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Abstract An important query for spatio-temporal databases is to find nearest trajectories of
moving objects. Existing work on this topic focuses on the closest trajectories in the whole
data space. In this paper, we introduce and solve constrained k-nearest neighbor (CkNN)
queries and historical continuous CkNN (HCCkNN) queries on R-tree-like structures
storing historical information about moving object trajectories. Given a trajectory set D, a
query object (point or trajectory) q, a temporal extent T, and a constrained region CR, (i) a
CkNN query over trajectories retrieves from D within T, the k (≥ 1) trajectories that lie
closest to q and intersect (or are enclosed by) CR; and (ii) an HCCkNN query on trajectories
retrieves the constrained k nearest neighbors (CkNNs) of q at any time instance of T. We
propose a suite of algorithms for processing CkNN queries and HCCkNN queries
respectively, with different properties and advantages. In particular, we thoroughly
investigate two types of CkNN queries, i.e., CkNNP and CkNNT, which are defined with
respect to stationary query points and moving query trajectories, respectively; and two
types of HCCkNN queries, namely, HCCkNNP and HCCkNNT, which are continuous
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counterparts of CkNNP and CkNNT, respectively. Our methods utilize an existing data-
partitioning index for trajectory data (i.e., TB-tree) to achieve low I/O and CPU cost.
Extensive experiments with both real and synthetic datasets demonstrate the performance of
the proposed algorithms in terms of efficiency and scalability.

Keywords Query processing . Nearest neighbor . Moving object trajectory . Algorithm

1 Introduction

With the advances of wireless communication, mobile computing, and positioning
technologies, it has become possible to obtain and manage (e.g., model, index, query,
etc.) the trajectories of moving objects in real life. Trajectory analysis is an important
building block of many applications. For instance, it is very useful for zoologists to
determine the living habits and migration patterns of certain groups of animals by mining
the motion trajectories of animals in a large natural protection area. In a city traffic
monitoring system, analyzing the trajectories of existing vehicles may help decision-makers
locate popular routes. Therefore, the k-nearest neighbor (kNN) search for moving object
trajectories will be very useful for the above applications. It retrieves from a set of
trajectories within a predefined temporal extent, the k (≥ 1) trajectories that are closest to a
given query object. Consider, for example, Fig. 1(a) where the dataset consists of 5
trajectories of animals, labeled as Tr1, Tr2, Tr3, Tr4, Tr5, in a 3D space (two dimensions for
spatial positions, and one for time). In this diagram, Tr2 and Tr3 are the 2 nearest neighbors
(NNs) of a specified query object q inside the time interval [ti, tj].

In some real examples, however, users may only have interests in those trajectories in a
spatially constrained area and enforce constrained regions on kNN queries for trajectory
data. For example, assuming that the trajectories of animals over a long time period are
known in advance, the zoologists may pose the following query: find the two closest
animal’s trajectories in a restricted region (e.g., the rectangle area that locates in the east
of the lab) to a specified query object (e.g., lab, food source, etc.) within the time period
[ti, tj]. Figure 1(b) illustrates a case in which the shadowed rectangle denotes the
constrained region, and {Tr3, Tr4} is the query result. Note that the result of the 2NN search
without region restriction would be {Tr2, Tr3}, as shown in Fig. 1(a).

Given a trajectory set D of moving objects, a query object (point or trajectory) q, a time
extent T, and a constrained region CR, a CkNN query over trajectories retrieves from D
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Fig. 1 Example of kNN, CkNN, and HCCkNN queries on moving object trajectories for k=2
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within T, the k trajectories that lie closest to q and meanwhile cross (or fully fall into) the
area bounded by CR. Like constraint NN search over point objects [9], CkNN is to apply
conventional (i.e., unconstrained) kNN retrieval inside a specified region. In addition, it
might be used as an off-the-shelf component for those divide-and-conquer algorithms that,
in order to improve the search performance, partition the entire search space into disjoint
cells and perform kNN search in each cell independently.

Conventional kNN queries for spatial and spatiotemporal objects that do not consider
constraints have been studied extensively (as to be surveyed in Section 2.2). The existing
algorithms can be divided into three categories, based on the fact that whether the query
points and/or data objects are moving. They are (i) static kNN query for static objects
[5, 6, 16, 19, 29, 31], (ii) moving kNN query for static objects [33, 35, 36, 41], and (iii)
moving kNN query for moving objects [3, 4, 17, 18, 22–24, 28, 39, 40]. Recently, kNN
search on moving object trajectories has also been addressed [10–13]. However, to the
best of our knowledge, none of the existing work has examined the CkNN query over
moving object trajectories, which is an interesting problem from the research point of
view. First, compared with conventional kNN search on trajectory data, CkNN retrieval
over trajectory data is more challenging as it needs consider the proximity between the
trajectory and the query object and the constrained region whose size and shape might be
arbitrary. Second, it is different from the constrained NN search on spatial objects [9]. For
a given query point and a spatial region, constrained NN search returns the closest data
points, among those are inside the specified region, to the query point. However, CkNN
retrieval over moving object trajectories considers both the spatial and temporal
components of trajectories and meanwhile support those queries issued at a query
trajectory. Therefore, the algorithms presented in [9] cannot be directly applied to our
problem.

In this paper, we study CkNN queries over moving object trajectories and develop several
algorithms1. In particular, we thoroughly investigate two types of CkNN queries, termed as
CkNNP and CkNNT queries, which are defined with respect to stationary query points and
moving query trajectories, respectively. Our approaches are based on existing R-tree-like
structures storing historical information about moving object trajectories (i.e., TB-tree [27])
in order to achieve low I/O cost and CPU overhead. Our solutions explore both the two-step
processing framework and the single-step processing framework. The former employs
range queries and kNN queries sequentially which might incur multiple scanning of the
underlying index structure, while the latter integrates those two steps into a single traversal
of the index.

In addition, we extend our methodology to historical continuous constrained k-nearest
neighbor (HCCkNN) search over moving object trajectories, which retrieves from D the
constrained k nearest neighbors (CkNNs) of a given query object q at any time instance of
the specified time period T. Specifically, the output of an HCCkNN query comprises k lists,
with i-th (1≤ i ≤k) list containing a set of 〈Tr, [ti, tj)〉 tuples. Here, Tr is a trajectory in D (i.e.,
Tr ∈ D), and [ti, tj) is the time extent (within T) during which Tr is the i-th NN of q. In
Fig. 1(c), for instance, the 1st list includes {〈Tr3, [ti, tk)〉, 〈Tr4, [tk, tj]〉}, which means that

1 A preliminary work has been published in DASFAA’08 as a short paper [14], in which the concept of
constrained kNN (CkNN) search over moving objects trajectories has been introduced. However, due to the
space limitation, we only managed to present the basic idea, but not the details, of CkNN query processing.
In addition, the concept of historical continuous constrained kNN search on moving objects trajectories has
not been defined in that work.
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trajectory Tr3 is the 1st NN for the sub-interval [ti, tk) and trajectory Tr4 is the 1st NN within
the interval [tk, tj]; and the 2nd list contains {〈Tr4, [ti, tk)〉, 〈Tr5, [tk, tj)〉}, indicating that
trajectory Tr4 is the 2nd NN within the interval [ti, tk) and trajectory Tr5 is the 2nd NN
within the interval [tk, tj]. The HCCkNN retrieval is actually a continuous counterpart of the
CkNN query. Correspondingly, we also explore two types of HCCkNN queries, called
HCCkNNP and HCCkNNT queries which are continuous counterparts of CkNNP and
CkNNT queries, respectively. To sum up, the key contributions of this paper are as follows:

& We identify and formally define the CkNN search and the HCCkNN retrieval for
moving object trajectories, respectively.

& We propose a suite of algorithms to efficiently tackle the CkNN retrieval on moving
object trajectories. In particular, we present two-step (including NN search followed by
a range query and range query followed by NN search) and one-step (including depth-
first and best-first) algorithms for processing such queries, using TB-tree, a variant of
R-tree, as the underlying index structure. Moreover, we extend our methods to answer
HCCkNN search over moving object trajectories as well.

& We conduct extensive experiments with both real and synthetic datasets under various
settings to evaluate the performance of our proposed algorithms in terms of efficiency
and scalability.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
gives formal definitions for CkNN and HCkNN queries. In Sections 4 and 5, we discuss the
algorithms for CkNNP and CkNNT queries respectively, and describe the algorithms for
HCCkNNP and HCCkNNT queries in Section 6 and 7 respectively. Section 8 presents the
performance evaluation of the proposed algorithms and reports our findings. Finally,
Section 9 concludes the paper with some directions for future work.

2 Related work

In this section, we review existing work related to CkNN. We first briefly discuss access
methods for historical trajectories of moving objects in Section 2.1, and then survey
previous work on kNN queries in spatial and spatio-temporal databases in Section 2.2.

2.1 Indexing of moving object trajectories

The trajectory of a moving object is the path it takes along time. Therefore, trajectories can
describe the motion of objects in a 2D/3D space and be considered as 2D/3D time series
data. Here, we only concentrate on R-tree-like structures [20] that store historical
information about moving object trajectories such as 3DR-tree [38], TB-tree [27], STR-
tree [27], and MV3R-tree [34]. Specifically, 3DR-tree [38] treats time as an extra dimension
in addition to two spatial dimensions and it supports both range and time slice queries.
STR-tree [27] is an extension of the R-tree. It takes spatial closeness and partial trajectory
preservation into account. TB-tree [27] extends the STR-tree to process trajectories. It can
deal with both trajectory-based queries and traditional spatial queries efficiently. MV3R-
tree [34] maintains two trees, an MVR-tree to process time-slice queries, and a small
auxiliary 3DR-tree built on the leaf nodes of the MVR-tree to process long interval queries.
It can efficiently handle both time-slice and time-interval queries by taking advantage of
both the MVR-tree and the 3DR-tree. A good survey of the access methods for trajectory
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data can be found in [21]. In our study, we assume that the dataset is indexed by a TB-tree
due to its high efficiency in trajectory-based queries. The structure of TB-tree is outlined as
follows.

The TB-tree emphasizes trajectory preservation. Thus, each leaf node in the tree
contains only line segments belonging to the same trajectory, and is of the form (id, MBB,
Orientation), where id is the identifier of 3D trajectory segment (considering time as one
dimension), MBB denotes the minimum bounding box of the 3D line segment, and
Orientation whose value varies between 1 and 4 specifies how the 3D line segment is
enclosed within the MBB. All the leaf nodes containing the same trajectory segments are
connected by a doubly linked list. This structure strictly preserves trajectory evolution and
greatly improves the performance of trajectory-based query processing. A partial example
TB-tree for a trajectory is depicted in Fig. 2.

2.2 kNN queries in spatial and spatio-temporal databases

In the past decade, numerous algorithms for kNN (and NN) queries have been proposed in
the database literature. According to the assumptions on whether the query points and/or
data objects are moving, the existing algorithms can be divided into three categories. The
first category assumes both the query point and the data objects are static, and most of the
algorithms fallen in this category follow either depth-first (DF) [6, 29] or best-first (BF)
[16] traversal paradigm. DF algorithm [6, 29] traverses the tree in the depth-first fashion
according to some distance metrics such as mindist and minmaxdist, and develops several
pruning heuristics to prune the search space. DF algorithm is simple but it is suboptimal in
terms of I/O, i.e., it accesses more nodes than necessary, as demonstrated in [26]. Motivated
by this, the BF algorithm [16] tries to minimize the access of unnecessary nodes. It employs
a priority queue to order the entries visited so far by their minimum distances to a given
query point (i.e., mindist). Although BF achieves optimal I/O performance, it suffers from
buffer thrashing if the heap becomes larger than the available memory. Both BF and DF are
based on the R-tree [15] or its variants [2, 32] of the data objects. Alternatively, a solution-
based approach is proposed to pre-compute the Voronoi cells for all the data objects and
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(a) A trajectory (b) A part of the corresponding TB-tree  

Fig. 2 Example of a trajectory and the corresponding TB-tree structure
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covert the NN search into a point location problem. In [5], an NN query processing
algorithm based on Voronoi cells is proposed, and a multi-step algorithm for kNN search
is proposed in [19]. However, the kNN search generates many intermediate candidates
during query processing and hence suffers from a poor performance, as shown in [31].
Based on this observation, Seidl and Kriegel [31] develop an optimal multi-step algorithm
for kNN retrieval to minimize the number of candidates that are retrieved from the
underlying index.

The second category assumes that the query point is moving while the data objects
are static, e.g., continuous nearest neighbor (CNN) search. The first attempt to handle
CNN is proposed in [33]. It utilizes a periodical sampling technique to repeatedly
perform traditional NN queries at some predefined sampling points of a given query line
segment. Thereafter, a tight range, based on those NN objects obtained at previous
sampling step, is approximated to bound all the possible answers. However, its
performance highly depends on the number and positions of those sampling points.
Specifically, a small number of sampling points increase the performance but may result
in incorrect results, whereas a large number of sampling points create significant
computational overhead but decrease the possibility of false misses. In order to conduct
exact searches, Tao and Papadias [35, 36] develop two CNN query processing algorithms
using R-trees as the underlying data structure. The first algorithm is based on the concept
of Time-Parameterized (TP) queries, which treats a query line segment as the moving
trajectory of a query point [35]. Thus, the nearest object to the moving query point is
valid only for a limited duration and a new TP query is issued to retrieve the next nearest
object once the valid time of the current query expires, i.e., when a split point is reached.
Although the TP approach avoids the drawbacks of sampling, the performance depends
on the number of answer objects m, as it needs issue m TP queries. In order to improve
the performance, the second algorithm solves the CNN query problem by applying a
single query to retrieve all the answer points for the whole query line segment [36].
Consequently, only a single navigation of R-tree is incurred.

The last category assumes both the query point and the data objects are moving.
Specifically, Kollios et al. [18] use dual transformation to tackle NN queries for moving
objects in 1D space. The method can determine the one object that comes closer to the
query during a predefined time interval [ts, te], but not the k NNs for every time instance of
[ts, te]. Benetis et al. [3, 4] first develop an algorithm to process the NN search, and then
extend their approaches to support kNN search, for continuously moving points. Tao and
Papadias [35] propose a technique, called time-parameterized queries, which can be applied
with mobile queries, mobile objects or both, given an appropriate indexing structure. Iwerks
et al. [17] investigate the problem of continuous kNN queries for moving points to allow
the motion functions of the points to be changed. Raptopoulou et al. [28] present efficient
methods for NN query processing on moving-query, moving-object case, using a TPR-tree
[30] as an underlying index structure. Recently, the CNN monitoring problem has also been
studied in the literature. These include (i) CNN monitoring in the Euclidean space [22, 39,
40], (ii) CNN monitoring in road network [24], and (iii) CNN monitoring in a distributed
environment [23].

Even though kNN queries have been well-studied in the field of spatial databases, the
kNN query for moving object trajectories is still a relatively new research problem. It is first
investigated by Frentzos et al. [10, 11]. Several search algorithms based on R-tree-like
structures that store historical information about moving object trajectories are proposed,
varying with respect to the type of the query objects (points or trajectories) and the type of

246 Geoinformatica (2010) 14:241–276



the query result (historical continuous or not). In particular, they develop a series of DF
(and BF) based algorithms for non-continuous kNN (and NN) queries as well as DF based
algorithms for their continuous counterparts. In our earlier work [12, 13], we have proposed
several efficient BF based algorithms for answering snapshot and continuous kNN queries
over moving object trajectories. However, all the above work does not consider any spatial
constraint.

Furthermore, a large number of variants of kNN (and NN) queries (e.g., constrained NN
search [9], group NN search [25], all NN search [42], surface kNN search [8], etc.) have
been examined as well. Thereinto, constrained NN search is related to our work. In [9],
Ferhatosmanoglu et al. introduce and solve the constrained NN retrieval for spatial objects,
which discovers the NN(s) in a restricted area of the data space. As mentioned earlier,
however, this problem differs from our study in this paper, since it does not take the
temporal information of objects and query trajectory input into consideration.

3 Problem statement

The problem that we are going to focus on in this paper is formulized in this section.
In order to facilitate the following discussion, Table 1 lists the notations used
frequently.

Let D = {Tr1, Tr2, …, Trn} be a set of trajectories corresponding to n moving objects. The
trajectory Tri (1 ≤ i ≤ n) of a moving object i is represented as a sequence of trajectory
segments in the form of [((si1-start, ti1-start), (si1-end, ti1-end)), ((si2-start, ti2-start), (si2-end, ti2-end)) …,
((sim-start, tim-start), (sim-end, tim-end))]. Here, m is the number of trajectory segments contained in
Tri, and sij-start and sij-end specify 2D position vectors that are sampled at timestamp tij-start
and tij-end respectively. We refer to the rectangle bounded by both sij-start and sij-end as a
spatial bound of trajectory Tri, denoted by Tri.spatialbound. Since we focus on the queries
on historical trajectories of moving objects, t0 ≤ tij-start < tij-end ≤ tnow with t0 representing the
beginning of the calendar and tnow denoting the current time point.

Table 1 Symbols used in this paper

Symbol Description

Tr a moving object trajectory

Tr(t) the point location along the trajectory at time point t

D a set of moving object trajectories Tri
k the number of requested nearest neighbors

q a query object (either QP or QT)

QP a query point

QT a query trajectory

QT(t) the point location along the query trajectory QT at time point t

T a query time interval in the form of (T.ts, T.te)

CR a constrained region

Srslt the set of query result for CkNN retrieval
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Recall that in this paper, our ultimate goal is to provide efficient support for CkNN
search and the HCCkNN search over moving object trajectories. Without loss of generality,
we assume that CR is in a rectangular shape and those CR in arbitrary shapes can be
bounded by minimum bounding boxes. Moreover, we distinguish two kinds of query
objects, i.e., QP and QT, in our study. As mentioned in the previous discussion, we
investigate two types of CkNN queries, i.e., CkNNP and CkNNT queries, and two types of
HCCkNN queries, i.e., HCCkNNP and HCCkNNT queries, with respect to QP and QT

respectively. The detailed definitions of these queries are defined as follows.

Definition 1 (Distance metric MinDist (Tr, q, T )) Given Tr, q (either QP or QT), and T, the
Euclidean distance between Tr and q within T, denoted by MinDist (Tr, q, T), is defined as
the minimal Euclidean distance from a point along Tr during T to a point from q inside T,
i.e., MinDist (Tr, q, T) = Min{dist (pt, qt) | ∀ t ∈ T, pt = Tr(t), qt = QP if q is a point QP or
qt = QT(t) if q is a trajectory}, where dist (p, q) represents the Euclidean distance between
two objects p and q.

Definition 2 (CkNN query over moving object trajectories) Given D, q (either QP or
QT), T, CR, and k, a constrained k-nearest neighbor (CkNN) query with respect to q, denoted
as CkNNP and CkNNT respectively, retrieves from D during T, a set Srslt of k moving object
trajectories such that all the trajectories in Srslt are closest to q and intersect (or are enclosed
by) CR, i.e., ∀ Tr ∈ Srslt, ∀ Tr′ ∈ {Tr′ ∈ D ∧ Tr′ ∩ CR≠∅} − Srslt, MinDist (Tr, q, T) ≤
MinDist (Tr′, q, T).

Consider, for example, Fig. 3(a) illustrates a C2NNP retrieval on D = {Tr1, Tr2, Tr3, Tr4,
Tr5, Tr6} within T = [t1, t3]. Trajectories Tr2 and Tr3 form Srslt = {Tr2, Tr3}. Notice that
trajectory Tr1 is the nearest trajectory to QP during T but it is not the answer object because
Tr1 does not cross CR inside T. If the query duration T is changed to [t2, t4], the result set
Srslt will be changed to {Tr4 , Tr5} as well. Also notice that trajectory Tr6, the nearest
trajectory to QT inside T = [t2, t4], is not included in the Srslt because it does not cross CR
within T.
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Fig. 3 Example of CkNNP, CkNNT, HCCkNNP, and HCCkNNT queries on moving object trajectories for k=2
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Definition 3 (HCCkNN query over moving object trajectories) Given D, q (either QP or
QT), T, CR, and k, a historical continuous constrained k-nearest neighbor (HCCkNN) query
with respect to q, denoted as HCCkNNP and HCCkNNT respectively, returns from D at any
time instance of T, the k moving object trajectories that are closest to q and cross (or
completely fall into) CR. The answer set contains k lists li (1 ≤ i ≤k), with each li consisting
of tuple 〈Tr, [tj, tk)〉 that denotes the trajectory Tr is the i-th NN of q during [tj, tk) ⊆ T.

For instance, an example HCC2NNP query is issued at QP, with D = {Tr1, Tr2, Tr3, Tr4,
Tr5, Tr6, Tr7}, T = [t1, t4], and CR set to the shadowed area, as shown in Fig. 3(b). As k=2,
its result set contains two lists l1 and l2, with l1 = {〈Tr3, [t1, t2)〉, 〈Tr2, [t2, t3)〉, 〈Tr3, [t3, t4]〉},
and l2 = {〈Tr2, [t1, t2)〉, 〈Tr3, [t2, t3)〉, 〈Tr4, [t3, t4]〉}. It indicates that trajectories Tr3 and Tr2
are the top-2 NNs to QP during [t1, t2), trajectories Tr2 and Tr3 are the top-2 NNs to QP

during [t2, t3), and so on. Suppose another HCC2NNT query is issued at a trajectory QT and
T = [t2, t5]. The result contains l1 = {〈Tr6, [t2, t3)〉, 〈Tr7, [t3, t4)〉, 〈Tr6, [t4, t5]〉}, and
l2 = {〈Tr5, [t2, t3)〉, 〈Tr6, [t3, t4)〉, 〈Tr7, [t4, t5]〉}.

4 Algorithms for CkNNP queries

CkNN queries naturally involve both range queries and kNN searches. Consequently, a
straightforward approach, namely CkNNP-SR, is to call kNN search algorithm to report
the trajectories according to ascending orders of their distances to the query point. For
each reported trajectory Tr, it will be included in the answer set if and only if Tr intersects
CR. The process continues until there are k trajectories contained in the answer set or it is
for sure that the rest of the trajectories do not intersect CR. Alternatively, we can first
conduct a range query to retrieve all the candidate trajectories that are within CR and then
invoke kNN retrieval to find the k nearest ones, namely CkNNP-RS. Although both
approaches can return the right answer set for CkNNP retrieval, neither one is efficient. In
this section, we present two algorithms for handling the CkNNP query on moving object
trajectories that can seamlessly integrate the range search and NN traversal together to
improve the search performance, namely, CkNNP-DF algorithm and CkNNP-BF
algorithm.

4.1 CkNNP-DF algorithm

CkNNP-DF provides the ability to process CkNN search with respect to QP during T, as
shown in Algorithm 1. In fact, CkNNP-DF adapts the PointkNNSearch algorithm proposed
in [11] by merging the region constraint into the algorithm. The details of the CkNNP-DF
algorithm are as follows.

The result set kNearest maintains tuples 〈E, d〉 such that E is one of the kNN objects to
QP known so far and its distance to QP is d. Parameter kNearest.MaxDist stores the
maximum of d stored in kNearest, which is initialized to be infinity (line 1). At the leaf
level of the tree structure that indexes trajectory data, CkNNP-DF iteratively accesses each
leaf entry E in the leaf node N (lines 2–6). In particular, CkNNP-DF invokes an algorithm
GetEntryInConstraint (depicted in Algorithm 2) to check whether E intersects (or is
enclosed by) CR during T (line 4). If so, the GetEntryInConstraint interpolates E to produce
E′ (i.e., a portion of E) whose temporal component is within T as well as spatial component
is contained in CR, and returns TRUE; otherwise, it returns FALSE to indicate that E for
sure does not contribute to the result set. It is noticed that if GetEntryInConstraint returns
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TRUE, CkNNP-DF calculates the Euclidean distance between E′ and QP during T (i.e.,
MinDist (E′, QP, T)), includes 〈E′, MinDist (E′, QP, T)〉 to kNearest if MinDist (E′, QP, T) <
kNearest.MaxDist holds, and updates kNearest.MaxDist if necessary (lines 5–6). At the
non-leaf level of the tree structure, CkNNP-DF recursively visits every child entry of the
intermediate (i.e., non-leaf) node (lines 7–12). When a potential candidate is retrieved,
the algorithm, backtracking to the upper level, prunes the nodes in the active branch list
(line 12) using the pruning heuristics proposed in [6, 29]. Note that when CkNNP-DF invokes
a function GenBranchList to generate a node’s branch list (line 8), we also combine region
constraint into the GenBranchList. For this purpose, an algorithm GetNodeInConstraint
(presented in Algorithm 3) is applied.

The GetEntryInConstraint algorithm, as depicted in Algorithm 2, is to refine a given
trajectory segment such that its spatial component is contained in CR and its time extent is
within T. The algorithm proceeds as follows. Initially, GetEntryInConstraint checks whether
the time period of trajectory segment TS overlaps T (line 1). If not (see Fig. 4(a)), the
algorithm is terminated by returning FALSE since TS does not satisfy the specified time
condition; otherwise, a linear interpolation is applied in order to compute TS’s portion
located inside T, denoted by ConstraintTS (line 3). Next, GetEntryInConstraint proceeds to
determine whether the spatial bound of ConstraintTS, i.e., ConstraintTS.spatialbound,
overlaps CR. Here, we distinguish the following three cases: (i) If ConstraintTS.
spatialbound does not overlap CR (see Fig. 4(b)), then GetEntryInConstraint returns
FALSE and gets terminated (lines 4–5). (ii) If ConstraintTS.spatialbound is completely
bounded by CR (see Fig. 4(c)), then GetEntryInConstraint returns TRUE and is stopped
(lines 6–7). (iii) If ConstraintTS.spatialbound overlaps CR and there exists at least one
intersection between a boundary bdy of CR and ConstraintTS (see Fig. 4(d)), GetEn-
tryInConstraint computes the intersection and then interpolates ConstraintTS to produce the
portion whose spatial extent is included in CR completely (lines 8–15). In Fig. 4(d) the
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thick solid line is the qualifying portion of ConstraintTS, whereas the thick dashed line is
the pruned portion of ConstraintTS, as it falls out of CR.
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Fig. 4 Illustration of GetEntryInConstraint algorithm
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Similar to GetEntryInConstraint, the GetNodeInConstraint algorithm can verify whether
the time interval of a given intermediate node entry N overlaps T, and if N’s spatial extent
intersects (or is contained in) CR, with its pseudo-code outlined in Algorithm 3. If yes,
GetNodeInConstraint interpolates N to produce ConstraintN, the portion of N whose
temporal extent is within T and spatial area is enclosed by CR, and returns TRUE;
otherwise, it returns FALSE.

4.2 CkNNP-BF algorithm

CkNNP-BF follows the best-first traversal paradigm and enables effective pruning strategies
to discard all unnecessary entries. Algorithm 4 shows the pseudo-code of CkNNP-BF
algorithm.

Algorithm 4 Best-First based CkNNP query algorithm (CkNNP-BF)  

Input:    R: a TB-tree built on the set of moving object trajectories; QP; T; CR; k  

Output:  Srslt: the set of the k trajectories that lie closest to QP and cross (or fully fall into) CR during T  

 1:  initialize heap hp = ∅ and insert all entries of the root in R into hp  

 2:  while hp is not empty do  

 3:    de-heap the top entry E from hp  

 4:    if E is an actual trajectory segment entry and its identifier id is not in Srslt then  

 5:      insert E as an answer object into Srslt if |Srslt| < k; otherwise, return Srslt  

 6:    else if E is a leaf node then  

 7:      MinimalDist =   

 8:      for each entry e ∈ E do  

 9:        if GetEntryInConstraint (e, e', T, CR) and MinDist (e', QP, T) < MinimalDist then  

10:          MinimalDist = MinDist (e', QP, T) and NearestE = e'  

11:      insert NearestE with MinimalDist into hp  

12:    else  // E is an intermediate (i.e., non-leaf) node  

13:      for each entry e ∈ E do  

14:        if GetNodeInConstraint (e, e', T, CR) then  

15:          insert e' with MinDist (e', QP, T) into hp  

16:  return Srslt  
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Starting from the root node of the tree R on the set of trajectory data, CkNNP-BF
recursively traverses R in the best-first fashion (lines 2–15). More specifically, CkNNP-BF
first de-heaps the top entry E from the heap hp (line 3). If E is an actual entry of trajectory
segment and its identifier id is not included in the current query result set Srslt, it is added
as an answer trajectory to Srslt provided that the number of moving object trajectories in
Srslt is smaller than k (line 5). If the size of the result set reaches k after this insertion, the
algorithm can be terminated as all the answer trajectories have been found. When E is a
node entry, there are two possible cases, explained as follows: (i) If E is a leaf node, then
CkNNP-BF chooses the entry in E that has the smallest distance to QP within T, denoted
by NearestE, and inserts it into hp (lines 7–11). Here, we also employ our proposed
pruning heuristics in [12] to prune away the non-qualifying entries that can not contribute
to the query result, in order to reduce the number of node accesses and facilitate the
execution of the algorithm. (ii) If E is a non-leaf node, then CkNNP-BF visits only
the qualifying nodes that may contain the actual answer trajectories, and inserts them into
hp (lines 13–15). Note that CkNNP-BF first invokes the GetEntryInConstraint
(GetNodeInConstraint) algorithm to determine if every entry e in a node E satisfies both
the temporal and spatial constraints in line 9 (line 14) before visiting e. This checking
is necessary because it can filter out those entries in E that do not meet the given
constraints.

5 Algorithms for CkNNT queries

In this section, we extend our approaches to tackle the CkNNT retrieval over moving
object trajectories. The CkNNT search is a variation of the CkNNP query with the
following difference: a CkNNT query is issued at a query trajectory instead of a query
point. Corresponding to our previously proposed CkNNP-SR, CkNNP-RS, CkNNP-DF,
and CkNNP-BF algorithms for CkNNP queries, we develop CkNNT-SR, CkNNT-RS,
CkNNT-DF, and CkNNT-BF algorithms respectively, to answer CkNNT retrieval. In
the following, we omit the descriptions of CkNNT-RS and CkNNT-SR algorithms as
they are straightforward, but only present the details of CkNNT-DF and CkNNT-BF
algorithms.

5.1 CkNNT-DF algorithm

CkNNT-DF can handle the CkNN retrieval with respect to a given query trajectory,
following a depth-first manner. It shares the same principle as CkNNP-DF algorithm, with
its pseudo-code listed in Algorithm 5. Initially, a linear interpolation is called to get the
actual query trajectory QT' having the time interval across T (line 2). Subsequently, CkNNT-
DF traverses the tree R on D in a depth-first fashion (lines 3–17). In particular, at the leaf
level, CkNNT-DF computes the smallest Euclidean distance between two trajectory
segments during T (line 10). Similar to CkNNP-DF, for every leaf entry E in the leaf
node N, CkNNT-DF first invokes the GetEntryInConstraint algorithm (discussed in
Section 4.1) to examine whether E satisfies the time constraints and the spatial constraints
(line 5). In addition, for every query trajectory segment TS in QT′, CkNNT-DF needs invoke
interpolate to produce a pair of entry nE and trajectory segment TS′ with the identical
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temporal extent, before computing the distance from TS to the leaf entry accessed currently
(lines 8–9).

At a non-leaf level of R, CkNNT-DF recursively visits every child entry E of the
intermediate node N (lines 13–17). Nevertheless, unlike CkNNP-DF, CkNNT-DF employs
the GenTrajectoryBranchList function instead of the GenBranchList function to generate
the node’s branch list with the entries satisfying the given constraints (line 13). Like
GenBranchList, GenTrajectoryBranchList also calls the GetNodeInConstraint algorithm to
check if E in N meets the specified constraints before it expands E. Moreover, in
GenTrajectoryBranchList we utilize the Mindist_Trajectory_Rectangle metric developed in
[11] to calculate the minimal distance between the query trajectory and the MBB of N (line
4 of the GenTrajectoryBranchList function). It must be pointed out that we do not need to

Algorithm 5 Depth-First based CkNNT query algorithm (CkNNT-DF)  

Input:    N: a node of the TB-tree (initially is the root); QT; T; CR  

Output:  kNearest: the structure storing the final query result  

 1:  initialize kNearest = ∅ and kNearest.MaxDist = ∞  

// get the actual query trajectory having the interval across T  

 2:  QT' = Interpolate (QT, Max (QT.ts, T.ts), Min (QT.te, T.te))  

 3:  if N is a leaf node then  

 4:    for each leaf entry E ∈ N do  

 5:      if GetEntryInConstraint (E, E', T, CR) then  

 6:        for each trajectory segment entry TS ∈ QT' do  

 7:          if (TS.ts, TS.te) overlaps (E'.ts, E'.te) then  

 8:            nE = Interpolate (E', Max (E'.ts, TS.ts), Min (E'.te, TS.te))  

 9:            TS' = Interpolate (TS, Max (E'.ts, TS.ts), Min (E'.te, TS.te))  

10:            if MinDist (TS', nE, T) < kNearest.MaxDist then  

11:              add nE with MinDist (TS', nE, T) to kNearest and update  

the value of kNearest.MaxDist if necessary  

12:  else  // N is an intermediate (i.e., non-leaf) node  

13:    BranchList = GenTrajectoryBranchList (N, QT', T, CR)  

14:    SortBranchList (BranchList)  

15:    for each child node entry E in BranchList do  

16:      CkNNT-DF (E, QT', T, CR, kNearest)  

17:      PruneBranchList (BranchList)  

Function GenTrajectoryBranchList (N, QT, T, CR)  

 1:  for each entry E ∈ N do  

 2:    if GetNodeInConstraint (E, E', T, CR) then  

 3:      QT' = Interpolate (QT, Max (QT.ts, E'.ts), Min (QT.te, E'.te))  

 4:      add E' to branch list list together with its Mindist_Trajectory_Rectangle (QT', E')  

 5:  return list  
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compute Mindist_Trajectory_Rectangle against QT, but only against the part QT′ of QT

being inside the temporal extent of the N’s MBB by interpolating.

5.2 CkNNT-BF algorithm

Following a best-first traversal paradigm, CkNNT-BF can deal with the CkNN retrieval with
respect to the predefined query trajectory. The CkNNT-BF algorithm is illustrated in
Algorithm 6. Initially, CkNNT-BF initializes a heap hp, inserts all the entries in the root
node of the tree R on D into hp, and obtains the actual query trajectory whose time interval
overlaps T (lines 1–2). Then, CkNNT-BF iterates the following operations until it finds the
final query result (lines 3–21). Specifically, it first de-heaps the top entry E from hp (line 4).
If E is an actual entry of trajectory segment and it is not contained in Srslt, CkNNT-BF
inserts E as an answer object into Srslt if the cardinality of Srslt (i.e., |Srslt|) is less than k;
otherwise, it returns Srslt to terminate the search (lines 5–6). If E is a leaf node, only the
entry in E that has the minimal distance to the actual query trajectory inside T, denoted as
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NearestE, is inserted into hp (lines 8–17). On the other hand, if E is an intermediate node,
CkNNT-BF retrieves only the qualified nodes that can contribute to the final query result
and en-heaps the hp (lines 19–21). Like CkNNP-BF, CkNNT-BF first calls the
GetEntryInConstraint (GetNodeInConstraint) algorithm to examine whether each entry E
in a node N satisfies both the temporal and spatial constraints in line 10 (line 20) in order to
avoid any unnecessary visiting. The checking is required as some entries in E may not meet
the specified constraints (therefore they do not need to be visited).

6 Algorithms for HCCkNNP queries

In this section, we describe the algorithms for processing the historical continuous CkNN
retrieval with respect to stationary query point, i.e., HCCkNNP search. Section 6.1 and
Section 6.2 present depth-first based HCCkNNP (called HCCkNNP-DF) query algorithm
and best-first based HCCkNNP (called HCCkNNP- BF) query algorithm, respectively. We
omit the discussion of the two-step algorithms for HCCkNNP queries, including (i) NN
search followed by a range query for HCCkNNP (called HCCkNNP-SR) and (ii) range
query followed by NN search for HCCkNNP (called HCCkNNP-RS).

6.1 HCCkNNP-DF algorithm

HCCkNNP-DF deals with the HCCkNNP retrieval in a depth-first manner. Algorithm 7
depicts the pseudo-code of HCCkNNP-DF algorithm. It utilizes a structure MDist (line 5),
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which retains the parameters of the distance function, the associated minimum Dmin and
maximum Dmax of the distance function during the lifetime, a time period, and the actual
entry in order to report it as the actual answer object instantly. The structure is calculated
based on the ConstructMovingDistance function presented in [11]. It needs to note that in
the line 7 of Algorithm 7, the structure kNearestLists, i.e., the k nearest lists storing the final
query result, is introduced. Let kNearestLists.MaxDist be the maximum of all distances
stored inside kNearestLists. Then, kNearestLists.MaxDist (which is initialized to ∞) can be
employed as a pruning threshold to prune those unnecessary entries and branches at the
non-leaf level. In particular, any entry having its smallest distance to QP within T greater
than kNearestLists.MaxDist can be discarded immediately. Also notice that, our previously
proposed UpdatekNearests algorithm in [13] is employed to update kNearestLists structure
efficiently. Please refer to [13] for more details.

At the leaf level of the tree structure that indexes trajectory data, HCCkNNP-DF invokes
GetEntryInConstraint to examine whether every leaf entry E in the leaf node N accessed
currently crosses (or falls into completely) CR inside T (line 4), before the algorithm visits
E. This examination is necessary, since the final query result must satisfy the specified
constraints. At a non-leaf level of the tree structure, HCCkNNP-DF recursively visits each
child entry of the intermediate node (lines 8–14). When a potential candidate is retrieved,
the algorithm, backtracking to the upper level, prunes the node entries in the active branch
list (line 11) using the following pruning heuristics: HCCkNNP-DF first compares the
MinDist of every entry N in BranchList (i.e., the minimal distance from N to QP inside T)
with kNearestLists.MaxDist; and then, it computes the largest distance in the kNearestLists
structure during the time extent of N. Next, the algorithm discards all entries having
MinDist greater than the one computed.

6.2 HCCkNNP-BF algorithm

Employing the BF traversal paradigm, HCCkNNP-BF processes the HCCkNN retrieval
with respect to a predefined static query point. To achieve this target, it maintains a heap
storing all candidate entries together with their smallest distances to the given query point
within T (i.e., MinDist); these distances are sorted in ascending order of their MinDist. The
HCCkNNP-BF algorithm is shown in Algorithm 8.

Starting from the root node in the tree R on D, it traverses recursively the tree in a
best-first fashion (lines 2–17). Specifically, HCCkNNP-BF first de-heaps the top entry E
from hp (line 3). If E.Dmin≥PruneDist(k), that is, the smallest distance between E and QP

inside T is not smaller than the maximal distance stored among the k-th nearest list, then it
reports kNearestLists as the final result and terminates (line 5), because the distances from
the remaining entries in hp to QP during T are all larger than or equal to PruneDist(k). In
fact, lines 4–5 prevent the non-qualifying entries that do not contribute to the query result
from en-heaping there. Next, the algorithm considers the following cases: (i) If E is an
actual entry of trajectory segment, then HCCkNNP-BF invokes UpdatekNearests
algorithm to insert E into kNearestLists and update kNearestLists if necessary (line 7).
(ii) If E is a leaf node, HCCkNNP-BF only adds every entry e in E to hp (lines 9–13) if the
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spatial region of e intersects (or is contained in) CR within T (using the GetEntryInCon-
straint algorithm) and e’s smallest distance from QP inside T is smaller than PruneDist(k).
(iii) If E is a non-leaf node, HCCkNNP-BF also only en-heaps each child entry e in E
(lines 15–17) if e’s spatial area crosses (or fully falls into) CR within T (using the
GetNodeInConstraint algorithm) and e’s minimal distance to QP during T is smaller than
PruneDist(k).

7 Algorithms for HCCkNNT queries

In this section, we propose our methods for dealing with the HCCkNNT retrieval on the
trajectories of moving objects, where the query object is a moving trajectory instead of a
stationary point. Following the common methodology proposed previously, we develop
four HCCkNNT query algorithms, termed as HCCkNNT-SR, HCCkNNT-RS, HCCkNNT-
DF, and HCCkNNT-BF, respectively. Here we only focus on the details of both HCCkNNT-
DF and HCCkNNT-BF algorithms.

7.1 HCCkNNT-DF algorithm

HCCkNNT-DF follows the depth-first traversal paradigm to solve the HCCkNN retrieval
with respect to a given query trajectory. Algorithm 9 depicts the HCCkNNT-DF algorithm.
In general, HCCkNNT-DF is similar to HCCkNNP-DF, with the following differences: (i) At

258 Geoinformatica (2010) 14:241–276



the leaf level, HCCkNNT-DF utilizes the ConstructMovingDistance function to compute the
distance between two trajectory segments of moving objects rather than one moving object
trajectory segment and one stationary point (line 10). (ii) At a non-leaf level, HCCkNNT-DF
uses the GenTrajectoryBranchList function instead of the GenBranchList function to
generate the node’s branch list with the entries satisfying the given constraints (line 14).
Like CkNNT-DF, HCCkNNT-DF employs a linear interpolation to get the actual query
trajectory QT' having the time interval across T before it starts traversing the tree on the
trajectory data in a depth-first manner (line 2). For each leaf entry E in the leaf node N,
HCCkNNT-DF first invokes the GetEntryInConstraint algorithm to determine whether or
not the temporal interval of E overlaps with T, and if E’s spatial extent intersects (or is
contained in) CR (line 5). Furthermore, for every query trajectory segment entry TS in QT'
and before calculating the distance from TS to the leaf entry accessed currently during T,
HCCkNNT-DF first interpolates to produce a tuple of entry—trajectory segment with
identical time extent (lines 8–9).

7.2 HCCkNNT-BF algorithm

By adopting the best-first traversal paradigm, HCCkNNT-BF aims at processing the
HCkNN search with respect to a specified query trajectory. The HCCkNNT-BF algorithm is
shown in Algorithm 10. As with HCCkNNP-BF (cf. Section 6.2), HCCkNNT-BF
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implements an ordered best-first traversal, by starting with the root node of the tree R on D
and proceeding down the tree.

In the first place, HCCkNNT-BF initializes some auxiliary structures including heap hp,
lists kNearestLists and PruneDist, inserts all the entries in the root of R into the heap hp,
and obtains the set SQT of actual query trajectory segments whose time intervals overlap
with T (line 1). Subsequently, HCCkNNT-BF recursively finds the answer trajectory that is
stored in kNearestLists (lines 3–26). In each iteration, HCCkNNT-BF first de-heaps the top
entry E from hp (line 4). Like HCCkNNP-BF, if E.Dmin≥PruneDist(k) holds, then
HCCkNNT-BF returns kNearestLists and terminates since the final result has been
discovered (line 6). Otherwise, the algorithm deals with either an actual entry of trajectory
segment (lines 7–8) or a node entry containing a leaf node one (lines 9–18) and a non-leaf
node one (lines 19–26). Specifically, (i) if E is a trajectory segment entry, then HCCkNNT-
BF calls UpdatekNearests algorithm to add E to kNearestLists and update kNearestLists (if
necessary); (ii) if E is a leaf node, then HCCkNNT-BF inserts for every entry e in E into hp
if e has the time period across T, e’s time interval overlaps with that of each entry TS in SQT,
and its distance from TS is smaller than PruneDist(k); similarly, (iii) HCCkNNT-BF adds all
the qualifying entries in E to hp when E is a non-leaf node. It is important to note that the
operation concerned in line 13 is necessary because the temporal extent of some TS in SQT
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may not intersect that of e in E (hence it needs not be accessed). Also notice that, the
computation of the Mindist_Trajectory_Rectangle metric involved in line 25 uses the
approach presented in [11].

8 Performance evaluation

In this section, we evaluate the efficiency and scalability of our proposed algorithms in
terms of the I/O (i.e., number of node/page accesses) and CPU cost, via extensive
experiments on both real and synthetic datasets. All algorithms used in experiments (that
are listed in Table 2) were coded in Visual Basic and run on a PC with Pentium IV 3.0 GHz
CPU and 1 GB RAM. Note that since two-step algorithms (i.e., CkNNP-RS, CkNNT-RS,
HCCkNNP-RS, and HCCkNNT-RS) are always worse than the single-step algorithms by
several orders of magnitude, they are omitted in our presented experimental results.
However, it is worth noting that CkNNP-RS, CkNNT-RS, HCCkNNP-RS, and HCCkNNT-
RS are good choices when the given constrained region CR is extremely small.

8.1 Experimental setup

We use two real datasets that consist of a fleet of trucks containing 276 trajectories and a
fleet of school buses containing 145 trajectories. Both of them are from the R-tree Portal2.
We also deploy several synthetic datasets generated by a GSTD data generator [37] to
examine the scalability of the algorithms. Specifically, the synthetic data correspond to 100,
200, 400, 800, and 1600 moving objects, with the position of each object being sampled
approximately 1500 times. Furthermore, the initial distribution of moving objects follows
Gaussian distribution while their movement follows random distribution. Table 3
summarizes the statistics of both real and synthetic datasets.

Each dataset is indexed by a TB-tree [27], using a page size of 4 K bytes and a buffer
having capacity varying from 10% of the tree size to 1000 pages. Five factors, including
CR, k, time duration (T), the number of moving objects (#MO), and buffer size (bs), that
may affect the performance of the algorithms are evaluated. The parameter values used in
our experiments are presented in Table 4. In each set of experiments, 100 queries are issued
and the average performance of last 50 queries is measured, with the first 50 queries
warming up the buffer. In addition, the query points QP are randomly generated in the 2D
space. Similarly, the query trajectories QT are generated randomly as well. In particular,
when we evaluate both CkNNT and HCCkNNT queries on trucks dataset, we take random
trajectory segments from the school buses dataset as QT; while on GSTD datasets, the query
trajectories are also created by the GSTD data generator.

8.2 Results on CkNNP query algorithm

The first set of experiments studies the impact of CR on CkNNP performance. The size of CR
varies from 10% to 70% of the whole data space. Notice that even the smallest CR in the
experiments has a reasonable selectivity, that is, it covers more than k number of moving
object trajectories with k specified by the query. Figure 5 illustrates the number of node
accesses and CPU time (in seconds) of the algorithms as a function of CR by using the trucks
and GSTD datasets and fixing k=4 (i.e., a median value used in Fig. 6) and T=6% (i.e., a

2 The URL of the R-tree Portal is http://www.rtreeportal.org/.
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median value used in Fig. 7). Clearly, CkNNP-BF consistently outperforms the other
algorithms. As the CR becomes smaller, the selectivity of the CR grows, and hence the
advantage of the CkNNP-BF algorithm over other algorithms becomes more significant. For
instance, when CR=10%, the CkNNP-BF only requires 5.6% CPU time of CkNNP-SR
algorithm, but when CR=70%, it requires 41.8% CPU time of CkNNP-SR algorithm. In
addition, we observe that CkNNP-DF performs better than CkNNP-SR when the size of CR is
small (e.g., 20%), but it loses its advantage when CR becomes larger (e.g., 60%). The reason
behind is that the number of unnecessary node accesses incurred by the CkNNP-DF retrieval
increases with CR.

For the rest of this section, the CR value is set to its default values, i.e., 20% and 60%.
Furthermore, we only present the performance of I/O cost because the performance of CPU
cost shares the same trend as that of I/O cost.

In the second set of experiments, we evaluate the influence of k, the number of required
answer trajectories, on the performance of different algorithms. The result is depicted in
Fig. 6, with the value of k varying from 1 to 16. In all the cases, CkNNP-BF exceeds the

Table 2 All algorithms used in experiments

Query type Algorithm Description

The CkNN retrieval w.r.t. QP

(i.e., CkNNP)
CkNNP-SR NN search followed by a Range query for CkNNP

CkNNP-RS Range query followed by NN search for CkNNP

CkNNP-DF Depth-First based CkNNP retrieval

CkNNP-BF Best-First based CkNNP retrieval

The CkNN retrieval w.r.t. QT

(i.e., CkNNT)
CkNNT-SR NN search followed by a Range query for CkNNT

CkNNT-RS Range query followed by NN search for CkNNT

CkNNT-DF Depth-First based CkNNT retrieval

CkNNT-BF Best-First based CkNNT retrieval

The HCCkNN retrieval w.r.t.
QP (i.e., HCCkNNP)

HCCkNNP-SR NN search followed by a Range query for HCCkNNP

HCCkNNP-RS Range query followed by NN search for HCCkNNP

HCCkNNP-DF Depth-First based HCCkNNP retrieval

HCCkNNP-BF Best-First based HCCkNNP retrieval

The HCCkNN retrieval w.r.t. QT

(i.e., HCCkNNT)
HCCkNNT-SR NN search followed by a Range query for HCCkNNT

HCCkNNT-RS Range query followed by NN search for HCCkNNT

HCCkNNT-DF Depth-First based HCCkNNT retrieval

HCCkNNT-BF Best-First based HCCkNNT retrieval

Table 3 Statistics of real and synthetic datasets

Datasets No. trajectories No. entries No. pages

Trucks 276 112,203 835

School buses 145 66,096 466

GSTD 100 100 150,052 1,008

GSTD 200 200 300,101 2,015

GSTD 400 400 600,203 4,029

GSTD 800 800 1,200,430 8,057

GSTD 1,600 1,600 2,400,889 16,112
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other algorithms by several orders of magnitude, and the difference becomes more
significant as k increases. In addition, we observe that when CR is small (e.g., 20%),
CkNNP-DF is more effective than CkNNP-SR. However, CkNNP-SR becomes more
competitive when CR becomes large (e.g., 60%), as it only applies constraint checks to
candidate trajectories returned by previous NN search on D.

The next set of experiments explores the effect of T on the performance of different
algorithm, with the result plotted in Fig. 7. Again, CkNNP-BF performs best in all the cases.
The I/O cost of all algorithms increases slightly as T grows, which is caused by the increase
of temporal overlapping. As we can see from the Fig. 7, a small value of T may be more
expensive than a larger one. This irregularity is due to the positions and the temporal
extents of the query trajectories.

Figure 8 measures the I/O cost of the algorithms as a function of #MO by using GSTD data
sets and fixing k=4 and T=6%. Again, CkNNP-BF evidently outperforms the other methods.
Moreover, the performance difference increases with the growth of the dataset size.

As mentioned in Section 8.1, all the above experiments are conducted with an LRU buffer
whose size is from 10% of the tree size to 1000 pages. In the last set of experiments, we inspect

Table 4 Parameters in experiments

Parameters Description Values Default values

k number of nearest neighbors 1, 2, 4, 8, 16 4

CR (% of full space) constrained region 10, 20, 30, 40, 50, 60, 70 10, 20, 40, 60

T (% of entire interval ) temporal extent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 3, 6

#MO number of moving objects 100, 200, 400, 800, 1600 400

bs (% of the tree size) buffer size 0, 5, 10, 15, 20 10% to 1000 pages
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Fig. 5 I/O cost and CPU time (sec) vs. CR (k=4, T=6%)
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the impact of bs using GSTD data sets. Towards this, we fix k and T to their default values
(i.e., 4 and 6% respectively) and vary the buffer size from 0% to 20% of the TB-tree size. To
obtain stable statistics, we measure the average cost of the last 50 queries, after the first 50
queries have been performed for warming up the buffer, as mentioned earlier. Figure 9 plots
the overall query cost (i.e., the sum of the I/O time and CPU time, where the I/O time is
computed by charging 10 ms for each page access) with respect to the buffer size. Note that
CP-SR, CP-DF, and CP-BF shown on the top of each bar represent CkNNP-SR, CkNNP-DF,
and CkNNP-BF, respectively. As the buffer size increases, the I/O cost drops, but the CPU
cost remains almost the same. CkNNP-BF again outperforms its competitors in all cases.

8.3 Results on CkNNT query algorithm

Having examined the efficiency and scalability of the algorithms for CkNNP queries, we
proceed to evaluate the performance of the algorithms for CkNNT queries. In Fig. 10, we
present the influence of CR on the real and synthetic datasets. Similar to the charts shown in
Fig. 5, CkNNT-BF performs consistently the best in all the cases. Both CkNNT-DF and
CkNNT-SR are affected significantly by the size of CR. In the rest of this section, we fix CR
size to 10% and 40%, respectively.

The impacts of k, T, and #MO on the I/O cost are presented in Figs. 11, 12, and 13
respectively, and the effect of bs on total query cost is depicted in Fig. 14, where CT-SR,
CT-DF, and CT-BF shown on the top of each bar denote CkNNT-SR, CkNNT-DF, and
CkNNT-BF, respectively. All the algorithms perform similarly, compared against CkNNP

query as illustrated in Figs. 6, 7, 8, and 9.
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8.4 Results on HCCkNNP query algorithm

Next, we are going to evaluate the efficiency of different algorithms for HCCkNNP queries.
In this section, we first evaluate the effect of CR on the performance of the algorithms,
fixing k=4 and T=3%. It is noticed that the temporal extend (i.e., T) varies from 1% to 5%,
which is different from that under CkNN queries. This is because compared with CkNN,
processing of HCCkNN retrieval is much more expensive. The longer the T is, the more the
overhead is. In order to reduce the simulation overhead, we only evaluate the performance
with small T. Figure 15 plots the cost of the algorithms as a function of CR by varying CR
from 10% to 70% of the entire data space. As expected, HCCkNNP-BF performs the best in
all the cases. It demonstrates a stable performance as CR changes, while both HCCkNNP-
SR and HCCkNNP-DF are sensitive to the size of CR. When we compare HCCkNNP-SR
and HCCkNNP-DF in terms of I/O cost, HCCkNNP-DF performs better when CR is small
(e.g., CR=20%); whereas it loses its advantage when larger CRs are encountered (e.g., CR=
60%), as seen from Fig. 15(a) and (b). For CPU cost, HCCkNNP-SR outperforms
HCCkNNP-DF in most cases, especially for large values of CR. In addition, the
performance difference between HCCkNNP-BF and HCCkNNP-SR is almost negligible
when CR is greater than a certain value (e.g., CR=50% in Fig. 15(a)).

In subsequent experiments, we fix the CR value to 20% and 60% respectively, and
compare the performance of the algorithms on both real and synthetic datasets with respect
to the other parameters, including k, T, #MO, and bs.

The second set of experiments inspects the impact of k. Setting T=3%, Fig. 16 examines
the cost of alternative methods by altering k from 1 to 16. HCCkNNP-BF outperforms the
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other algorithms in all the cases. From Fig. 16(a) and (b), we can see that when CR=20%,
the I/O performance of HCCkNNP-DF is obviously better than that of HCCkNNP-SR; but
the latter exceeds the former significantly, when CR=60%. This phenomenon is also
demonstrated in the subsequent experiments of this section. On the other hand, as shown in
Fig. 16(c) and (d), HCCkNNP-SR is clearly over HCCkNNP-DF in most cases in terms of
CPU cost, although it is still worse than HCCkNNP-BF. This reason is that HCCkNNP-DF
costs many unnecessary node accesses and requires more cost for maintaining and updating
the k nearest lists (i.e., kNearestLists structure).

Next, we study the influence of T on the efficiency of the algorithms. Towards this, we
set k to 4, vary T from 1% to 5% of the full space, and illustrate the experimental results in
Fig. 17. Again, HCCkNNP-BF is always the best approach in all the cases. Both the I/O
cost and the CPU cost of all the algorithms increases with T, which is mainly caused by the
growth of temporal overlapping.
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The fourth set of experiment in this section evaluates the effect of #MO on the
performance of the algorithms, as shown in Fig. 18. Also, HCCkNNP-BF outperforms the
other methods significantly, especially in terms of CPU overhead.

Finally, we investigate the influence of LRU buffers on our proposed algorithms. Similar
to the settings of Fig. 9, we fix k=4 and T=3%, change buffer size (i.e., bs) from 0% to
20% of the TB-tree size. Figure 19 illustrates the overall query overhead as a function of bs,
where HP-SR, HP-DF, and HP-BF shown on the top of each bar stand for HCCkNNP-SR,
HCCkNNP-DF, and HCCkNNP-BF, respectively, demonstrating phenomena similar to those
in Fig. 9. Specifically, with the growth of the buffer size, the I/O cost decreases, but the
CPU cost remains almost the same. Furthermore, for all settings, HCCkNNP-BF is
consistently better than the other algorithms regardless of the buffer size.
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8.5 Results on HCCkNNT query algorithm

Finally, we examine the performance of the algorithms for HCCkNNT queries. First, the
impact of CR on the performance is evaluated, with the results depicted in Fig. 20.
Obviously, HCCkNNT-BF outperforms the others in all the cases. With respect to I/O cost,
HCCkNNT-DF is better than HCCkNNT-SR when small sizes of CRs are encountered; and
then, the latter outperforms the former as CR grows. For CPU cost, even though
HCCkNNT-SR is still worse than HCCkNNT-BF, it is clearly more effective than
HCCkNNT-DF under all the cases. In the rest of this section, we fix the CR size to 10%
and 40%, respectively. The efficiency with respect to k, T, #MO, and bs are shown in
Figs. 21, 22, 23, and 24, respectively. All the observations are consistent with those from
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previous experiments. Also note that HT-SR, HT-DF, and HT-BF shown on the top of each
bar in Fig. 24 represent HCCkNNT-SR, HCCkNNT-DF, and HCCkNNT-BF, respectively.

9 Conclusions

Although unconstrained k-nearest neighbor search for moving object trajectories has been
studied recently in the database literature, there is no prior work on the constrained
k-nearest neighbor retrieval over moving object trajectories. In this paper, we introduce
CkNN and HCCkNN queries and propose a suite of algorithms for efficiently processing
such queries with different properties and advantages, based on a member of the R-tree
family for trajectory data (i.e., TB-tree) without changing the underlying index structure. In
particular, we thoroughly investigate two types of CkNN queries, viz. CkNNP and CkNNT,
which are defined with respect to stationary query points and moving query trajectories,
respectively; and two types of HCCkNN queries, i.e., HCCkNNP and HCCkNNT, which are
continuous counterparts of CkNNP and CkNNT, respectively. An extensive experimental
comparison with both real and synthetic datasets verifies the efficiency and scalability of
our proposed algorithms, and confirms that best-first based integrated approaches are very
effective for answering CkNN and HCCkNN queries.

In the future, we plan to explore the applicability of other query algorithms (e.g.,
k-closest pair queries [7]) on moving object trajectories. For example, “find the k pairs of
trajectories that have the k smallest distances among all possible pairs during the
predefined time interval [ts, te]”. Recently, Arumugam et al. [1] have investigated the
closest-point-of-approach join for moving object histories. Further studies along this line
are also planned for our subsequent research. Finally, it would be particularly interesting to
develop a cost model for estimating the execution time of the constrained kNN search over
trajectory data. Such model will not only facilitate query optimization, but may also reveal
new problem characteristics that could lead to even better algorithms.
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