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Abstract

We consider consistent estimation of partially linear panel data models with fixed effects. We propose profile-

likelihood-based estimators for both the parametric and nonparametric components in the models and establish

convergence rates and asymptotic normality for both estimators.

D 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As Baltagi and Li (2002) notice, there is a rich literature on semiparametric estimation of panel data

models, whereas few studies focus on consistent estimation of semiparametric panel data models with

fixed effects. By taking the first difference to eliminate the fixed effects and using the series method, they
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establish asymptotic normality for the finite dimensional parameter of interest in the model and

consistency for the nonparametric object. Although their approach overcomes several drawbacks

associated with the kernel approach of Li and Stengos (1996), they do not estimate the slope parameter

for the nonparametric component. Recently, Mundra (2005) considered nonparametric estimation of the

slope parameter for fixed-effect panel data models, but with her approach, we cannot obtain estimators

for the nonparametric regression function.

In this paper, we consider estimation of partially linear panel data models with fixed effects without

taking the first difference explicitly. Our approach draws support from the literature on profile likelihood,

which is extremely useful for estimating semiparametric models. Given the finite dimensional parameter

of interest and the fixed effect parameter, we can estimate the nonparametric object as a function of these

parameters. Plugging this nonparametric object into a least squares type of objective function to

minimize, we can get a consistent estimator of the parameter of interest. Meanwhile, we obtain consistent

estimators for both the nonparametric regression function and its slope parameter.

The paper is structured as follows. In Section 2 we introduce the profile likelihood estimators for the

partially linear panel data models with fixed effects. We study their asymptotic properties in Section 3.

All technical details are relegated to the Appendix. Throughout the paper, we denote the norm of a

matrix A by tAt={tr(AVA)}1/2, where prime means transpose. Let In denote the n�n identity matrix

and in denote the n�1 vector of ones.

2. The model and estimators

Consider the following partially linear model with fixed effects:

yit ¼ ai þ xitVbþ m zitð Þ þ vit; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T ; ð2:1Þ

where xit and zit are of dimensions p�1 and q�1, respectively, b is a p�1 vector of unknown

parameters, m(d ) is an unknown smooth function, aVis are fixed effects, and vVits are the random

disturbances. For identification purpose, we impose
P

i = 1
n ai=0. For simplicity, we assume that (xit, zit)

are strictly exogenous variables. We are interested in consistent estimation of b, m(d ) and ṁ(d ), where

ṁ(d ) is the first derivative of m(d ). We establish the asymptotic theory by letting n approach infinity and

holding T fixed.

Let K denote a kernel function on R
q and H=diag(h1, . . . , hq), a matrix of bandwidth sequences.

Set KH(z)= |H|�1K(H�1z), where |H| is the determinant of H. Let Zit(z)= [1, {H�1(zit� z)}V]V.
Further denote KH(z)=diag(KH(z11� z), . . ., KH(z1T� z), KH(z21� z), . . ., KH(znT� z)) and Z

Y
zð Þ ¼

Z11 zð Þ; . . . ; Z1T zð Þ; Z21 zÞ; : . . . ; ZnT zð Þð ÞVð .

Let a=(a2, . . . , an)V and h=(aV, bV)V. Given h, we estimate M(z)u (m(z), (Hṁ(z))V)V by

Mh zð Þ ¼ arg min
MaR

qþ1
Y � Da� Xb� Z

Y
zð ÞM

� �
VKH zð Þ Y � Da� Xb� Z

Y
zð ÞM

� �
; ð2:2Þ

where Y=( y11, . . . , y1T, y21, . . . , ynT)V, X=(x11, . . . , x1T, x21, . . . , xnT)V, D=(In�iT)dn, dn=[� in� 1In� 1]V.
Define the smoothing operator by S zð Þ ¼ ½ZY zð ÞVKH zð ÞZY zð Þ��1ZY zð ÞVKH zð Þ.
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Then

Mh zð Þ ¼ S zð Þ Y � Da� Xbð Þ: ð2:3Þ

In particular, the estimator for m(z) is given by

mh zð Þ ¼ s zð ÞV Y � Da� Xbð Þ; ð2:4Þ

where s(z)V=eVS(z), and e=(1, 0, . . . , 0)V is a (q+1)�1 vector.

The parameter h is then estimated by the profile likelihood method (more precisely, it is a profile least

squares method in the current context):

ĥh ¼ argmin
h

Y � Da� Xb� mh Zð ÞÞV Y � Da� Xb� mh Zð ÞÞ;ðð ð2:5Þ

where mh(Z)= (mh(z11), . . . , mh(z1T), . . . , mh(znT))V. Plugging (2.4) into (2.5) and using the formula for

partitioned regression, we obtain

b̂b ¼ X4VM4X4½ ��1X4VM4Y4; ð2:6Þ

âauðâa2; . . . ; âanÞV ¼ D4VD4½ ��1D4V Y4 � X4b̂b
�
;

�
ð2:7Þ

where D*=(InT�S)D, Y*=(InT�S)Y, X*=(InT�S)X, M*= InT�D*[D*VD*]�1D*V, S=(s11, . . . , s1T,
s21, . . . , snT)V, and sit= s(zit). a1 is estimated by âa1 ¼ �

Pn
i¼2 âai.

The profile likelihood estimator for M(z) is given by

M̂ zð Þ ¼ Mĥh zð Þ ¼ S zð Þ Y � Dâa � X b̂b
� �

: ð2:8Þ

In particular, the profile likelihood estimator for m(z) is

m̂ zð Þ ¼ mĥh zð Þ ¼ s zð ÞV Y � Dâa � X b̂b
� �

: ð2:9Þ

We can also use local constant estimator for m(z). But it is well known that the local constant

estimator is subject to the boundary bias problem.

3. Asymptotic properties for the estimators

In this section we first state assumptions that are used to establish asymptotic properties of the

proposed estimators. We then study the asymptotic normality of the proposed estimators.

3.1. Assumptions

To provide a rigorous analysis, we make the following assumptions:

A1. (ai, vi, xi, zi), i=1, . . . , n, are i.i.d., where vi=(vi1, . . . , viT)V and xi and zi are similarly

defined. Etxitt
2+ dbl and E|vit|

2 + dbl for some dN0. Lets r2(x, z)=var( yit|xit =x, zit = z) and
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r2(z)=var(xit|zit = z). r2(x, z) and r2(z) are uniformly bounded from above from infinity and below

from 0.

A2. E( yit|xi, zi, ai)=E( yit|xit, zit, ai)=ai+xVitb+m(zit).

A3. zit has a continuous density function ft(d ) with compact support Cf on R
q. ft(d ) is bounded away

from zero and infinity on Cf for each t=1, . . . , T.

A4. Let p(z)=E(xit|zit= z). The functions m(d ) and p(d ) have bounded second partial derivatives on Cf.

A5. Let x̃it=xit�E(xit|zit). U=
P

tE{x̃it[x̃it�
P

sx̃is/T]V} is positive definite.

A6. The kernel function K(d ) is a continuous density with compact support on R
q. All odd order

moments of K vanish.

A7. As nYl, tHtY0, n|H|2Yl, tHt4|H|�1Y0 and n|H|tHt4Yca [0, l).

Assumption A1 is standard in the literature. A2 is assumed to simplify the proof and it is also assumed

in Lin and Carroll (2001) and Hu et al. (2004). It implies E(vit|xi,zi,ai)=E(vit|xit,zit)=0. A3 and A4 are

standard in the literature on local polynomial estimation (Fan and Gijbels (1996)). A5 rules out time-

invariant terms in xit. The requirement that K is compactly supported in A6 can be removed at the cost of

lengthier arguments used in the proofs. A7 is easily satisfied by considering H=diag(h1, . . . , hq) with
hi~n� 1/(4 + q) for qb4. When qz4, higher order local polynomial can be used to achieve bias

reduction. Nevertheless, due to the bcurse of dimensionalityQ, we do not expect large q in practice.

3.2. Asymptotic properties of b̂ and M̂(z)

Theorem 3.1.

(i) Under Assumptions A1–A7

ffiffiffi
n
p

b̂b � b
� �

Y
d
N 0;

X� �
; ð3:1Þ

where
P

=U� 1XU�1, and X=RsRtE{x̃it[x̃is�Rlx̃il / T]Vvitvis}.
(ii) A consistent estimator of R is given by R̂= Û� 1X̂Û�1, where Û¼ nTð Þ�1

P
i

P
t x
Y
it ðxYit �

P
l

xYil=TÞV; Xˆ¼ n�1
P

i

P
t

P
s x
Y
itðxYis �

P
l x

Y
il =TÞVv̂it v̂is; xYitV ¼ xitV� s zitð ÞVX ; and v̂it ¼ yit � xitV

bˆ� m̂ zitð Þ � âi.

The proof is given in the Appendix. To study the asymptotic property of M̂(z), let f̄(z)=
P

t = 1
T ft(z),

ṽit =vit�T�1As =1
T vis, r2

t (z)=E[ṽit
2|zit= z], and r̄2(z)=

P
t = 1

Tr2
t (z)ft(z).

Theorem 3.2. Under Assumptions A1–A7,

ffiffiffiffiffiffiffiffiffi
njH j

p
M̂ zð Þ �M zð Þ � Q�1

f¯ zð Þ
2
tr
R
R

q uuVK uð Þdu Hm̈̈m̈ zð ÞH
� �

0

! !
Y
d
N 0;Q�1CQ�1
� �

;

 
ð3:2Þ
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where m̈(z) is the second order derivative matrix of m(d ) at z,

Q ¼ f¯ zð Þ
 
1 0V
0

R
R

q uuVK uð Þdu

!
; and C ¼ r̄r2 zð Þ

 R
R

q K uð Þ2du 0V

0
R
R

q uuVK uð Þ2du

!
: ð3:3Þ

Remark 1. Theorem 3.2 tells us that M̂(z) is asymptotically distributed as if the finite dimensional

parameters h=(aV, bV) is known. In particular, the estimator for m(z) are asymptotically independent of

the estimator for ṁ(z),and they have different rates of convergence (see the definition of M(z)).

Furthermore, the asymptotic normal distribution given by Theorem 3.2 can be used to calculate

pointwise confidence intervals for M(z).

Remark 2. Baltagi and Li (2002) obtain consistent estimators for b and m(z) by taking the first

difference to eliminate the fixed effects and using series approximation for the nonparametric

component. They establish asymptotic normality for their estimator of b and consistency for their

estimator of m(z). In the simplest case where (xit, zit, vit) are i.i.d. across both i and t and vit are

conditional homoskedastic: E(vit
2|xit, zit)=r2, our estimator b for b and theirs share the same asymptotic

variance (r2 / (T�1))[E(x̃itx̃itV)]
�1. Yet we also prove the asymptotic normality for both estimators of

m(z) and ṁ(z).

Appendix A

We first provide some lemmas that are used in the proof of the main theorems in the text. Note that

S=(s11, . . . , s1T, s21, . . . , snT)V, where sit = s(zit). Denote a typical entry of s(z) by s zit;zð Þ ¼ eV½ZY zð ÞV
KH zð ÞZY zð Þ��1ZYit zð ÞKH zit � zð Þ; where Z

Y
it zð Þ is a typical column of Z

Y
zð ÞV: ZY zð ÞV ¼ Z

Y
11 zð Þ; . . . ;

�
Z
Y
1T zð Þ; ZY21 zð Þ; . . . ; ZYnT zð ÞÞ. Let P=(InT�S)V(InT�S).

Let A6B denote A=B(1+op(1)) componentwise for any matrices A, B of the same dimension. Let

C signify a generic positive constant whose exact value may vary from case to case. We state some

lemmas, the proof of which is available upon request.

Lemma 4.1.

(a) s zit;zð Þ ¼ n�1KH zit � zð Þf̄f �1 zð Þf1þ op 1ð Þg; where f̄f zð Þ ¼
PT

t¼1 ft zð Þ:
(b) limPn fn�1 Z zð ÞVKH zð ÞZ zð Þ½ �ijVCf orzaCf ; i; j ¼ 1; . . . ; qþ 1g ¼ 1 forsome C:
(c) limPn fsupzmax1ViVn; 1VtVT js zit;zð ÞjVCn�1jH j�1g ¼ 1 forsome C:

Lemma 4.2.

D VPDð Þ�1 ¼ D VDð Þ�1 þ Op &nð Þ ¼ T�1In þ Op nð Þ for sufficiently large n; where n

¼ ininVn
�1jH j�1

ffiffiffiffiffiffiffi
lnn
p

:

Lemma 4.3.

(a) n�1X VPX Y
p
PT

t¼1 E xit � p zitð Þð Þ xit � p zitð Þð ÞV�:½
(b) n�1X VPD D VDð Þ�1D VPX Y

p T�1
PT

t¼1
PT

s¼1 E xit � p zitð Þð Þ xis � p zisð Þð ÞV�:½

L. Su, A. Ullah / Economics Letters 92 (2006) 75–81 79



Lemma 4.4. n�1X4VM4X4 p U:

Lemma 4.5. n�1/2X*VM*(InT�S)m(Z)=op(1).

Lemma 4.6.

(a) n�1/2XVPV=n�1/2Ai = 1
nAt = 1

T(xit�p(zit))vit+op(1).

(b) n�1/2XVPD(DVD)�1DVPV=n�1/2T�1Ai = 1
nAt = 1

TAs =1
T(xit�p(zit))vis+op(1).

Lemma 4.7. n�1=2X �VM� InT � Sð ÞV d N 0;Xð Þ.

Proof of Theorem 3.1. (i) Noting that M*D*=0, b̂�b= (X*VM*X*)�1X*VM*Y*�b = (X*V
M*X*)�1X*VM*[D*a+X*b+ (InT�S)(m(Z) +V)]�b= (X*VM*X*)�1X*VM*(InT�S)(m(Z) +V).

Thus by (Lemmas 4.4, 4.5, 4.7), and the CLT,
ffiffiffi
n
p

b̂ � b
� �

¼ ½n�1X �VM�X ���1n�1=2X �VM� InT � Sð ÞVþ
½n�1X �VM�X ���1n�1=2X �VM� InT � Sð Þm Zð Þ ¼ U�1n�1=2

Pn
i¼1
PT

t¼1 x̃xitðvit � T�1
PT

s¼1 visÞ þ op 1ð Þ d N
0;U�1XU�1

��
.

(ii) It suffices to show U=U+op(1) and X=X+op(1). The first part follows from the arguments of

Lemma 4.3. Let sn ¼ n�1=2jH j�1=2
ffiffiffiffiffiffiffiffiffiffi
ln nð Þ

p
þ jjH jj2. By Theorem 3.2 and standard arguments for

uniform convergence (e.g., Masry (1996)), m(z)�m(z)=Op(sn) uniformly in z. By (2.6), (2.7) and (3.1)

it is easy to show vit =vit+op(1) uniformly. Also, uniformly in i and t; YxitV ¼ xitV� s zitð ÞVX ¼ x̃xitVþ
Op snð Þ. Consequently, by the law of large numbers X̂X ¼ n�1

P
i

P
t

P
s x̃xit x̃xis �

P
l x̃xil=T

�
V

�
vitvis þ op 1ð Þ p X. 5

Proof of Theorem 3.2. Denote S(zit, z) as a typical column of S(z), i.e., S(z)= (S(z11, z), . . ., S(ziT, z),
. . ., S (znT, z )). By (2.7), (2.9) and Lemma 4.2, M̂ (z ) = S (z ) (Y�Dâ�Xb̂) = S (z )(I nT �
D(DVPD)�1DVP)(Y�Xb̂)= s(z)(InT�D(DVPD)�1DVP){m(Z)+V�X(b̂�b)}. By the Taylor expression,

m zitð Þ ¼ Z
Y
it zð ÞVM zð Þþ 1

2
zit � zð ÞVm̈m zð Þ zit � zð Þþ opðjjH jj2Þ. So

ffiffiffiffiffiffiffiffiffi
njH j

p
M̂M zð Þ �M zð Þ
� � ffiffiffiffiffiffiffi

njH j
p

2

Pn
i¼1
PT

t¼1
S zit;zð Þ zit� zð ÞVm̈m zð Þ zit� zð Þþ

ffiffiffiffiffiffiffiffiffi
njH j

p
S zð ÞðInT �D DVPDð Þ�1DVPÞV �

ffiffiffiffiffiffiffiffiffi
njH j

p
S zð ÞD DVDPð Þ�1DVPm Zð Þ�ffiffiffiffiffiffiffiffiffi

njH j
p

S zð ÞðInT � D DVPDð Þ�1DVPÞX ðb̂b � bÞuB11þ B12 � B13 � B14
. It is easy to show B13 ¼ opð1Þ

B14=op(1) by using results in Lemmas 4.1–4.3, Lemma 4.5 and Theorem 3.1. Noting ½n�1ZY zð ÞVKH

zð ÞZY zð Þ��1 ¼ Q�1 þ op 1ð Þ; B11 ¼
ffiffiffiffiffiffiffi
njH j
p

2

Pn
i¼1
PT

t¼1 S zit;zð Þ zit � zð ÞVm̈m zð Þ zit � zð Þ
ffiffiffiffiffiffiffi
njH j
p

2
Q�1n�1

Pn
i¼1PT

t¼1 Z
Y
it zð ÞKH zit � zð Þ zit � zð ÞVm̈m zð Þ zit � zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
njH jf zð Þ
p

2
Q�1ðtrð

R
R

q uuVKðuÞduHm̈mðzÞHÞ0Þþop 1ð Þ. B12¼ffiffiffiffiffiffiffiffiffi
njH j

p
S zð ÞðInT � D DVPDð Þ�1DVPÞV

ffiffiffiffiffiffiffiffiffi
njH j

p
Q�1n�1

Pn
i¼1
PT

t¼1 Z
Y
it zð ÞKH zit � zð Þṽvit d N 0;Q�1ð CQ�1Þ,

where ṽit=vit�T�1As =1
T vis. This completes the proof. 5
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