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ABSTRACT
Mobile advertising has recently seen dramatic growth, fu-
eled by the global proliferation of mobile phones and devices.
The task of predicting ad response is thus crucial for maxi-
mizing business revenue. However, ad response data change
dynamically over time, and are subject to cold-start situ-
ations in which limited history hinders reliable prediction.
There is also a need for a robust regression estimation for
high prediction accuracy, and good ranking to distinguish
the impacts of different ads. To this end, we develop a Hier-
archical Importance-aware Factorization Machine (HIFM),
which provides an effective generic latent factor framework
that incorporates importance weights and hierarchical learn-
ing. Comprehensive empirical studies on a real-world mobile
advertising dataset show that HIFM outperforms the con-
temporary temporal latent factor models. The results also
demonstrate the efficacy of the HIFM’s importance-aware
and hierarchical learning in improving the overall prediction
and prediction in cold-start scenarios, respectively.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.4 [Information Systems Appli-
cations]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Factorization machine, hierarchy, importance weight, mobile
advertising, response prediction
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1. INTRODUCTION
The proliferation of mobile phones and devices has made

mobile advertising an effective means for businesses to tar-
get the desired market on the fly. Global mobile advertising
revenue is projected to hit $11.4 billion by 2013, creating
new opportunities in many countries [7]. A mobile advertis-
ing ecosystem is typically governed by an ad network, which
mediates all transactions between advertisers and content
publishers. The advertiser plans a budget, provides ads, and
agrees on commission for customer actions (e.g., clicking an
ad, or bidding in an auction). The publisher contracts with
the ad network to display ads on their (web)pages, and earns
commission based on the traffic driven to the advertisers.

The most popular monetary paradigm in mobile advertis-
ing is the cost-per-click (CPC) scheme. An advertiser places
a bid for an ad to be placed on some publisher’s webpage,
and pays the bid amount to the publisher only if the ad is dis-
played (i.e., an exposure) and chosen by a user (i.e., a click).
Among the competing ads, the publisher chooses to display
the ad with the highest expected revenue, which is the ad’s
bid price times the probability it is clicked. This probability
is known as clickthrough rate (CTR), and accurately esti-
mating it is important for maximizing revenue. The task of
estimating CTR (or similar metrics such as conversion rate)
falls under the term response prediction [11, 15].

Response prediction tasks present several challenges. First,
ad response data are dynamic and change over time. There
is a need for a method that can account for the temporal
aspects of the data. Second, most ads have limited or no
past history in a page–also known as the cold-start issue.
That is, the response estimation is highly unreliable if we
have very low ad exposures. Robust estimation in cold-start
cases is important for the advertisers, as it provides a means
to measure/explore the potential of investing in new pages
and ads. To increase robustness, we can plausibly leverage
on prior knowledge in the form of hierarchical structure of
pages and ads. Such hierarchy contains useful information
about correlations between responses at various levels, which
can smoothen the estimation for limited historical data.

From the modeling standpoint, response prediction tasks
involve two requirements: good regression and good ranking
performances [16]. In real-time auctions for mobile adver-



tising, ads are often ranked based on bid× CTR. It is thus
important that CTR gives good ranking that distinguishes
the impacts of different ads. Also, ads are usually priced via
a next-price auction, i.e., the price of a click on an ad at rank
i is based on the ad’s expected bid×CTR at the next lower
rank [3]. In this, the CTR (regression) estimates must be
as accurate as possible, especially for ads that are displayed
many times. That is, high importance weights should be as-
signed to ads with high exposures, as the cost of inaccurately
predicting the response of such ads is high.
To address all the above challenges and requirements,

we present in this paper a novel latent factor model for
response prediction, termed Hierarchical Importance-aware
Factorization Machine (HIFM). Our HIFM is built upon the
state-of-the-art factorization machines (FM) [12, 13], with
new extensions to utilize importance weights and hierarchi-
cal knowledge for handling temporal/dynamic ad response
data. We summarize our key contributions as follows:

• We develop a new latent factor framework that utilizes
importance-aware and hierarchical learning for han-
dling temporal ad response data. These two ideas help
improve response prediction by putting priorities based
on ads’ exposures and by making more informative
prediction in cold-start cases, respectively. Deviat-
ing from the existing approaches, which are often very
specialized (e.g., only works for dyads) and not able
to cater for temporal data, HIFM offers a generic ap-
proach to simultaneously address importance weight,
hierarchical knowledge, and temporal dynamics.

• We adapt and generalize two learning algorithms, the
stochastic gradient descent (SGD) and coordinate de-
scent (CD), to facilitate importance-aware and hier-
archical learning in HIFM. We adopt roulette wheel
sampling strategy and weighted least square update
to cater for the importance weight in SGD and CD
respectively, while hierarchical learning is achieved in
both SGD and CD by means of hierarchical fitting and
regularization. For each algorithm, we develop sev-
eral variants with (the same) linear runtime complex-
ity. These extensions in turn facilitate comprehensive
studies for evaluating different methods.

• Extensive experiments on real-world mobile advertis-
ing data show that HIFM outperforms contemporary
temporal latent factor models. We also find statis-
tically significant improvements due to the HIFM’s
importance-aware and hierarchical learning, in terms
of the overall (weighted) prediction and prediction for
cold-start cases, respectively. This shows the applica-
bility of HIFM in complex response prediction tasks.

2. RELATED WORK
Traditionally, the data mining approaches to ad response

prediction broadly fall into two camps: feature-based and
maximum likelihood-based [11]. In feature-based methods,
prediction models are constructed based on explicit features
of a page and/or an ad. These features–also termed as side
information–may include textual content of an ad, its place-
ment on the (web)page, etc. Feature-based methods typi-
cally utilize prediction models from logistic regression family
[8, 15]. However, constructing these models requires exten-
sive manual intervention or domain knowledge. On the other

Table 1: Global count statistics
Minimum exposure (emin)

Entity 1 10 100 1000
#records 24,172,134 10,535,658 3,587,160 931,032
#(web)pages 244,341 138,351 55,260 16,374
#publishers 3,945 3,539 2,654 1,643
#countries 243 239 226 199
#channels 8 8 8 8
#ads 23,500 18,365 15,600 10,877
#advertisers 1,989 1,406 1,245 1,124
#banner types 5 4 3 3

hand, maximum likelihood-based methods try to smoothen
the response estimation using statistical models of ad clicks
and exposures, e.g., the Gamma-Poisson model [1, 2]. These
methods, however, are based on simple linear models and
lack the ability to capture rich latent structure in data.

In this light, Menon et al. [11] proposed a hybrid approach
by combining matrix factorization (MF) with explicit page
and ad features as well as hierarchical information about
pages and ads. This method learns a set of latent features
from data through MF, and at the same time allows side
information–typical of traditional feature-based methods–to
be incorporated for improving the prediction. However, the
MF representation used in this method is only restricted to
dyadic relations (e.g., page vs. ad), and does not cater for
higher-order relations such as those that include temporal
dynamics (e.g., page vs. ad vs. day). Similar hierarchical
MF methods were proposed in [23, 18], but like [11] all of
them assume a restrictive dyadic representation.

On the other hand, several time-aware factorization ap-
proaches have been proposed, which take into account the
temporal dynamics in data. Comon et al. presented a ten-
sor factorization method trained using an alternative least
square algorithm [5]. Koren developed TimeSVD++ to ad-
dress temporal dynamics via specific parameterization with
factors drifting from a central time [9]. More recently, Shen
et al. [19] proposed a tensor factorization model to address
the issue of personalization in click modeling. Other models
have been developed that combine MF and Kalman filter to
simultaneously model the spatial and temporal patterns in
data [10, 21]. Regardless, all these methods use restrictive
representation and cannot be easily extended to augment
side information such as hierarchical prior knowledge.

Recently, Rendle [12, 13] proposed a generic factorization
machine (FM) framework, which can efficiently handle ar-
bitrary relationships (i.e., dyad, triad, etc.). The approach
can thus be used to address temporal data and can easily
incorporate side information. As noted in [13], the FM ap-
proach can mimic many state-of-the art factorization models
(e.g., pairwise tensor factorization, TimeSVD++, attribute-
aware models, and neighborhood models), and exhibits good
performances on many competitive tasks [13]. Nonetheless,
the current FM does not yet cater for hierarchical structure
and/or instance importance in its model. In light of response
prediction task, we extend and generalize the FM framework
in this work by combining importance-aware learning and
hierarchical fitting and regularization.

3. PROBLEM FORMULATION

3.1 Dataset
In our study, we use the data provided by our industry

partner, a global mobile advertising network based in Sin-
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(a) Page × advertiser
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(b) Publisher × advertiser
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(c) Channel × advertiser
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(d) Publisher × ad
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(e) Channel × ad

Figure 1: Temporal distribution of click-through rates grouped at various hierarchy levels

gapore. The supplied data consist of a campaign table and
an ad click table. The latter contains records of clicks and
exposures for various (web)pages and ads at different days.
The data were taken from a 27-day period, 05-31 October
2012, and have 24,172,134 records. In this period, there are
over 17 billion ad exposures and over 42 million ad clicks.
The ad click table has several fields: day (yyyy-mm-dd

format), page (page ID), publisher (publisher ID), ad (ad
campaign ID), channel (publisher’s channel type), and num-

click and numexpose (number of clicks and exposures for a
page-ad pair at a given day, respectively). Each record in
the table is uniquely identified by a (page, ad, day) triplet.
There are five (i.e., channel) types, each denoting the pub-
lisher category (e.g., adult sites, entertainment and lifestyle,
glamour and dating, etc.). From numclick and numexpose,
we can then estimate CTR = numclick

numexpose
, though precaution

needs to be exercised when numexpose is low. Also note
that all records in the ad click table have numexpose ≥ 1.
The campaign table, on the other hand, complements the

ad click table and comprises several fields: ad (as with the
ad click table), advertiser (advertising company of the
ad), and bannertype (type of ad banners). That is, the
table maintains a list of ads with their corresponding adver-
tisers and banner types; the latter involve five categories:
{image, remote, splash, tablet, text}. It is also worth noting
that all fields (except for day) in the ad click and campaign
tables are anonymized for security protection.
Table 1 summarizes the count statistics derived from the

ad click and campaign tables. It shows the counts of various
entities as the minimum exposure threshold emin is varied
from 1 to 1000. Here the number of records refers to that
of (page, ad, day) triplets in the ad click table. As emin gets

increased, we can see rather drastic reductions in the counts
(except for channel and bannertype), suggesting a heavy-
tail distribution where most pages have small number of ad
exposures and thus low-confidence CTR estimates.

3.2 Response Prediction
We now formulate our response prediction task: Given

a pair of page p and ad a at a specific day d, we predict
the click probability CTR. That is, we wish to compute the
probability Pp,a,d = Pr(Click|Exposure, p, a, d), where p, a
and d denote a particular page, ad, and day respectively.

A simple solution to this task is to use the maximum likeli-
hood estimate (MLE) [11], i.e., PMLE

p,a,d =
cp,a,d

ep,a,d
, ∀ep,a,d > 0,

where cp,a,d and ep,a,d are the numbers of ad clicks and ex-
posures respectively. However, when ep,a,d is very small, the
MLE estimate would be highly noisy. For instance, if an ad
has been exposed 3 times on a page and received no click, a
CTR estimate of 0 would make no sense. As this extreme
case is common in practice, we need an alternative estimate
P̂ that smoothens the MLE so as to make it more reliable.

As advocated in [11], a good predictive model for esti-

mating P̂ should fulfill several criteria. First, it should pro-
vide smoothened estimates in the face of very few exposures
ep,a,d. Second, it should output meaningful probabilities,
within the range [0, 1]. Finally, the MLE should be consis-

tent, meaning that as ep,a,d → ∞, P̂p,a,d → PMLE
p,a,d . In other

words, when the number of exposures is large enough, any
estimator P̂ should converge to the MLE.

3.3 Page and Ad Hierarchies
Further investigations on the ad click and campaign tables

reveal that page and ad hierarchies exist in the data. That



is, a page is associated with a publisher, and a publisher

belongs to a unique channel. Similarly, an ad belongs to
an advertiser. Hierarchical structure encodes useful prior
knowledge for improving CTR estimation when we have lit-
tle data at granular level. For instance, if a (page, ad) pair
has only very small numexpose, but the siblings of the ad

has large numexpose, we can increase the confidence of its
estimate by leveraging the siblings’ estimates. This allows a
“back-off” mechanism for borrowing data from coarse level
to smoothen the estimation at the granular level [11].
For our hierarchy analysis, we compute the CTR dis-

tribution for different pairs (Cartesian products) of enti-
ties in the page and ad hierarchies: page × advertiser,
publisher×ad, channel×ad, publisher×advertiser, and
channel× advertiser. Figure 1 shows the box plots of the
CTR variations (i.e., first quantile, median, and third quan-
tile) for each entity pair over 27 days. To obtain Figure 1(a),
for instance, we first group each ad by the advertiser, and
then look at the CTR variation under the page-advertiser
pair for a given day. Specifically, we calculate the standard
deviation of the CTR for each page-advertiser pair, which
measures the homogeneity of the CTR under the group. We
repeat the procedure for the remaining (four) combinations,
the results of which are shown in Figures 1(b)-(d).
From these plots, we can make several observations. First,

the CTR values vary across different days, which justifies
the need to model temporal dynamics. Second, comparing
Figure 1(a)-(c) and 1(d)-(e), we can see that the CTR vari-
ability increases as we go up in the hierarchy, implying that
the CTR values are less (more) homogeneous at the higher
(lower) level. This suggests the feasibility of the “back-off”
mechanism, i.e., when a child node lacks data, we can lever-
age on the estimates from its parent(s), and then those from
its grandparent(s), and so on.

4. FACTORIZATION MACHINE
The HIFM model we proposed to predict CTR is built

upon a generic latent factor model called factorization ma-
chine (FM) [12, 13]. We first describe the basic FM in this
section, and then new extensions that we develop in-house
for HIFM in Section 5, based on different importance-aware
learning methods and use of page and ad hierarchies.

4.1 Model Overview
The FM takes as its inputs a real-valued feature matrix

(also called design matrix ) X ∈ R
N×J . For an input vector

xi (i ∈ {1, . . . , N}, xi ∈ R
J), the output ŷi of an (order-2)

FM is defined in (1):

ŷ(xi) = w0 +

J∑
j=1

wjxi,j +

J∑
j=1

J∑
j′=j+1

xi,jxi,j′

K∑
k=1

vk,jvk,j′

︸ ︷︷ ︸
=p̂(xi)

(1)

where K is the dimensionality of the interaction factors, and
the model parameters Θ = {w0, w1, . . . , wJ , v1,1, . . . , vK,J}
consist of wo ∈ R, w ∈ R

J , and V ∈ R
K×J .

According to [12], we can efficiently compute the term
p̂(xi) in (1) based on its equivalent formulation (2):

p̂(xi) =
1

2

K∑
k=1

⎡
⎣( J∑

j=1

vk,jxi,j

)2

−
J∑

j=1

v2k,jx
2
i,j

⎤
⎦ (2)

This makes it possible to quickly process all N instances of
a design matrix X in linear time O(KNz(X)), where Nz(X)
is the number of non-zero entries in X.

4.2 Multilinearity Property
The FM has an appealing multilinearity trait: for each

model parameter θ ∈ Θ, the FM output ŷ(xi) is a linear
combination of two functions rθ(x) and gθ(x), as per (3):

ŷ(xi) = rθ(xi) + θgθ(xi), ∀θ ∈ Θ (3)

where gθ(xi) corresponds to the gradient term (4):

gθ(xi) =
∂ŷ(xi)

∂θ
=

⎧⎪⎨
⎪⎩
1 if θ = w0

xi,j if θ = wj

xi,j (qi,k − vk,jxi,j) if θ = vk,j

(4)

and qi,k =
∑J

j=1 vk,jxi,j is the inner-product term that can

be precomputed (cached) for efficient learning (cf. Section
5.3). Note that in our learning procedures, the residual term
rθ(xi) need not be computed; we only use the term gθ(xi).

5. THE PROPOSED HIFM FRAMEWORK
We extend the basic FM model to incorporate importance

weights and hierarchical structure for response prediction
tasks, which results in the proposed HIFM model. We first
discuss how importance weights and hierarchy can be incor-
porated into our model in Sections 5.1 and 5.2, respectively.
Section 5.3 then presents our several variants of optimization
algorithm for learning the HIFM’s model parameters.

5.1 Importance-Aware Loss Functions
We consider the problem of predicting the click probabil-

ity ŷi(x|Θ) ∈ [0, 1] (i.e., CTR), given a design matrix X and
model parameters Θ. The goodness-of-fit between the pre-
dicted and actual probabilities can be expressed using the
two objective functions in (5) and (6):

Lsquare(Θ) =

N∑
i=1

ei(
ci
ei

− ŷ(xi|Θ))2 +Ω(Θ) (5)

Llogistic(Θ) =−
N∑
i=1

(ci log σ(ŷ(xi|Θ))+

(ei − ci) log (1− σ((ŷ(xi|Θ))) + Ω(Θ)) (6)

where ci ≥ 0 and ei ≥ 1 denote the numbers of observed
ad clicks and exposures (impressions) for the ith instance
xi ∈ X, respectively, ŷi(x|Θ) ∈ [0, 1] is the click probability
to be predicted by FM, Ω(Θ) is the regularization term, and
σ(x) = 1

1+e−x is the logistic function. These formulae are
also known as the weighted square and weighted logistic loss
functions, using ei as the importance weights.

The regularization term Ω(Θ) is useful to reduce the risk
of data overfitting, due to a large number of model param-
eters Θ (especially when K is large). Typically, L2 regular-
ization is used [20] as given in (7):

Ω(Θ) =
1

2

∑
θ∈Θ

λθθ
2 (7)

which is equivalent to imposing a Gaussian prior on θ, i.e.,
θ ∼ N (0, λ−1

θ ). This regularization essentially tries to penal-
ize model parameters that have large (squared) norm, thus
driving the parameter values to be small.
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Figure 2: Example of page and ad hierarchies

5.2 Hierarchical Learning
Inspired by [11, 18], we utilize hierarchical information in

our FM model via two ways: hierarchical fitting and regu-
larization. For illustration, we consider the page and ad hi-
erarchies in Figure 2. There are six instances at the bottom
level, each corresponding to a page-ad-day (p, a, d) triplet.
For the page hierarchy, each page belongs to a publisher
node (pb) and then a publisher belongs to a unique channel
(ch). Meanwhile, for the ad hierarchy, each ad belongs to
an advertiser node (av). We implement the hierarchies as a
directed graph (DG). It should be noted that the hierarchy
structure need not be a tree; the DG representation allows
us to work with non-tree hierarchy as well.
To incorporate hierarchical constraints into FM, we let

every node in the hierarchy to possess its own latent factors
(i.e., {wj} and {vk,j}). Using this setup, we impose hier-
archical regularization on the latent factors, so that each
factor has a prior that makes it more similar to its parent in
expectation. This is expressed in (8):

θ0 ∼ N (0, λ−1
θ0

), ∀θ0 ∈ Hroot (8)

θj ∼ N (θ̄Par, λ
−1
θj

), ∀θj ∈ H−Hroot (9)

where θ̄Par is the average of the parents’ latent factors as
defined in (10):

θ̄Par =
1

|Par(θ)|
∑

θp∈Par(θ)

θp (10)

where Par(θ) is the set of all parents of θ.
The resulting hierarchical regularization is given in (11):

Ω(Θ) =

{
1
2

∑
θ λθ

(
θ − θ̄Par

)2
if θ ∈ H−Hroot

1
2

∑
θ λθθ

2 if θ ∈ Hroot

(11)

where H is the set of all nodes in the hierarchy, and Hroot

is the set of root nodes sitting at the top of the hierarchy
(i.e., with no incoming edges). In other words, every node
is expected to be similar to its parents (if any). Note that
our regularization approach is more general than that in [11,
18], which is only restricted to dyads (pages and ads in this
case) and does not model temporal dynamics. Also, in our
approach, the interactions between pages, ads (and days) are
governed by shared latent factors Vk,j , instead of separate
latent factors for pages and ads as in [11, 18]. Together
with hierarchical regularization, this enables our method to
handle sparse data more effectively.
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Figure 3: Example of feature representation for FM

While hierarchical regularization alone can help constrain
the parameters of the nodes, the final derived priors may not
conform directly to the underlying click and exposure data.
More informative priors can be obtained by fitting the data
directly, that is, by agglomerating the click/expose data over
various pages and ads. As an example, for a publisher node
pb, we agglomerate the clicks/exposures of all page-ad-day
triplets (p, a, d) where p belongs to publisher. In this way,
a reasonable prior for the children’s latent factors can be
learned. Formally, the aggregated clicks and exposures of a
non-leaf node u in the hierarchy are defined in (12):

cu =
∑

v:u∈Par(v)

cv, eu =
∑

v:u∈Par(v)

ev (12)

The base case is when v is the leaf node, such that cu (or
eu) is the standard click (or expose) value ci (or vi).

Figure 3 illustrates the FM-compatible feature representa-
tion for the example in Figure 2. We use binary categorical
features to represent various entities in the hierarchy. Each
row represents a data instance, and is associated with a tar-
get response (CTR) and importance weight (exposures) ei.
The base instances (i.e., page × ad × day) correspond to
the first six rows. In the next level publisher × ad × day,
we aggregate the exposures ei (and similarly the clicks ci),
yielding the next five rows. We repeat this for the remaining
combinations to obtain the full design matrix X for FM.

One may notice from Figure 3 that, due to the agglom-
eration process, the exposures and clicks of the base cases
page×ad×day will be outweighed by the ones in the parent



level (e.g., publisher×ad×day). As our model is weighted
by the exposures, the contribution of the base cases would be
“ignored” in our HIFM training. To remedy this, we rescale
the importance weights of all non-base cases using (13):

ei ← ei
2

∑
p∈page×ad×day ep∑
q �∈page×ad×day eq

, ∀i 	∈ page× ad× day (13)

That is, we rescale based on the ratio of the sum of exposures
of the base cases over that of the non-base cases.

5.3 Optimization Algorithms
To support hierarchical and importance-aware learning in

HIFM, we develop two classes of efficient iterative methods:
stochastic gradient descent (SGD) and coordinate descent
(CD), as described in Sections 5.3.1 and 5.3.2 respectively.

5.3.1 Stochastic Gradient Descent
The standard, unweighted SGD update for a specific model

parameter θ is given in (14):

θ ← θ − η

[
∂l(yi, ŷ(xi|Θ))

∂θ
+

∂Ω(Θ)

∂θ

]
(14)

where yi is the target value of the ith instance, and l(a, b) =
(b − a)2 for square loss or l(a, b) = −a log(σ(b)) − (1 −
a) log(1 − σ(b)) for logistic loss. The (sub)gradients of the
square and logistic losses translate to (15)-(16) respectively:

∂lsquare(yi, ŷ(xi|Θ))

∂θ
= (ŷ(xi|Θ)− yi) gθ(xi) (15)

∂llogistic(yi, ŷ(xi|Θ))

∂θ
= (σ(ŷ(xi|Θ))− yi) gθ(xi) (16)

A simple way to incorporate importance weights is to over-
sample the instances as many as the number of exposures ei.
However, for large ei, the oversampled data would be much
larger than the original data, leading to inefficient computa-
tion. Another tempting approach is to multiply the gradient
term gθ(xi) by ei. However, such approach violates the prin-
ciple that an instance xi with importance weight ei should
be treated as if it appears ei times in the data.

Algorithm 1 Importance-aware SGD with regularization

Input: Design matrix X, targets y = {yi}, regularization
parameters {λθ}, initial width σ, learning rate η

Output: Model parameters Θ
1: w0 ← 0; w ← (0, . . . , 0); V ∼ N(0, σ2)
2: repeat
3: for i ∈ {1, . . . , N} do
4: i ← RouletteWheelSelection()

5: w0 ← w0 − η
(

∂l(ŷ(xi|Θ),yi)
∂w0

+ ∂Ω(Θ)
∂w0

)
6: for j ∈ {1, . . . , J} ∧ xj 	= 0 do

7: wj ← wj − η
(

∂l(ŷ(xi|Θ),yi)
∂wj

+ ∂Ω(Θ)
∂wj

)
8: for k ∈ {1, . . . ,K} do

9: vk,j ← vk,j − η
(

∂l(ŷ(xi|Θ),yi)
∂vk,j

+ ∂Ω(Θ)
∂vk,j

)
10: end for
11: end for
12: end for
13: until stopping criterion is met

In light of these drawbacks, we propose to use a simple
roulette wheel selection mechanism [4]. That is, the proba-
bility of selecting instance xi with importance weight ei is

given by p(xi) =
ei∑N

i′=1
e′i
, and subsequently a random sam-

pling (with replacement) is carried out according to p(xi)
until N instances are obtained1. In this way, we can avoid
explicitly oversampling the data, while achieving asymptoti-
cally the same effect of presenting an instance ei times, given
sufficient number of iterations. Note that, for each instance,
the runtime complexity of our importance-aware SGD re-
mains the same as the original SGD, i.e., O(KNz(X)).

Our importance-aware SGD method (with generic regu-
larization term) is summarized in Algorithm 1. With respect

to the different regularizations (7) and (11), the term ∂Ω(Θ)
∂θ

evaluates to (17) and (18) respectively:

∂Ω(Θ)

∂θ
= λθθ (17)

∂Ω(Θ)

∂θ
= λθ

(
θ − θ̄Par

)
(18)

where we have a special case θ̄Par = 0 if θ ∈ Hroot.
Finally, in cold-start situations, we perform a special pro-

cedure when dealing with a new column j in unseen (test)
data. Specifically, whenever we have hierarchy information,
we augment our prediction using the latent factors of the
ancestors. This is realized via the “back-off” formula (19):

wj ←
∑

j′∈Path(j)−{j}
wj′ , vk,j ←

∑
j′∈Path(j)−{j}

vk,j′ (19)

where Path(j) refers to the path from the root node to node
j in the hierarchy. For a non-tree hierarchy, we utilize the
average latent factor of the parent nodes level by level.

5.3.2 Coordinate Descent
The basic idea of the CD algorithm is to start with an ini-

tial (random) guess of Θ, and then iterate over and update
each model parameter θ ∈ Θ, assuming all the other param-
eters are fixed. We propose an extended importance-aware
CD with generic regularization. For the weighted square
loss in (5), the importance-aware CD algorithm performs an
update of the form (20):

θ = argmin
θ

(
N∑
i=1

ei(ŷ(xi|Θ)− yi)
2 +Ω(Θ)

)
(20)

Note that, for logistic loss, there is no closed-form solution
for the update, so we focus only on square loss in this paper.

Consequently, the update steps for the regularization in
(17) and (18) are given by (21) and (22) respectively:

θ ← θ
∑N

i=1 eig
2
θ(xi) +

∑N
i=1 eigθ(xi)ri∑N

i=1 eig
2
θ(xi) + λθ

(21)

θ ← θ
∑N

i=1 eig
2
θ(xi) +

∑N
i=1 eigθ(xi)ri + λθ θ̄Par∑N

i=1 eig
2
θ(xi) + λθ

(22)

where ri = yi − ŷ(xi|Θ) is the residual term and, again,
θ̄Par = 0 if θ ∈ Hroot. The update for standard (L2) regu-
larization is thus a special case of (22), where Par(θ) = ∅.
In the case of a cold-start column such that all gθ(xi) = 0,
hierarchical regularization gives us θ ← θ̄Par, which should
lead to a more informative prediction.

Algorithm 2 outlines our importance-aware CD method
with generic regularization. Here, linear-time learning can

1The standard, unweighted SGD refers to a special case of
roulette wheel selection with uniform probability p(xi) =

1
N



Algorithm 2 Importance-aware CD with regularization

Input: Design matrix X, targets y = {yi}, regularization
parameters {λθ}, initial width σ

Output: Model parameters Θ
1: w0 ← 0; w ← (0, . . . , 0); V ∼ N(0, σ2)
2: repeat
3: ŷ ← predict all instances X
4: r ← y − ŷ
5: Update w0 using (21) or (22)
6: Update cache r using (25)
7: for j ∈ {1, . . . , J} do
8: Update wj using (21) or (22)
9: Update cache r using (25)
10: end for
11: for k ∈ {1, . . . ,K} do
12: Initialize cache q.,k using (24)
13: for j ∈ {1, . . . , J} do
14: Update vk,j using (21) or (22)
15: Update cache r using (25)
16: Update cache q using (26)
17: end for
18: end for
19: until stopping criterion is met

be achieved using r-cache and q-cache, which store the re-
sults of (pre)computing the residuals {ri} and inner-product
terms {qi,k}. They are given in (23) and (24) respectively:

ri = yi − ŷ(xi|Θ) (23)

qi,k =
J∑

j=1

vk,jxi,j (24)

After each update of model parameter θ, we update the
e-cache accordingly. Similarly, for every update of Vk,j , we
update the q-cache. The cache update steps are summarized
in (25) and (26) respectively:

ri ← ri −
(
θnew − θold

)
gθ(xi) (25)

qi,k ← qi,k +
(
vnew
k,j − voldk,j

)
xi,j (26)

Referring to (22), the bulk of the CD computations lies on

two terms:
∑N

i=1 eig
2
θ(xi) and

∑N
i=1 eigθ(xi)ri. By caching

residuals {ri} and inner-products {qi,k}, each full iteration
over all θ ∈ Θ can be done quickly in O(KNz(X)).
We also note that Algorithm 2 actually corresponds to the

cyclic coordinate descent, which traverses all columns j in a
fixed order (i.e., from j = 1 to j = J). In a similar vein
to [17], we also develop a stochastic variant called stochastic
coordinate descent, which iterates over the columns in a ran-
dom order instead. In our experiments, we found that this
stochastic version exhibits faster convergence, albeit produc-
ing similar overall prediction quality (cf. Section 6.3).

6. EXPERIMENTS

6.1 Setup
We conducted 10 runs of experiments to evaluate our al-

gorithms, based on the ad response dataset supplied by our
partner for the period of 05-31 October 2012 (cf. Section 3).
For each run, we take 9 days and split the data by time into

Table 2: Experiment setup
Evaluation Training period Test period
Trial 1 05-11 October 12-13 October
Trial 2 07-13 October 14-15 October
Trial 3 09-15 October 16-17 October
Trial 4 11-17 October 18-19 October
Trial 5 13-19 October 20-21 October
Trial 6 15-21 October 22-23 October
Trial 7 17-23 October 24-25 October
Trial 8 19-25 October 26-27 October
Trial 9 21-27 October 28-29 October
Trial 10 23-29 October 30-31 October

a training set (7 days) and a test set (2 days). For our eval-
uations, we use the average and standard deviation of the
prediction results on the 10 test sets. Table 2 summarizes
the configuration of our training and test sets.

For all algorithms, we set the number of interaction factors
as K = 5, as we find it gives good overall results. We also
fix the regularization parameters as λθ = 0 for θ = w0, and
λθ = 0.001 for θ = wj or θ = Vk,j . As our stopping criterion,
we fix a total number of iterations for each algorithm. For
the SGD algorithm, we set the total iterations to 100, while
we use 10 for the CD algorithm (since CD generally requires
fewer iterations than SGD to reach convergence).

6.2 Evaluation Metrics
As mentioned in Section 1, a desirable model for response

prediction should give good regression and ranking results.
Accordingly, we evaluate the prediction performances of our
algorithms using several regression and ranking metrics. For
regression, we use weighted root mean square error (wRMSE)
and weighted negative log likelihood (wNLL), as defined in
(27) and (28) respectively, for a test set with N instances:

wRMSE =

√∑N
i=1 ei (yi − ŷi)

2∑N
i=1 ei

(27)

wNLL = −
∑N

i=1 ei(yi log σ(ŷi) + (1− yi) log (1− σ(ŷi))∑N
i=1 ei

(28)

Here yi and ŷi denote the target and predicted outputs re-
spectively, and (again) ei is the number of exposures. The
wRMSE and wNLL can be thought as complementary met-
rics quantifying the importance-weighted“distance”between
predicted and actual probabilities. They also correspond to
the loss functions (5) and (6) respectively.

For ranking, on the other hand, we use the weighted area
under the receiver-operating characteristic curve (wAUC)
[6]. Essentially, this metric reflects the probability that a
predictive model will rank a randomly chosen positive in-
stance higher than a randomly chosen negative one. In this,
we treat the problem as a binary classification task, where a
click (no click) indicates a positive (negative) instance. For
example, if the number of exposures ei = 10 and the number
of clicks ci = 3 (i.e., CTR = yi = 0.3), we treat this as 3
positive instances and 7 negative instances. By “unrolling”
all CTR entries this way, we can compute AUC weighted by
ad exposures so as to measure the ranking quality.

6.3 Overall Results
The overall prediction results, evaluated using the three

performance metrics, are summarized in Tables 3, 4 and 5,



Table 3: Consolidated results averaged over 10 trials for emin = 10
Method Type Importance Hierarchy wRMSE wNLL wAUC
TensorALS - - - 0.0245347 ± 0.0006238 0.1141281 ± 0.0031088 0.5 ± 0.0
TimeSVD++ - - - 0.0230917 ± 0.0005482 0.0369275 ± 0.0009549 0.7046705 ± 0.0101725
FM-SGD Square No No 0.0105449 ± 0.0040673 0.0190836 ± 0.0033935 0.7600722 ± 0.0348881

No Yes 0.0092290 ± 0.0034284(*) 0.0190393 ± 0.0040543 0.7588117 ± 0.0426068
Yes No 0.0043385 ± 0.0003909(*) 0.0139876 ± 0.0021322(*) 0.8263158 ± 0.0327539(*)
Yes Yes 0.0044152 ± 0.0006106(*) 0.0143682 ± 0.0024797(*) 0.8240209 ± 0.0343667(*)

FM-SGD Logistic No No 0.0067266 ± 0.0003933 0.0154207 ± 0.0013011 0.7730542 ± 0.0314904
No Yes 0.0068068 ± 0.0008265 0.0149345 ± 0.0014383(*) 0.7804171 ± 0.0339882(*)
Yes No 0.0052925 ± 0.0001996(*) 0.0139813 ± 0.0014130(*) 0.8136070 ± 0.0334504(*)
Yes Yes 0.0048635 ± 0.0001841(*) 0.0136824 ± 0.0014207(*) 0.8152107 ± 0.0340372(*)

FM-CD Cyclic No No 0.0061768 ± 0.0001934 0.0145682 ± 0.0015581 0.7617378 ± 0.0441938
No Yes 0.0063543 ± 0.0001996 0.0151101 ± 0.0013793 0.7629488 ± 0.0455320
Yes No 0.0044806 ± 0.0002127(*) 0.0135587 ± 0.0017265(*) 0.8262493 ± 0.0283374(*)
Yes Yes 0.0047210 ± 0.0001874(*) 0.0141638 ± 0.0021363 0.8212097 ± 0.0321086(*)

FM-CD Stochastic No No 0.0062104 ± 0.0001935 0.0146287 ± 0.0015349 0.7617537 ± 0.0441836
No Yes 0.0063543 ± 0.0001996 0.0151101 ± 0.0013793 0.7629527 ± 0.0455303
Yes Yes 0.0044815 ± 0.0002135(*) 0.0135992 ± 0.0017595(*) 0.8255169 ± 0.0290100(*)
Yes Yes 0.0047006 ± 0.0001915(*) 0.0138494 ± 0.0021000 0.8233171 ± 0.0326712(*)

(*) indicates statistically significant improvements over the baseline based on Wilcoxon signed-rank test at significance level of 0.01

Table 4: Consolidated results averaged over 10 trials for emin = 100
Method Type Importance Hierarchy wRMSE wNLL wAUC
TensorALS - - - 0.0148571 ± 0.0007870 0.0898490 ± 0.0033757 0.5 ± 0.0
TimeSVD++ - - - 0.0133219 ± 0.0009000 0.0300316 ± 0.0011584 0.7104049 ± 0.0104965
FM-SGD Square No No 0.0066994 ± 0.0039766 0.0159641 ± 0.0030365 0.7906827 ± 0.0399742

No Yes 0.0063514 ± 0.0036174 0.0155720 ± 0.0030424 0.7947463 ± 0.0436061
Yes No 0.0035637 ± 0.0002817(*) 0.0136790 ± 0.0022342(*) 0.8263953 ± 0.0345580(*)
Yes Yes 0.0036013 ± 0.0003965(*) 0.0143439 ± 0.0028064(*) 0.8216659 ± 0.0377304(*)

FM-SGD Logistic No No 0.0052633 ± 0.0006386 0.0144573 ± 0.0013365 0.7831293 ± 0.0378750
No Yes 0.0048462 ± 0.0009245 0.0139555 ± 0.0014297(*) 0.7940811 ± 0.0385131(*)
Yes No 0.0048071 ± 0.0002476(*) 0.0137598 ± 0.0014451(*) 0.8085024 ± 0.0353346(*)
Yes Yes 0.0043588 ± 0.0002261(*) 0.0134459 ± 0.0014542(*) 0.8119756 ± 0.0355739(*)

FM-CD Cyclic No No 0.0052848 ± 0.0002765 0.0139085 ± 0.0017059 0.7725149 ± 0.0481081
No Yes 0.0054034 ± 0.0002760 0.0141956 ± 0.0015021 0.7735657 ± 0.0484978
Yes No 0.0035659 ± 0.0002768(*) 0.0131528 ± 0.0016376(*) 0.8246543 ± 0.0288612(*)
Yes Yes 0.0037860 ± 0.0002213(*) 0.0134757 ± 0.0020551 0.8253329 ± 0.0321349(*)

FM-CD Stochastic No No 0.0053125 ± 0.0002773 0.0139288 ± 0.0016660 0.7725211 ± 0.0481107
No Yes 0.0054034 ± 0.0002760 0.0141957 ± 0.0015021 0.7735673 ± 0.0484932
Yes Yes 0.0035798 ± 0.0002810(*) 0.0131411 ± 0.0016117(*) 0.8248637 ± 0.0276094(*)
Yes Yes 0.0037806 ± 0.0002244(*) 0.0133138 ± 0.0019167 0.8262658 ± 0.0313433(*)

(*) indicates statistically significant improvements over the baseline based on Wilcoxon signed-rank test at significance level of 0.01

Table 5: Consolidated results averaged over 10 trials for emin = 1000
Method Type Importance Hierarchy wRMSE wNLL wAUC
TensorALS - - - 0.0105002 ± 0.0011214 0.0698346 ± 0.0037189 0.5 ± 0.0
TimeSVD++ - - - 0.0093541 ± 0.0012304 0.0244543 ± 0.0009942 0.7066218 ± 0.0113939
FM-SGD Square No No 0.0035179 ± 0.0006461 0.0140867 ± 0.0031550 0.8032424 ± 0.0479115

No Yes 0.0033768 ± 0.0005637 0.0141022 ± 0.0031252 0.8029501 ± 0.0465531
Yes No 0.0027669 ± 0.0003007(*) 0.0127455 ± 0.0023743(*) 0.8253467 ± 0.0383887(*)
Yes Yes 0.0027779 ± 0.0002821(*) 0.0136180 ± 0.0027904 0.8191953 ± 0.0401579(*)

FM-SGD Logistic No No 0.0041532 ± 0.0003815 0.0133235 ± 0.0014580 0.7802751 ± 0.0425936
No Yes 0.0035746 ± 0.0004055(*) 0.0128660 ± 0.0014666(*) 0.7920499 ± 0.0432757(*)
Yes No 0.0043950 ± 0.0003841 0.0130108 ± 0.0015346(*) 0.7984587 ± 0.0402334(*)
Yes Yes 0.0038005 ± 0.0003306(*) 0.0126841 ± 0.0015381(*) 0.8057917 ± 0.0396685(*)

FM-CD Cyclic No No 0.0043290 ± 0.0004144 0.0131398 ± 0.0022141 0.7795976 ± 0.0543661
No Yes 0.0044521 ± 0.0003917 0.0129831 ± 0.0016401 0.7811009 ± 0.0542086(*)
Yes No 0.0025551 ± 0.0003352(*) 0.0124212 ± 0.0017798(*) 0.8232776 ± 0.0334076(*)
Yes Yes 0.0027313 ± 0.0002812(*) 0.0123107 ± 0.0018302(*) 0.8268533 ± 0.0333732(*)

FM-CD Stochastic No No 0.0043391 ± 0.0004133 0.0129884 ± 0.0020158 0.7797752 ± 0.0543298
No Yes 0.0044521 ± 0.0003917 0.0129832 ± 0.0016401 0.7811113 ± 0.0542079(*)
Yes Yes 0.0025507 ± 0.0003444(*) 0.0124773 ± 0.0018751(*) 0.8223575 ± 0.0337542(*)
Yes Yes 0.0027390 ± 0.0002842(*) 0.0123266 ± 0.0018478(*) 0.8262701 ± 0.0335686(*)

(*) indicates statistically significant improvements over the baseline based on Wilcoxon signed-rank test at significance level of 0.01

for different minimum exposures emin = 10, 100 and 1000,
respectively. For our SGD algorithm, we employ two vari-
ants that optimize for square and logistic loss functions re-
spectively. Similarly, we utilize the cyclic and stochastic
variants of our CD algorithm. For comparison, we also ex-
periment with two popular time-aware factorization algo-
rithms: TensorALS [5] and TimeSVD++ [9], which should

serve as good reference methods. For fairness, similar con-
figurations were used in these methods, e.g., 5 latent factors
(K = 5) and 100 training iterations (as with our SGD).

To investigate the effects of importance-weighted and hier-
archical learning, we conduct experiments by turning on and
off the importance weight and hierarchy, resulting in four
configurations for each algorithm variant. Subsequently, to



see how significant the result improvements are due to im-
portance weight and/or hierarchy, we use the non-parametric
Wilcoxon signed-rank statistical test2 [22]. All the tests were
performed at a significance level of 1%, with the baseline be-
ing the “no importance weight and no hierarchy” case.
Several observations can accordingly be made based on

the overall prediction results in Tables 3, 4 and 5:

• All our FM-based algorithms outperform the Tenso-
rALS and TimeSVD++ methods, in terms of both re-
gression and ranking results. (Separate Wilcoxon tests
using TensorALS and TimeSVD++ as baselines also
show that all our algorithms are significantly better.)
Note also that TensorALS gives “flat” predictions on
the test set (where all the time indices never appear in
the training set), leading to a constant wAUC = 0.5.

• As the minimum exposure threshold emin increases,
we see improvements in all performance metrics. This
is expected, since a higher emin implies a higher con-
fidence in the CTR estimation and thus cleaner data
for training and testing (recall that CTR = numclick

numexpose
).

• We observe large improvements when we incorporate
importance weights (i.e., importance-aware learning),
while incorporating hierarchical information does not
necessarily improve the overall prediction results. This
is reasonable nonetheless, since we can expect that
hierarchical learning helps in (near) cold-start cases,
which would likely have small importance weights in
our (weighted) evaluation on the test data. Further
investigation on the performance of our methods in
cold-start scenarios is presented in Section 6.4.

• In general, the CD algorithm produces similar perfor-
mance to the SGD procedure, though the former needs
fewer iterations to converge and has fewer user param-
eters (i.e., no learning rate η). Comparing the square
and logistic SGD variants, we observe that the former
generally exhibits better results in terms of wRMSE
and wAUC, while the latter is superior in terms of
wNLL, which is expected. Meanwhile, the cyclic and
stochastic CD variants yield very similar performances,
though the stochastic approximation in the latter is
expected to give faster training convergence.

6.4 Cold-Start Results
We carried out further studies on how hierarchical learn-

ing in our HIFM approach can help address the cold-start
situations. In this study, we concentrate on the extreme
cold-start scenarios whereby we deal with new pages and
ads. We define new pages and ads as those that only appear
in the test data, and never in the training set. We conducted
the experiments as before, and averaged the results for these
cold-start cases over 10 trials. We can expect that, when no
hierarchical regularization or fitting takes place, our algo-
rithms will produce a “flat’ prediction (i.e., wAUC = 0.5).
In this case, we may obtain reasonably good regression per-
formance, but the ranking produced will be meaningless.
Due to this reason (and space constraint), we shall focus on
evaluating the ranking performance (i.e., wAUC) here.

2The Wilcoxon test can be used as an alternative to the t-
test for matched pairs, or the t-test for dependent samples
when they cannot be assumed to be normally distributed.
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(c) Minimum exposure emin = 1000

Figure 4: Results for cold-start cases

Our experimental results are presented in Figure 4, with
the minimum exposure emin varied from 10 to 1000. It can
be seen that the ranking results always improve as we in-
corporate hierarchy information in our algorithms. In addi-
tion, we observe that the result improvements get amplified
as emin is increased, which can (again) be attributed to the
higher confidence in the CTR estimates (i.e., cleaner data).
It is also worth noting that, for these cold-start cases, the re-
sults of importance-aware learning and those of unweighted
learning are not directly comparable. In fact, the cold-start
cases tend to have low exposures in the training data, for
which the importance-aware learning would give lower prior-
ity. Nevertheless, the results illustrate that the importance-
aware learning and hierarchy information are complemen-
tary in handling complex response prediction tasks.



7. CONCLUSION
In this paper, we put forward a latent factor model, termed

the Hierarchical Importance-Aware Factorization Machine
(HIFM), for predicting dynamic ad response. Using the fac-
torization machine as the base generic framework, we de-
velop new importance-aware and hierarchical learning mech-
anisms to improve the model’s predictive abilities in complex
response prediction tasks where cost-varying instances and
cold-start cases are ubiquitous. Several variants of efficient
learning methods have been developed to explore different
ways of incorporating importance weight and hierarchy in-
formation in HIFM. The efficacy of our HIFM model has
been exemplified through extensive empirical studies on real-
world mobile advertising data from a global ad network.
Moving forward, we consider several avenues for future re-

search. First, there is a need to further scale up the HIFM
for large datasets, either by means of parallelization or a
more efficient data representation (e.g., [14]). Second, we
can further enhance the HIFM’s predictive power by incor-
porating hierarchical Bayesian learning on top of a deep,
multi-layer representation. Last but not least, we wish to
explore the applicability of the HIFM in other task domains,
such as temporal item adoption or rating prediction.
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