prop-
erties, monotonic ordering and clustering, as stated below
that perfectly match transitivity and incomparability proper-
ties of skyline queries, respectively, as already discussed in
Sect. 2.1.

Property 3 Monotonic Ordering. Data points ordered by
non-descending Z-addresses are monotonic such that data
points are always placed before their dominated points.

Property 4 Clustering. Data points with identical prefixes
(i.e., leading bit groups) in their Z-addresses are naturally
clustered as regions.

As shown in Fig. 6b, p; that dominates pg and pg is accessed
before both of them on the Z-order curve. Similarly, p, and
p3 are accessed before p4, while ps is accessed before p7.
This access order guarantees that no candidate reexamination
is needed. Due to the hierarchical property of Z-addresses,
data points located in the same regions have the same prefixes
(i.e., some beginning d-bit groups) in their Z-addresses. As
in our example, p», p3 and p4 (with the first bit-group (i.e.,
01) in common) are located inside Region II. Grouping data
points in regions can facilitate block-based dominance tests.
Notice that other space filling curves such as Hilbert and
Peano curves are inappropriate for skyline query processing
as they lack monotonic ordering property. These curves do
not always start at the origin of a space (or a subspace), that
implies dominating points may be placed after their domi-
nated points, and so candidate reexamination is required.

3.2 ZBtree index structure

The design goals of an index to support skyline query pro-
cessing and updates are (i) to facilitate data processing along
a Z-order address sequence; and (ii) to preserve data points
in regions to enable efficient search space pruning. While
Z-addresses are one-dimensional, a straightforward approach
is to combine Z-order curve and BT -tree. Thus, we propose
ZBtree, a variant of BT -tree, to organize data points in accor-
dance with monotonic Z-addresses. ZBtree indexes disjoint
Z-order curve segments (i.e., sequences of data points on the
curve), with each corresponding to a region to preserve the
clustering property.

In detail, leaf nodes in a ZBtree maintain the IDs and the
Z-addresses of data points and non-leaf nodes maintain the
pointers to their children and the child Z-address intervals
(denoted by [«, B]), each representing a curve segment cov-
ering data points with Z-addresses bounded in between o and
B. The space spanned by a Z-order curve segment is called a
Z-region. Figure 7a illustrates a Z-region spanned by a curve
starting at point pg and ending at point pg. Since a Z-region
can be of any size and in any shape, we bound a Z-region
with an RZ-region, as defined in Definition 9.



Z-region maxpt
|

curve [pnp|ps, pol
segment T
k i
k PQ [pep] |l Pz D4l [ps,p7]|[Ps, ol
DD /
minpt ‘% Q \‘ \]
- ‘Pzpsm ‘P5 P P7H Ps Pg‘
RZ-region
(a)

Fig. 7 An RZ-region and a ZBtree. a an RZ-region enclosing pg and
P9, b aZBtree

Definition 9 RZ-region. An RZ-region is the smallest
square region covering a Z-region bounded by [«, S]. The
RZ-region is specified by two Z-addresses, minpt and
maxpt,so[«, B] C [minpt, maxpt]. Bothminpt and maxpt
share an identical prefix d-bit group.

RZ-Regions can be straightforwardly derived based on
Z-Regions (i.e., [«, B]). First, the common prefix of both
a and B is determined. With the common prefix, minpt is
formed by appending all 0’s to the rest of the bits and maxpt
is formed by setting all the remaining bits to 1’s. Figure 7a
shows an RZ-region derived from a Z-region that is covered
by a Z-order curve segment in between points pg and pg.
While their formations are straightforward, RZ-regions pro-
vide the following bounding property that can considerably
facilitate dominance tests between RZ-regions.

Property 5 RZ-region bounds. Within an RZ-region, all
data points (except those at minpt ) should be dominated by
any data point at minpt; and data points located at maxpt
should be dominated by other data points in the region.

Other works such as [21,24] designed to support multidi-
mensional range searches also exploit the idea of indexing
data points on a Z-order curve with a BT -tree. In order to
reduce false hits for range searches, their optimization goal is
to index Z-order curve segments, each providing the smallest
area, which is referred to as Z-region in our discussion. For
instance, a node that contain data points p7, pg and pg (see
Fig. 6a) is very likely to be grouped. Without a need to deal
with dominance tests, those existing works may even group
incomparable data points in a node. In fact, those data points
that forms a small RZ-regions should be grouped in a node
so as to facilitate dominance tests. Therefore, the existing
approaches cannot be used to support skyline searches effi-
ciently. As we can see, if pg and pg form a node and this node
can be skipped from a detailed examination once p; is iden-
tified. Thus, different from existing works, our approach is
aware of dominance relationships while grouping data points
in a ZBtree.

3.3 ZBtree index manipulation

Certainly, the search efficiency improvement depends on how
data points are organized to form RZ-regions. There are two
main index construction objectives. The first objective is to
optimize the storage. We can achieve this by packing as
many data points (or nodes) as possible in leaf nodes (or
non-leaf nodes, respectively) in a ZBtree such that the size
of the ZBtree is minimized. In case that an entire index is
needed to traverse, the access overhead can be reduced. The
second objective is to optimize the retrieval performance.
We can strategically allocate data points that provide small
RZ-regions stored in nodes, such that search space pruning
and dominance tests can be effectively facilitated. As shown
in Fig. 6b, a node that contains data points pg and pg can
be discarded once we identify the data point pj, and a node
that contains data points p2, p3, and p4 does not need to be
examined against another node that contains data points ps,
Pe, and p7. Consider that the node capacities range from 1
to 3. pj can be put into the first leaf node. Next, p», p3 and
pa are inserted into the second leaf node. Similarly, ps, pe
and p7 occupy the third leaf node. Finally, pg and pg are
put into the last leaf node. This index structure is depicted in
Fig. 7b. While this requires some extra storage, this region-
aware grouping improves the search performance, as some
unnecessary node traversal and comparisons between incom-
parable nodes are avoided. Based on the same principle, we
group leaf nodes into appropriate non-leaf nodes and recur-
sively propagate the process upwards till the root of the index
is formed.

In the following, we assume that each node can contain at
most N entries and the minimum node utilization threshold
is M (where M < N/2) and describe ZBtree manipulations
such as insertion, deletion and bulkloading.

ZBtree insertion. Insertion places a data point with a Z-
address z;,5 to aleaf node in a ZBtree. The search for a target
leaf node to accommodate the new data point is based on
a depth-first search with z;,; as the search key. Along the
traversal, the branch whose [«, B8] covers z;,5 is explored. In
case that no branch with an interval covering the data point
is identified, a branch with the smallest resulted RZ-region
is chosen.” After an insertion, a leaf node filled with more
than N entries becomes overflow and needs to be split into
two new nodes. These two nodes are formed to cover two
disjointed Z-order curve segments such that the total sizes of
their corresponding RZ-regions are the smallest among all
possible splits. After an insertion, the interval of the inserted
leaf node is updated to accommodate the newly inserted data
point. This interval update is propagated up from the leaf
node to its parent and ascendent nodes.

7 A resulted RZ-region here is referred to as the extended RZ-region
after inserting the new data point.



ZBtree deletion. Deletion removes a data point with
Z-address z4.; from a ZBtree. First, a leaf node that contains
the deleted data point is found by a depth-first search using
Zdel as the search key. The data point is then removed from
the node. In case that the leaf node, after deletion, contains
less than M entries, it needs to be removed. All the enclosed
data points are re-inserted into a ZBtree based on the above-
described insertion procedure. Similarly, the intervals of the
nodes along the path from affected leaf nodes to the root node
are updated to reflect the deletion.

ZBtree bulkloading. Bulkloading builds a ZBtree in a bot-
tom-up fashion. It is mainly used to prepare a source dataset
for skyline queries. It has two steps. The first step sorts all data
points based on Z-addresses. The second step scans these data
points (or nodes) following the ascending Z-addresses with
a sliding window of N slots to form leaf nodes (or non-leaf
nodes, respectively). Since data points in a high dimensional
space are very often sparsely distributed, it is very unlikely
that small RZ-regions can be formed by including a lot of
points in a node. Then, such small RZ-regions can be formed
but sacrificing the space utilization. Also, as the number of
skyline points is expected to be large, many RZ-regions may
not be dominated and thus, the entire dataset needs to be
examined. While various bulkloading strategies are exam-
ined and no significant difference is observed in terms of the
overall processing time [17], compact bulkloading strategy
is adopted in this work to maximize the node utilization and
minimize the access cost. It sorts all data points in an ascend-
ing order of their Z-addresses and forms leaf nodes based on
every N data points. Similarly, it puts every N leaf nodes
together to form non-leaf nodes until the root of a ZBtree is
formed.

4 Skyline query processing

In this section, we discuss ZSearch, an efficient skyline search
algorithm. Its efficiency is attributed to RZ-region based
dominance tests and search space pruning.

4.1 RZ-region based dominance test

Dominance tests are a key determinant of computational
overhead in skyline query processing. To avoid comparing
data points in a time-consuming pairwise fashion, we intro-
duce block based dominance tests, which are based on
RZ-regions derived during traversing a ZBtree. In the Z-SKY
framework, we maintain a source dataset SRC and a set of
skyline candidates SL both indexed by ZBtrees. These two
indexes present clusters of data points in RZ-regions. The
dominance relationships between any two RZ-regions are
defined in Lemma 1. When not causing any confusion, we

maxpt maxpt
\ maxpt
0 © \
N O]
R, ! R R,
C‘D O—minpt 3 o
i maxpt \ ] maxpt
minpt maxp P minpt minpt o
@ 7 maxpt P,
i R, D N2f—n R,
inpt— - )
m"}rlz;[npt o R minpt
(a) (b)

Fig. 8 Examples of dominance tests based on RZ-regions. a two
RZ-regions, b RZ-regions versus a data point

use RZ-region R to denote all the data points within it and
use minpt(R) and maxpt(R) to represent the minpt and
maxpt of R, respectively.

Lemma 1 Given two RZ-regions R and R', the following
four cases hold:

1. Ifmaxpt(R) - minpt(R’), then R - R’, then any data
point in R for sure dominates all the data points in R’.

2. Ifmaxpt(R) b/ minpt(R") A minpt (R) & minpt(R),
then some data points in R may dominate all the data
points in R'.

3. Ifminpt(R) ¥/ minpt(R') A minpt(R) = maxpt(R’),
then it is possible that some data points in R dominates
some data points in R'.

4. Ifminpt(R) Vf maxpt(R'), then R \/ R’, then no data
point in R can dominate any data point in R'. O

Proof We prove the lemma case by case.

Case 1. maxpt(R) & minpt(R’). By the transitivity prop-
erty (Property 1) and RZ-region bounds (Property 5), Vp €
R—{maxpt(R)},Yp' € R'—{minpt(R")}, p = maxpt(R)A
minpt(R") = p’ = p F p’ and as stated, maxpt(R)
minpt(R’). Hence, R = R’. Ry and R; in Fig. 8a form an
example.

Case 2. maxpt(R) t/ minpt(R") A minpt(R) + minpt
(R"). Data points (e.g. minpt(R')) are dominated by
minpt (R). Thus, the case holds. Ry and R; in Fig. 8a form
an example.

Case 3. minpt(R) t/ minpt(R') A minpt(R) + maxpt
(R’). As some data points in R (e.g. maxpt(R’)) are dom-
inated by minpt(R), the case holds. Ry and R3 in Fig. 8a
form an example.

Case 4. minpt(R) ¥ maxpt(R’). This case can be proved
by contradiction. Assume p ~ p’ (where p € R, p’ € R').
By transitivity, minpt(R) + p + p’ = maxpt(R') =
minpt (R) = maxpt(R’). This contradicts the condition of
the case. Ry and R4 in Fig. 8a form an example. O

This dominance relationship is generic enough to be
applied to an RZ-region, which contains a single data point



Function Dominate(SL, minpt, mazxpt)

Input. SL: a ZBtree indexing skyline points;
mainpt and maxpt: endpoints of an RZ-region;

Local. q: Queue;
Output.  TRUE if input is dominated, else FALSE;
Begin

1.  g.enqueue(SL’s root);

2. while (g is not empty) do

3. var n: Node;

4. g.dequeue(n);

5. if (n is a non-leaf node) then

6. forall (child node c of n) do

7. if (¢’s RZ-region’s maxpt - minpt) then

8. output TRUE; /* Case 1 of Lemma 1 */

9. else if (¢’s RZ-region’s minpt - minpt) then

10. g.enqueue(c); /* Case 2 of Lemma 1 */
11. else /* leaf node */
12. forall (child point c of n) do

13. if (c = minpt) then

14. output TRUE;

15.  output FALSE;

End.

Fig. 9 The pseudo-code of the Dominate function

p,ie., minpt(R) = maxpt(R) = p, and/or minpt(R') =
maxpt(R") = p’. Fig. 8b shows the comparisons of R}, Ry,
R3 against p. Further, the dominance relationship between
two data points (as stated in Definition 1 in Sect. 2.1) becomes
a special case of this lemma.

Based on Lemma 1, we can perform effective dominance
tests on the RZ-region of any node from SRC against those
from SL. Figure 9 outlines Dominate function for the domi-
nance test. It checks whether a given RZ-region R from SRC
(represented by its minpt and maxpt)® contains any potential
skyline points by conducting dominance tests against all the
identified skyline points in S£. The function traverses SL
based on breadth-first traversal such that the RZ-regions of
upper-level nodes from SL are compared against R first and
drilled down if R needs further examination against finer
RZ-regions in SL.

In the function, a queue is initialized with the root of SL.
An entry n popped from the queue will be further explored
in two situations:

— nis a non-leaf node, and all its child entries ¢ are exam-
ined. If any point inside the RZ-region of ¢ dominates
R (i.e., Case 1 of Lemma 1), the algorithm indicates that
R is dominated and the dominance test is completed (lines
7-8). If some points inside the RZ-region of ¢ may dom-
inate R (i.e., Case 2 of Lemma 1), the entry c is enque-
ued for further examination (lines 9-10). Tests on Case
3 and Case 4 of Lemma | are omitted since they are
implied by the failures of the above two cases and the

8 In case of a data point, p, R contains p and minpt(R) =
maxpt(R) = p.

Algorithm ZSearch(SRC)

Input. SRC: a ZBtree for source data set;
Local. s: Stack;
Output.  SL: a ZBtree for skyline candidates;
Begin
1. s.push(SRC’s root);
2. while (s is not empty) do
3 var n: Node;
4. s.pop(n);
5. if (Dominate(SE, n’s minpt, n’s maa:pt)) then
6 goto line 3.
7 if (n is a non-leaf node) then
3. forall (child node c of n) do
9. s.push(c);
10. else /* leaf node */
11. forall (child point c of n) do
12. if (not Dominate(SL, c, c)) then
13. SL.insert(c);
14.  output SZ;
End.

Fig. 10 The pseudo-code of the ZSearch algorithm

input RZ-region should not be completely dominated or
these two RZ-regions are found to be incomparable.

— nis a leaf node. We check R against individual skyline
points inside n (lines 13—14).

This traversal continues until the queue is vacated (i.e., all
comparable nodes in SL are visited). Finally, R is reported
to be not dominated. Notice that the function may stop before
the leaf level is reached. As such, a few nodes in S£ need
to be accessed and thus an efficient block-based dominance
test is provided.

4.2 The ZSearch algorithm

The ZSearch algorithm traverses SRC to examine
RZ-regions and data points in a depth-first order, which
exactly follows the order of Z-addresses, with a stack keeping
track of unexplored paths. The stack memory consumption is
bounded by a factor of the tree height of SRC. Figure 10
depicts the pseudo-code of the ZSearch algorithm. It fetches
the index nodes and/or data points from SRC (lines 2—-13).
At each round, the RZ-region of a node is examined against
SL with the Dominate function (see Fig. 9). If its corre-
sponding RZ-region is not dominated, the node is further
explored (lines 7—13). Data points not dominated by any sky-
line candidate in SL are collected as new skyline candidates
and appended to S£ (line 13). The mechanism of appending
skyline candidates to SL is based on the ZBtree insertion
(discussed in Sect. 3.3). As the newly admitted skyline can-
didates should be added to the latest created leaf node since
their Z-addresses are greater than those of collected skyline
candidates, we maintain a pointer to the latest created leaf
node to save the traversals in SL.



[ Stack

| Skyline points SL

[P1,p4l.lps, pol ]
[p1,p1LIp2,palilps.pol | O

[p2, p4l.lps. pol {p1}

[ps, po]l {p1}.{p2,p3}
[ps.p71.[ps, pol {p1}.{p2,p3}

[ps, pol {p1},{p2,p3}.{pPs.Ps}

Fig. 11 The trace of the ZSearch algorithm

The algorithm terminates when all entries from SRC are
examined (i.e., signaled by an empty stack). The organiza-
tion of skyline candidates in SL enables the formation of
RZ-regions to facilitate dominance tests. S £ may be too large
to fit in the main memory. It can be stored on disk and we use
available main memory as a cache. In this case, our approach
is very appropriate since (1) the cached upper (and usually
a small) portion of SL can be sufficient to perform domi-
nance tests as the leaf levels may not always be reached and
(2) clustered data points in SRC exhibit good access local-
ity of related branches in SL. Finally we use Example 1 to
illustrate how the ZSearch algorithm runs.

Example 1 We use the example data points in Fig. 6aindexed
by a corresponding ZBtree in Fig. 7b to illustrate the ZSearch
algorithm. The trace is depicted in Fig. 11. Initially, the root
entries, i.e., [ p1, pa] and [ ps, po], are pushed to the stack and
SL is empty. For presentational simplicity, only leaf nodes
enclosed by {} are shown. First, we obtain py, the first skyline
point. Next, p», the second accessed data point, not dom-
inated by pj, is inserted to SL. Notice that BBS and SFS
access p3 after p; but before p,. Then, the delivery order of
a skyline result by the ZSearch algorithm is not necessarily
the same as BBS and SFS.

Assume that the node capacity of SL is 2. Insertion of
p3 triggers a node split. pp and p3 are put together since
{p1} and {p3, p3} form smaller RZ-regions. p4, dominated
by p2 (or p3), is discarded. Later, [ps, po] is explored. As
the RZ-region of [ps, p7] is incomparable to {p>, p3}, the
comparison with p; or p3 is saved. Next, explored ps and pg
are inserted to SL but p7 is dropped. Finally, [ ps, po] dom-
inated by {p;} in SL is skipped and the search completes.

O

5 Skyline result maintenance

As opposed to reevaluating a skyline query whenever the
underlying dataset is changed, which is clearly inefficient,
we present efficient skyline result update algorithms in this
section, namely, Zlnsert, ZDelete and ZUpdate, that can
incrementally update the skyline RESULTS. Our following
discussion assumes the updates of SRC are performed based
on the previously discussed ZBtree index manipulations right
before the update of a skyline result.

Algorithm ZInsert(SL, Piyns)
Input.  SL: ZBtree for skyline points;
P;ys: a (ordered) set of new data points
(based on Z-addresses);
Local.  s: Stack;
Begin
1. s.push(SL’s root);
2. while (s is not empty and P;,, is not empty) do
3 var n: Node;
4 s.pop(n);
5. forall (p € Pipns | n’s mazpt < p) do /* dominance test */
6 if (n’s mazxpt + p) then
7 Pips < Pins — {p};
8

if (3p € Pins, ptn’s minpt) then  /* reexamination. */

9. SL.remove(n); goto line 3;
10.  if (nis anode) then /* explore n’s child nodes or points */
11. if (ﬂ p € Pips, pk n’s maxpt and n’s minpt - p) then
12. goto line 3; /* no need to expand n */
13. else
14. forall (child c of n) do
15. s.push(c);
16.  forall (p € P;y) do
17. SL.insert(p);
End.

Fig. 12 The pseudo-code of the ZInsert algorithm

5.1 The Zinsert algorithm

Inserting a new data point into SRC, pins, which may be a
new member of a skyline result, involves two checks on: (i)
whether p;,; is a skyline point that involves dominance tests
against some of existing skyline points and (ii) whether p;,¢
dominates any existing skyline point if p;,s passes the dom-
inance test (i.e., the first check) that triggers candidate reex-
aminations. Figure 12 lists the pseudo-code of the ZInsert
algorithm. In general, its idea is similar to Dominate function
in Fig. 9 but it considers a set of new inserted data points, P;;;
in order to share the skyline update overheads among mul-
tiple insertions simultaneously. The ZlInsert algorithm has
a main loop (line 2-15) to access SL with a stack s keep-
ing track of pending unexamined nodes and data points in a
non-decreasing Z-address order. The iteration ends when s
becomes empty or P;;; is vacated. The empty P;, is resulted
when all the data points in it are dominated.

In the algorithm, we assume that data points in P;, are
incomparable to each other. Whenever an entry (that can
be a node or a data point) is popped from a stack s and
investigated, the first check (i.e., a dominance test) is per-
formed against individual data points in P;,s. A data point
p is removed from P;,; if it is dominated by a data point
or the maxpt of an RZ-region of a node in SL (line 5-7).
Thereafter, the second check (i.e., candidate reexamination)
takes place such that those nodes or data points are removed
from SL if they are dominated by any data point in Pjy
(lines 8-9). Besides, we skip exploring this node once it is
discarded. Next, a node in SL is further expanded if it may
contain data points that can dominate new data points in P,
or its contained data points are possibly dominated by the



Fig. 13 Updates of a skyline result. a insertion of p;,s, b deletion of
p3 and ps

new data points in P;,s. Otherwise, the node can be safely
skipped from a detailed examination (lines 10-15). At last,
all remaining data points in P;,, that are not dominated by
existing skyline candidates are inserted to S£ (lines 16-17).

It is noteworthy that, due to the monotonic ordering prop-
erty of Z-order curve (Property 3), p is guaranteed not to
be dominated by those skyline points whose Z-addresses are
larger than that of p. Thus in a dominance test, a node n
popped from s only needs to be compared with those data
points in P;, with their Z-addresses larger than n’s. Because
of the same reason, candidate reexaminations examine only
those skyline points in S £ with Z-addresses smaller than the
Z-addresses of inserted data points. Figure 13a explains this
useful property in dominance tests and candidate reexami-
nations. A new data point p;, that locates between p3 and
ps on the Z-order curve is inserted. In the dominance test,
Pins 1s only needed to be compared against both p; and an
RZ-region formed by p, and p3. It passes the dominance test.
During the candidate reexamination, only ps and pe (Whose
Z-addresses are greater than p;,,’s) are reexamined to check
if they are dominated by p;,s. In this case, ps is removed
while pg is retained.

5.2 The ZDelete algorithm

Handling deletion of a data point from a skyline query result
is more complicated than insertion. Deleting any existing
skyline point, say pges, from a skyline result may get some
data points previously dominated by pg.; promoted to the
skyline result. Since only those data points exclusively dom-
inated by p4.; are promoted, the most critical issue is how to
efficiently locate them from SRC. To address this, we devise
the ZDelete algorithm as outlined in Fig. 14. To alleviate
the average skyline update cost that is incurred by scanning
SRC multiple times, deletions can be accumulated as Py,
and performed as a batch. For instance, even though p3 and
ps in Fig. 13b have been deleted at different times, the search
for promoted skyline candidates due to their deletions can be
processed together at a later time.

Algorithm Z Delete(SRC, SL, Pyep)

Input. SRC: ZBtree for source dataset;
SL: ZBtree for skyline points;
Pyge;: a (ordered) set of deleted skyline points
(based on Z-addresses);
Local. s: Stack;
Begin
1.  s.push(SRC’s root);
2. while s is not empty do
3. var n: Node;
4. s.pop(n);
5. if (Ap € Pyei, pF n’s minpt) or
6. (Dominate(SL, n’s minpt, n’s maxpt)) then
7. goto line 3.
8. if n is a node then
9. forall child node ¢ of n do
10. s.push(c);
11. else /*n is a data point */
12. SL.insert(c);
End.

Fig. 14 The pseudo-code of the ZDelete algorithm

The algorithm scans STRC and uses a stack s to keep track
of unexamined entries (i.e., nodes or data points). This depth-
first traversal aligns the lookup of data points in non-decreas-
ing Z-addresses. The iteration ends when s becomes empty
(lines 2—12). The algorithm traverses SRC and checks nodes
and data points against a set of data points Py.; and SL. Here,
SL is assumed to have all data points in Py removed. The
use of the RZ-regions of SL can alleviate computational
overheads incurred by dominance tests.

Whenever an entry 7z is popped, it is checked if it is exclu-
sively dominated by the deleted data points via two checks
on: (i) whether n is dominated by data points in Pgy.;; and
(i1) whether n is not dominated by any skyline candidate
in SL (lines 5-7). Only those entries who pass these two
checks may contain or may be promoted skyline points and
need further examination (lines 9-10). If n is a node, all its
child entries are pushed into the stack for later exploration;
otherwise n must be a data point and it is inserted to S L. Fur-
ther, owing to the monotonic ordering property of Z-order
curves, those dominated by pg.; should have Z-addresses
greater than that of pg;. In the algorithm, the initial portion
of SRC (i.e., data points have their Z-addresses smaller than
the smallest Z-addresses) in Py, is skipped.

5.3 The ZUpdate algorithm

In practice, updates involve a mixture of insertions and dele-
tions. It is trivial to handle individual inserted and/or deleted
data points according to their update order. However, as for a
usual case that deletions and insertions interleave during data
points update, the batched process of insertions and deletions
would incur multiple traversals of S£ and SRC. To reduce
the traversal cost, we propose the ZUpdate algorithm (as out-
lined in Fig. 15) that groups update operations in accordance



Algorithm ZUpdate(SRC, SL, Pypq)

Input. SRC: ZBtree for source dataset;

SL: ZBtree for skyline points;

P,pa: a set of inserted or deleted data points;
Local.  Pj,s: aset of inserted data points;

Py.;: aset of deleted skyline points;
Begin

l.  Pins < {p € Pypalpis an inserted data point};

2. ZlInsert(SL, Pins); [* Algorithm ZInsert */

3. Pger — {p € Pypalpis adeleted data point and p € SL};
4. ZDelete(SRC, SL, Pyep); I* Algorithm Z Delete */
End.

Fig. 15 The pseudo-code of the ZUpdate algorithm

with the types of operations (i.e., insertions and deletions)
and performs all the insertions followed by all the deletions.

Since the execution order of deletions and insertions does
not affect the correctness of the update if they are on dif-
ferent data points, the ZUpdate algorithm performs insertion
(i.e., by the ZInsert algorithm) prior to deletions (i.e., by the
ZDelete algorithm) to boost update efficiency. It is because
the newly promoted skyline points may be dominated by
inserted data points (if the Zlnsert algorithm is performed
after the ZDelete algorithm) and handling deleted skyline
points is far more expensive than insertions. Due to the tran-
sitivity property, whenever deleted skyline points are found
to be dominated by any newly inserted skyline point, all other
data points dominated by those deleted skyline points must
be dominated by the inserted skyline point. Thus, we can
simply discard those deleted data points that have already
been dominated by any newly inserted data point from the
processing. This can effectively eliminate the expensive and
redundant search of data points for promotion. Hence update
performance can be considerably improved. For instance, in
the combined case of those in Fig. 13a and b, handling dele-
tion of ps can be eliminated due to the inserted data point
Pins- In our algorithm, inserted data points from P,,q are
first extracted as P;, (line 1) and processed with the Zlnsert
algorithm (line 2). Then the deleted data points from Ppq
that still appear in S£ are put into Py,; (line 3) and examined
by the ZDelete algorithm (line 4). After the completion of the
ZUpdate algorithm, SL is updated.

6 Skyline query variants

In this section, we extend our Z-SKY framework to han-
dle different skyline query variants. Although those skyline
query variants are defined differently, strategies that can effi-
ciently answer them can be very similar. For skyband and
top-ranked skyline queries, counting of dominating and dom-
inated data points is needed in addition to dominance tests.
Thus, we extend the Dominate function and put some addi-
tional information in ZBtrees to facilitate the counting. On
the other hand, for k-dominant skyline and subspace skyline

cnts
[P/,P4] [P.a'yp
7 @’R ¥
[P/ pil|[p2.ps Ps:pAAps, po
‘P?Pilh ‘P5176177H Pwpo‘

Fig. 16 Example extended ZBtrees. aincorporation with cnts, b incor-
porated with doms

queries, it is not guaranteed that data points are not domi-
nated by those accessed after them following the access order
on their Z-addresses. Thus, we adopt a filter-and-reexamine
approach in which candidates that may contain false hits are
first retrieved, and then they are reexamined to discard those
false hits. Based on the idea of Z-order curves and above tech-
niques, we derive and discuss the algorithms, namely, ZBand,
ZRank, k-ZSearch and ZSubspace to evaluate skyband que-
ries, top-ranked skyline queries, k-dominant skyline queries
and subspace skyline queries, respectively, in the following.

6.1 Extended ZBtrees

For some skyline query variants like skyband and top-ranked
skyline queries as will be discussed in this section, auxiliary
information like the number of dominating points or the num-
ber of dominated points provided in nodes in a ZBtree can
speed up the search. With a plain ZBtree that does not have
these types of auxiliary information, the search has to tra-
verse the index down to some leaf nodes to determine the
exact number of data points. Otherwise, if some auxiliary
information like count of data points indexed is provided in
some high-level nodes, the counting of individual data points
can be done in some nodes before accessing the leaf level of
an index. In the following, we call ZBtrees augmented with
auxiliary information as extended ZBtrees.

Subject to query needs, we can associate different types of
auxiliary information to the nodes of extended ZBtrees. The
first type of auxiliary information we consider is the number
of indexed data points of each node, labeled as cnt. Fig. 16a
depicts an example of extended ZBtree that associates a cnt
with each node for the dataset as depicted in Fig. 6. These
cnts are useful to both skyband queries and top-ranked sky-
line queries. For example, let n be the node entry [pg, po].
A cnt (= 2)is associated with n that indicates two data points
indexed by the pointed node. As a result, if » is dominated by
a data point p, it is certain, without a detailed examination,
that p dominates the two data points indexed by n.

The second type of auxiliary information is the num-
ber of data points that are dominated by each associated



Function BandDominate(cnt-SL, minpt, mazxpt, b)

Input. cnt-SL: a extended ZBtree indexing skyband candidates;
manpt and mazpt: endpoints of an RZ-region;
b: threshold skyband width;

Local. q: Queue; cnt: a counter of dominating points

Output.  TRUE if input is dominated, else FALSE;

Begin

1 g.enqueue(cnt-SL’s root); ent «— 0;

2. while (g is not empty) do

3 var n: Node;

4. q.dequeue(n);

5. if (n is a non-leaf node) then

6 forall (child node ¢ of n) do

7 if (¢’s RZ-region’s maxpt - minpt) then

8 cnt < ent + ¢’s ent; /* Case 1 of Lemma 1 ¥/
9 else if (c’s RZ-region’s minpt - minpt) then
10. g.enqueue(c); /* Case 2 of Lemma 1 */
11. else /* leaf node */

12. forall (child point p of n) do

13. if (p = minpt) then

14. ent «— ent 4+ 1;

15. if (cnt > b) then output TRUE;

16.  output FALSE;

End.

Fig. 17 The pseudo-code of the BandDominate function

node, labeled as dom, useful for top-ranked skyline queries.
Because of the clustering property, data points dominated by
anode n in SL are for sure dominated by n’s descendants.
Therefore, the dom associated with n’s child entry does not
count for those points already dominated by n, and the dom-
inating power, i.e., the number of dominated data points, of
a candidate skyline point can be derived by summing up the
doms of its enclosing node, its parent node, and all its ances-
tors. An example extended ZBtree associated with doms is
depicted in Fig. 16b. The dom associated with the node entry
[p1, p1]isthree. The dominance power of the candidate point
p1 is three that is the summation of the dom associated with
p1 (i.e., 0) and the dom associated with the node [p1, p1]
(i.e., 3).

6.2 The ZBand algorithm

A skyband query retrieves those data points that are not dom-
inated by more than b other data points in a dataset. Due to
the transitivity property, any given data point should appear
after all its dominating data points on a Z-order curve. We
can naturally extend dominance tests for skyband queries to
check whether an examinee is dominated by more than b
collected skyband candidates.

However, the number of skyband candidates increases
when b grows. Therefore, dominance tests between each
examinee data point and all the candidate points may incur a
longer precessing time. To improve the search performance,
we derive BandDominate function as outlined in Fig. 17.
While its logic is very similar to Dominate function (in
Fig. 17), BandDominate function uses cnt-SL to facilitate
the counting of dominating points and reports dominated if

Algorithm Z Band(SRC, b)

Input. SRC: a ZBtree for source data set;

Local. s: Stack;

Output.  cnt-SL: a extended ZBtree for skyline points;
Begin

1 s.push(SRC’s root);

2. while (s is not empty) do

3 var n: Node;

4 s.pop(n);

5. if (BandDominate(cnt—SE, n’s minpt, n’s mazpt, b))
6 then goto line 3.

7 if (n is a non-leaf node) then

8 forall (child node c of ) do

9

. s.push(c);
10. else /* leaf node */
11. forall (child point c of n) do
12. if (not BandDominate(cnt-SL, c, c, b)) then
13. cnt-SL.insert(c);
14.  output cnt-SLC;

End.

Fig. 18 The pseudo-code of the ZBand algorithm

the number of dominating points is found to be greater than
or equal to b.

As outlined in Fig. 17, BandDominate function exam-
ines an RZ-region R from SRC against skyband candidates
indexed by cnt-SL. A queue initialized with the root node
of cnt-S L is used to guide the breadth-first traversal on cnt-
S L. In addition, a count c¢nt with initial value set to O is used
to record the number of data points found so far that domi-
nate R (line 1). Thereafter, the search proceeds by iteratively
fetching the head entry n from the queue (lines 2—-15). If n
is a non-leaf node, we check for its every child entry c. If
RZ-region of ¢ dominates minpt (and hence the entire R),
we increment cnt by ¢’s cnt (lines 7-8). Or, if ¢ may contain
some data points dominating R, it is enqueued for further
exploration (line 9-10). On the other hand, » must be a leaf
node and all the enclosed data points are compared against
R. Each detected dominating data point increases cnt by one
(lines 12—14). By the end of each iteration, we check the early
termination condition, i.e., whether cnt reaches b, that indi-
cates R is for sure dominated by b or more than b data points
(line 15) to terminate the algorithm. With cnt’s presented in
the immediate nodes, cnt-SL is not needed to be traversed
to the bottom and hence the performance is improved.

Figure 18 sketches the ZBand algorithm. Like the ZSearch
algorithm, it traverses SRC in depth-first order, but it uses
cnt-SL to maintain skyband candidates and the BandDom-
inate function to perform dominance tests, in place of SL
and Dominate function, respectively. The logic is very sim-
ilar to the ZSearch algorithm. Finally, we use Example 2 to
illustrate the operation of the ZBand algorithm.

Example 2 This example illustrates how the ZBand algo-
rithm evaluates a skyband query with b = 2 on our example
dataset. Figure 19 outlines the trace. We present a node in
cnt-SL as {p}©™) that means the node has a data point p
and it is associated with a count cnt of enclosed data points.



[ Stack [ Skyline points cnt-SL

P1,P4)s|P5, P9 [

p1,P1l.[p2, pal.lps, po] | B

[p2, pals[p5, Po] {p1}D

[Ps,pQ} {p] }(l)’{p2’p3}(2)

[ps, p7]s[Ps, pol {1}V {p2, p3}®

[ps, po] {p13 D {p2,p3}P, {ps, ps, p7}©

Fig. 19 The trace of the ZBand algorithm

Initially, the stack is initialized with the root node of SRC,
i.e., branches [p1, p4] and [ ps, po]. Then, the first leaf node
[p1, p1]is explored and the first data point, p1, is pushed into
cnt-S L. Next, the second leaf node [ p2, p4] is explored. The
first two data points p, and p3 are examined; they are not
dominated and enrolled into cnt-S L. The third one, p4 is dis-
carded, as it is dominated by both the node {p{}(!) and p3 in
the node {p>, p3 }(2). Next, the leaf node [ p5, p7]is explored.
Since all the enclosed data points are not dominated by two
or more other data points, they are appended to cnt-S L. Last,
the leaf node [pg, po] is examined against cnt-SL and dis-
carded since it is dominated by p; and p3. The stack becomes
empty. The search terminates and the skyband query result

is {p1, p2, P3, P5. P6: P7}- |

Other approaches such as SFS and BBS (i.e., two of the
representative approaches as reviewed in Sect. 2) can be intui-
tively extended to answer skyband queries. However, they are
not efficient. This is because SFS does not cluster data points
and it is forced to compare data points individually, and BBS,
which keeps dominance regions in the main-memory R-tree,
cannot efficiently determine the number of data points that
dominate a given index node and/or data point. Because of
the nature of R-tree, a data point covered by the MBR asso-
ciated with an internal node might not be covered by some
of its enclosed skyline candidates’ dominance regions (see
Sect. 2.2). Hence, maintaining counts of underlying domi-
nance regions in intermediate nodes in main-memory R-tree
cannot provide the same effect as cnz-SL and thereafter, all
traversals have to reach the leaf levels in order to determine
the number of dominating data points.

6.3 The ZRank algorithm

In this subsection, we present the ZRank algorithm that can
efficiently answer top-ranked skyline queries. Its efficiency
is attributed to (i) an efficient dominance test mechanism
integrated with counting of dominated data points, (ii) cnt-
SRC that indexes a source dataset and provides cnts of data
points associated with index nodes, and (iii) dom-SL that
indexes skyline candidates plus doms associated with indi-
vidual index nodes and candidates indicating the number
of data points they dominate. These cnt-SRC and dom-
SL are extended ZBtrees. As briefly described, the ZRank

| B E—
o 1 2 3 4 5 6

(b)

Fig. 20 An example for top-ranked skyline queries. a dominance and
counting, b counting based on BBS

algorithm operates in two phases, i.e., counting phase and
ranking phase. The counting phase searches for skyline can-
didates and counts the numbers of their dominated data
points. The ranking phase orders the skyline candidates
according to their dominating power and returns ¢ candidates
with the largest dominating power as the result (where ¢ is
controlled by a user). We detail these two phases below.

The counting phase. For conventional skyline queries, dom-
inance tests simply determine whether a data point is dom-
inated. Once a node is dominated, the whole branch rooted
by the node in SRC is skipped from further examinations.
However, for top-ranked skyline queries, skipping detailed
examinations of some dominated nodes would result in incor-
rect counts. Figure 20a illustrates a case in which skipping
exploring an RZ-region leads to an incorrect counting. Recall
that the skyline points are {p1, p2, p3, p5, ps} in our run-
ning example and an RZ-region R that contains pg and po
is completely dominated by p;. However, pg (not pg) in R
is dominated by p, and ps and so it should contribute to the
dominating powers of both p, and ps. If R is not further
explored once it is found to be dominated by p1, the counts
of p> and p5 would miss po, i.e., incorrect counts received
by p2 and ps. As such, nodes cannot simply be discarded
as they may have enclosed data points dominated by other
skyline candidates.

We derive DominateAndCount function that incorporate
the counting of dominated points for skyline points with
dominance tests. The basic idea of the DominateAndCount
function is that when comparing an examinee RZ-region that
bounds one or multiple data points against existing skyline
points in dom-S L, the counting is performed simultaneously.
To facilitate the counting, each node n in dom-SL is asso-
ciated with a counter dom that records the number of data
points dominated by n. Whenever n is found to dominate
some x points, its dom (as initialized to 0) is incremented by
x. We assume an extended ZBtree in which the number of
data points cnt beneath very node # is available at n. Thus,
in the function, an examinee RZ-region R from cnt-SRC is



Function Dominate AndCount(
dom-S L, minpt, maxpt, cnt, pminpt)
dom-SL: a ZBtree that indexes skyline points;
mianpt and maapt: the bounds of an RZ-region;
cnt: the count of data points inside RZ-region;
pminpt: the lower endpoint of a parent RZ-region;
q: Queue; cnt: a counter of dominating points
needToExplore: a flag: (default: FALSE)
TRUE if examinee is needed to explore, else FALSE;
dominated: a flag: (default: FALSE)
TRUE if examinee is dominated, else FALSE;

Input.

Local.
Output.

Begin
g.enqueue(dom-SL’s root);
while (g is not empty) do
var n: Node;
g.dequeue(n);
if (n is a non-leaf node) then
forall (child node ¢ of n) do
if (c’s RZ-region’s maxpt I/ pminpt) then
if (c’s RZ-region’s maxpt - minpt) then
¢’s dom « c’s dom + cnt; /* Case 1 of Lemma 1 */
dominated «— TRUE;
else if (c’s RZ-region’s minpt - minpt) then
/* Case 2 of Lemma 1 */
else /* leaf node */
forall (child point c of n) do
if (c vd pminpt) then /* avoid redundant count */
if (c = minpt) then
c¢’s dom «— c’s dom + ent;
dominated «— TRUE;
else (c = maxpt) then
20. needToFExplore < TRUE;
21.  output needToEzplore, dominated;
End.

1
2
3
4
5
6
7
8
9
10
11
12. g.enqueue(c);
13
14
15
16
17
18
19

Fig. 21 The pseudo-code of the DominateAndCount function

compared with an RZ-region R’ from dom-SL. There are
three possible cases. First, R is dominated by R’ and hence
R’s cnt contributes to R”’s dom. Second, R may be domi-
nated by some, but not all, data points of R’ and a further
examination of the examinee is triggered. Third, R is not
dominated by R’ and the examination on R’ is finished.

Since a node n from cnt-SRC cannot be discarded even if
it is dominated by some skyline candidates, the child entries
of n may be further investigated that triggers the traversal
of the same nodes in a dom-SL again. This raises a dupli-
cate counting problem. To tackle this, we include a parent
RZ-region of R in the DominateAndCount function to pro-
vide an additional checking. Thus, if the parent RZ-region
is already dominated by R’ (that implies R’s cnt already
included by R’’s dom), the further investigation of the exam-
inee can be skipped.

The pseudo-code of the DominateAndCount function is
listed in Fig. 21. It takes four parameters: (i) a dom-SL, (ii)
an examinee RZ-region expressed as (minpt, maxpt) from
cnt-SRC, (iii) the number of data points inside the exam-
inee (cnt), and (iv) the examinee’s parent RZ-region as the
inputs. Since the parent RZ-region R is only used to check
if it is completely dominated by existing skyline candidates,
we only need minpt (R) (i.e., pminpt in the algorithm). In
the function, we maintain a queue ¢ to perform breadth-
first traversal in dom-SL and a flag needToExplore to

indicate the need to explore the examinee. For every deque-
ued entry, we check its child ¢ against pminpt to avoid redun-
dant counting (line 7 and line 15). Then we increment dom by
cnt if the examinee is completely dominated (lines 8—10 and
lines 16—18). Otherwise, we further explore the child node ¢
(lines 11-12) or indicate the need to explore the examinee if
the leaf level is reached and a part of examinee node is found
to be dominated (lines 19-20). For brevity, we omit the two
cases in which the examinee is not dominated (as implied by
previous two conditions) as stated in Lemma 1. Meanwhile,
we maintain a flag dominated to record if an examinee is
dominated or not. Finally needT o Explore and dominated
are returned.

The counting phase utilizes the monotonic ordering prop-
erty of Z-order curves by which the accuracy of dom is
guaranteed as all the dominating data points are accessed
before an examinee. Therefore, examinees only contribute
their counts to those skyline candidates retrieved earlier than
them, but definitely not those accessed later. However, other
approaches such as BBS cannot achieve this. Accessed in
accordance with the shortest distances to the origin, the MBB
B is examined before p; as shown in Fig. 20b. In this case,
BBS does not anticipate some data points inside B (e.g.,
p9) to be dominated by some skyline candidates (e.g., p2)
retrieved later. To remedy this problem, BBS has to explore
all the index nodes, or to separate the retrieval of skyline
candidates and the counting. Obviously, both approaches
are inefficient. The former degenerates BBS to a scan-based
approach and forces it to examine all individual data points;
while the latter scans the index twice. Besides, SFS suffers
from exhaustive point-to-point comparisons.

The ranking phase. To rank skyline candidates based on the
numbers of data points they dominate, the Rank function con-
solidates skyline candidates’ doms by aggregating doms of
nodes to the data points at the bottom in dom-S L. Figure 22
depicts the pseudo-code of the Rank algorithm. It traverses
the dom-S L based on a depth-first traversal (lines 2-11) and
performs sorting on all skyline candidates (line 12). Finally
the initial 7 skyline points with the smallest doms in the sorted
list are returned.

Putting all together. Our ZRank algorithm (as outlined in
Fig. 23) is devised based on both DominateAndCount and
Rank functions. It iteratively examines nodes and data points
in non-decreasing order of Z-addresses using a stack to keep
track of unexamined entries (lines 2—14). For non-leaf nodes,
it examines child nodes ¢ with the DominateAndCount func-
tion. If it needs to be explored, c is pending in the stack (lines
11-14). For leaf nodes, all child points are examined against
those in dom-S L with the same function. Those data points
not dominated are inserted to dom-SL. After all entries are
examined, the skyline candidates in dom-SL are ranked by
the Rank function and the top ¢ ones are returned. Example 3



Function Rank(dom-SL, t)

Input. dom-SL: a ZBtree that indexes skyline points;
t: the requested number of top-ranked skyline points.
Local. s: stack; [: result list;
Output. ¢ top-ranked skyline points
Begin

1. s.push(dom-SL’s root);
2. while (s is not empty) do

3 var n: Node;

4. s.pop(n); /*depth-first traversal */
5. if (n is a non-leaf node) then

6 forall (child node c of n) do

7

8

c’s dom < c’s dom + n’s dom;

. else
9. forall (child point ¢ of n) do
10. c¢’s dom « c’s dom + n’s dom;
11. insert c to [;

12.  sort ! in non-descending order of dom;
13.  output first ¢ points from [;
End.

Fig. 22 The pseudo-code of the Rank function

Algorithm Z Rank(cnt-SRC, t)

Input. cnt-SRC: a ZBtree that indexes skyline points;
t: the requested number of top-ranked skyline points.
Local. s: stack; dom-SL
Output.  Uy: ¢ top-ranked skyline points
Begin

1. s.push(dom-SL’s root);

2. while (s is not empty) do

3 var n: Node;

4. s.pop(n); /* depth-first traversal */

5. if (n is a non-leaf node) then

6 forall (child node c of n) do

7 needToExplore, dominated «—
DominateAndCount(dom-SL, ¢, ¢, 1, n’s minpt);

8. if (not dominated) then
9. dom-S L.insert(c);
10. else
11. forall (child point c of n) do
12. needToFExplore, dominated «—

DominateAndCount(dom-SL, ¢’s minpt,
c¢’s maxpt, ¢’s ent, n’s minpt);

13. if (needToEmplore) then
14. s.push(c);

15. U < Rank(dom-SL.,t),

16.  output Uy;

End.

Fig. 23 The pseudo-code of the ZRank algorithm

illustrates how the ZRank algorithm in invoked to evaluate a
top-ranked skyline query.

Example 3 In this example, a top-ranked skyline query with
t set to 2 is evaluated on our example dataset. The trace is
depicted in Fig. 24. Here, we denote every cnt-SRC node
by [p, ¢11""] where p and g are the ending data points and
cnt is the count of enclosed data points, and denote a dom-
SL node n by {p (doml), péd"m), ... }domn) \where p; is a
data point enclosed by n, dom; records the number of data
points dominated by p;, and dom, records the number of
data points n dominate (i.e., all data points enclosed in the
corresponding RZ-region). The total number of data points
dominated by p; is therefore dom; + dom,,.

Stack

[ Skyline points cnt-SL

[p1. pa]™.[ps, po]®T [ 0

[p1, p1] ™. [p2, pa] BT, | 0

[ps, po]®!

[p2, 4] [ps, po] 1| {p{”} )

[ps, po] ! BN
5,21 lps, 2ol {7} 0450 p ) O

[p&pg][z] {p<0)}(3)’{pgl> )}(0) {p<1) (0)}(0)
pé[sl],pgl] {p(o)}(S) {p(1> ()}(0) {p<1) (0)}(0)
P[gl] {p(o)}(S) {p(2>, )}(0) {p<2) (0)}(0)

Fig. 24 The trace of the ZRank algorithm

First, a stack that keeps unexplored cnt-SRC nodes is
set with the root of cnt-SRC. Next, the search explores the
first branch [py, p4][4], and then drills down the first leaf
node [p1, pl][” where a data point p is collected as the first
skyline point. Thereafter, the second leaf node [p>, p4]P! is
examined and explored. The enclosed data points py and p3
are collected as the second and third skyline points in dom-
SL. Then, py is evaluated and is dominated by an entire leaf
node { pgo)}, and two data points p; and p3. All correspond-
ing counts are incremented by one. Notice that p4, although
dominated by both p; and p3, is not dominated by the node
[p2, p3] and hence its cnt contributes to the doms of p;
and pj3, but not that of node [p», p3]. Further, [ ps, pg][S] is
explored. Since it is 1ncompat1ble to { p(l), pgl)}(o) and not
dominated by { plo)} [ps, p71P1is explored. Then, ps and pg
are collected as the fourth and fifth skyline points maintained
as { p(()) é0>}(0) indom-SL. As p7 is only dominated by ps,
its count contributes to p5’s dom.

Next, the leaf node [ pg, po] [214s completely dominated by
{ pio) } and p3, so both the doms of { pio) } and p3 are increased
to 3. At the same time, it may contain data points dominated
by p2, ps and pe. Thereafter, [ pg, po]!?! is further explored.
When pg is examined, as the associated parent minpt,i.e, pg
is already dominated by all the dominating points, no count
is updated. As for pg, it is dominated by p; and ps and hence
it increases both p;’s and ps’s doms by one. After the entire
cnt-SRC is traversed, the counting phase completes and the
ranking phase starts. The counts of intermediate nodes in
dom-SL are propagated to the data points so the counts for
skyline points, p1, p2, p3, p4 and ps, become 3, 2, 3, 2 and
0, respectively. Data points pj and p3 are picked as the query
result to complete the search. O

6.4 The k-ZSearch algorithm

Next, we present the k-ZSearch algorithm to evaluate
k-dominant skyline queries. To address the cyclic dominance
problem, our k-ZSearch algorithm adopts a filter-and-reex-
amine approach. In the filtering phase, possible k-dom-
inant skyline candidates, which may contain false hits are



collected. The reexamination phase eliminates those false
hits. We detail these two phases in the following.

The filtering phase. In the filtering phase, the k-ZSearch
algorithm traverses STRC for k-dominant skyline candidates
while filtering out those data points or nodes that are k-dom-
inated by collected skyline candidates. Here, candidates are
maintained in K-S £ indexed by a ZBtree. Extended from the
definition of the dominance relationship to the k-dominance
relationship between RZ-regions, Theorem 1 formalizes the
transitive k-dominant relationship; and Lemma 2 suggests an
efficient candidate filtering in the k-ZSearch algorithm.

Theorem 1 Transitive k-dominance relationship. The fol-
lowing two transitive k-dominance relationships are true:

. Ifpty p and p' = p”, then p & p”.
2. Ifpk p'and p' &y p”, then p = p”.

Proof For (1), given certain k out of d dimensions, s;, p-s; <
p'-si < p”-s; (Wheres; € S'AS" C SA|S’| = k) must hold,
implying p-s; < p”-s;. Suppose there is one dimension out
of k dimensions, s;, such that p -s; < p’-s; < p” -5, in
this case, p -s; < p” -s;. Hence, p b p”.

Likewise for (2), given certain k out of d dimensions, s;,
p.si < plsi < p'si(wheres; € S AS CSA|S| =k)
must hold, so p.s; < p”.s;. Also, there exists at least one
dimension s; among those k dimensions, p.s; < p.s i<
p".sj, then p.s; < p”.s;. Thus, p b p”. O

Lemma 2 Given two RZ-regions, R and R', the following
four cases hold:

1. if maxpt(R) +r minpt(R’), then R +; R’, then any
data point in R k-dominates all the data points in R'.

2. ifmaxpt(R) Y minpt(R') Aminpt(R) b minpt(R'),
then some data points in R may k-dominate all the data
points in R.

3. ifminpt(R) tr minpt(R') Aminpt(R) b maxpt(R'),
then some data points in R would k-dominate some data
points in R’

4. ifminpt(R) Vx maxpt(R'), then R /¢ R', then no data
point in R can k-dominate any data point in R'.

Proof We prove the lemma case by case.

Case 1. maxpt(R) F minpt(R’). According to the first
part of Theorem 1, since maxpt(R) b minpt(R’'), minpt
(R’) k-dominates all the data points in R’. By the second part
of Theorem 1, all the data points in R (except maxpt(R))
dominate maxpt(R). As a result, R ~; R’. As shown in
Fig. 25a, Ry and R; are 2-dominated by R; in a 3D space.

Case 2. maxpt(R) V. minpt(R') A minpt(R) ;. minpt
(R’). Some data points in R, such as minpt(R), that can k-
dominate minpt(R’). Based on the first part of Theorem 1,

maxpt
©

z minpt

minpt  minpt

(a) (b)

Fig. 25 2-Dominance tests in 3D space. a RZ-regions, b a point and
RZ-regions

Function k-Dominate(k-S L, minpt, maxpt)

Input. k-SL: a ZBtree (k-dominant skyline candidates);
minpt and maxpt: the endpoints of an RZ-region;

Local. q: Queue;

Output.  TRUE if the input is k-dominated, else FALSE;

Begin

1 g.enqueue(k-SL’s root);

2. while (q is not empty) do

3 var n: Node;

4 g.dequeue(n);

5. if (n is a non-leaf node) then

6 forall (child node ¢ of n) do

7 if (¢’s mazpt by, minpt) then

8 output TRUE; /* Case 1 of Lemma 2 */
9 else if (c’s mint mampt) then

10. g.enqueue(c); /* Case 2 of Lemma 2 */
11. else /*n is leaf node */
12. forall (child point ¢ of n) do

13. if (c i minpt) then

14. output TRUE;

15.  output FALSE;

End.

Fig. 26 The pseudo-code of the k-Dominate function

they can also k-dominate all the other points in R’. In Fig. 25a,
Rg and R3 shows an example.

Case 3. minpt(R) V¢ minpt(R') A minpt(R) by maxpt
(R"). Some data points in R’ including maxpt (R") might be
k-dominated by some points in R. R; and R4 in Fig. 25a form
an example.

Case4. minpt (R) t/x maxpt(R’). The case can be proved by
contradiction. Suppose p ¢ p’ (p € R, p’ € R’). By The-
orem 1, minpt(R) = p b p' = maxpt(R') = minpt(R)
i maxpt(R’). This contradicts the case condition. R, and
Rs in Fig. 25a are an example for this case. O

Lemma 2 is applicable to data points (see Fig. 25b). Based
on this, we derive the k-Dominate function to determine
whether an RZ-region, R, presented as minpt and maxpt,
is k-dominated by any existing candidate k-dominant sky-
line points preserved in k-SL. The logic of this function is
outlined in Fig. 26. Similar to the Dominate function, the
k-Dominate terminates when R is assured to be k-dominated



Algorithm k-ZSearch(SRC)

Input. SRC: a ZBtree for source data set;

Local.  k-SL:a ZBtree (k-dominance skyline candidates);
s: Stack; T': Set;

Begin

/%% filtering phase **%/

1. s.push(source’s root);
2. while s is not empty do
3. var n: Node;
4. s.pop(n);
5. if (Dominate(k-SL, n’s minpt, n’s mazpt)) then
6. goto line 3. /* remove those dominated data points */
7. if (k-Dominate(k-SL, n’s minpt, n’s mazpt)) then
8. T .insert(n); /*n for reexamination. */
9. goto line 3.

10. if (n is a non-leaf node) then

11. forall (child node c of ) do

12. s.push(c);

13. else /* leaf node */
14. forall (child point c of n) do

15. if (k-Dominate(k-SL, c, c)) then

16. T.insert(c); /* c for reexamination. ¥/
17. else

18. k-SL.insert(c); /* tentative result set */

/*%* reexamination phase **%/
19.  forall (point p € k-SL) do
20. if (3p’ € k-SL,p' #p Ap' by, p) then

21. remove p from k-SL;

22. T.insert(p);

23. elseif (Ip” € T, p” +-, p) then
24, remove p from k-SL;

25. T.insert(p);

26. output k-SL;

End.

Fig. 27 The pseudo-code of the k-ZSearch algorithm

by any RZ-region enclosing some candidate skyline points,
or when all relevant nodes of k-SL are visited.

With the k-Dominate function, the filtering phase of the k-
ZSearch algorithm (lines 1-18 in Fig. 27) collects k-dominant
skyline candidates in k-S L. Those unqualified data points or
index node entries (i.e., k-dominated by any existing result
candidate) are reserved in a non-candidate set (7') which will
be used in the reexamination phase for false hit removal. The
memory consumption for 7" is expected to be low, because
most of branches of SRC can be pruned at high levels owing
to the k-dominance relationship. The filtering phase termi-
nates when the SRC is completely traversed.

The reexamination phase. The reexamination phase of the
k-ZSearch algorithm removes the false hits from candidates
collected in the filtering phase. The main idea is that if a can-
didate in k-S L is found to be k-dominated by any other point
in k-SL or in T, it is moved from k-SL to T. All candidate
points are reexamined. The logic of this phase is depicted in
lines 19-26 in Fig. 27.

As the number of candidates maintained in k-S £ is much
smaller than that of points stored in 7 and those candidates
usually have strong dominating power, our reexamination
checks every candidate p against others in k-S L first. If there
isacandidate p’ k-dominating p, p is moved to T. Otherwise,
we proceed to check p against entries in 7. If no nodes and/or

Algorithm ZSubspace(SRC, S”)

Input. SRC: ZBtree for source data set;
S’: a subset of dimensions;

Local.  S’-SL:ZBtree (subspace skyline points);
s: Stack;

Begin

/¥%% filtering phase **%/
s.push(source’s root);
while (s is not empty) do
var n: Node;
s.pop(n);
if (Subspace-Dominate(S’-SL, n’s minpt, n’s mazpt)) then
goto line 3. /* remove those dominated data points */
if (n is a non-leaf node) then
forall (child node c of ) do
s.push(c);
else /* leaf node */
forall (child point c of n) do
if (not Subspace — Dominate(S’-SL, c, c)) then
S’-SL.insert(c); /* tentative result set */
/**% reexamination phase ***/
14.  forall (point p € S’-SL) do
15. if (Subspace—Dominate(S/—S[,, p, p)) then
16. S’-SL.delete(p);
17.  output S'-SL;
End.

——
PN OOVXNAN RWN =

Fig. 28 The pseudo-code of the ZSubspace algorithm

data points in T k-dominate p, p retains in k-SL. If some
index nodes in T need further exploring, they are replaced
with all their child entries (either data points or child nodes)
in T. Those final remainders in k-SL are the k-dominant
skyline points.

6.5 The ZSubsapce algorithm

At last, we present the ZSubspace algorithm to process sub-
space skyline queries. Since the access of data points based
on the ascending order of Z-addresses cannot exploit the tran-
sitivity property for subspace skyline queries. Thus, the algo-
rithm also adopts a filter-and-reexamine approach.

In the filtering phase, STRC is access based on a depth-first
traversal that retrieves data points and nodes in the ascend-
ing order of Z-addresses. Following this order, it collects
candidates if they are not S’-dominated (where S’ is a set of
dimensions specified at the query time). Theorem 2 suggests
the transitive subspace-dominance relationship and Lemma 3
suggests to prune the search space if the RZ-regions of cer-
tain nodes are subspace-dominated by current skyline candi-
dates. Thanks to the clustering property of Z-order curves, the
ZSubspace algorithm can effectively prune the search space
in the filtering phase. In Fig. 28, line 1-13 outlines the fil-
tering phase. While subspace dominance relationship is used
in place of conventional dominance relationship, the logic of
Subspace-Dominate function is very similar to the Dominate
function and we do not include it for space saving.

Theorem 2 Transitive subspace dominance relationship.
Given a subset of dimensions S’, the following two transitive
subspace dominance relationships are true:



[ Stack [ S-SC
[p1, pal, [P5, Po] 0
p1], [p2; pal, [ps,po] | 0
ps, p7], [Ps; P9l {p1}
PS8, P9 {p1}, {ps,pe}

Fig. 29 The trace of the filter phase of the ZSubspace algorithm

1. Ifptg p'and p' = p”, then p g p”.
2. Ifpkpand p' g p”’, then p g p".

Proof The proof is very similar to that for Theorem 1. We
omit the discussion to save space. O

Lemma 3 Given a subset of dimensions, S’ and two
RZ-regions, R and R', the following four cases hold:

1. if maxpt(R) g minpt(R’), then R g R’, then any
data point in R S’-dominates all the data points in R’.

2. if maxpt(R) Wsg minpt(R') Aminpt(R) Fyg
minpt(R’), then some data points in R may S'-domi-
nate all the data points in R.

3. if minpt(R) Wg minpt(R") A minpt(R) Fg
maxpt(R"), then some data points in R would S’-domi-
nate some data points in R’.

4. if minpt(R) Vg maxpt(R’), then R /s R, then no
data point in R can S'-dominate any data point in R'.

Proof This can be proved as that for Lemma 2. Due to limited
space, we do not state the proof here. O

In the reexamination phase (as shown in lines 14-16),
candidates are reexamined to eliminate false hits. Here, we
compare it against all other candidates in §’-SL only. Those
S’-dominated are removed from S’-S L. Finally, the remain-
ders in §’-SL are the subspace skyline points and the algo-
rithm terminates. To illustrate the operation of ZSubspace
algorithm, Example 4 is provided below.

Example 4 Consider a subspace skyline query on distance
dimension based on our hotel example (i.e., S’ = {distance}).
The result is {pe}. The trace of the filter phase is shown in
Fig. 29. Based on the depth-first traversal on a ZBtree, { p1} is
the first data point accessed and it is included in S’-S L. Then
the node [p2, p4] is S’-dominated by p; and ignored. Next,
[ps, p7]is examined against p; and expanded. Thereafter, ps
is visited and kept in §’-S L. Further, pg is not dominated and
collected. Later, p7 and [pg, p9] are dominated and pruned.
Then the filter phase ends. Notice that p; is not a result point
but it helps filtering out the nodes [p2, pa] and [ps, pol.

Next, in the examination phase, pj and ps are both domi-
nated by pg and are removed from S’-SL. Now, pg, retained
in §’-SL is the subspace skyline point.

7 Performance evaluation

This section evaluates the performance of the proposed suite
of algorithms in our Z-SKY framework, namely, ZSearch,
Znsert, ZDelete, ZUpdate, ZBand, ZRank, k-ZSearch and
ZSubspace and compares them with the state-of-the-art
approaches specialized for corresponding domains.

7.1 Experiment settings

Our evaluations are based on both synthetic and real
datasets. Synthetic datasets are generated and they follow
correlated distribution, independent distribution and anti-
correlated distribution as discussed in [4] with various data
dimensionalities (d) and cardinalities (n). Due to the lim-
ited space, we present the results for d ranging from 4, 8§, 12
and 16 and n from 10k to 10, 000k (ten millions) in order
to demonstrate the scalability of the proposed algorithms.
In addition, three real datasets, i.e., NBA, HOU and FUEL
that follow anti-correlated, independent and correlated dis-
tributions, respectively,” are employed. NBA contains 17k
13-dimensional data points, each of which corresponds to
the statistics of an NBA player’s performance in 13 aspects
(such as points scored, rebounds, assists, etc.). HOU consists
of 127k 6-dimensional data points, each representing the per-
centage of an American family’s annual expense on 6 types
of expenditures such as electricity, gas, and so on. FUEL is
a 24k 6-dimensional dataset, in which each point stands for
the performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc.). In the experiments, all
datasets are normalized to [0, 1024)d.

Besides our proposed algorithms, we include the state-of-
the-art algorithms, namely, SFS [8], SaL.Sa [2], BBS [22],
BBS-Update [22], DeltaSky [31], SFSBand, SFSRank, BBS-
Band, BBSRank, TSA [5] and SUBSKY [29] for compari-
son.!” SFSBand and BBSBand are devised based on SFS
and BBS, respectively, to answer skyband queries. SFSRank
and BBSRank are developed based on SFS and BBS, respec-
tively to answer top-ranked skyline queries. Similar to most
of the related works in the literature, we use elapsed time
as the main performance metric. It represents the duration
from the time an algorithm starts to the time the result is
completely returned. To facilitate our understandings of how
elapsed times are spent, we also report the time spent on
performing dominance test, data access and maintaining sky-
line candidates (or candidate maintenance), i.e., the three
major operations in the algorithms. Here, data access time
includes data retrieval and traversing the required indices.

9 Those are collected from http://www.nba.com, http://www.ipums.org
and http://www.fueleconomy.gov, respectively.

10 Since DeltaSky focuses only on deletion, we adopt the insertion
algorithm of BBS-Update for DeltaSky.


http://www.nba.com
http://www.ipums.org
http://www.fueleconomy.gov

Table 2 Experiment settings

Parameters

Settings (* means default)

Synthetic datasets

Distribution: Correlated, Independent, Anti-correlated

Dimensionality (d), 4, 8*, 12, 16; Cardinality (n): 10k, 100k, 1000k*, 10, 000k

Real datasets
Data space [0, 1024)d
Skyline algorithms

Skyline update algorithms
Skyband algorithms
Top-ranked skyline algorithms
k-dominant skyline algorithms

Subspace skyline algorithms

NBA (13D, 17k, anti-correlated), HOU (6D, 127k, independent), FUEL (6D, 24k, correlated)

SFS, SalL.Sa, BBS, ZSearch

BBS-Update, DeltaSky, Zinsert, ZDelete, ZUpdate (number of updates: 30)
SFSBand, BBSBand, ZBand (skyband width (): 2, 4, and 8)

SFSRank, BBSRank, ZRank (result set size (¢): 100)

TSA and k-ZSearch (k: 11, 12, 13*, 14, 15 (where d = 16))

SUBSKY and ZSubspace (d'=d /4, d/2 and d/1)

Elapsed time (correlated, n=1 000k)
m Dominance test
@ Candidate maintenance 2472 11 ¢s
0 Data access

ﬂjmfﬂﬂHﬂ\ﬂ

100000
10000
1000
100

10

1000
100
10

m Dominance test
@ Candidate maintenance
O Data access

o
time (seconds)

time (seconds)

0.01

Elapsed time (independent, n=1000k) 3173s.1

Elapsed time (anti-correlated, n=1000k)

m Dominance test 48577.1
@ Candidate maintenance 178604 196464 \ 113186

)
=]
5]
153
153
3

6680.2 70259 _\|4723.9 1000000
10000
1000

100

time (secon

0.001 0 01

g
%)
o
o

16 (M=32118)

1
»
i
@

saLsal ]
BBs [|

ZSearch
SFS
S

©
(23 (23
Q L 9 g
o T o
o

SalSa|
ZSearch
SalLSa
ZSearch
SalSa
ZSearch

4(m=16) 8 (m=571) 12 (m=9798) 4 (m=51)

dimensionality (d)

(a)

ﬂamﬂﬁﬁHﬂF

8 (m=19076)
dimensionality (d)

(b)

el

1%}
@
@

SalSa
SalSa
SalSa

2
& 8

SalSa
SalSa

@ @
@ o

ZSearch
ZSearch
ZSearch

ZSearch
ZSearch
ZSearch

4 (m=18434) 8 (m=884591) 12 (m=999926)

dimensionality (d)

()

12 (M=205670) 16 (M=590920) 16 (m=1000000)

Fig. 30 Skyline query: elapsed time versus dimensionalities (). a correlated, b independent, ¢ anti-correlated

In addition, we include the runtime memory consumption as
well as the number of skyline points for references.

We implemented all of the evaluated approaches in GNU
C++ and conducted the experiments on Linux Servers (run-
ning kernel version 2.6.9 with Intel Xeon CPU 3.2 GHz and
4 GB RAM). The disk page size is fixed at 4KB. In the
experiments, sufficient memory (including both main mem-
ory and virtual memory provided by OS) was available to
accommodate all skyline candidates and required data struc-
tures. Since Z-addresses can be used to derive the original
attribute values, we only keep Z-addresses in ZBtrees and
extended ZBtrees used in the experiments and derive the orig-
inal dimensional values as needed. Notice that the size of a
Z-address equals to the total size of the corresponding origi-
nal dimensional values. Here, each original value is stored in
a two-byte short integer. The R-tree adopted by BBS, BBS-
Update, DeltaSky, BBSBand and BBSRank are built with
TGS bulkloading [12]. For SFS, TSA, SFSBand and SFS-
Rank, records are presorted in accordance with the sum of
all attribute values and for SalLSa, records are sorted accord-
ing to their minimum attribute values. All indices and sorted
records are prepared prior to the experiments. SRCs in form
of ZBtrees and extended ZBtrees are built with compact bulk-
loading (see Sect. 3.3). The results to be reported are the aver-
aged performance of 30 sample runs. Table 2 summarizes all
the parameters and their settings used in the experiments. In
the following, we first evaluate the performance of skyline

search, and then the performance of skyline result update fol-
lowed by the evaluation of algorithms for skyline variants.

7.2 Experiments on skyline queries

The first experiment set evaluates ZSearch, compares it
against SFS, SalL.Sa and BBS with synthetic datasets with
various data distributions, dimensionality and cardinalities,
and examines its practicality with the real datasets.

Effect of data dimensionality. Figure 30 plots the elapsed
time (in log scale) against the data dimensionality (d) from
4 up to 16 in a step of 4 for synthetic correlated, independent
and anti-correlated datatsets while data cardinality (n) is fixed
at 1,000k. The numbers of skyline points (m) are marked right
below the x-axis. The numbers of node accesses (ford = 16)
are shown above the bars. We notice that all the algorithms
incur longer elapsed time with the increase of the data dimen-
sionality. We also find that dominance tests consume more
time in anti-correlated datasets than others. SalL.Sa improves
SFS by terminating the search earlier. However, SFS and
SalL.Sa perform inefficient point-to-point dominance tests,
resulting in longer elapsed times. BBS performs the best for
correlated and independent datasets in low dimensionalities
(e.g., d = 4), since many branches in R-trees are pruned.
However, its performance significantly deteriorates because
of the degraded performance of R-trees and the overheads



Runtime memory consumption (n=1000k)
10000000 1 g gFg pSalSa 0BBS mZSearch
1000000 -
100000
10000
1000
100
10
1

No. of pending entries

anti-correlated

correlated

independent

dimensionality (d)

Fig. 31 Skyline query: runtime memory versus dimensionalities (d)

incurred by dominance tests based on main-memory R-trees
and by heaps manipulating the pending entries. This is also
reflected as the maximum number of pending entries as shown
inFig. 31. Finally, ZSearch, owing to the effective space prun-
ing capability and block-based dominance tests, performs
better than others when the data dimensionalities increase.

For anti-correlated datasets, data points in some senses
are clustered but located in positions in the data space that
they do not dominate each other. In this case, ZSearch shows
its superiority over SFS, SalL.Sa and BBS. As most of data
points cannot be dominated, computational overheads in per-
forming dominance tests become more significant than those
under the other two data distributions. We can see that BBS
performs the worst due to inefficient dominance tests based
on main-memory R-trees and exhaustive heap manipulations
for almost entire datasets. Meanwhile, SFS and Sal.Sa
perform worse than ZSearch as they cannot avoid many
comparisons.

Figure 31 depicts the runtime memory consumption mea-
sured in terms of the maximum number of entries maintained
in memory to facilitate index traversal (in log scale).!! Since
SFS and Sal.Sa do not need any extra data structure, it incurs
zero runtime memory consumption. BBS uses a heap to order
index pages and data points; and ZSearch uses a stack. BBS
takes (up to four orders of magnitudes) more memory than
ZSearch. Even worse, each heap entry in BBS that maintains
the distance to the origin of the space is slightly larger than
a ZSearch stack entry (which simply is a pointer to a node).

Effect of data cardinalities. Figure 32 depicts the elapsed
time against the data cardinalities (n: 10k up to 10,000k)
while d is fixed at 8. The numbers of skyline points (m) are
listed right below the x-axis. In general, m increases with the
sizes of the experimented datasets. There is an exception that
m for correlated datasets drops when datasets are increased
from 1000k to 10,000k. This is because more data points in
a larger dataset would appear close to the origin and they can
dominate many other data points.

I The data structures to keep track of collected skyline points are not
counted.

The elapsed times of all the algorithms increase dramat-
ically as n grows. For correlated datasets, SalL.Sa performs
the best since it can early terminates the searches once (a few
number of) skyline points are identified. For the indepen-
dent datasets, the performances of SFS, Sal.Sa and ZSearch
are quite close. Conversely, ZSearch produces the shortest
elapsed time for anti-correlated dataset. As n increases, the
costs incurred by dominance tests become predominant and
thus, SFS, SalLSa and BBS perform worse than ZSearch.

Next, Fig. 33 plots runtime memory consumption under
various data cardinalities. SFS and SaL.Sa incur no extra
data structure and thus they produce zero runtime memory
consumption. ZSearch consumes reasonably small runtime
memory, less than a hundred entries for all the cases. BBS
keeps a large number of data points and index nodes, espe-
cially for high data cardinality. From this, we can conclude
that ZSearch is more memory efficient than BBS.

Experiments on real datasets. Here, we evaluate the algo-
rithms on the real datasets. The experiment results are listed
in Table 3. ZSearch clearly outperforms SFS and BBS and
it performs very close to SalL.Sa among the evaluated algo-
rithms for the elapsed time (in seconds).

The experiment results on synthetic datasets consistently
show that ZSearch is superior to SFS and BBS, especially
when large skyline results are derived. ZSearch performs as
good as Sal.Sa for relatively small real datasets. In conclu-
sion, we consider that ZSearch is a very good skyline search
approach. Due to the limited space, we exclude the results
for synthetic correlated datasets hereafter.

7.3 Experiments on skyline result updates

The second set of experiments studies the performance of
ZDelete, ZInsert and ZUpdate for skyline result update. We
employ BBS-Update [22] and DeltaSky [31] as our com-
parison candidates. To evaluate the performance for skyline
results in presence of insertions and deletions, we first ran-
domly selected 30 skyline points from a skyline result to
perform deletion and inserted other 30 data points back to
the datasets. Each inserted data point corresponds to a deleted
point, with the difference of their attribute values bounded by
[—3, 3]. We adopt BBS-Update, DeltaSky and ZDelete fol-
lowed by ZInsert (labeled as ZDelete+ZInsert) to perform 30
deletions first and then 30 insertions. In addition, we evaluate
the performance of ZUpdate that performs insertion before
deletion. In these experiments, we vary the data dimensio-
nalities (d) from 4 up to 16 and data cardinalities (n) from
10k up to 10,000k.

Figure 34 shows the performance of skyline updates for
various data dimensionalities (d: 4 through 16), with a fixed
cardinality (1000k) in terms of elapsed time obtained by
averaging 30 updates. Both of the initial number of skyline



Elapsed time (correlated, d=8)

100
10

1

0.1
0.01
0.001

m Dominance test

mDominance test 1o 11.62

@ Candidate maintenance

Elapsed time (independent, d=8)

@ Candidate maintenance

8716.1 1000000 145080 23874
100000
10000

1 000

m Dominance test 131432

Elapsed time (independent, d=8)
@ Candidate maintenance

51.2 44.

i

time (seconds)

ﬁﬂﬁﬂﬂﬁﬂWﬂTHHmw

@
-
o

BBS

(]
2
& 8

time (seconds)

SalSa
ZSearch
SalSa
ZSearch
SalSa
ZSearch
SalSa
ZSearch

10k (m=212) | 100k (m=445)

cardinality (n)

(a)

1000k (m=571) 10000k (m=369) 10k (m=2161)

100k (M=7088) 1000k (M=19076) 10000k (M=34236)

card

time (seconds)

!!95!5@ é

]

@
10k (m=9981) 100k (M=98349) 1000k (M=884591) 10000k
(m=796132)

cardinality (n)

(c)

SalSa
sasa [l
BBS
zsearch |l
SaLSa
BBS
ZSearch|

w w
7] 7]

SalSa

7
w

2
& 3 &

zSearch| |

ZSearch
SalSa

ZSearch
ZSearch

inality (n)

(b)

Fig. 32 Skyline query: elapsed time versus cardinalities (n): a correlated, b independent, ¢ anti-correlated

Runtime memory consumption (d=8)

& 10000000

_g 1000000 mSFS DSalSa OBBS mZSearch

£ 100000

© 10000

o 1000

[= 100

o 10

5 1

2 £ 58558588535 % %
=4 S o - o o - o o

o — ‘o_ — 9 — 9

o

=z Correlated Independent Anti-correlated

cardinality (n)

Fig. 33 Skyline query: runtime memory versus cardinalities (1)

Table 3 Skyline query; real datasets (time (s))

Dataset m SFS SalL.Sa BBS ZSearch
NBA 10816 2.933 1.702 3.364 1.723
HOU 5774 1.334 0.736 2.169 0.944
FUEL 1 0.031 0.001 0.001 0.001

points (m) and the final number of skyline points (m’) are
stated below the x-axis. As the attribute values of inserted
data points are dependent on the values of deleted data points,
the differences between m and m’, in most cases, are small.
As we can observe from the figures, the elapsed times of
all the approaches increase when d is increased. This is
because a higher dimensionality implies a larger skyline
result, which thus incurs more candidate reexaminations. We
can also see that BBS-Update and DeltaSky take (almost an
order of magnitude) longer elapsed time than both ZDele-

Fig. 34 Skyline result update

(various dimensionality (d)): a & 1000 O BBSUpdate
independent, b anti-correlated k-] m DeltaSky
g 100 { mZDelete + ZInsert
8 @ ZUpdate
a o
o
E
=
0.1
m' 45 18406
m 51 19076

Elapsed time (independent, n=1000k)

2054
2056

te+ZInsert and ZUpdate. This can be explained that they
have to examine data points individually against existing
skyline points. Besides, the performance of DeltaSky dete-
riorates as d grows. This is because as d grows, both the
length and the number of the sorted lists increase and hence
the scanning overhead of lists becomes larger. On the other
hand, both ZDelete+ZInsert and ZUpdate perform batched
updates. Further, we can see ZUpdate outperforms ZDele-
te+ZlInsert since some deleted skyline points are discarded
from further examination if they are dominated by inserted
data points. Consequently, the corresponding search for those
exclusive dominated data points for promotion is eliminated.

Figure 35 shows the performance of all the approaches
with the cardinalities varied from 10k to 10000k and the
dimensionality fixed at 8. Again, ZUpdate is shown to con-
sistently outperform the others due to the aforementioned
reasons. Next, we evaluate the update performance on the
real datasets. The results are listed in Table 4. The obser-
vations are consistent to those obtained from synthetic data-
sets. Again, ZUpdate outperforms ZDelete+ZInsert that runs
faster than BBS-Update and DeltaSky.

7.4 Experiments on skyband queries

Next, we evaluate ZBand for datasets with different data dis-
tributions, dimensionality and cardinality in terms of elapsed
time, and compare it with SEFSBand and BBSBand. Figure 36
plots the elapsed times (in log scale) taken by ZBand, SFS-
Band and BBSBand upon independent and anti-correlated

Elapsed time (anti-correlated, n=1000k)
0O BBSUpdate

8

12
dimensionality (d)

(a)

~ 1000

3 m DeltaSky

g 100 | @ ZDelete + Zlnsert

3 O ZUpdate

$ 10

2

2

E

=

0.1
17 590845 m' 18332 884587 999926 1000000
70 590920 m 18434 884591 999926 1000000
16 4 8 12 16
dimensionality (d)

(b)



Fig. 35 Skyline result update

Elapsed time (independent, d=8)

Elapsed time (anti-correlated, d=8)

(various cardinality (n)): O BBSUpdate 0BBSUpdate
a independent, b anti-correlated @ 100 . WDeltaSky 21000 - M DeltaSky
T m ZDelete + ZInsert o mZDelete + ZInsert
g 10 BZUpdate § 100 4 @ZUpdate
3 1 & 10
g B é 1 |:L:l
* 0.01 0.1
m' 2157 6667 18406 33756 m' 9980 98348 884587 6139423
m 2161 7088 19076 34236 m 9981 98349 884591 6139470
10k 100k 1000k 10000k 10k 100k 1000k 10000k
cardinality (n) cardinality (n)
(a) (b)
Table 4 Skyline result update: Dataset mim' BBS-update Delta-sky ZDelete+Zinsert ZUpdate
real dataset (time (ms))
NBA 10816/10801 189 209 58 14
HOU 577415734 98 127 27 18
FUEL 1/1 1 1 1 1
datasets with data dimensionality varied from 4 up to 16 and Table 5 Skyband query: real datasets (time (ms))
data cardinality fixed at 1000k. Here, t.he skyb'and widths 0)  paaset b m SESBand BBSBand  ZBand
are set to 2, 4, and 8. When a larger b is experimented, more
skyband points are resulted. In general, ZBand performs the =~ NBA 2 12064 2904 5517 1986
best for all the experimented b’s, especially when datasets 4 12968 3265 6703 2215
with high dimensionality are experimented. For independent 8 13747 3570 7514 2397
datasets with lower dimensionality (say 4), the number of =~ HOU 2 7248 1498 4034 1689
skyline points (m) is very small. In this case, BBSBand per- 4 8897 2077 5559 2236
forms better than all the others. However, due to expensive 8 10881 2913 7980 3009
dominance tests that search for » dominating skyband can-  FUEL 2 4 57 1 4
didates, BBSBand suffers a lot for the rest of experimented 4 5 58 1 3
datasets. 8 17 62 1 3

Figure 37 depicts the experiment results for data cardinal-
ity ranged from 10k up to 10, 000k while the data dimen-
sionality is fixed at 8. ZBand in general outperforms both
SFSBand and BBSBand. Further, we evaluate skyband que-
ries on the real datasets. The experiment results are shown in
Table 5. For FUEL, which is a correlated dataset and has a
small number of skyband points, BBSBand incurs the short-
est elapsed time. For NBA and HOU, that are anti-correlated
and independent datasets, respectively, ZBand performs the
best. From these experiment results, we can see that ZBand
is generally the best skyband query algorithm.

7.5 Experiments on top-ranked skyline queries

Next, we examine the performance of our proposed ZRank
in comparison with SFSRank and BBSRank for top-ranked
skyline queries. Here, the number of returned top-ranked sky-
line points (¢) has a default value of 100. We have conducted
experiments to evaluate the performance of different algo-
rithms under various ¢ and found that # does not have any
significant impact on the performance. Consequently, the

results under different  are skipped. In our implementation of
BBSRank, we explore all index nodes to count the number of
dominated data points for all individual skyline candidates.

Figure 38 shows the experiment result for datasets with
dimensionality varied from 4 up to 16. For all evaluated data-
sets, ZRank is clearly shown to outperform SFSRank and
BBSRank. In particular, BBSRank suffers from expensive
computational costs in counting dominated data points for
all individual skyline candidates. Likewise, SFS also incurs
exhaustive dominance tests. Very differently, ZRank uses
both cnt-S L and dom-S L to perform block-level dominance
tests and counting, making it outperform the others.

Figure 39 shows the experiment results for datasets with
cardinality varied from 10k up to 10, 000k and dimensional-
ity fixed at 8. Again, for all evaluated datasets, ZRank outper-
forms SFSRank and BBSRank. This can be explained with
the above discussed reasons. Further, we evaluate top-ranked
skyline queries on the real datasets. From the experiment
results as shown in Table 6, we can see that ZRank performs
much better than SFSRank and BBSRank.



Fig. 36 Skyband query

(various dimensionality (d)): 100000 -

Elapsed time (independent, n=1000k)

Elapsed time (anti-correlated, n=1000k)
100000 -

k ! 0 m SFSBand 0 m SFSBand
a independent, b anti-correlated € 10000 | O BBSBand € 10000 |
8 1000 | mZBand ]
O 1) 1000 -
< 100 = 100
[] Q
E 10 E 10
L 1 L
1
0.1 © oo o N = o oo ololo
n mE8E SR3 389 398
< IE=1k] 5 R85 oo > ISERSERS] ISER=JE=]
883 |8 olele| 1212/2| (2]2|2
2‘4‘8‘ ‘2‘4‘8‘ 2‘4 s‘ 2‘4 s‘ 2|48 2 4|8 2/ 4|8 2 4| 8
d=4 d=8 d=12 d=16 d=4 d=8 d=12 d=16
dimensionality (d) dimensionality (d)
(a) (b)
Fig. 37 Skyband query Elapsed time (independent, d=8) Elapsed time (anti-correlated, d=8)
(various cardinality (n)): % 100000 | @ SESBand % 10000000 @ SFSBand
a independent, b anti-correlated 2 10000 | BBSBand ‘2 1000000 gRSRang
8 ZBand g 100000 1 g 7gang
g 1000 ®ZBan e 10000 |
2 100 £ 1000 -
o o 100 -
E % £ 10
= 1 “I:I = 1
o1 or NaILIL
ol alm o w|lo m ©o|o o|o| o ool o <t o o o o - g 8 g
m 358 858 2835 arka m 31818 3|88 a3 QRS
- O © oo © T 0o oo o [N RE=] < AN Ao
eFI~RI8I3] 8RB T eelel 181818 |3188
[o RN REe)
2/4[s] |2]4]s] [2[4/8] 249
n=10k n=100k  n=1000k  n=10000k n=10k n=100k  n=1000k n=10000k
cardinality (n) cardinality (n)
(a) (b)
Fig. 38 Top-ranked skyline Elapsed time (independent, d=8) Elapsed time (anti-correlated, d=8)
query (various dimensionality % 100000 m SFSRank 2 100000 mSFSRank O BBSRank B ZRank
(d)): a independent, g 10000 | O BBSRank § 10000
b anti-correlated ] ®ZRank 8
2 1000 » 1000
A C
Q Q
e 100 2 o0
=R =

dimensionality (d)

(a)
Table 6 Top-ranked skyline query: real datasets (time (ms))
Dataset t SFSRank BBSRank ZRank
NBA 100 4206 11561 1095
HOU 100 29121 74006 9332
FUEL 100 56 75 43

7.6 Experiments on k-dominant skyline queries

This set of experiments evaluates k-ZSearch for k-dominant
skyline queries on high-dimensional datasets. Here, the state-
of-the-art approach to be compared with is TSA. The exper-
iment results for various k and a fixed cardinality at 1000k
is shown in Fig. 40. Attributed to block-based dominance
tests and a single traversal of ZBtree, k-ZSearch consistently

8 12
dimensionality (d)

(b)

16

outperforms TSA as shown in the figure. We can also observe
that the number of k-dominant skyline points is reduced when
a small k is evaluated, as many data points get k-dominated.
The number of skyline candidates is expected to be reduced
as well. This results in a shorter processing time. To the other
end, the processing time increases as k grows. Due to expen-
sive k-dominance tests to compare more attribute values than
the conventional dominance test, the processing times of
k-dominance skyline queries are not necessarily shorter than
those of skyline queries. Thus, when k approaches d, the
number of k-dominant skyline points is close to the number
of conventional skyline points, but with longer processing
time.

Figure 41 shows the elapsed times of the evaluated algo-
rithms with cardinalities varied from 10k to 10000k and
k fixed at 13. Again, k-ZSearch outperforms TSA and their
performance difference becomes more significant as the



Fig. 39 Top-ranked skyline

query (various cardinalities (1)): 100000 | @ SFSRank

Elapsed time (independent, d=8)

Elapsed time (anti-correlated, d=8)
1000000 + m SFSRank

a independent, b anti-correlated § 10000 | 1 BBSRank § 100000 -  BBSRank
o o
8 1000 | mZRank g 19990 1 7Rank
) @ 1000
< 100 =
o 2 100
= 10 = 10
1 1
0.1 0.1 .l» t + {
10k 100k 1000k 10000k 10k 100k 1000k 10000k
cardinality (n) cardinality (n)
(a) (b)
Fig. 40 k-Dominant skyline Elapsed time (independent, d=16, n=1000k) Elapsed time (anti-correlated, d=16, n=1000k)
query (various k): ) % 10000000 | @TSA % 100000000 | mTSA
a independent, b anti-correlated S 1000000 | k-ZSearch T 10000000 | .75earch
8 100000 | § 1000000 |
8 10000 | g 100000 -
& & 10000
o 1000 © 1000
E 10 £ 100
= 10 = 10
- l] 1
127 274 31385 188043 m 1oo 117414 998012 1oooooo 1oooooo
k
(a) (b)
Fig. 41 k-dominant skyline Elapsed time (independent, d=16, k=13) Elapsed time (anti-correlated, d=16, k=13)
query (various cardinalities (7)): 100000 | mTSA < 1000000000 mTSA
a independent, b anti-correlated 2 10000 | Dk-ZSearch 2 1?888(?888 Ok-ZSearch
S 000 8 1000000
8 8 e
@ 100 - [y
841 1596 2794 3682 m 9980 98076 998012 9980120
10k 100k 1000k 10000k 10k 100k 1000k 10000k
cardinality (n) cardinality (n)
(@ (b)
Table 7 k-Dominant skyline query: real datasets (time (ms)) 7.7 Experiments on subspace skyline queries
Dataset k m TSA k-ZSearch .
The final set of experiments evaluates the performance of
NBA 12 3794 7931 2696 ZSubspace and compares it against SUBSK'Y. We first exam-
11 682 1980 731 ine the impact of dimensionalities. We generated synthetic
10 79 322 171 dataset with d set to 4, 8, 12 and 16 and n set to 1000k.
HOU 5 22 815 226 With respect to different d, we randomly select d /4, d /2 and
4 0 487 220 d dimensions as query subspaces. The experimental results
FUEL 5 63 1 in terms of elapsed times are shown in Fig. 42. The num-
4 1 62 1 bers of result skyline points are listed right below the x-axis.

cardinality of the dataset increases. This indicates that
k-ZSearch has a better scalability than TSA.

Finally, we evaluate these algorithms on the real datasets.
Wesetk to (d — 1), (d — 2), and (d — 3) where d represents
the dataset dimensionality. Table 7 shows the performance.
Consistent with our expectation, k-ZSearch performs better
than TSA, showing the superiority of k-ZSearch for k-dom-
inant skyline queries.

For independent datasets, SUBSKY performs better than
ZSubspace when the subspace dimensionalities are small.
However, when the subspace dimensionality increases,
ZSubspace becomes more efficient than SUBSKY due to the
effective block-based dominance tests. Due to this reason,
ZSubspace outperforms SUBSKY for most of the cases in
anti-correlated datasets.

Next, we evaluate the performance of both ZSubspace and
SUBSKY for datasets with cardinalities n varied from 10k
to 10000k and dimensionalities set to 8. The results in terms
of elapsed times and the number of skyline points are plotted



Fig. 42 Subspace skyline query
(various dimensionalities (d)):
a independent, b anti-correlated

100000 -
10000
1000
100

10

1

0.1 |

time (seconds)

dimensionality (d)

(a)

Fig. 43 Subspace skyline

query (various cardir.lalities (n)): < 1000 m SUBSKY 0 ZSubspace
a independent, b anti-correlated 'g 100

@ 10

L

o

£

=

w0

©
©
o

4

g 2
—
138 i
2475 —
3 -
9347 —

N
IS
o]
N
oo

2

100k

cardinality (n)

()
Table 8 Subspace skyline query; real datasets (time (s))
Dataset 1S’ m SUBSKY ZSubspace
NBA 397 0.047 0.159
9 5058 1.217 0.969
13 10816 4.009 2.225
HOU 2 8 0.049 0.065
4 294 0.223 0.255
6 5774 2.121 1.908
FUEL 2 1 0.005 0.003
4 1 0.005 0.004
6 1 0.005 0.004

in Fig. 43. For independent datasets, SUBSKY in general
performs better than ZSubspace except that the number of
queried dimensions approaches d. Conversely, for anti-cor-
related datasets, ZSubspace slightly outperforms SUBSKY.
This can be explained with the above discussed reasons.
Finally we evaluate both ZSubspace and SUBSKY on the
real datasets. The results are shown in Table 8. Due to space
limitation, we only show some sample numbers of queried
dimensions (i.e., | S’|). As we can observe from the results, the

Elapsed time (independent, n=1000k)
m SUBSKY 0O ZSubspace

Elapsed time (independent, d=8)

©
N

4

1000k

Elapsed time (anti-correlated, n=1000k)

5 100000 mSUBSKY 0O ZSubspace
T
g 10000
g 1000
@ 100
o 10 -
£
= 1
0.1
(=3 (=3
o o
(=3 (=3
o [=]
o o
2 2
1‘2 4‘2‘4 8‘3 6‘12‘ 4‘ 8‘16
4 ‘ 8 ‘ 12 ‘ 16
dimensionality (d)
(b)
Elapsed time (anti-correlated, d=8)
> 10000000 | @ SUBSKY 0O ZSubspace
T 1000000
S 100000
§ 10000
2 1000
o 100
E 10
SR il |
~ - (=} n o0 N~ NS <t ¥ 9
5 &8¢k 8388383223 3¢
o n -~ [ o ~— < (2] o [ (2] w0 @ 8
N © TmmeEs 8 288

®
N
IS
o]
N
IS
@
n
EN
o]
N
IS
@
N
IS
e

10000k

10k 100k 1000k

cardinality (n)

(b)

10000k

performance of these two approaches is very close, different
from the synthetic datasets. This is because the real datasets
are relatively small. Based on the experiment results, ZSub-
space performs better than SUBSKY, when the number of
skyline points is large.

8 Conclusion

We introduced Z-SKY that is the efficient skyline query
processing framework in database systems based on our
problem analysis and understandings about Z-order curve.
Specifically, we analyzed the skyline query and pointed out
its transitivity and incomparability properties that can facil-
itate search for skyline results. Correspondingly, we, in this
paper, exploited the monotonic ordering and clustering fea-
tures of the Z-order curve that perfectly match with these
two properties. Because of the ordering feature, data points
on the Z-order curve should have their dominating points if
any accessed ahead of them, and thus the candidate reexami-
nation is totally eliminated. Meanwhile, due to the clustering
feature, data points with similar values are naturally mapped
onto Z-order curve segments which are in turn grouped into
blocks. It facilitates true block-based dominance tests that no



other existing approaches can support and effective search
space pruning. These two Z-order curve features are also
explored for skyline result update and several skyline query
variants. While results obtained from comprehensive exper-
iments indicated the superiority of our approaches devised
based on the Z-order curve features over all the existing
works, we believe that these explored Z-order curve features
and the proposed ZBtree index and extended ZBtree index
are also useful for other skyline query variants not examined
in this paper.

Acknowledgment This research was supported in part by the National
Science Foundation under Grant no. IIS-0328881, IIS-0534343 and
CNS-0626709.

References

1. Balke, W.-T., Giintzer, U., Zheng, J.X.: Efficient distributed sky-
lining for web information systems. In: Proceedings of EDBT,
pp- 256-273 (2004)

2. Bartolini, I., Ciaccia, P., Patella, M.: SaL.Sa: Computing the sky-
line without scanning the whole sky. In: Proceedings of CIKM,
pp. 405-414 (2006)

3. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is
“nearest neighbor” meaningful? In: Proceedings of ICDT, pp. 217-
235 (1999)

4. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In:
Proceedings of ICDE, pp. 421-430 (2001)

5. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.:
Finding K-dominant skylines in high dimensional space. In: Pro-
ceedings of SIGMOD, pp. 503-514 (2006)

6. Chaudhuri, S., Dalvi, N.N., Kaushik, R.: Robust cardinality and
cost estimation for skyline operator. In: Proceedings of ICDE, p. 64
(2006)

7. Chen, L., Lian, X.: Dynamic skyline queries in metric spaces. In:
Proceedings of EDBT, pp. 333-343 (2008)

8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Pre-
sorting. In: Proceedings of ICDE, pp. 717-816 (2003)

9. Dellis, E., Vlachou, A., Vladimirskiy, 1., Seeger, B., Theodoridis,
Y.: Constrained subspace skyline computation. In: Proceedings of
CIKM, pp. 415-424 (2006)

10. Fuhry, D., Jin, R., Zhang, D.: Efficient skyline computation in met-
ric space. In: Proceedings of EDBT, pp. 1042-1051 (2009)

11. Gaede, V., Giinther, O.: Multidimensional access methods. ACM
Comput. Surv. 30(2), 170-231 (1998)

12. Garcia, Y.J., Lopez, M.A., Leutenegger, S.T.: A greedy algorithm
for bulk loading R-trees. In: Proceedings of ACM GIS, pp. 163-164
(1998)

13. Godfrey, P.,, Shipley, R., Gryz, J.: Maximal vector computation in
large data sets. In: Proceedings of VLDB Conference, pp. 229-240
(2005)

14. Hjaltason, G.R., Samet, H.: Distance browsing in spatial dat-
abases. ACM TODS 24(2), 265-318 (1999)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against
mobile lightweight devices in MANETS. In: Proceedings of ICDE,
p. 66 (2006)

Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an
online algorithm for skyline queries. In: Proceedongs of VLDB
Conference, pp. 275-286 (2002)

Lee, K.C.K., Zheng, B., Li, H., Lee, W.-C.: Approaching the sky-
line in Z order. In: Proceedings of VLDB Conference, pp. 279-290
(2007)

Li, H., Tan, Q., Lee, W.-C.: Efficient progressive processing of sky-
line queries in peer-to-peer systems. In: Proceedings of Infoscale,
p- 26 (2006)

Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient sky-
line computation over sliding windows. In: Proceedings of ICDE,
pp. 502-513 (2005)

Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most
representative skyline operator. In: Proceedings of ICDE, pp. 86—
95 (2007)

Orenstein, J.A., Merrett, T.H.: A class of data structures for asso-
ciative searching. In: Proceedings of PODS, pp. 181-190 (1984)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline com-
putation in database systems. ACM TODS 30(1), 41-82 (2005)
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncer-
tain data. In: Proceedings of VLDB Conference, pp. 15-26 (2007)
Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.:
Integrating the UB-tree into a database system kernel. In: Proceed-
ings of VLDB Conference, pp. 263-272 (2000)

Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Pro-
ceedings of VLDB Conference, pp. 751-762 (2006)

Tan, K.-L., Eng, P-K., Ooi, B.C.: Efficient Progressive Skyline
Computation. In: Proceedings of VLDB Conference, pp. 301-310
(2001)

Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative
skyline. In: Proceedings of ICDE, pp. 892-903 (2009)

Tao, Y., Papadias, D.: Maintaining sliding window skylines on data
streams. IEEE TKDE 18(2), 377-391 (2006)

Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in
subspaces. IEEE TKDE 19(8), 1072-1088 (2007)

Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient skyline query
processing on peer-to-peer networks. In: Proceedings of ICDE,
pp. 1126-1135 (2007)

Wu, P., Agrawal, D., Egeciglu, O., Abbadi, A.E.: DeltaSky: opti-
mal maintenance of skyline deletions without exclusive dominance
region generation. In: Proceedings of ICDE, pp. 486—495 (2007)
Wu, P, Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.:
Parallelizing skyline queries for scalable distribution. In: Proceed-
ings of EDBT, pp. 112-130 (2006)

Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominat-
ing queries on multi-dimensional data. In: Proceedings of VLDB
Conference, pp. 483—494 (2007)

Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Effi-
cient computation of the skyline cube. In: Proceedings of VLDB
Conference, pp. 241-252 (2005)

Zheng, B., Lee, K.C.K., Lee, W.-C.: Location-dependent skyline
query. In: Proceedings of MDM, pp. 148-155 (2008)



	Z-SKY: An Efficient Skyline Query Processing Framework Based on Z-Order
	Citation


