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Finding the Optimal Social Trust Path
for the Selection of Trustworthy Service
Providers in Complex Social Networks

Guanfeng Liu, Student Member, IEEE, Yan Wang, Senior Member, IEEE,

Mehmet A. Orgun, Senior Member, IEEE, and Ee-Peng Lim, Senior Member, IEEE

Abstract—Online Social networks have provided the infrastructure for a number of emerging applications in recent years, e.g., for the

recommendation of service providers or the recommendation of files as services. In these applications, trust is one of the most

important factors in decision making by a service consumer, requiring the evaluation of the trustworthiness of a service provider along

the social trust paths from a service consumer to the service provider. However, there are usually many social trust paths between

two participants who are unknown to one another. In addition, some social information, such as social relationships between

participants and the recommendation roles of participants, has significant influence on trust evaluation but has been neglected in

existing studies of online social networks. Furthermore, it is a challenging problem to search the optimal social trust path that can yield

the most trustworthy evaluation result and satisfy a service consumer’s trust evaluation criteria based on social information. In this

paper, we first present a novel complex social network structure incorporating trust, social relationships and recommendation roles,

and introduce a new concept, Quality of Trust (QoT), containing the above social information as attributes. We then model the optimal

social trust path selection problem with multiple end-to-end QoT constraints as a Multiconstrained Optimal Path (MCOP) selection

problem, which is shown to be NP-Complete. To deal with this challenging problem, we propose a novel Multiple Foreseen Path-Based

Heuristic algorithm MFPB-HOSTP for the Optimal Social Trust Path selection, where multiple backward local social trust paths (BLPs)

are identified and concatenated with one Forward Local Path (FLP), forming multiple foreseen paths. Our strategy could not only help

avoid failed feasibility estimation in path selection in certain cases, but also increase the chances of delivering a near-optimal solution

with high quality. The results of our experiments conducted on a real data set of online social networks illustrate that MFPB-HOSTP

algorithm can efficiently identify the social trust paths with better quality than our previously proposed H_OSTP algorithm that

outperforms prior algorithms for the MCOP selection problem.

Index Terms—Trust, social networks, trust path selection, service selection

Ç

1 INTRODUCTION

ONLINE social networking sites have become very
popular, attracting a large number of participants and

are being used as a means for a variety of rich activities. For
example, according to a survey on 2,600 hiring managers in
2008 by CareerBuilder1 (a popular job hunting website), 22
percent of those managers used social networking sites to
investigate potential employees. In June 2009, the ratio
increased to 45 percent. In addition, Microsoft has devel-
oped a dynamic CRM (Customer Relationship Manage-
ment) system,2 which allows business professionals to
analyze customers’ conversations on social networking
sites, and as a consequence, provides real-time status
updates about their products and services accordingly. In

the above situations, trust is one of the most important
factors for participants’ decision making, requiring ap-
proaches and mechanisms for evaluating the trustworthi-
ness between participants who are unknown to each other.

In service-oriented environments, social networks can
be used as a means for service consumers to look for
trustworthy service providers who are unknown to them
prior to invoking services, with the assistance of informa-
tion from other participants. For example, at FilmTrust,3

which is a social networking site for movie recommenda-
tions, a participant can evaluate the trustworthiness of a
recommender via the social network between them. As
another example, if a social network consists of lots of
buyers and sellers, it can be used by a buyer to find the
most trustworthy/reputable seller who sells the product
preferred by the buyer [20].

In social networks, each node represents a participant
and each link between participants corresponds to the real-
world interactions or online interactions between them
(e.g., A! B and A! C in Fig. 1). One participant can give
a trust value to another based on the direct interactions
between them. For example, a trust rating can be given by
a participant to another based on the quality of the movies
recommended by the latter at FilmTrust. As each partici-
pant usually interacts with many other participants,
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multiple trust paths may exist between two given
participants who have no direct links with each other.
For example, in Fig. 1, A and M are indirectly linked by
two paths, A! B! E !M and A! D!M. If a trust
path links two nonadjacent participants (i.e., there is no
direct link between them), the source participant can
evaluate the trustworthiness of the target one based on the
trust information found in the path. This process is called
trust propagation and the path with trust information
linking the source participant and the target one is called
a social trust path [14], [18]. For example, in Fig. 1, if A is a
buyer and M is a seller, A can evaluate the trustworthiness
of M using the social trust paths from A to M. We refer to
A as the source participant and M as the target participant.

In large-scale social networks, there could be tens of
thousands of social trust paths between a source participant
and the target one [22]. Evaluating the trustworthiness of
the target participant based on all these social trust paths is
very time consuming. Alternatively, we can search the
optimal path yielding the most trustworthy trust propaga-
tion result from multiple paths. We call this the optimal
social trust path selection problem which is known to be a
challenging research problem [29].

In the literature, Lin et al. [26] propose an optimal social
path selection method, where all links are assigned the
same weight and the shortest path between the source
participant and the target one is selected as the optimal
one. This method neglects trust information between
participants. In another work [18], the path with the
maximal propagated trust value is selected as the most
trustworthy social trust path. However, social relationships
between adjacent participants (e.g., the relationship be-
tween a buyer and a seller) and the recommendation roles of a
participant (e.g., a supervisor as a referee in his post-
graduate student’s job application) have significant influ-
ence on trust propagation [1], [35] and can be discovered by
using data mining techniques [32]. However, these factors
have not been considered in other existing trust propaga-
tion and social trust path selection methods. In addition, a
source participant may have different purposes in evaluat-
ing the trustworthiness of the target participant, such as
hiring employees, or introducing products. Therefore, a
source participant may have different social trust path
selection criteria (e.g., with more focus on the recommen-
dation roles of participants in employment and/or with
more focus on the social relationships between participants
in making friends) and should be able to set certain
constraints on the above factors in trust propagation. This
can help the source participant select the optimal social
trust path that yields the most trustworthy trust propaga-
tion result. However, such a capability is not supported by
existing methods [18], [26].

To address the above issues, in our previous work [29],4

we have proposed a social trust path selection method
where the above impact factors and participants constraints
are considered. In addition, we proposed a heuristic
algorithm H_OSTP for optimal social trust path selection
and demonstrated that H_OSTP outperformed the most
promising algorithm for the path selection problem in both
the quality of the selected path and the efficiency. However,
this work still has some disadvantages. In some cases,
H_OSTP cannot deliver a near optimal solution with a high
utility. The advantages and disadvantages of this algorithm
are analyzed in detail in Section 5.2.

In this paper, we aim to solve the optimal social trust
path selection problem in a social network, which contains
complex social relationships and recommendation roles.
Our contributions in this paper are summarized as follows:

1. We first present the structure of complex social
networks and a novel concept, Quality of Trust
(QoT).5 We then model the multiple QoT con-
strained optimal social trust path selection problem
as a Multiconstrained Optimal Path (MCOP) selec-
tion problem, which is proved to be NP-Complete in
[21] (see Section 4).

2. Based on our previously proposed heuristic algo-
rithm H_OSTP [29], we propose a novel Multiple
Foreseen Path-Based Heuristic algorithm, MFPB-
HOSTP, where multiple Backward Local Paths
(BLPs, rather than only one path in H_OSTP) are
identified in the backward search from a target
participant to the source participants. These BLPs
will be used in the forward search from the source to
the target, forming multiple foreseen paths, in order
to avoid a failed feasibility estimation of a foreseen
path. Our novel search strategies can help deliver
better solutions than H_OSTP (see Sections 5 and 6).

3. We have conducted extensive experiments on a real
online social network data set, Enron e-mail corpus,6

which is formed by sending and receiving e-mails
between participants. Experimental results have
demonstrated the good performance of our pro-
posed algorithm MFPB-HOSTP (see Section 7).

The paper is organized as follows: Section 2 introduces
related work. Section 3 presents the complex online social
network structure which incorporates social relationships
and recommendation roles. Section 4 presents a novel
social trust path selection model. While Section 5 analyzes
existing social trust path selection algorithms, Section 6
proposes a novel heuristic algorithm, MFPB-HOSTP.
Section 7 presents the experimental results and analysis.
Finally, Section 8 concludes this paper with a summary and
discussion of future work.

2 RELATED WORK

2.1 Social Network Analysis

The studies of social network properties can be traced back
to 1960s when the small-world characteristic in social
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networks was validated by Milgram [34], through illustrat-
ing that the average path length between two Americans
was about 6 hops in an experiment of mail sending. In
addition, the influences of small-world characteristic on
human interactions was further analyzed by Pool and
Kochen [37] in the 1970s. In recent years, as online social
networks have been gaining more popularity, sociologists
and computer scientists have started to investigate their
characteristics. In [36], Mislove et al. analyzed several
popular social networks including Facebook,7 MySpace,8

and Flickr,9 and validated the small-world and power-law
characteristics (i.e., in a social network, the probability that
a node has degree k is proportional to k�r, r > 1) of online
social networks using data mining techniques. Also using
data mining techniques, Mccallum et al. [32] discovered the
social roles (e.g., a chief financial officer or in-house lawyer) and
social relationships (e.g., partnership in a funding application)
in an e-mail-based online social network of Enron Corpora-
tion. Guo et al. [17] further analyzed the influence of social
interactions between buyers on the purchase decisions
made by a buyer in buying products in online shopping
websites.

2.2 Social Trust Evaluation in Online Social
Networks

Trust is a critical factor in the decision making of
participants in online social networks [23]. In this field,
several trust management methods have been proposed.

In the studies of trust propagation, Golback and Hendler
[14] proposed a trust inference mechanism for establishing
the trust relation between a source participant and the target
one based on averaging trust values along the social trust
paths. They further adopted this model into an online social
network of film recommendations to indicate the reputation
of films. Guha et al. [16] proposed a trust propagation
model, where the number of hops in trust propagation is
considered in calculating the propagated trust values
between a source participant and the target one. In [30], a
trust antecedent framework is used to determine trust
relevant feature categories, namely 1) trustee ability,
2) trustee benevolence, and 3) trustee integrity to derive
features for predict the trust level between two users.

In the studies of trust-oriented recommendation systems,
Walter et al. [39] proposed a recommendation system in a
social network. In their model, a participant can give a trust
value to a recommender based on the recommendation
behavior of participants. This trust value is visible and
regarded as a reference for other participants to select
recommendations. Jamali and Ester [20] proposed a random
walk model in a social network consisting of sellers and
buyers. In their model, a buyer performs several random
walks with a fixed number of hops along a path from this
buyer in the social network to find the ratings given by the
ending participant to a seller who sells products preferred
by the buyer. The degree of confidence on the seller is
calculated based on the number of random walk paths,
hops, and ratings of the seller in each path.

The above trust management strategies are solely based
on trust ratings given by participants. As pointed out in
social science theories [1], [35], social relationships (e.g., the
relationship between a buyer and a seller, or the one
between an employer and an employee) and recommenda-
tion roles (e.g., the supervisor as a referee in a job
application) both have significant influence on participants’
decision making.

2.3 Social Trust Influence on Service Selection

As indicated in social psychology [5], [12], in the reality of
our society, a person prefers the recommendation from
his/her trusted friends over those from others. In addition,
in the discipline of computer science, based on statistics,
Bedi et al. [4] has demonstrated that, given a choice
between recommendations from trusted friends and those
from recommender systems, trusted friends’ recommenda-
tions are more preferred in terms of quality and usefulness.
Furthermore, in several recent studies, some researchers
[8], [10] have investigated how and to what extent a
participant’s service selection behavior (e.g., installing a
specific application software) impacts on his/her friends’
decision making in service selection. These studies have
indicated that the recommendations from trusted friends
have significant influence on service or target selection, not
only in the society in the real world, but also in online
social networks.

Although a complete social network-based trust-oriented
service recommendation system does not yet exist, it has
become an important research topic in recent years. Some
researchers [17], [31] have proposed several models to
provide more accurate recommendations of products and/
or services by taking some social context information into
consideration. In these studies, social trust path selection is
a critical problem. We analyze some existing studies for this
problem in the following section.

2.4 Social Trust Path Selection Methods

In the literature, there are only a few works addressing the
social path selection problem. SmallBlue [26] is an online
social network constructed for IBM staff. In this system, up
to 16 social paths with no more than 6 hops are selected
between a source participant and a target participant and
the shortest one is taken as the optimal path. However, in
this method, some major factors including trust information,
recommendation roles and social relationships between parti-
cipants are not taken into account in path selection. Hang
et al. [18] proposed a social trust path selection method in
online social networks, where the social trust path with the
highest belief (i.e., the maximum of propagated trust
values) is selected as the optimal one that yields the most
trustworthy result of trust propagation between a source
participant and the target participant. Wang and Wu [40]
aggregated trust values given to each of the recommenders
(i.e., the intermediate node) in the network between a
source participant and the target participant. If the
aggregated trust value of a recommender is greater than
the threshold specified by the source participant, the
recommender is kept in the network for trust evaluation.
Otherwise, the recommender (the node) is deleted from the
network. In their models, although trust information is
taken into consideration in trust path selection, they cannot
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be applied to social networks which contain social
information, including social relationships and recommen-
dation roles.

As mentioned above, a source participant can have
different purposes in evaluating the trustworthiness of the
target participants (e.g., employment or buying products).
Therefore, the source participant can have different trust
evaluation criteria in different applications, and thus they
should be able to specify certain constraints of the above
social impact factors for social trust path selection. But this
flexibility is not supported in other existing methods.

3 COMPLEX SOCIAL NETWORKS

In this section, we present a complex social network
structure originally proposed by us in [29]. Unlike the
other existing models reported in the literature, it takes trust
information, social relationships, and recommendation
roles of participants into account.

3.1 Trust

In human societies, trust is a complex topic subject to a lot
of factors, such as previous experience, and other people’s
recommendations [14]. Many different trust definitions
have been proposed addressing different aspects. Alunkal
et al. [2] define that “trust is the value attributed to a specific
entity, including an agent, a service, or a person, based on
the behaviors exhibited by the entity in the past.” Golbeck
and Hendler [14] define that “trust in a person is a
commitment to an action based on a belief that the future
action of that person will lead to a good outcome.”

In the context of this paper, trust between participants in
social networks can be defined as follows:

Definition 1. Trust is the belief of one participant in another,
based on their interactions, in the extent to which the future
action to be performed by the latter will lead to an expected
outcome.

Let TAB2½0; 1� denote the trust value that participant A
assigns to participant B. If TAB¼0, it indicates that A
completely distrusts B while TAB¼1 indicates A completely
believes B’s future action can lead to the expected outcome.

3.2 Social Intimacy Degree

As illustrated in social psychology [3], a participant can
trust the participants with whom he/she has more intimate
social relationships more than those with whom he/she has
less intimate social relationships. Therefore, we introduce
the social intimacy degree between participants into
complex social networks structure, and give its definition
as follows:

Definition 2. rAB 2 ½0; 1� is the Social Intimacy Degree
between any given participants A and B in online social
networks. rAB¼0 indicates that A and B have no social
relationship while rAB¼1 indicates they have the most
intimate social relationship.

3.3 Role Impact Factor

Rich activities of participants in social networks can be
categorized into different domains (e.g., hiring employees
or product sale) based on their characteristics [41]. As

illustrated in social psychology [1], in a certain domain of
interest, recommendations from a domain expert are more
credible than that from a beginner. Therefore, we introduce
the role impact factor of a participant into the complex
social network structure, and give its definition as follows:

Definition 3. �A2½0; 1� is the value of the Role Impact Factor,
illustrating the impact of participant A’s recommendation role
on trust propagation. �A¼1 indicates thatA is a domain expert
while �A¼0 indicates that A has no knowledge in the domain.

Though it is difficult to construct social relationships and
comprehensive role hierarchies in all domains for the whole
society, and obtain their global values, it is feasible to build
them up in a specific social community.

For example, in the work by Mccallum et al. [32], through
mining the subjects and contents of e-mails in Enron
Corporation, the social relationship between each e-mail
sender and receiver can be discovered and their roles can be
known. Then, the corresponding social intimacy degree and
role impact factor values can be estimated based on
probabilistic models. In addition, in academic social net-
works formed by large databases of Computer Science
literature (e.g., DBLP10 or ACM Digital Library11), the social
relationships between two scholars (e.g., coauthors, a super-
visor, and his/her students) and the role of scholars (e.g., a
professor in the field of data mining) can be mined from
publications or their homepages. The social intimacy degree
and role impact factor values can be calculated as an example
by applying the PageRank model [38]. Furthermore, in
addition to mining these values, the social position of a
participant can be specified directly [42]. If the participant
becomes a recommender, this social position information
could illustrate his/her role impact factor in the recommen-
dation of a specific domain.

Based on the above discussion, in addition to partici-
pants and the links between them, we propose a new
structure for complex social networks that models trust,
social intimacy degree, and role impact factors, as depicted
in Fig. 2.

4 QUALITY OF TRUST AND QoT ATTRIBUTES

AGGREGATION

In this section, we first present a novel general concept
Quality of Trust and then propose a novel social trust path
selection model with end-to-end QoT constraints [29].

4.1 Quality of Trust

In Service-Oriented Computing (SOC), quality of service
(QoS) consists of a set of attributes, used to illustrate the
ability of services to guarantee a certain level of perfor-
mance [13]. Similar to QoS, we present a new concept,
Quality of Trust [27].

Definition 4. Quality of Trust is the ability to guarantee a
certain level of trustworthiness in trust propagation along a
social trust path, taking trust (T ), social intimacy degree (r),
and role impact factor (�), as attributes.
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In service invocations, users can set multiple end-to-end
constraints for the attributes of QoS to satisfy their
requirements (e.g., cost, delay, and availability) of services.
Different requirements have different constraints (e.g.,
total cost < $20, delay < 5 s, and availability > 70%). In
our model, to satisfy different trust evaluation criteria, a
source participant can specify multiple end-to-end con-
straints for QoT attributes (i.e., T , r, and �) as the
requirements of trust propagation in a social trust path
of different domains.

Let Q�
vs;vt

(� 2 fT; r; �g) denote the end-to-end constraint
of QoT attribute � for the paths between vs and vt
(throughout this paper, vs denotes the source participant
and vt denotes the target participant in a social network).
For example, as shown in Fig. 2, to hire employees, A, a
retailer manager specifies the end-to-end QoT constraints
for the social trust paths from A to M as QAM ¼ fQT

A;M >
0:3; Qr

A;M > 0:3; Q�
A;M > 0:8g, if he/she believes the social

position of participants is more important in the domain of
employment. But when looking for new customers for selling
products, A could specify QoT constraints as QA;M ¼
fQT

A;M > 0:8; Qr
A;M > 0:3; Q�

A;M > 0:3g, if he/she believes
the social relationships between participants are more
important in the domain of product sale.

4.2 QoT Attribute Aggregation

To specify end-to-end QoT constraints, we present the QoT
attribute aggregation methods as follows [29].

4.2.1 Trust Aggregation

The trust values between a source participant and the
target participant in a social path can be aggregated based
on trust transitivity property (i.e., if A trusts B and B
trusts C, then A trusts C to some extent) [14]. Since trust is
discounted with the increase of transitivity hops [9], in our
model, we adopt the strategy proposed in [25], [39], where
if there are n participants a1; . . . ; an in order in a social
trust path (denoted as pða1; . . . ; anÞ), the aggregated trust
value is calculated as in (1). This strategy has been widely
used in the literature as a feasible trust aggregation
method [6], [28], [39].

Tpða1;:::;anÞ ¼
Y

ðai;aiþ1Þ2pða1;:::;anÞ
Taiaiþ1

: ð1Þ

This aggregated trust value will be combined with the
social intimacy degree and the role impact factor in the
following context to select the optimal social trust path.

4.2.2 Social Intimacy Degree Aggregation

First, social intimacy between participants decays with the
increasing number of hops between them in a social trust

path [24], [35]. In addition, in the real-world, the intimacy
degree decays fast when it approaches 1. In contrast, the
intimacy degree decays slowly when it approaches zero [7],
[19]. Namely, the decay speed of the social intimacy degree
is nonlinear in social networks. The aggregated r value in
path pða1; . . . ; anÞ can be calculated by (2) whose function
image is a hyperbolic curve, fitting the characteristic of social
intimacy attenuation [35].

rpða1;:::;anÞ ¼
Y

ðai;aiþ1Þ2pða1;:::;anÞ
rai aiþ1

: ð2Þ

4.2.3 Role Impact Factor Aggregation

As illustrated in social psychology [33], in the same society,
the role impact factor of a participant does not decay with the
increase of transitivity hops. Thus, the aggregated � value of
pða1;...;anÞ can be calculated by

�pða1;:::;anÞ ¼
Pn�1

i¼2 �ai
n� 2

: ð3Þ

4.3 Utility Function

In our model, we define the utility (denoted as F ) as the
measurement of the trustworthiness of social trust paths.
The utility function takes the QoT attributes T , r, and � as
the arguments in

Fpða1;:::;anÞ ¼!T � Tpða1;:::;anÞþ!r � rpða1;:::;anÞþ!� ��pða1;:::;anÞ; ð4Þ

where !T , !r, and !� are the weights of T , r, and �,
respectively; 0 < !T ; !r; !� < 1 and !T þ !r þ !� ¼ 1.

The goal of optimal social trust path selection is to select
the path that satisfies multiple end-to-end QoT constraints
and yields the best utility with the weights specified by the
source participant.

5 SOCIAL TRUST PATH SELECTION ALGORITHMS

The optimal social trust path selection with multiple end-to-
end QoT constraints can be modeled as the classical
Multiconstrained Optimal Path selection problem which
has been proved to be NP-Complete [21]. In this section, we
first analyze some existing approximation algorithms for
the MCOP selection problem, including our earlier H_OSTP
algorithm [29], and then propose a novel Multiple Foreseen
Path-Based Heuristic algorithm for Optimal Social Trust
Path selection, MFPB-HOSTP.

5.1 Existing Algorithms

5.1.1 H_MCOP

Korkmaz and Krunz [21] propose a heuristic algorithm
H_MCOP for the multiple-constrained optimal path selec-
tion in service invocation. In this algorithm, both multi-
constrained values and QoS attributes values are aggregated
based on

g�ðpÞ ¼4
q1ðpÞ
Q1
vs;vt

 !�

þ q2ðpÞ
Q2
vs;vt

 !�

þ � � � þ qmðpÞ
Qm
vs;vt

 !�

; ð5Þ

where ��1; qiðpÞ is the aggregated value of the ith QoS
attribute of path p (e.g., the total cost of the services in a
path formed by service invocations); Qi

vs;vt
is the ith QoS
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constraint value of the selected path between vs and vt
(e.g., Qcost

vs;vt
� $100).

H_MCOP first adopts Dijkstra’s shortest path algorithm
[11] to find the path with the minimum g� from vt to vs,
which intends to investigate whether there exists a feasible
solution satisfying all end-to-end QoS constraints in a
subnetwork. In this process, at each intermediated node vk,
the aggregated value of each QoS attribute for the identified
path from vk to vt is computed and recorded. If there exists
at least one feasible solution, then these aggregated values
are used in another search from vs to vt, which intends to
identify a feasible path from vs to vt with the minimal cost
of services.

Before we proposed H_OSTP in 2010 [29], H_MCOP was
one of the most promising algorithms for the MCOP
selection problem as it outperformed prior existing algo-
rithms in both algorithm efficiency and solution quality
[21], [29].

5.1.2 MCSP_K

Based on H_MCOP, in the field of Service-Oriented
Computing, Yu et al. [44] propose an approximation
algorithm, MCSP_K, which keeps only K paths from a
source node to each intermediate node, aiming to reduce
the search space and execution time. In their service
candidate graph, each node represents a service and all
services are categorized into different service sets based on
their functionality. There is a link between any two nodes in
adjacent service sets and thus all the paths from a source
node to an intermediate node can be enumerated when
necessary, avoiding an exhaustive search. But if a network
does not have such a typical structure, MCSP_K has to
search all the paths from a source node to each intermediate
node and hence the time complexity becomes exponential.
Therefore, it does not scale up to large social networks.

5.1.3 H_OSTP

In [29], based on Dijkstra’s shortest path algorithm [11], we
developed a novel efficient Heuristic algorithm for the
Optimal Social Trust Path selection, called H_OSTP, in
complex social networks.

In H_OSTP, we first proposed the objective function given
in (6) and adopted the Backward_Search procedure to identify
the path with the minimal � from vt to vs to investigate
whether there exists a feasible solution where all end-to-end
QoT constraints can be satisfied in the subnetwork, and to
record the aggregated QoT attributes (i.e., T , r, and �) of the
path identified from vt to each intermediate node vk

�ðpÞ ¼4 max 1� Tp
1�QT

vs;vt

 !
;

1� rp
1�Qr

vs;vt

 !
;

1� �p
1�Q�

vs;vt

� �( )
: ð6Þ

If a feasible solution exists, H_OSTP then adopts the

Forward_Search procedure to search the network from vs to

vt to deliver a near-optimal solution. This process adopts

the information provided by Backward_Search to identify

whether there is another path pforwardvs!vt which satisfies QoT

constraints. In this process, H_OSTP first searches the path

with the maximal F value from vs. Assume node vm 2
fneighboring nodes of vsg is selected based on Dijkstra’s

shortest path algorithm as the utility of the path from vs to

vm (denoted as the forward local path (FLP) pfðuÞvs!vm ) is

maximal. Let pbð�Þvm!vt denote the backward local path from vm
to vt identified in the Backward_Search procedure. Then, a

foreseen path from vs to vt via vm (denoted as fpfðuÞþbð�Þvs!vm!vt ¼
pfðuÞvs!vm þ p

bð�Þ
vm!vt ) is formed.

If fpfðuÞþbð�Þvs!vm!vt is feasible, then H_OSTP chooses the next

node from vm with the maximal F value which is calculated

based on Dijkstra’s shortest path algorithm. Otherwise,

H_OSTP does not search the path from vm and the link vs !
vm is deleted from the subnetwork. Subsequently, H_OSTP

performs the Forward_Search procedure to search the path

from vs in the subnetwork without the link vs ! vm.

5.1.4 Other Algorithms

Some other algorithms [45], [46] adopt integer linear
programming to solve the service selection problem with
multi-QoS constraints. But, in [44], they have been proved
having low efficiency in finding a near-optimal solution in
large-scale networks.

5.2 Advantages and Disadvantage of H_OSTP

Advantages. H_OSTP could detect whether there exists a
feasible solution in a subnetwork, as it adopts a new
objective function �ðpÞ which is better than that of
H_MCOP. If there exists at least one feasible solution,
H_OSTP does not deliver any solution that is worse in
quality than that of H_MCOP, and could possibly deliver
better solutions than H_MCOP. In addition, when a
foreseen path is infeasible (i.e., at least one aggregated
QoT attribute value of the path does not satisfy the
corresponding QoT constraint), the corresponding link
between nodes is deleted, which reduces the search space
and makes H_OSTP more efficient than H_MCOP [29].

Disadvantage. Although H_OSTP significantly outper-

forms existing approximation algorithms in both the

efficiency and the quality of identified social trust paths, it

still has a disadvantage called the imbalance problem of QoT

attributes, which may cause a failed feasibility estimation of

a foreseen path in the forward search procedure from vs to

vt, and deliver a solution with a low utility that is not near

optimal. We analyze the disadvantage of H_OSTP below

in detail.

If a feasible solution (i.e., a path where the aggregated

value of each QoT attribute satisfies the corresponding QoT

constraint) exists in the subnetwork between vs and vt,

H_OSTP performs the Forward_Search procedure, where

H_OSTP investigates the feasibility of the foreseen path

fpfðuÞþbð�Þvs!vk!vt to estimate whether a feasible solution can be

delivered by following pfðuÞvs!vk . But, this strategy may give a

failed feasibility estimation. Namely, even if fpfðuÞþbð�Þvs!vk!vt
is infeasible, there may still exist a feasible solution

identified by following pfðuÞvs!vk in the subnetwork.

We use the following example to illustrate the imbalance

problem of QoT attributes in H_OSTP. Fig. 3 depicts a social

network between vs and vt, which contains five intermedi-

ate nodes v1 to v5, and the aggregated QoT attribute values

computed by the Backward_Search procedure at each of these

LIU ET AL.: FINDING THE OPTIMAL SOCIAL TRUST PATH FOR THE SELECTION OF TRUSTWORTHY SERVICE PROVIDERS IN COMPLEX... 157



nodes are listed in Table 1. Suppose that vs specifies the

QoT constraints as QT
vs;vt

> 0:3, Qr
vs;vt

> 0:3, and Q�
vs;vt

> 0:2.

Based on the search strategy introduced in Section 5.1.3, at

v4, H_OSTP concatenates the social trust path pfðuÞvs!v4
with

pbð�Þv4!vt to form a foreseen path fpfðuÞþbð�Þvs!v4!vt with the aggregated

QoT attributes values as T ¼ 0:2, r ¼ 0:48, and � ¼ 0:5,

which is infeasible (note: the aggregated T ¼ 0:2 does not

satisfy the corresponding constraint QT
vs;vt

> 0:3). In such

a situation, H_OSTP deletes the link v2 ! v4 in pfðuÞvs!v4
and

selects another path vs ! v1 ! v2 ! vt as the near-optimal

social trust path between vs and vt. Suppose the QoT

attributes have the same weights in the utility function, then

the utility of this path is 0.35.

However, as shown in Fig. 3, the aggregated values of

QoT attributes of another path v4!vt (denoted as pbðT Þv4!vt )

are T ¼ 0:8, r¼ 0:45, and �¼ 0:5. If we concatenate pfðuÞvs!v4

and pbðT Þv4!vt together, a new foreseen path fpfðuÞþbðT Þvs!v4!vt is formed

that is feasible. In such a situation, the path vs!v1!v2!
v4!vt with a utility of 0.39 is selected as the solution, which

has a better quality than the one identified by H_OSTP (i.e.,

the utility ¼ 0:35).

From the above example, we can see that the foreseen

path formed by concatenating path pfðuÞvs!vk with path pbð�Þvk!vt
may not accurately estimate whether there exists a feasible a

solution identified by following pfðuÞvs!vk in the forward search

procedure. This is because during searching pbð�Þvk!vt , one of

the aggregated values of the QoT attributes may be already

close to the corresponding QoT constraints (e.g., T ¼ 0:5 of

pbð�Þv4!vt in Fig. 3). In such a situation, if the aggregated values

of that QoT attribute is also close to the corresponding QoT

constraint in pfðuÞvs!vk (e.g., T ¼ 0:4 of pfðuÞv4!vt in Fig. 3), the

foreseen path at vk is usually infeasible. This is the typical

imbalance problem of QoT attributes (e.g., the imbalance

problem of T at v4 in Fig. 3), which may lead to a failed

feasibility estimation of a foreseen path. In such a situation,

H_OSTP cannot identify a social trust path with a high

utility that is near optimal.

6 OUR PROPOSED MFPB-HOSTP ALGORITHM

6.1 Algorithm Overview

We first introduce some definitions below that are used to
describe our algorithm.

Definition 5 (Backward local path). In a subnetwork from vs
to vt, a Backward Local Path (BLP) is the path from vt to
an intermediate node vk, identified by the backward search
from vt to vs.

Based on Definition 5, path pbð�Þvk!vt identified by the
backward search procedure is a BLP.

Definition 6 (Forward local path). In a subnetwork from vs
to vt, a Forward Local Path (FLP) is the path from vs to
an intermediate node vk, identified by the forward search
from vs to vt.

Based on Definition 6, path pfðuÞvs!vt identified by the
forward search procedure is an FLP. A foreseen path can
be formed at the same intermediate node vk by concatenat-
ing an FLP that ends at node vk and a BLP that starts from
node vk.

Definition 7 (Composite backward local path (CBLP)). In a
subnetwork between vs and vt, a Composite Backward Local
Path is the path which is composed of the BLP with the
minimal � and the links of BLP with the maximal aggregated
value for one of the QoT attributes.

Based on the above definitions, we propose a novel

Multiple Foreseen Path-Based Heuristic algorithm for

Optimal Social Trust Path selection (MFPB-HOSTP) in

complex social networks, which inherits the advantages of

H_OSTP (i.e., the objective function) and aims to overcome

its disadvantage (i.e., the imbalance problem of QoT

attributes). Our MFPB-HOSTP also bidirectionally searches

a subnetwork (i.e., by employing both a backward search

and a forward search procedure) by adopting Dijkstra’s

shortest path algorithm [11]. But, our algorithm employs

different search strategies from H_OSTP.

In the backward search procedure from vt to vs, at each

intermediate node vk, in addition to BLP pbð�Þvk!vt , MFPB-

HOSTP first identifies the BLPs with the maximal aggre-

gated T , r, and � values, respectively (denoted as

pbð�Þvk!vt ; � 2 fT; r; �g). When facing with the imbalance pro-

blem of QoT attribute �ð� 2 fT; r; �gÞ at vk (e.g., T at v4 in

Fig. 3), the identified BLPs pbð�Þvk!vtð� 2 fT; r; �gÞ are con-

catenated with the identified FLP, forming other foreseen
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Social Trust Paths and the Aggregated QoT Attributes Values



paths (e.g., fpfðuÞþbðT Þvs!v4!vt in Fig. 3), helping avoid a failed

feasibility estimation of a foreseen path and having a chance

to deliver a better solution than H_OSTP (e.g., the path vs !
v1 ! v2 ! v4 ! vt in Fig. 3). However, greedily maximizing

the aggregated value of the QoT attribute may cause a new

imbalance problem of QoT attributes (see a detailed

analysis in Step 2 in the following section of Algorithm

Description). Therefore, MFPB-HOSTP then identifies some

CBLPs the number of which depends on the number of

intermediate nodes of pbð�Þvk!vtð� 2 fT; r; �gÞ. When facing

with the new imbalance problem of QoT attributes at vk,

these CBLPs are used to be concatenated with the FLP to

balance QoT attributes in the newly formed foreseen paths,

which could increase the probability of delivering a solution

with high utility that is near optimal (see a detailed analysis

in Step 2 in the following section of Algorithm Description).
The backward search procedure could illustrate whether

there exists a feasible solution in a subnetwork (it is proved
in Theorem 1 in the following section of Algorithm
Description). If there exists at least one feasible solution,
MFPB-HOSTP performs a forward search procedure from
vs to vt. This procedure intends to identify the path with
the maximal utility by using Dijkstra’s shortest path
algorithm [11]. When facing with the imbalance problem
of QoT attributes at vk, MFPB-HOSTP concatenates the FLP
(i.e., pfðuÞvs!vk ) with BLPs and CBLPs, forming multiple
foreseen paths, instead of one foreseen path only in
H_OSTP. This strategy could effectively help address the
imbalance problem of QoT attributes in path selection,
and thus helping avoid a failed feasibility estimation of a
foreseen path in the social path selection.

6.2 Algorithm Description

In this section, we give a more detailed description of our
proposed MFPB-HOSTP algorithm.

Backward_Search. In the Backward_Search procedure,
MFPB-HOSTP searches the subnetwork from vt to vs to
investigate whether there exists a feasible solution in the
subnetwork. In this process, at each intermediate node vk,
several BLPs and CBLPs from vt to vk are identified. The
identification of these paths can be divided into the
following four steps.
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Step 1 (Identify the BLP with the minimal �). In social
trust path selection, if a path satisfies multiple QoT
constraints, the aggregated value of each QoT attribute
(i.e., T , r, or �) of that path should be larger than the
corresponding QoT constraint. From (6), we can see that if
any aggregated QoT attribute value of a social trust path
does not satisfy the corresponding QoT constraint, then
�ðpÞ > 1. Otherwise, �ðpÞ � 1.

To investigate whether there exists a feasible solution in a

subnetwork, in this step, MFPB-HOSTP identifies the path

from vt to vs with the minimal � (i.e., pbð�Þvs!vt ) based on

Dijkstra’s shortest path algorithm [11]. In the searching

process, at each intermediate node vk, BLP pbð�Þvk!vt is

identified and the aggregated QoT attribute values of these

paths (i.e., T
p
bð�Þ
vk!vt

r
p
bð�Þ
vk!vt

and �
p
bð�Þ
vk!vt

) are computed and

recorded. According to the following Theorem 1, the Back-

ward_Search procedure can investigate whether there exists a

feasible solution in the subnetwork.

Theorem 1. In the Backward_Search procedure, the process of
identifying the path with the minimal � can guarantee finding
a feasible solution if at least one feasible solution exists in a
subnetwork.

Proof. Let pbackwardvs!vt ¼ pbð�Þvs!vt be a path from vt to vs with the

minimal �, andp� be a feasible solution. Then, �ðpbackwardvs!vt Þ�
�ðp�Þ. Assume pbackwardvs!vt is not a feasible solution, then 9’2
fT; r; �g that ’pbackwardvs!vt

< Q’
vs;vt

. Hence, �ðpbackwardvs!vt Þ > 1. Since

p� is a feasible solution, then �ðp�Þ � 1 and �ðpbackwardvs!vt Þ >
�ðp�Þ. This contradicts �ðpbackwardvs!vt Þ � �ðp�Þ. Therefore,

pbackwardvs!vt is a feasible solution. tu
The Backward_Search procedure can always identify the

path with the minimal �. If �min > 1, it indicates there is no
feasible solution in the subnetwork, then the algorithm
terminates. If �min � 1, it indicates there exists at least one
feasible solution and the identified path is a feasible
solution. In such a case, the algorithm will perform the
following steps to deliver a near-optimal solution.

Step 2 (Identify the BLP with the maximal aggregated T
value and the corresponding CBLPs). In this step, at each
intermediate node vk, MFPB-HOSTP first identifies the BLP
with the maximal aggregated T value (i.e., pbðT Þvk!vt ), and then
identifies several corresponding CBLPs which are com-
posed of part of pbðT Þvk!vt and a BLP with the minimal � from vt
to each intermediate node in pbðT Þvk!vt .

1. Identify the BLPs with the maximal T . MFPB-
HOSTP first identifies the path from vt to vs with
the maximal aggregated T value (i.e., pbðT Þvs!vt ) based
on Dijkstra’s shortest path algorithm [11]. In the
searching process, at each intermediate node vk,

BLP pbðT Þvk!vt (e.g., BLP v4 ! vt in Fig. 3) and the
aggregated QoT attributes’ values of pbðT Þvk!vt are
computed and recorded. When facing with the
imbalance problem of T at vk, BLP pbðT Þvk!vt is
concatenated with the FLP pfðuÞvk!vt , forming a new
foreseen path fpfðuÞþbðT Þvs!vk!vt (e.g., the foreseen path
v1 ! v2 ! v4 ! vt in Fig. 3). This foreseen path
could be used as a reference to estimate whether
there exists a feasible solution identified by follow-
ing pfðuÞvs!vk . This strategy could help avoid a failed
feasibility estimation of a foreseen path caused by
the imbalance problem of T at vk.

2. Identify the CBLPs based on the BLPs with the

maximal T . Greedily maximizing the aggregated T

value without considering other QoT attributes values

in pbðT Þvk!vt may lead to the new imbalance problem of

QoT attributes (i.e., r and �). Therefore, in addition to

pbðT Þvk!vt , suppose there are M intermediate nodes

(denoted as vl; l 2 ½1;M�) in path pbðT Þvk!vt , MFPB-HOSTP

then identifies M Composite Backward Local Paths at

vk (denoted as pCBLP
M ðT Þ

vk!vt ) which are composed of

pbðT Þvk!vl l 2 ½1;M� and pbð�Þvl!vt ; l 2 ½1;M�. For example, as

shown in Fig. 4, since there is no intermediate node

between v4 and vt in BLP pbðT Þv4!vt (i.e., M ¼ 0), MFPB-

HOSTP only identifies one BLP pbðT Þv4!vt¼ v4! vt. Since

there exists an intermediate node v4 between v2 and vt
in BLP pbðT Þv2!vt (i.e.,M ¼ 1), in addition to pbðT Þv2!vt , MFPB-

HOSTP identifies one CBLP pCBLP
1ðT Þ

v2!vt ¼ ðv2 ! v4Þ þ
pbð�Þv4!vt . Similarly, at v1 there exist two intermediate

nodes between v1 and vt in BLP pbðT Þv1!vt (i.e., M ¼ 2),

MFPB-HOSTP identifies two CBLPs. They are CBLP

pCBLP
1ðTÞ

v1!vt ¼ðv1!v2!v4Þþpbð�Þv4!vt and CBLP pCBLP
2ðTÞ

v1!vt ¼
ðv1!v2Þþpbð�Þv2!vt . When facing with the new imbalance

caused by the BLP with the maximal T , the M CBLPs

at vk are concatenated with the FLP pfðuÞvs!vk . This

strategy could help avoid a failed feasibility estima-

tion of a foreseen path caused by the new imbalance

problem of other two QoT attributes (i.e., r and �) at vk.

Next, we use an example to illustrate the effectiveness

of CBLPs in solving the new imbalance problem of

QoT attributes.

Fig. 5 depicts a subnetwork between vs and vt. Table 2

lists the FLP at v2, the BLP at v2, the corresponding CBLP at

v2, and the aggregated values of QoT attributes of these

paths. Suppose that the QoT constraints specified by source
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participant vs are QT
vs;vt
¼ 0:12, Qr

vs;vt
¼ 0:15 and Q�

vs;vt
¼ 0:3.

We could see that the foreseen path fpfðuÞþbð�Þvs!v2!vt is infeasible

due to the imbalance problem of T at v2 (T ¼ 0:075 <

QT
vs;vt
¼ 0:12). Then, MFPB-HOSTP concatenates the FLP

with BLP pbðT Þv2!vt to form another foreseen path fpfðuÞþbðT Þvs!v2!vt .

However, we could see there arises a new imbalance

problem of r, where the aggregated r value of fpfðuÞþbðT Þvs!v2!vt
does not satisfy the corresponding QoT constraint (r ¼
0:08 < Qr

vs;vt
¼ 0:15) and thus the foreseen path is infeasible.

In such a situation, suppose pbð�Þv5!vt ¼ v5 ! vt, at v2, MFPB-

HOSTP identifies the CBLP pCBLP
1ðT Þ

v2!vt ¼ v2 ! v5 ! vt and

concatenates it with the FLP to balance the aggregated r

value. In such a situation, the foreseen path fpfðuÞþCBLP
1ðT Þ

vs!v2!vt is

feasible. Assume the QoT attributes have the same weight in

the utility function, with the assistance of CBLP pCBLP
1ðT Þ

v2!vt ,

MFPB-HOSTP could select the path vs ! v1 ! v2 ! v5 ! vt

with the utility of 0.117 as the solution. Otherwise, the path

vs ! v1 ! v3 ! v6 ! vt with the utility of 0.107 will be

selected, which is worse than the one (i.e., utility is 0.117)

identified with the assistance of CBLPs.
From this example, we could see that when facing with

the new imbalance problem of QoT attributes caused by
greedily maximizing the aggregated QoT attributes values
in BLPs, CBLPs could help avoid a failed feasibility
estimation caused by a new imbalance problem of QoT
attributes. Thus, with the assistance of CBLPs, MFPB-
HOSTP could deliver a better solution in some cases. In the
process of identifying these BLPs and CBLPs, if there exist
two overlapping paths (i.e., they have the same aggregated
QoT attributes values), MFPB-HOSTP keeps only one of
them for further search, saving execution time.

Step 3 (Identify the BLP with the maximal aggregated
r value and the corresponding CBLPs).

1. Identify the BLPs with the maximal r. Similar to
Step 2, in order to avoid the imbalance problem of
r, in this step, at each intermediate node vk, MFPB-
HOSTP first identifies the BLP with the maximal
aggregated r value (denoted as pbðrÞvk!vt ) based on
Dijkstra’s shortest path algorithm [11]. In this
search process, at vk, the aggregated values of
QoT attributes of pbðrÞvk!vt are computed and re-
corded. When facing with the imbalance problem
of r at vk, BLP pbðrÞvk!vt is concatenated with the FLP
pfðuÞvs!vk , forming a new foreseen path fpfðuÞþbðrÞvs!vk!vt . This
foreseen path is used as a reference to estimate
whether there exists a feasible solution identified
by following pfðuÞvs!vk . This strategy could avoid a
failed feasibility estimation of a foreseen path
caused by the imbalance problem of r at vk.

2. Identify the CBLPs based on the BLPs with the
maximal r. To avoid the new imbalance problem of
QoT attributes caused by greedily maximizing r
value, MFPB-HOSTP then identifies M CBLPs at
each intermediate node vk, which are composed of
pbðrÞvk!vl ; l 2 ½1;M� and pbð�Þvl!vt ; l 2 ½1;M�. When facing
with the new imbalance problem of QoT attributes
caused by maximizing r value, the identified M
CBLPs at vk are concatenated with the FLP pfðuÞvs!vk , to
estimate whether there exists a feasible solution
identified by following the FLP. This could help
avoid a failed feasibility estimation of a foreseen
path caused by the new imbalance problem of the
other two QoT attributes (i.e., T and �) at vk.

Step 4 (Identify the BLP with the maximal aggregated �

value and the corresponding CBLPs):

1. Identify the BLPs with the maximal �. To avoid the

imbalance problem of �, in this step, at each

intermediate node vk, MFPB-HOSTP first identifies
the BLP with the maximal aggregated � value

(denoted as pbð�Þvk!vt ) based on Dijkstra’s shortest path

algorithm [11]. In this search process, at each vk, the

aggregated QoT attributes values of pbð�Þvk!vt are

computed and recorded. When facing with the

imbalance problem of � at vk, BLP pbð�Þvk!vt is con-

catenated with the FLP pfðuÞvk!vt , forming a new

foreseen path fpfðuÞþbð�Þvs!vk!vt . This strategy could help
avoid a failed feasibility estimation of a foreseen path

caused by the imbalance problem of � at vk.
2. Identify the CBLPs based on the BLPs with the

maximal �. To avoid the new imbalance problem

of QoT attributes caused by greedily maximizing �

value, MFPB-HOSTP then identifies M CBLPs at

each intermediate node vk, which are composed of

pbð�Þvk!vl ; l 2 ½1;M� and pbð�Þvl!vt ; l 2 ½1;M�. When facing

with the new imbalance problem of QoT attributes

caused by the BLP with the maximal � at vk, the
M CBLPs at vk are concatenated with the FLP pfðuÞvs!vk ,

to estimate the feasibility of searching by following

the FLP. This could avoid a failed feasibility

estimation of a foreseen path caused by the new

imbalance problem of the other two QoT attributes

(i.e., T and r) at vk.

In summary, the Backward_Search procedure can illus-

trate whether there exists a feasible solution in a subnet-

work. In addition, if a feasible solution exists, compared

with the Backward_Search procedure of H_OSTP, MFPB-

HOSTP identifies the BLP with the maximal aggregated

value of each of the QoT attributes. Furthermore, to solve a
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new imbalance problem of QoT attributes caused by
greedily maximizing the aggregated values of QoT attri-
butes, MFPB-HOSTP also identifies several CBLPs, which
are composed of part of the BLP with the minimal � and
part of the BLP with the maximal aggregated value of each
of the QoT attributes. When facing with an imbalance
problem of QoT attributes, the identified BLPs and CBLPs
will be used in the following Forward_Search procedure
aiming to avoid a failed feasibility estimation of a foreseen
path in H_OSTP and deliver a near-optimal solution. Next,
we discuss the search strategies adopted in the following
Forward_Search procedure of MFPB-HOSTP.

Forward_Search. In the forward search from vs to vt,

MFPB-HOSTP uses the BLPs and CBLPs identified by the

above Backward_Search procedure to investigate whether

there exists another path pforwardvs!vt , which is better in quality

than the above path pbackwardvs!vt ¼ pbð�Þvs!vt returned in the

Backward_Search procedure (i.e., whether Fðpforwardvs!vt Þ >
Fðpbackwardvs!vt Þ).

In this procedure, MFPB-HOSTP searches the path with
the maximal F value from vs to vt. Assume node vm 2
fneighboring nodes of vsg is selected based on Dijkstra’s
shortest path algorithm (i.e., FLP pfðuÞvs!vm is identified). Then,
MFPB-HOSTP concatenates the FLP with BLP pbð�Þvm!vt to
form a foreseen path fpfðuÞþbð�Þvs!vm!vt . If the foreseen path is
feasible, MFPB-HOSTP then chooses the next node from vm
with the maximal F value. Otherwise, MFPB-HOSTP
concatenates the FLP with the BLPs with the minimal T ,
r, and �, respectively, to form three foreseen paths
{fpfðuÞþBLP ð�Þvs!vm!vt ð� 2 fT; r; �gÞg. According to the feasibility of
these foreseen paths, MFPB-HOSTP adopts the following
search strategies.

Situation 1. If one of {fpfðuÞþbð�Þvs!vm!vtð� 2 fT; r; �gÞg is
feasible, MFPB-HOSTP adopts the following two strategies
to identify two social trust paths and selects the feasible
social trust path with the higher utility value as the final
solution:

1. Strategy 1. MFPB-HOSTP identifies one path by
choosing the next node from vm with the maximal
F value.

2. Strategy 2. MFPB-HOSTP identifies another path by
searching another neighboring node of vs with the
maximal F , which is the same as the search strategy
adopted in H_OSTP [29].

Situation 2. If all {fpfðuÞþbð�Þvs!vm!vt� 2 fT; r; �gg are infeasible,

then at vm, MFPB-HOSTP concatenates the FLP with the

CBLPs to form the foreseen paths (i.e., ffpfðuÞþCBLPM ð�Þ
vs!vm!vt ð� 2

fT; r; �gÞg). According to the feasibility of these foreseen

paths, MFPB-HOSTP adopts the following search strategies:

1. Subsituation 2.1. If one of ffpfðuÞþCBLPM ð�Þ
vs!vm!vt ð� 2

fT; r; �gÞg is feasible, MFPB-HOSTP identifies two

social trust paths based on Strategies 1 and 2 in the

above Situation 1, and selects the feasible social trust

path with the higher utility as the final solution.
2. Subsituation 2.2. If all of ffpfðuÞþCBLPM ð�Þ

vs!vm!vt ð� 2
fT; r; �gÞg are infeasible, MFPB-HOSTP does not

search the path from vm. Instead, MFPB-HOSTP

performs the Forward_Search procedure to search the

path from vs in the subnetwork without taking link

vs ! vm into consideration.

The following Theorem 2 illustrates that the social trust

path pforwardvs!vt identified by the Forward_Search procedure

cannot be worse than the feasible social trust path pbackwardvs!vt
identified by the Backward_Search procedure. Namely,

Fðpforwardvs!vt Þ � Fðp
backward
vs!vt Þ.

Theorem 2. With the social trust path pbackwardvs!vt identified by the

Backward_Search procedure and the social trust path

pforwardvs!vt identified by the Forward_Search procedure in

MFPB-HOSTP, if pbackwardvs!vt is a feasible solution, then

pforwardvs!vt is feasible and Fðpforwardvs!vt Þ � Fðp
backward
vs!vt Þ.

Proof. Assume that path pbackwardvs!vt consists of nþ 2 nodes

vs; v1; . . . ; vn; vt. In the Forward_Search procedure, H_OSTP

searches the neighboring nodes of vs and chooses v1 from

these nodes when a foreseen path from vs to vt via v1 is

feasible and the current path from vs to v1 has the maximal

F . This step is repeated at all the nodes between v1 and vn

until a social trust path pforwardvs!vt is identified. If at each

search step, only one node of fv1; . . . ; vng has a feasible

foreseen path, then pforwardvs!vt is the only feasible solution in

the subnetwork between vs and vt. According to Theorem 1,

then pforwardvs!vt ¼ p
backward
vs!vt . Thus, Fðpforwardvs!vt Þ ¼ Fðp

backward
vs!vt Þ.

Otherwise, if pforwardvs!vt 6¼ p
backward
vs!vt , it can lead toFðpforwardvs!vt Þ >

Fðpbackwardvs!vt Þ by maximizing the F value in all candidate

nodes which have feasible foreseen paths based on

Dijkstra’s shortest path algorithm. Therefore, Theorem 2

is proved. tu
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If there exists only one feasible solution in the subnet-
work, it can be identified by both the Backward_Search
procedure and the Forward_Seach procedure, and it is the
optimal solution. Otherwise, if there exist more than one
feasible solution in the subnetwork, then the solution
identified by the Forward_Seach procedure is near-optimal
or optimal, which is better than the one identified by the
Backward_Search procedure.

6.3 Summary

Based on the above discussion, during the Backward_Search
procedure, MFPB-HOSTP could illustrate whether there
exists a feasible solution in a subnetwork (it is proved by
Theorem 1). If a feasible solution exists, MFPB-HOSTP then
identifies several BLPs and CBLPs at each intermediate
node rather than only one BLP in H_OSTP. During the
Forward_Search procedure, MFPB-HOSTP delivers a near-
optimal solution which is no worse than the one returned by
the Backward_Search procedure (it is proved by Theorem 2). In
this search process, the identified BLPs and CBLPs are used
to concatenate with the FLP, forming multiple foreseen
paths rather than one foreseen path only in H_OSTP. These
foreseen paths could help avoid a failed feasibility estima-
tion of a foreseen path caused by the imbalance problem of
QoT attributes.

In the Backward_Search procedure, in order to identify
four BLPs for the minimal � and the maximal value of each
QoT attribute (i.e., T , r, and �), MFPB-HOSTP adopts
Dijkstra’s shortest path algorithm four times with the time
complexity of Oð4 � ðNlogN þ EÞÞ [11] (N is the number of
nodes and E is the number of links). In addition, in the
worst case, the time complexity of identifying the CBLPs for
three QoT attributes by MFPB-HOSTP is Oð3 � ðKNÞÞ,
where K is the maximal path length in a subnetwork. So,
the time complexity of the Backward_Search procedure is
Oð4 � ðNlogN þEÞ þ 3 �KNÞ.

In the Forward_Search procedure, in the worst case,
MFPB-HOSTP adopts Dijkstra’s shortest path algorithm
twice with the time complexity of Oð2 � ðNlogN þ EÞÞ [11].
In addition, in the worst case, the time complexity of
evaluating the feasibility of foreseen paths is OðKEÞ. So, the
time complexity of MFPB-HOSTP is OðNlogN þKEÞ.

In social networks, following the small-world12 character-
istic, it is usually the case that K � 7 [34]. Therefore, the
time complexity of MFPB-HOSTP is OðNlogN þ EÞ, which
is the same as that of H_OSTP. But our proposed heuristic
algorithm has better search strategies than H_OSTP. Thus,
MFPB-HOSTP delivers a solution no worse than that of
H_OSTP, and as our experiments confirm, MFPB-HOSTP
can deliver better solutions than that of H_OSTP in some
cases (see a detailed analysis in Section 7.2).

7 EXPERIMENTS

7.1 Experiment Settings

The Enron e-mail data set has been proved to possess the
small-world and power-law characteristics of social net-
works and thus it has been widely used in the studies of
social networks [15], [28], [29], [32], [43]. In addition, as
we explained in Section 3, the social intimacy degree
between participants and the role impact factor of
participants can be calculated through mining the subjects
and contents of e-mails in the Enron e-mail data set [32].
Therefore, in contrast to other real social network data
sets, the Enron e-mail data set fits our proposed complex
social network structure better. Thus, to validate our
proposed algorithm, we select the Enron e-mail data set
with 87,474 nodes (participants) and 30,0511 links (formed
by sending and receiving e-mails) for our experiments.

As we analyzed in Section 5.1, our previously proposed
H_OSTP outperforms prior algorithms in both efficiency
and the quality of identified social trust path [29]. Therefore,
in order to study the performance of our proposed
algorithm, we compare MFPB-HOSTP with H_OSTP in
both execution time and the utilities of the identified social
trust paths (see Section 7.2). In our experiments, since the
detailed mining method of QoT attribute values (i.e., T , r,
and �) is out of the scope of this paper, and they could have
different values in different applications, the QoT attribute
values are randomly generated by using rand() in Matlab.

As illustrated in Section 3, trust is domain dependent.
Therefore, in our model, source participants may specify
different QoT constraints for the social trust path selection
in different domains. In order to investigate the perfor-
mance of MFPB-HOSTP with different QoT constraints
values, 24 sets of QoT constraints are specified and listed in
Table 3, which cover some possible settings of QoT
constraints. In some cases (i.e., constraint IDs 1 to 9), the
values of QoT constraints are the same, and in the rest of the
cases (i.e., constraint IDs 10 to 24), the constraint of one QoT
attribute (i.e., T , r, or �) is larger than the values of the other
two QoT attributes. In addition, in order to investigate the
performance of MFPB-HOSTP in path selection with
different weights of QoT attributes in the utility function,
three sets of weights are specified and listed in Table 4,
where T , r, and � are given a lager weight than other two
QoT attributes, respectively.

In order to study the performance of our proposed
heuristic algorithm in the subnetworks of different scales
and structures, we first randomly select 80 pairs of source
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TABLE 3
The Setting of QoT Constraints

12. The average path length between any two nodes is about 6 hops in a
social network.



and target participants from the Enron e-mail data set.

We then extract the corresponding 80 subnetworks

between them by using the exhaustive search method.

Among them, the maximal length of a social trust path

varies from 4 to 7 hops following the small-world

characteristic. These subnetworks are grouped by the

number of hops. In each group, they are ordered by the

number of nodes in them. Table 5 lists the properties of the

simplest and the most complex subnetworks in each group

of hops. The simplest subnetwork has 33 nodes and 56

links (4 hops), while the most complex subnetwork has

1,300 nodes and 6,396 links (6 hops). With each subnet-

work, we run MFPB-HOSTP and H_OSTP three times

independently to calculate the average execution time.
Both MFPB-HOSTP and H_OSTP are implemented

using Matlab R2008a running on an IBM ThinkPad SL500

laptop with an Intel Core 2 Duo T5870 2.00 GHz CPU,

3 GB RAM, Windows XP SP3 operating system and MySql

5.1.35 database.

7.2 Experimental Results

Results and analysis of path utility. Figs. 6, 7, 8, 9, 10, and

11 plot the path utilities of the identified social trust paths in

the subnetworks categorized in groups of hops. From these

figures, we can observe that if there are no feasible solutions

in a subnetwork, both of MFPB-HOSTP and H_OSTP can

investigate the infeasibility (e.g., case S1 in Figs. 6, 7, 8, 9, 10,

and 11). This is because both of them perform a backward

search from vt to vs to identify the social trust path with the
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Fig. 6. The path utilities of subnetworks with 4 and 5 hops based on

WID ¼ 1.

Fig. 7. The path utilities of subnetworks with 4 and 5 hops based on
WID ¼ 2.

Fig. 8. The path utilities of subnetworks with 4 and 5 hops based on
WID ¼ 3.

TABLE 5
The Properties of the Simplest and the Most

Complex Subnetworks in Each Group of Hops

Fig. 9. The path utilities of subnetworks with 6 and 7 hops based on
WID ¼ 1.

Fig. 11. The path utilities of subnetworks with 6 and 7 hops based on
WID ¼ 3.

Fig. 10. The path utilities of subnetworks with 6 and 7 hops based on
WID ¼ 2.

TABLE 4
The Setting of the Weights of QoT Attributes



minimal �. It has been proved in Theorem 1 that this
procedure can always investigate whether there exists a
feasible solution in a subnetwork.

From Figs. 6, 7, 8, 9, 10, and 11, we can see that in all
cases of the 80 subnetworks, our MFPB-HOSTP does not
yield any feasible social trust path with a utility worse than
that of H_OSTP (e.g., cases S2 and S3 in Figs. 6, 7, 8, 9, 10,
and 11). This is because in the Forward_Search procedure, if
there is no imbalance problem of QoT attributes, MFPB-
HOSTP identifies the same social trust path with H_OSTP.
When facing with an imbalance problem of QoT attributes,
MFPB-HOSTP identifies two social trust paths, out of
which one path is identified by using the same search
strategy adopted in H_OSTP (see Strategy 2 of Situation 1 in
Section 6.2), and selects the feasible path with the higher
utility as the solution. Therefore, MFPB-HOSTP does not
yield any solution worse than that of H_OSTP in any cases.

According to our experimental results, in 27 out of
75 subnetworks with feasible solutions (i.e., 36 percent of
total subnetworks with feasible solutions), MFPB-HOSTP
can deliver better social trust paths than H_OSTP (e.g., case
S2 in Figs. 6, 7, 8, 9, 10, and 11). The sums of utilities
computed by MFPB-HOSTP and H_OSTP in these subnet-
works with each group of hops are listed in Table 7, where
we can see that the sum of utilities of our proposed MFPB-
HOSTP algorithm is 15.94 percent more than that of
H_OSTP in 4 hops subnetworks, 46.51 percent more in
5 hops, 12.63 percent more in 6 hops, and 17.79 percent
more in 7 hops. This is because when facing with an
imbalance problem of QoT attributes at an intermediate
node vk, in addition to pbð�Þvk!vt , more BLPs are concatenated
with the FLP identified by the forward search procedure,
forming multiple foreseen paths and helping avoid a failed
feasibility estimation. Thus, MFPB-HOSTP can deliver a
better solution than H_OSTP in some cases.

Results and analysis of the execution time. Figs. 12 to
13 plot the average execution time of the social trust path
selection with three different weights of QoT attributes.
From these figures, we can see that in most cases (i.e.,
3;082=5;760 ¼ 53:5% of total cases), MFPB-HOSTP has the
same execution time as that of H_OSTP (e.g., case S4 in
Figs. 12 to 13). This is because if no feasible solution exists
in the subnetwork, based on Theorem 1, both of MFPB-
HOSTP and H_OSTP can identify this and stop the search
process, resulting in the same execution time. In addition,
in the rest of the cases, MFPB-HOSTP consumes more
execution time than H_OSTP (e.g., case S5 in Figs. 12 to 13).
This is because if a feasible solution exists in a subnetwork,
at each intermediate node vk, in addition to pbð�Þvs!vk , MFPB-
HOSTP identifies multiple BLPs (i.e., the BLPs with the
maximal aggregated value of each of QoT attribute and M
CBLPs for each QoT attribute) in the Backward_Search
procedure, rather than one BLP only in H_OSTP (see
Section 6.2). Moreover, when facing with the imbalance
problem of QoT attributes at vk, MFPB-HOSTP needs to
identify two social trust paths. The total execution time of
each of MFPB-HOSTP and H_OSTP in subnetworks with
each group of hops is listed in Table 6, where we conclude
that the ratio of the execution time between MFPB-HOSTP
and H_OSTP is similar in subnetworks with each group of
hops. On average, the execution time of MFPB-HOSTP is
1.288 times of that of H_OSTP.

Through the above experiments conducted on subnet-
works with different scales and structures, we can see that
on average MFPB-HOSTP consumes 1.288 times of the
execution time of H_OSTP while delivering better solutions
in subnetworks. Since MFPB-HOSTP has the same poly-
nomial time complexity (i.e., OðNlogN þ EÞ) as H_OSTP,
MFPB-HOSTP is superior to H_OSTP when applied to
large-scale social networks.

8 CONCLUSIONS

In this paper, we have presented a complex social network
structure that takes trust information, social relationships
and recommendation roles into account, reflecting the real-
world situations better. For selecting the optimal social trust
path with end-to-end QoT constraints in complex social
networks, which is an NP-Complete problem, we first
analyzed the advantages and the disadvantage (i.e., the
imbalance problem of QoT attributes) of our previously
proposed H_OSTP that is one of the most promising
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Fig. 13. The execution time of subnetworks with 6 and 7 hops.

TABLE 6
The Comparison of Execution Time

TABLE 7
The Comparison of Path Utility

Fig. 12. The execution time of subnetworks with 4 and 5 hops.



algorithms for the MCOP selection problem. Based on
H_OSTP, we then proposed MFPB-HOSTP, an efficient
heuristic algorithm, where multiple foreseen paths are
formed, helping avoid a failed feasibility estimation of a
foreseen path caused by the imbalance problem of QoT
attributes. The results of experiments conducted on a real
data set demonstrate that MFPB-HOSTP outperforms
existing methods in optimal social trust path selection with
good efficiency.

For our future work, we plan to develop a social network
based trust-oriented service and service provider search
engine, which maintains a database of participants and the
complex social network among them. In this system, our
proposed method will be applied, for instance, to help a
buyer identify the most trustworthy one from all sellers
selling the product preferred by the buyer.
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