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Abstract

We consider consistent estimation of partially linear panel data models with fixed effects. We propose profile-
likelihood-based estimators for both the parametric and nonparametric components in the models and establish
convergence rates and asymptotic normality for both estimators.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As Baltagi and Li (2002) notice, there is a rich literature on semiparametric estimation of panel data
models, whereas few studies focus on consistent estimation of semiparametric panel data models with
fixed effects. By taking the first difference to eliminate the fixed effects and using the series method, they
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establish asymptotic normality for the finite dimensional parameter of interest in the model and
consistency for the nonparametric object. Although their approach overcomes several drawbacks
associated with the kernel approach of Li and Stengos (1996), they do not estimate the slope parameter
for the nonparametric component. Recently, Mundra (2005) considered nonparametric estimation of the
slope parameter for fixed-effect panel data models, but with her approach, we cannot obtain estimators
for the nonparametric regression function.

In this paper, we consider estimation of partially linear panel data models with fixed effects without
taking the first difference explicitly. Our approach draws support from the literature on profile likelihood,
which is extremely useful for estimating semiparametric models. Given the finite dimensional parameter
of interest and the fixed effect parameter, we can estimate the nonparametric object as a function of these
parameters. Plugging this nonparametric object into a least squares type of objective function to
minimize, we can get a consistent estimator of the parameter of interest. Meanwhile, we obtain consistent
estimators for both the nonparametric regression function and its slope parameter.

The paper is structured as follows. In Section 2 we introduce the profile likelihood estimators for the
partially linear panel data models with fixed effects. We study their asymptotic properties in Section 3.
All technical details are relegated to the Appendix. Throughout the paper, we denote the norm of a
matrix 4 by ||4||={tr(4’4)}"?, where prime means transpose. Let 7, denote the n X n identity matrix
and i,, denote the n X 1 vector of ones.

2. The model and estimators

Consider the following partially linear model with fixed effects:

yit:ai+xi;ﬁ+m(zit)+vita izl,...,l’l, le,...,T, (21)

where x;, and z; are of dimensions p X 1 and ¢ X 1, respectively,  is a p X 1 vector of unknown
parameters, m(-) is an unknown smooth function, os are fixed effects, and V';s are the random
disturbances. For identification purpose, we impose » _;/~ o;=0. For simplicity, we assume that (x;,, z;)
are strictly exogenous variables. We are interested in consistent estimation of f8, m( ) and m( ), where
m( ) is the first derivative of m( ). We establish the asymptotic theory by letting n approach infinity and
holding T fixed.

Let K denote a kernel function on R? and H=diag(h,..., h,), a matrix of bandw1dth sequences.
Set Ky(z)=|H| 'K(H 'z), where |H| is the determinant of H. Let Z,(2)=[1, {H ‘(z:— z)}’]’
Further denote KH(Z) dlag(KH(Z]] ), Ceey KH(ZIT Z), KH(ZZI ), R, KH(ZnT Z)) and Z ( )
(ZII(Z), LR ZIT(Z)a 221(2)7 ceeey ZnT(Z)),‘

Let a=(as, ..., o,) and 0=(/, ). Given 0, we estimate M(z) = (m(z), (Hm(z))') by

My(z) = arg min <Y—Da—Xﬂ—Z(z)M)’KH(z)(Y—Da—Xﬁ—Z(z)M), (2.2)
MeR™!
where Y:(yll,---,ym)’zl,---,)/nr)/,X:(xg,-- > X175 X215+ - - &,T) D=(1,®ir)dy, dy=[—i, 11, 1]

Define the smoothing operator by S(z) = [Z () Ky (2)Z (2)] ' Z () Ky (2).



Then
My(z) = S(z)(Y — Do — X ). (2.3)
In particular, the estimator for m(z) is given by
my(z) = s(z) (Y — Da — Xf3), (2.4)
where s(z) =¢’S(z), and e=(1, 0,..., 0) isa (¢g+1)x1 vector.

The parameter 0 is then estimated by the profile likelihood method (more precisely, it is a profile least
squares method in the current context):

0= argmin (Y — Do — X —mo(Z)) (Y — Do = X — my(2)), (2.5)

where my(Z)=(mg(z11), ..., mo(zi7), ..., mg(z,7)). Plugging (2.4) into (2.5) and using the formula for
partitioned regression, we obtain

B = [X* M*X*] T X* MEY* (2.6)
4=(s0...., &) = [D¥D*|"'D¥ (v* — x*B), (2.7)
where D*=(I,7—S)D, Y*=(I,7 —S)Y, X*=(I,r— )X, M*=1,7— D*[D¥ D*]"'D*, §=(s11,..., s11;
S215 -5 Spr) > and s;,=s(z;). o is estimated by &, = — Y. , &
The profile likelihood estimator for M(z) is given by
M(z) = My(z) = S(z) (Y —Da— XB). (2.8)
In particular, the profile likelihood estimator for m(z) is
Ai(z) = my(z) = s(z) (y —Da— XB). (2.9)
We can also use local constant estimator for m(z). But it is well known that the local constant
estimator is subject to the boundary bias problem.

3. Asymptotic properties for the estimators

In this section we first state assumptions that are used to establish asymptotic properties of the
proposed estimators. We then study the asymptotic normality of the proposed estimators.

3.1. Assumptions

To provide a rigorous analysis, we make the following assumptions:

Al. (o, v, X; z;), i=1,..., n, are iid., where v;=(v;,..., vi7) and x; and z; are similarly
defined. E||x;]|>"°<c and Elv;|*"°<c for some 6>0. Lets o2(x, z)=var(y;|xy=x, z;=z) and



02(z)=var(x;|z;;=z). o*(x, z) and ¢°(z) are uniformly bounded from above from infinity and below
from 0.

A2. E(yulxi, zi, a)=EYidlxiss zigy 0) =0 +X" 3, f+m(z;).

A3. z;, has a continuous density function f,(-) with compact support C, on R?. f(-) is bounded away
from zero and infinity on Cy for each t=1,..., T.

Ad. Let p(z)=E(x;|z;,=z). The functions m(-) and p( ) have bounded second partial derivatives on Cy.
AS. Let X;,=x;, — E(x;/|z;,). =) E{X;,[X;,— > Xi/T]'} is positive definite.

A6. The kernel function K(-) is a continuous density with compact support on R?. All odd order
moments of K vanish.

A7. As n— o, ||H|| =0, n|H?— oo, ||H||*|H|" ' —0 and n|H|||H||* = c<]0, ).

Assumption Al is standard in the literature. A2 is assumed to simplify the proof and it is also assumed
in Lin and Carroll (2001) and Hu et al. (2004). It implies E(vx;,z;,0:) =E(Vi|x;1,z;,)=0. A3 and A4 are
standard in the literature on local polynomial estimation (Fan and Gijbels (1996)). A5 rules out time-
invariant terms in x;. The requirement that K is compactly supported in A6 can be removed at the cost of
lengthier arguments used in the proofs. A7 is easily satisfied by considering H=diag(h,, ..., h,) with

h;aon V@79 for g<4. When ¢ >4, higher order local polynomial can be used to achleve bias
reduction. Nevertheless, due to the “curse of dimensionality”, we do not expect large ¢ in practice.

3.2. Asymptotic properties of ﬁ and M(z)

Theorem 3.1.

(i) Under Assumptions A1-AT
va(b-8)=n(0.30). (3.1)

where =& 'Q® ' and Q=3 X E{x,,[x,y—lell/T] VieVis -
-1 =
(ii) A consistent estnlnator of X is given by S=& Q<D ,lvhere o= (nT)' Y, Zt)fit (x;, Z,
,ll/T) ‘Q n- Z Zz ZS lt( Zl Xil /T) YieViso xit/ :xi/t - S(Zil)/Xv and Vie = Vit _xlt
ﬂ_ m(Zzt) — dj.

The proof is given in the Appendix. To study the asymptotic property of M(z), let f(z)=ZtT: f:(2),
Vie=vie—T" 12sT: Wis» 0?(2)=E[\7,%|Z,~t=z], and 52(2)22t:1r0?(2)ft(2)-
Theorem 3.2. Under Assumptions AI1-A7,

/l’l’H‘ (A,/[\(Z) —M(Z) _ Q71 (@fr(qu uu’K(u)du Hm(z)H) )) i’N(O, Qflrgfl)’ (32)

0



where 1i(z) is the second order derivative matrix of m(-) at z,

_; 1 o B fq du 0
Q_f(z)<0 quuu’K(u)du>’ and I'=0¢ ( ’ quuu’K(u)zdu) (33)

Remark 1. Theorem 3.2 tells us that M(z) is asymptotically distributed as if the finite dimensional
parameters 0= (o', ') is known. In particular, the estimator for m(z) are asymptotically independent of
the estimator for mi(z),and they have different rates of convergence (see the definition of M(z)).
Furthermore, the asymptotic normal distribution given by Theorem 3.2 can be used to calculate
pointwise confidence intervals for M(z).

Remark 2. Baltagi and Li (2002) obtain consistent estimators for f and m(z) by taking the first
difference to eliminate the fixed effects and using series approximation for the nonparametric
component. They establish asymptotic normality for their estimator of [ and consistency for their
estimator of m(z). In the simplest case where (x;;, z;, v;;) are i.i.d. across both i and ¢ and v;, are
conditional homoskedastic: F (v,~f|x,~,, zi,)=c72, our estimator f for f§ and theirs share the same asymptotic
variance (a2/(T — 1)[E(X;%4)]"". Yet we also prove the asymptotic normality for both estimators of
m(z) and m(z).

Appendix A

We first provide some lemmas that are used in the proof of the main theorems in the text. Note that
S=(S115.-» S175 215 - - - » Sur) , Where s;,=s(z;;). Denote a typical entry of s(z) by s(zy,z) = é[f(z)’
EH(Z)ZLZ)]_IZt(Z)[SH(ZiI —z), where Zt(z) is a typical column of Z (z): Z (z) = (Zl(z),...,
Z,1(2), Zy(2),..., Z,7(2)). Let P=(L,r—S) (L,r— ).

Let A = B denote 4=B(1+0,(1)) componentwise for any matrices 4, B of the same dimension. Let
C signify a generic positive constant whose exact value may vary from case to case. We state some
lemmas, the proof of which is available upon request.

Lemma 4.1.

(@) 8(ziz) = n'Kn(z —2f {140, (1)},  where f(z) = S £i(2).
(b) UimP, {n~'Z(2) Ku(2)Z (2)|;=Cf orz&Cy, i ,]—1 ceyq+ 1} =1 forsome C.
(c) limP, {Supz maXi<j<p, 1<<T ‘S(Zm )’<C”71’H| } =1 forsome C.

Lemma 4.2.

(D'PD)"' = (D'D)"! + 0,(s1) = T7'I, + O,(,) for sufficiently large n, where ,
= iyi,/ n ' H|"'V1nn.

Lemma 4.3.

(a) n ' X'PX & Zt ! E(xi — p(z,,))(x,, p(zi))']-
() n ' X' PD(D'D) ' D'PX 27" ST B[ — p(zir)) (xis — plzis))']-



Lemma 4.4. n~ ' X*¥ M*X*P @,
Lemma 4.5. n~ 1/ZX*’M"‘(IHT—S)m(@=0p(1).

Lemma 4.6.

(Cl) I’l_l/zX,PV— _1/22 2; l(xzt p(th))vzt+0p(1)
() n~"2X'PD(D' D)~ ID’PV nPTS S, (= pEi))vis Fo,(D).

Lemma 4.7. n~'2X*' M*(I,; — S)V ¢ N(0,Q).

Proof of Theorem 3.1. (i) Noting that M*D*=0, ﬁ—ﬁ=(X*’M*X*)_1X*’M*Y* —f=X¥
M*X) "X M¥[D* 0+ X B+ (L — S)(m(Z) + V)] = f=(X¥ M*X*) ™ X* M* (1,7 — S)(m(Z)+ V).
Thus by (Lemmas 4.4, 4.5, 4.7), and the CLT, \/n(f — f) = [n~' X M*X*]"'n~ '\ PX* ' M*(I,r — S)V+
= XY MAXH]) T T PX M (L — S)m(Z) = o7 e 2 ST R — TS vy) 4+ 0,(1) 4N
(0,07 '@ ).

(i1) It suffices to show @ =@ +0,(1) and Q= Q+0p(1) The first part follows from the arguments of
Lemma 4.3. Let 7, =n"'?|H|” i/ *\/In(n) + [|H|[*. By Theorem 3.2 and standard arguments for
uniform convergence (e.g., Masry (1996)) m(z) m(z)=0,(t,) uniformly in z. By (2.6), (2.7) and (3.1)
it is easy to show v;=v;+0,(1) uniformly. Also, uniformly in i and ¢, X = xt — s(zu) X = X+
O,(1,). Consequently, by the law of large numbers Q =n"'>", >, > % (%5 — >, %4/T)
Vievis + 0, (1)7 Q.

Proof of Theorem 3.2. Denote S(z;, z) as a typical column of S(z), i.e., S(z)=(S(z11, 2), - .., S(zi1; 2),
v SGur 2)). By (2.7), (2.9) and Lemma 4.2, M(z)= S(z)(Y Dt —XB)=S(2) Iy —
D(D'PD)”'D'P)(Y — Xﬂ) s(2)(I,y—D(D'PD)~ 1D/P){m(@ﬂ/ X(p- P)}. By the Taylor expressmn
m(zi) = Z,(z )’M( )+ (er—Z)m(Z)(Zn—Z)JrOp(IIHH ). So /n[H]| (M(2) — M(2)) V2" Zl 1 i
S(z,[,z)(z,t—z) )(zi — 2) —|—«/n\HS (It —D(D'PD) 'D' P)V — \/n|H|S(z) D’DP) "D Pm(Z)—
VnlH|S(z) (L — D’PD) 'P)X (/3 B)=Bi1+ Bis — Bz — Bys It is easy to show B13 =0,(1)
Bi4= op(l) by usmg results in Lemmas 4.1-4.3, Lemma 4.5 and Theorem 3.1. Noting [ 1z (z) Ky
@Z @] =0+ o,(1). B = YIS S Sleu) e — 2)i(2) ey — ) VA 07l T
> 1 Zi(2)Kn (2 — 2) (20 — 24 (2) (2 _Z) = YOO~ (tr( frg0 uad K (w)durit (z) H )0)+0p(1) Bip=

ValH[S(2)(Lir = DID'PD) "' D'P)V\/ulHIQ 'n™' S, 321, Z(2)Kna(zu — 2)Vu? N(0,07'TQ")

where vie=Vi— I~ "SI _,v;. This completes the proof. O
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