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a b s t r a c t

Linear cointegration is known to have the important property of invariance under temporal translation.
The same property is shown not to apply for nonlinear cointegration. The limit properties of the
Nadaraya–Watson (NW) estimator for cointegrating regression under misspecified lag structure are
derived, showing the NWestimator to be inconsistent, in general, with a ‘‘pseudo-true function’’ limit that
is a local average of the true regression function. In this respect nonlinear cointegrating regression differs
importantly from conventional linear cointegration which is invariant to time translation. When centred
on the pseudo-true function and appropriately scaled, the NW estimator still has a mixed Gaussian limit
distribution. The convergence rates are the same as those obtained under correct specification (


h
√
n,

h is a bandwidth term) but the variance of the limit distribution is larger. The practical import of the
results for index models, functional regression models, temporal aggregation and specification testing
are discussed. Two nonparametric linearity tests are considered. The proposed tests are robust to dynamic
misspecification. Under the null hypothesis (linearity), the first test has a χ2 limit distribution while the
second test has limit distribution determined by the maximum of independently distributed χ2 variates.
Under the alternative hypothesis, the test statistics attain a h

√
n divergence rate.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Arguably, all econometric models abstract from reality and are
potentially misspecified in uncertain ways. Even if the form of an
econometric model were to accurately characterise reality, there
is still a myriad of ways in which the generating mechanism for
the observed data can depart from the posited model. Therefore,
it is important to know the limit properties of various estimators
when the underlying model is misspecified. A series of papers
in the econometric and statistics literature attempts to cast light
on this problem. See for example Berk (1966, 1970), Domowitz
and White (1982), Gourieroux et al. (1984), Huber (1967), White
(1981, 1982) inter alia. Some of the questions raised by the
aforementioned papers are summarised by White (1982):

‘‘If one does not assume that the probability model is correctly
specified, it is natural to ask what happens to the properties of the

∗ Corresponding author. Tel.: +357 2289 2439.
E-mail address: kasparis@ucy.ac.cy (I. Kasparis).

[maximum likelihood] estimator. Does it still converge to some limit
asymptotically, and does this limit have anymeaning? If the estimator
is somehow consistent, is it also asymptotically normal?’’

It is well known that, under certain conditions, parametric
estimators of stationary misspecified models have a well defined
limit referred to in the econometric literature as a pseudo-true
value.1 The asymptotic analysis of misspecified models is not
only of theoretical interest. To obtain asymptotic power rates
for various specification tests e.g. Bierens (1990), Ramsey (1969)
(or tests without a specific alternative) knowledge about the
asymptotic behaviour of the estimator under misspecification is
necessary. Moreover, to determine the limit distribution of certain
model selection statistics under the null hypothesis, e.g. Cox (1961,
1962), Davidson and McKinnon (1981) and Voung (1989) (tests

1 The pseudo-true value can be different than the parameter of interest and is
determined by the value that optimises a certain limit criterion function (see for
example Huber, 1967; Akaike, 1973; White, 1982; Bierens, 1984).
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with a specific alternative), the estimator’s limit distribution about
the pseudo-true value, is required.

The current paper takes theWang and Phillips (2009a, hereafter
WP)2 framework and analyses the effects of misspecification re-
lating to the lag structure of a cointegrating model. Further, two
nonparametric linearity tests that are robust to dynamic misspeci-
fication are proposed. This kind of dynamic misspecification is po-
tentially relevant in a variety of contexts and is especially germane
in situations where temporal aggregation issues arise. We show
that the consequences of dynamic misspecification in a nonsta-
tionary framework largely depend on the nature of the regression
function and on the nature of the functions involved in the estima-
tion procedure (see Theorem 1 and Example 1). The current work
also relates to Phillips (2009) and Kasparis (2011). Phillips (2009)
analyses spurious nonparametric regression,while Kasparis (2011)
considers the effects of functional form misspecification in the
presence of stochastic trends.

One of the main results of the present paper is to show that the
Nadaraya–Watson (NW) kernel estimator under dynamicmisspec-
ification exhibits inconsistency in nonstationary regression due to
the use of integrable functions in the construction of the kernel re-
gression function. It will be shown that, under certain regularity
conditions, the effect of the lag misspecification is to induce a shift
in the limit, based on a local average of the function around each
regression point (i.e. the NW estimator has a pseudo-true function
limit). This kind of behaviour is similar to the limit in the case of
misspecified dynamics in a stationary time series setting. In this re-
spect, we find analogous results for dynamically misspecified non-
parametric models between stationary and nonstationary cases.
On the other hand, there is a big difference betweennonlinear coin-
tegrationmodelswhere dynamicmistiming induces inconsistency,
as shown here, and linear cointegrationmodels where consistency
continues to hold under dynamic mistiming.

The NW estimator, when centred on the pseudo-true function
and appropriately scaled, has a mixed Gaussian limit distribution.
The convergence rates are the same as those reported by WP.
Nevertheless, the variance of the limit distribution is larger than
that obtained under correct specification. We also consider the
case of severe dynamic misspecification where the lag differential
between the true and the fitted models is large. For badly
misspecified models, the limit theory is substantially different. In
this case, the NW estimator may be divergent, vanish or converge
to a limit involving some stochastic integral.

This kind of dynamic-induced inconsistency arises in many
other cases where the model and estimation procedure involves
integrable functions and timing issues are relevant in specification.
For example, the maximum likelihood estimator of discrete choice
models involves integrable functions (see Park and Phillips, 2000)
and will be similarly subject to the effects of dynamic specification
error. Issues of timing in dynamic specification are likely to be
particularly important in market intervention models of the type
studied in Hu and Phillips (2004).

Moreover, two linearity tests that are robust to dynamic mis-
specification are proposed. The test statistics under consideration
involve a comparison of the NW kernel estimator with paramet-
ric least squares. Asymptotic properties of the tests are derived.
Under the null hypothesis of linearity, the first test has a χ2 limit
distribution while the second test has a limit distribution deter-
mined by the maximum of independently distributed χ2 variates.
The tests are consistent against integrable and locally integrable
alternatives. The divergence rate is of order h

√
n.

2 Wang and Phillips (2009a) provide a limit theory for nonparametric cointegrat-
ing regression. For related work see Guerre (2004), Karlsen et al. (2007), Schienle
(2008) and Wang and Phillips (2009b, 2011).

The remainder of the paper is organised as follows. Section 2
provides limit theory for kernel regression under dynamic
misspecification. Section 3 provides some applications in contexts
of interest for applied work. Section 4 develops linearity tests
that are robust to dynamic misspecification. The finite sample
properties of the linearity tests are explored in a simulation
experiment. Section 5 concludes. Technical results and proofs are
given in the Appendices. Notation is fairly standard. For instance,
we use a ∨ b (a ∧ b) to denote the maximum (minimum) of two
real numbers a and b, and =d represents distributional equality.
Throughout the paper summations such as

n
t≥1 are interpreted as

sums over 1 ≤ r∨s∨ l ≤ nwhenever there are integer parameters
such as r , s, l governing the initialisation. Finally, I denotes the
integrable family of functions, and LI denotes the locally integrable
family of functions, that are not integrable.

2. Kernel regression under dynamic misspecification

This section develops a limit theory for the Nadaraya–Watson
kernel regression estimator in the case of dynamic misspecifi-
cation. It is well known (e.g. White, 1981, 1982; Domowitz and
White, 1982) that, under certain regularity conditions, paramet-
ric estimators of misspecified models converge to some well
defined pseudo-true value that is typically different than the pa-
rameter of interest. In the current paper it is demonstrated that,
when the fitted model suffers from dynamic misspecification, and
under certain regularity conditions, the NW estimator has a well
defined limit. When the dynamicmisspecification is mild — that is,
the lag differential between the true models is finite — the NW has
a pseudo-true function limit. The pseudo-true function corresponds
to the true regression function as long as the latter is linear. In gen-
eral the pseudo-true function differs from the true function and is
determined by some local average of the true regression function. If
dynamic misspecification is severe in the sense that the lag differ-
ential between the true and fitted models goes to infinity in large
samples there is no pseudo-true function limit. In this case, the NW
diverges, vanishes or converges to some random limit, depending
on the properties of the true regression function.

Next, we specify the model under consideration. Throughout
the paper, we assume that the time series {yt}nt=1 is generated by
the model:

yt = f (xt−r) + ut , for some integer lag r ≥ 0, (1)

where f is a locally integrable regression function. The variable
xt is a nonstationary process defined on some probability space
(Ω, F , P). For example, in many applications it will be sufficient
for {xt}nt=1 to be generated as a unit root process or as a near
integrated array of the commonly used form

xt = ρnxt−1 + vt , x0 = 0, (2)

where vt is some error term whose properties are specified
later (Assumptions 2.2 and 2.3 below) and ρn = 1 −

co
n for some

constant co. To avoid unnecessary triangular array complications in
the development that follows we focus on the unit root generating
model for xt , although our main results continue to hold with
minor changes under (2). The regression error ut is a martingale
difference sequence. Both xt and ut are defined on the probability
space (Ω, F , P). The exact properties of f , xt and ut will be
specified in detail later.

We concentrate on the case where a version of (1) is fitted
by nonparametric kernel regression. However, the fitted model
involves a lag misspecification resulting from incorrect timing, so
that the fitted model has the (lag misspecified) form

yt = f̂ (xt−s) + ût , for some fixed integer lag s ≥ 0, r ≠ s, (3)
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where f̂ is the NW regression estimator defined by

f̂ (x) =

n
t=s

K
 xt−s−x

h


yt

n
t=s

K
 xt−s−x

h

 , (4)

where K(·) is some kernel function, h is some bandwidth term
(h → 0, as n → ∞) and Kh(·) = K(·/h). The main focus of
the paper is on the case where the integer lags r and s, in (1),
(3), are fixed (mild dynamic misspecification). Some discussion for
the severe dynamicmisspecification casewhere the lag differential
|r − s| → ∞, as n → ∞ is provided at the end of this section.

For the subsequent analysis we introduce some technical
conditions. Assumptions 2.1 and 2.2 below are largely based on
WP, towhichwe refer readers for further discussion. Their notation
is used here. First, it is convenient to standardise xt in array form as
xt,n = xt /

√
n so that x[nr],n is compatible with a functional law as

n → ∞, where [a] denotes the integer part of a. We introduce two
companion sequences of real numbers cn and dl,k,n =

√
l − k/

√
n.

The sequence cn is a secondary sequence which differs from
√
n by

a bandwidth factor, so that we usually have cn =
√
n/hn for some

bandwidth sequence hn → 0 that arises in kernel estimation. We
note that


xl,n − xk,n


/dl,k,n has a limit distribution as l − k → ∞.

As in WP, it is convenient to use the set notation.

Ωn (η) = {(l, k) : ηn ≤ k ≤ (1 − η)n, k + ηn ≤ l ≤ n} ,

0 < η < 1.

Assumptions 2.1 and 2.2 deal with the density properties of xt and
their relation to the function f .

Assumption 2.1. For all 0 ≤ k < l ≤ n, n ≥ 1, there exist a
sequence of σ -fields Fk−1,n ⊆ Fk,n (define F0,n = σ {∅, Ω}, the
trivial σ -field) such that,
(a) xk is adapted to Fn,k−1 and conditional on Fn,k−1,


xl,n − xk,n


/

dl,k,n has density function hl,k,n(x) such that
(i) supl,k,n supx hl,k,n(x) = C < ∞

(ii) for some k0 > 0,
sup

(l,k)∈Ωn

δ1/(2k0)

 sup
|x|≤δ

hl,k,n(x) − hl,k,n(0)
 = op(1),

when n → ∞ first and then δ → 0.
(b) Conditional on Fn,(r∧s)−1, xr − xs has density function pr−s(v),

such that
∞

−∞

|f (x + v)| pr−s(v)dv < ∞,

for each x ∈ R.

Assumption 2.2. (a) The process x[nη],n := x[nη]/
√
n on the Sko-

rohod space D[0, 1], converges weakly to a Gaussian process
G(η) that has a continuous local time process LG(η, s).

(b) On a suitable probability space there exists a process xot,n
such that


xot,n, 1 ≤ t ≤ n


=d

xt,n, 1 ≤ t ≤ n


and sup0≤η≤1xo[nη],n − G(η)

 = op(1).

Assumption 2.2 is standard in the nonstationary time series
literature — e.g. Berkes and Horváth (2006), Park and Phillips
(1999, 2000, 2001), Phillips (1991), Wang and Phillips (2009a).
Assumption 2.1(a) is the same as Assumption 2.3 of WP. Note that
if we set Fk,n = σ (v0, . . . , vk), then Assumption 2.1(a) holds for
nonstationary processes like the given by (2).3 Assumption 2.1(b)

3 WP demonstrate that Assumption 2.1(a) holds for fractionally integrated
processes under standard moment conditions. Using arguments similar to those in
the proof of Corollary 2.2 of WP, it possible to show that Assumption 2.1 also holds
for near-unit root processes.

is a simple convolution integrability condition, which is clearly
satisfied under suitable majorization, for example whenever the
density pr−s is bounded and f is integrable. Finally, note that when
xt is given by (2), Assumption 2.2 is satisfied. In this case, G(t) is
either a Brownian Motion or an Ornstein–Uhlenbeck process.

In some cases it is more convenient to work with the Skorohod
copy xot,n, instead of xt,n. In the paper we establish weak conver-
gence of theNWestimator to somewell defined deterministic limit
(a pseudo-true function) when xt is the regression covariate. In ad-
dition, we provide limit distribution theory for the NW about the
pseudo-true function. Therefore, for our purposes there is no loss of
generality if we assume that


xot,n, 1 ≤ t ≤ n


=

xt,n, 1 ≤ t ≤ n


instead of


xot,n, 1 ≤ t ≤ n


=d

xt,n, 1 ≤ t ≤ n


. With this con-

vention
p
−→ convergence, for sample functionals of xt , should be in-

terpreted as
d
−→ convergence unless the limit is deterministic.

The following assumptions impose regularity conditions on
the regression function f and the kernel K in relation to the
regressor xt .

Assumption 2.3. Set 0 < γ ≤ 1.

(a) limn→∞

√
n/cn = 0, where cn satisfies cn → ∞;

(b) Forn large enough,
f √

n
cn

z + x − v


− f (x − v)

 ≤
√

n/cn
γ

f1(z, x, v) with

v


z f1(z, x, v) |K(z)| p(v)dzdv < ∞, for each

x.
(c)


z |z| |K (z)| dz and


v
|f (x − v)|q pr−s(v) |v| dv < ∞, for all x

and some q > 1.

When cn =
√
n/h, Assumption 2.3(a) requires that the band-

width sequence h → 0 as n → ∞. The remaining parts of As-
sumption 2.3 impose local Lipschitz and integrability conditions
on f , which are useful technical conditions.

We need to impose some additional conditions on f , K , xt
and ut .

Assumption 2.4. Assume that K(λ) ≥ 0,


∞

−∞
K(λ)dλ = 1 and

supλ K(λ) < ∞.

Assumption 2.5. (ut , Fn,t) is a martingale difference sequence
such that E(u2

t | Fn,t−1) = σ 2
u,t → σ 2

u , a.s. as t → ∞.

Assumption 2.6. For some m > 0, sup1≤t≤n E(u
2+m
t | Fn,t−1) <

∞ a.s.

In what follows it will be convenient to use the notation
rs

vi = 1 (s > r)
s

i=r+1

vi − 1 (r > s)
r

i=s+1

vi.

Remarks. (a) Observe that for s > r we have xt−r − xt−s =s−r
j=1 vt−s+j =d

s−r
j=1 vj =d

s
j=r+1 vj, by stationarity


similarly

xt−r − xt−s =d −
r

j=s+1 vj, for s < r

.

(b) Moreover, for s > r, pr−s (w) is the density of xt−r −

xt−s =d
s

i=r+1 vi, and if s < r, pr−s (w) is the density of
xt−r − xt−s =d −

r
i=s+1 vi. So


rs vi has density pr−s (w) .

Assumption 2.7. For given x, there exists a real function f1(s, x)
such that, when h is sufficiently small,

Ef hy + x +


rs vi


−Ef

x +


rs vi

 ≤ hγ f1(y, x) with 0 < γ ≤ 1, for all y ∈ R
and


∞

−∞
K(s)f1(s, x)ds < ∞. Further, Ef


x +


rs vi

2
< ∞.

Assumption 2.4 imposes some standard regularity conditions
on the kernel function. Assumption 2.5 together with Assump-
tion 2.2(b) postulate that yt is predetermined i.e. E(yt | Fn,t−1) =

f (xt−r). This type of requirement is common in the literature
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of nonlinear models with integrated time series — see Park and
Phillips (1999, 2000, 2001), aswell asWP. Assumption 2.5 is impor-
tant for our derivations as it allows the use of martingale conver-
gencemethods. Assumption 2.5 has been recently relaxed byWang
and Phillips (2009b, WP2), who consider structural nonparamet-
ric regressions with unit roots. Relaxation of the martingale differ-
ence assumption complicates the asymptotic theory substantially.
WP2 (2009b) develop novel approximate martingale convergence
methods that cope with this extension and further address (finite
order) dependence between the innovations vt and ut . Their ap-
proach is significantly different from that followed in the current
paper. It seems likely that the inconsistency result under dynamic
misspecification that is proved in the current paper extends to this
more complex cointegrating structure, but we do not provide that
extensionhere. Finally, Assumption 2.7 is a technical condition that
imposes smoothness on the limit of f̂ (x). This requirement holds
for a variety of regression functions and vi innovations.

The following result gives the probability limit and limit distri-
bution of f̂ (x), showing the effect of dynamic misspecification.

Theorem 1. Suppose that:

(a) Assumptions 2.1–2.5 hold.
(b) The bandwidth h satisfies

√
nh → ∞ and h → 0 as n → ∞.

Then, as n → ∞,

f̂ (x)
p
−→ Ef


x +


rs

vi


. (5)

Under some additional conditions, we have the following limit
distribution result.

Theorem 2. Suppose that:

(a) Assumptions 2.1–2.7 hold.
(b) The component functions


f 2, f 4


and the power kernel func-

tions

K 2, K 4


in the sample quantities cn

n

n
t=1 f

2
√

nxt−r,n


K 2

cn

xt−s,n −

x
√
n


and cn

n

n
t=1 f

4
√

nxt−r,n

K 4

cn

xt−s,n

−
x

√
n


both satisfy the conditions of Assumption 2.3.

(c) The bandwidth parameter h satisfies
√
nh1+2γ

→ 0.
(d) K has an integrable Fourier transform.4

Then, as n → ∞,
n

t=1

Kh (xt−s − x)

1/2 
f̂ (x) − Ef


x +


rs

vi


d
−→ N


0, σ 2(x)


∞

−∞

K(s)2ds


, (6)

where σ 2(x) := σ 2
u + Var


f

x +


rs vi


.

The probability limit of the NW kernel estimator f̂ (x) is

Ef


x +


rs

vi


=


f (x + w) pr−s (w) dw, (7)

where


rs vi has density pr−s (w). The limit (7) is an average of f
taken around the value at x with respect to this density. If r = s
then there is no dynamic misspecification in the fitted equation

4 Note that if condition (d) holds, then K (x) → 0 as |x| → ∞, by the
Riemann–Lebesgue Lemma.

and the estimate is consistent so that f̂ (x) →p f (x) with a limit
distribution

n
t=1

Kh (xt−s − x)

1/2 
f̂ (x) − f (x)


d
−→ N


0, σ 2

u


∞

−∞

K(λ)2dλ


, (8)

as in WP under suitable undersmoothing or choice of h in
the regression. The condition

√
nh1+2γ

→ 0 in (c) is sufficient
to ensure the required degree of undersmoothing and relies on
the Lipschitz parameter γ as in WP. When γ = 1, the condition
requires that h → 0 faster than n−1/6, in comparison to the usual
rate of n−1/5 in stationary kernel regression. As is clear from the
proof in Appendix B, the condition is useful because the bias term
depends on differentials that involve random perturbations of
the points at which the function is evaluated, such as f (xt−1) −

f (x − vt), which need to be majorized by integrable functions to
bound the bias. The condition (c) is sufficient for this purpose but
does not appear to be necessary.

The lagmisspecification in the fitted nonparametric cointegrat-
ing relation (3) produces both inconsistency and a reduction in
precision in the limit theory for the NW estimator. The limit dis-
tributions (6) and (8) differ in terms of both centring and variance.
The centring is explained by the inconsistency (5) under mistim-
ing (r ≠ s) of the lagged relationship. The additional variance in
the limit distribution (6) occurs due to the term Varf


x +


rs vi


,

which is non zero whenever r ≠ s. The extra component in the
variance, which arises as in (5) of Theorem 1 because the limit of
the average conditional variance involves averaging over the dis-
tribution of


rs vi, just as it does in the case of the first moment.

Therefore, contrary to the parametric case (e.g. White, 1981; Kas-
paris, 2011)misspecification in the nonparametric framework nec-
essarily results in larger limit variance.5

In the special case of linear cointegration with f (xt) = θxt , we
have from (5)

Ef


x +


rs

vi


= θx +


rs

Evi = θx,

so that kernel regression is consistent under lag misspecification,
corresponding to the temporal invariance of linear cointegrating
regression. In this case, (6) becomes

n
t=1

Kh (xt−s − x)

1/2 
f̂ (x) − f (x)


d
−→ N


0, σ 2 ,

with

σ 2
=

σ 2
u + |s − r| σ 2

v

  ∞

−∞

K(λ)2dλ > σ 2
u


∞

−∞

K(λ)2dλ,

since Var


rs vi


= |s − r| σ 2
v . Hence, lag shifts in a linear cointe-

grating regression do impact the variance of the limit distribution
in kernel regression. The same is true, of course, for linear paramet-
ric cointegrating regression.

It is interesting to compare the limit results given in Theorem 2
with those of a stationary time series regression. Supposemodel (1)
is the truemodel and (3) is the fittedmodel, as above, but that xt is a
stationary time series satisfying certain asymptotic dependence or
mixing conditions that validate nonparametric regression (see for
example Li and Racine, 2007). This type of situation seems not to
have been analysed in the literature. However, it is readily shown

5 See Kasparis and Phillips (2009) for further discussion.
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by conventional methods for stationary nonparametric regression
that under suitable regularity and mixing conditions

f̂ (x)
p
−→ Ef (xt−r | xt−s = x) , (9)

which is the analogue for the stationary time series xt of the
inconsistency shown in (5). Forwhen xt follows a unit root process,
we have xt−r = xt−s +

s−r
i=1 vt−s+i for s > r. Then, when we

condition on xt−s = x for this nonstationary data generating
process, the right side of (9) may be written in the form

Ef


xt−s +

s−r
i=1

vt−s+i | xt−s = x


= Ef


x +

s
i=r+1

vi


,

which corresponds precisely to the limit in (5) because


rs vi =s
i=r+1 vi when s > r by definition. Thus, the effect of dynamic

misspecification on inconsistency in nonparametric regression is
the same for nonstationary time series as it is for stationary time
series.

For specification testing purposes it is useful to have an error
variance estimator. We consider the following estimator

σ̂ 2(x) =

n
t=1


yt − f̂ (x)

2
Kh(xt−s − x)

n
t=1

Kh(xt−s − x)
.

Under correct specification and a constant error variance σ 2
u , we

know from Wang and Phillips (2009b) that σ̂ 2
= σ 2

u + op(1). Un-
der dynamic misspecification, it turns out that σ̂ 2 estimates con-
sistently the component that determines the limit variance under
misspecification. This is demonstrated in the following result.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, as
n → ∞,

σ̂ 2(x)
p
−→ σ 2

u + Var


f


x +


rs

vi


.

Remarks (Severe Dynamic Misspecification).
(a) Suppose the true model is still given by (1) with a fixed lag r ,

but the fitted regression is

yt = f̂ (xt−sn) + ût , (10)

where the time lag in the specification is long and expressed
as a fraction of the sample as sn := [cn] with 0 < c < 1.
We might similarly specify the true model as one involving
a long lag and the fitted model as one with a fixed lag, with
similar implications. Such distortions in specification might
arise when there is a long gestation lag in response time
which is not captured in the empirical specification. The NW
estimator of (10) does not have a pseudo-true function limit
in this case. In particular, f̂ diverges when f is unbounded
and locally integrable. For bounded locally integrable f , the
estimator f̂ has a stochastic integral limit. Finally, if f is
integrable, f̂ vanishes. Under certain regularity conditions, we
have the following limit behaviour (see Kasparis and Phillips,
2009, for further details):
(i) Suppose that f is locally integrable (LI) and asymptotically

homogeneous of the form
f (λx) = κf (λ)Hf (x) + νf (x, λ), (11)
where Hf (x) ∈ LI and supx

νf (x, λ)
 = o(κf (λ)) as λ →

∞.6 Then, by Theorem 1 of Phillips (2009) as n → ∞,

6 The functions Hf (·) and κf (·) are the asymptotic homogeneous function and
asymptotic order of f respectively. Limit theory for parametric models of this form
(asymptotically homogeneous) is provided in Park and Phillips (1999, 2001).

κf
√

n
−1

f̂ (x)

d
−→

1
LG(1 − c, 0)

 1

c
Hf (G(η)) dLG(η − c, 0). (12)

(ii) Suppose that f is integrable (I). Then, as n → ∞
√

n1/2hf̂ (x)

d
−→ MN


0, σ 2

u


∞

−∞

K (λ)2 dλL−1
G (1 − c, 0)


. (13)

(b) For asymptotically homogeneous f the estimator can be diver-
gent. In particular, if the regression is unbounded, f̂ diverges.
The divergence rate is determined by the asymptotic order
function κf . For bounded asymptotically homogeneous func-
tions, κf is fixed. In this case f̂ has a stochastic integral limit.
Further, for integrable f , the estimator vanishes. Therefore in
general,when the lag differential |r − s| increases,

f̂  either in-
creases or vanishes. Unlike the mild misspecification case, f̂ is
inconsistent even if f is linear. In fact, f̂ is

√
n-divergent, when

the true regression function is a linear one. The consequences
of dynamic misspecification in this case are analogous to those
of spurious nonparametric regression (see Phillips, 2009).

(c) These results may be compared with the stationary, weakly
dependent case where the joint density of


Xt , Xt−sn


factors

asymptotically so that pXt ,Xt−sn (X, Y ) → pXt (X) pXt (Y ) as sn
→ ∞. In this event, we find that f̂ (x)

p
−→ E (f (Xt)) =

f (y) pXt (y) dy, so that the stationary misspecified case is
inconsistent also, but has a different, well defined, nonrandom
limit — the mean of the function f (Xt).

3. Some specific examples

Example 1 (Dynamic Misspecification in Parametric Regression).
Suppose that the true model is

yt = θg(xt−r) + ut , (14)

where θ is an unknown parameter and g some regression function.
Moreover, xt is an integrated process, and ut is some martingale
difference error that both satisfy the assumptions of the current
paper. In place of (14), suppose that the following dynamically
misspecified model is estimated by least squares (LS):

yt = θ̂g(xt−s) + ût . (15)

If the regression function g is continuous with g ∈ LI , it can be
shown (see, for example Kasparis, 2008, Lemma A1(b)) that the LS
estimator in this case satisfies

θ̂ = θ

n
t=1

g(xt−r)g(xt−s)

n
t=1

g(xt−s)2
+ op(1)

= θ

n
t=1

g(xt−s)
2

n
t=1

g(xt−s)2
+ op(1) = θ + op(1),

and so θ̂ is consistent for θ in spite of the lag misspecification, just
as in conventional linear cointegrating regression. On the other
hand, if the regression function g is integrable then it follows
directly from our limit theory (Proposition A in the Appendix)
that
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θ̂ = θ

n
t=1

g(xt−r)g(xt−s)

n
t=1

g(xt−s)2
+ op(1)

= θ

E


∞

−∞
g(λ)g


λ +


rs

vi


dλ

∞

−∞
g(λ)2dλ

+ op(1),

and θ̂ is inconsistent. Thus, small issues of lag specification and
timing do matter in nonlinear nonstationary regression.

Example 2 (KPSS Test Under Dynamic Misspecification). The stan-
dard KPSS test cannot detect dynamic misspecification. The KPSS
test is a residual based goodness of fit test aimed to detect ab-
normal fluctuation in the (parametric) residuals, when the fitted
model is misspecified. As shown in Example 1 above, smooth lo-
cally integrable regression models are invariant under temporal
translation. As a result, the KPSS has no power against dynamic
misspecification. Suppose that the true and fittedmodels are given
by (14) and (15) respectively. Further, assume that the regression
function g , of (14), has a continuous derivative ġ , and g , ġ ∈ LI are
asymptotically homogeneous as in (11). Consider the KPSS statistic

KPSSn = n−1
n

j=1


j

t=1

ût
√
n

2 n
t=1

û2
t

n

based on the parametric residuals ût = yt − θ̂g(xt−s). Under the
additional assumption: κġ(λ) → ∞, as λ → ∞, it can be shown
(see Kasparis, 2008, Lemma A1) that

√
n
κg
√

n


κġ
√

n
 θ̂ − θ


d
−→

√
|r − s|

 1
0 Hg (Bx (λ))Hġ (Bx (λ)) dBx (λ) 1

0 Hg (Bx (λ))2 dλ
:= Z∗,

1
√
nκġ

√
n
 n

t=1

ût

d
−→ θ


|r − s|

 1

0
Hg (Bx (λ))Hġ (Bx (λ)) dBx (λ)

− Z∗

 1

0
Hg (Bx (λ)) d (λ) := Ū(1),

where Bx and Bu are Brownian motions. Further,

1

κġ
√

n
2 σ̂ 2

=
1

nκġ
√

n
2 n

t=1

û2
t

p
−→ θ2E


rs

vi

2  1

0
Hġ (Bx (λ))2 dλ := s2

∗
.

The above suggest that the KPSS test statistic is bounded in
probability, even if r ≠ s. In particular, we have:

KPSSn
d
−→

1
s2
∗

 1

0
Ū(ν)2dν.

A similar limit result holds for KPSSn if instead of limλ→∞ κġ(λ) =

∞, we assume limλ→∞ κġ(λ) = 1 (note that for linear g we have
κġ(λ) = 1).

Example 3 (Single Index Model). Suppose that yt is generated by
the single index model:

yt = f (θ1xt + θ2xt−1) + ut , θ1, θ2 ∈ R

where the regressor xt satisfies Assumptions 2.1 and 2.2 and ut is
a martingale difference sequence satisfying Assumptions 2.5 and
2.6. The fitted model takes the following form

yt = f̂ (xt) + ût ,

omitting the indexed regressor and therefore misspecifying
the lagged dependence in the relationship. It can be easily
demonstrated that

f̂ (x)
p
−→ Ef ((θ1 + θ2) x − θ2vt),

as in Theorem 1. Thus, indexing effects are important in nonlinear
models of cointegration, in contrast to linear models where the
temporal invariance of long run linear relations means that they
can be safely ignored.

Example 4 (Temporal Aggregation).When a regressor xt is sampled
(two times) more frequently than yt , Ghysels et al. (2004, 2006)
proposemixed data sampling (MIDAS) regressionmodels in which
the conditional expectation of the dependent variable yt is a
distributed lag of the regressor, which may be recorded at a higher
frequency. A simple example of such a regression arises in the case
of temporal aggregation where the model takes the form

yt = λf (xt) + (1 − λ)f (xt−1) + ut , 0 ≤ λ ≤ 1, (16)

and where xt and ut are as in Example 1. If the fittedmodel ignores
the temporal aggregation in (16) and is a simple nonparametric
regression of the form

yt = f̂ (xt) + ût ,

then Theorem 1 shows (see also Proposition A) that

f̂ (x)
p
−→ λf (x) + (1 − λ)Ef (x − vt).

Thus, in the same way as indexing, temporal aggregation has
important effects in nonlinear cointegration models. Marmer
(2007) and Kasparis (2010) test for the predictability of stock
returns in the context of nonlinear models with integrated time
series. It is natural to expect that temporal aggregation issues
arise in this area. For example, Ghysels et al. (2005) use MIDAS
regression to show that stock market volatility, aggregated using
high frequency (intraday) information, can be used to explain low
frequency (monthly) stock returns. In a similar context, Ludvigson
and Ng (2007) have a regression model where the return volatility
is sampled more frequently than stock returns.

Example 5 (Nonparametric Unit Root Autoregression). Suppose that
the true model is given by the autoregression

xt = f (xt−1) + ut , (17)

with f (x) = x, although the linear form of the autoregression is
unknown to the econometrician, and where ut is iid


0, σ 2


. The

fitted model involves a longer lag and has the form

xt = f̂ (xt−2) + ût . (18)

Under the true model (17) Assumption 2.2 holds with x[nη],n =

1
√
n

[nη]−2
t=3 ut

d
−→ G(η), where G(η) is Brownian motion. In view

of Theorem 2 we get
n

t=1

Kh (xt−2 − x)

1/2 
f̂ (x) − x


d
−→ N


0, 2σ 2

u


∞

−∞

K(λ)2dλ


.

Note that the NW nonparametric estimator is consistent because
f (x) is a linear function. Nevertheless, there is a reduction in
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accuracy of f̂ (x) due to the additional component σ 2
u in the

asymptotic variance. Similar effects occur in the case of linear
unit root estimation. In particular, if (18) is estimated by linear
regression in the form

xt = ρ̂xt−2 + ût ,

then conventional weak convergence methods show that

n

ρ̂ − 1

 d
−→ 2

 1

0
W 2
−1  1

0
WdW ,

so that the limit distribution of the parametric estimator is rescaled
by 2.

Example 6 (Misspecified Functional Coefficient Models). Cai et al.
(2009, hereafter CLP) recently considered functional coefficient
regression models with possibly nonstationary covariates that
determine the functional regression coefficients. The model in CLP
has the form

yt = β (zt)′ xt + ut , t = 1, . . . , n (19)

where yt and zt are scalar, zt is an I(1) process, xt is stationary, and
ut is a martingale difference sequence with constant conditional
variance σ 2 and finite fourth moments. The functional coefficient
β(·) is the object of nonparametric estimation interest. CLP
consider the local linear nonparametric estimator β̂ (z) of β (z).
Under regularity conditions and using methods closely related
to those of Wang and Phillips (2009a), CLP showed that for any
fixed zβ̂ (z) is consistent with mixed normal distribution. If (19) is
estimatedwhen the true response function isβ (zt−1), themethods
of the present paper may be used to show that the nonparametric
estimate β̂ (z) is inconsistent and convergent to the averaged
coefficient E {β (z − ∆zt)} with the following limit theory
√

n1/2h

β̂ (z) − E {β (z − ∆zt)}


d
−→ MN


0,


σ 2
u + Var [β (z − ∆zt)]


ν0

LWz (1, 0)


E

xtx′

t

−1


.

where h → 0, ν0 =

K (λ)2 dλ and LWz (1, 0) is the local time

of some Brownian motion process. Misspecification of functional
regression therefore leads to inconsistency and an increase in
limiting variance. The extra component in the variance term is
Var [β (z − ∆zt)]. These results hold for local level and local linear
nonparametric regression procedures. Similar results also apply in
the case of functional coefficient cointegrating regressions, which
have recently been investigated by Xiao (2009) in the case of
stationary covariates. A detailed analysis of these models will be
reported elsewhere.

4. Linearity tests robust to dynamic misspecification

This section develops two linearity tests that are robust
to dynamic misspecification. Under the null hypothesis the
regression function is linear, i.e., H0 : f (x) = θ0 + θ1x, for
some unknown vector of parameters θ ′

= (θ0, θ1). Consider the
following variance estimator for σ 2

u

σ̂ 2
w =

n
t=1

û2
t w (xt−s)

 n
t=1

w (xt−s) , (20)

where ûtare the least squares residuals under the null, viz., ût =

yt − θ̂0 − θ̂1xt−s, and w (x) is a non-negative weight function such
thatw (x) , f (x)2w(x), x2w(x) ∈ I . The proposed tests are based on
the following nonparametric t-statistic

t̂(x, θ) :=


n

t=1
Kh (xt−s − x)

σ̂ 2
w


∞

−∞
K(λ)2dλ


1/2 

f̂ (x) − θ0 − θ1x


.

It can be shown that under linearity the t-statistic t̂(x, θ)
d
−→

N (0, 1) under both correct and incorrect dynamic specification.
The t̂(x, θ) statistic forms the basis of a linearity test that is robust
to dynamic misspecification because: (a) for linear f , the NW
estimator f̂ is consistent even if the fitted model is misspecified
in terms of dynamic structure; and (b) it can be shown that σ̂ 2

w

provides a consistent estimator for the limit variance of f̂ under
correct or incorrect dynamic specification, when f is linear. In
particular, for f (x) = θ0 + θ1xwe have

σ̂ 2
w

p
−→ σ 2

u + Varf


x +


rs

vi


= σ 2

u + θ2
1E


rs

vi

2

.

Therefore, σ̂ 2
w provides a valid standardisation even if the model is

misspecified in terms of dynamic structure.
Under linearity, it transpires that all the following variance

estimators

σ̂ 2
w, σ̃ 2

=
1
n

n
t=1

û2
t , σ̂ 2(x) =

n
t=1


yt − f̂ (x)

2
Kh(xt−s − x)

n
t=1

Kh(xt−s − x)

have the same limit σ 2
u + θ2

1E


rs vi
2. Numerical results indicate

that best test performance is achieved when σ̂ 2
w is utilised.

The nonparametric estimator, σ̂ 2(x) results in oversized7 tests.
The parametric estimator σ̃ 2 results in good test size, but the
linearity tests become inconsistent when σ̃ 2 is employed because
under the alternative hypothesis (nonlinearity) it can be shown
that σ̃ 2 diverges faster than the numerator of t̂(x, θ), and so
t̂(x, θ) vanishes as n → ∞. The estimator σ̂ 2

w is based onweighted
parametric residuals. The integrable weight functions in (20)
control the estimator’s divergence rate under H1. As a result, our
linearity tests are consistent, when σ̂ 2

w is used for standardisation
in t̂(x, θ).

The parameter vector θ is generally unknown and can be
consistently estimated by the least squares estimator θ̂ under the
null. Since θ̂ is Op


diag

√
n, n


consistent for θ under linearity

we have

t̂(x, θ̂ )
d
−→ N (0, 1) . (21)

Therefore, the feasible test statistic t̂(x, θ̂ ) involves a comparison
of the nonparametric estimator f̂ (x)with the parametric estimator
θ̂1 + θ̂2x. The test statistics are based on making this comparison
over a set of points. In particular, let Xk be a set of isolated points
Xk = {x̄1, . . . , x̄k} in R for some k ∈ N. The test statistics are the
sum and sup statistics over this set, viz.,

F̂sum :=


x∈Xk


t̂(x, θ̂ )

2
and F̂max := max

x∈Xk


t̂(x, θ̂ )

2
.

We consider the linearity hypothesis
H0 : f (x) = θ0 + θ1x, for some θ = (θ0, θ1) ∈ R2

and all x ∈ Xk.

The limit properties of the test statistics under the null hypothesis
are demonstrated by the following result.

7 A preliminary simulation experiment has shown that when σ̂ 2(x) is employed
the linearity test under consideration exhibits severe size distortions. In some cases
size is three times nominal size.
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Theorem 4. Suppose that the conditions of Theorem 2 hold. Then,
under H0, as n → ∞,

F̂sum
d
−→ χ2

k and F̂max
d
−→ Y ,

where the random variable Y has distribution function FY (y) =

P (X ≤ y)k with X ∼ χ2
1 .

The component statistics t̂(x̄1, θ̂ ), . . . , t̂(x̄k, θ̂ ) are asymptoti-
cally independent.8 As a result, F̂sum has a χ2

k limit distribution.
Similarly, the limit distribution of F̂max is determined as the maxi-
mum of independently distributed χ2

1 variates.
The alternative hypothesis is

H1 : f (x) ≠ θ0 + θ1x, for all θ = (θ0, θ1) ∈ R2

and some x ∈ Xk (22)

and the following result gives the asymptotic behaviour of F̂sum and
F̂max under this alternative. We consider nonlinear alternatives for
f that are either integrable (I) or locally integrable (LI), as in (11).
Suppose that (22) holds, and let X ′

k ⊆ Xk be the set of regression
points that satisfyH1. Further, define the vector


θ∗

0 , θ∗

1


as follows


θ∗

0

θ∗

1


:=

 1


∞

−∞

λLG(1, λ)dλ
∞

−∞

λLG(1, λ)dλ


∞

−∞

λ2LG(1, λ)dλ


−1

×




∞

−∞

Hf (λ)LG(1, λ)dλ
∞

−∞

λHf (λ)LG(1, λ)dλ

 ,

where Hf (λ) is the limit homogeneous function of f , for f ∈ LI e.g.
(11). We have the following limit result.

Theorem 5. Suppose that the conditions of Theorem 2 hold. Then,
under H1, as n → ∞

1
h
√
n
F̂sum =

LG(1, 0)


∞

−∞
K(λ)dλ

σ 2
∗


∞

−∞
K(λ)2dλ


x∈X ′

k

D(x)2 + op(1),

and

1
h
√
n
F̂max =

LG(1, 0)


∞

−∞
K(λ)dλ

σ 2
∗


∞

−∞
K(λ)2dλ

max
x∈X ′

k

D(x)2 + op(1),

where:

(i) for f ∈ LI with κf
√

n


= 1,

D(x) = Ef


x +


rs

vi


− θ∗

0 ,

and σ 2
∗

=


∞

−∞


σ 2
u +


Ef


λ +

rs

vi


− θ∗

0

2
w (λ) dλ

∞

−∞
w (λ) dλ

;

(ii) for f ∈ LI with κf
√

n


→ ∞,

D(x) = θ∗

0 and σ 2
∗

=

θ∗

0

2
;

8 See Lemma 3(ii) and (iii) and the proof of Theorem 4 in the Appendix.

(iii) for f ∈ I or f ∈ LI with κf
√

n


→ 0,

D(x) = Ef


x +


rs

vi


and

σ 2
∗

=


∞

−∞


σ 2
u + Ef


λ +


rs

vi

2


w (λ) dλ
∞

−∞
w (λ) dλ

.

Theorem 5 demonstrates that the tests have asymptotic power
against both I and LI nonlinear functions. The term D(x) shown
above involves parametric and/or nonparametric pseudo-true
values. Under H1, the divergence rate is h

√
n. In particular, under

H1, we have t̂(x, θ̂ )2 ∼ h
√
nD(x). Part (i) of Theorem 5 considers

the casewhere f ∈ LI with fixed asymptotic order. For instance, for
f (x) = 1 {x ≥ 0} or f (x) = 1/(1 + exp(−x)) the asymptotic order
is κf

√
n


= 1. In this case the leading terms of the test statistics
are given by the parametric and the nonparametric estimators.
Note that the term D(x) shown above involves both the parametric
and the nonparametric pseudo-true values. The focus in part (ii)
is locally integrable alternatives with increasing asymptotic order.
Here the leading terms of the test statistics are given by the
parametric estimator only. Finally, part (iii) considers integrable
alternatives and locally integrable alternatives with decreasing
asymptotic order. In this case the power rate is driven by the
nonparametric pseudo-true value only.

Remark (Tests Under Severe Dynamic Misspecification). Theo-
rems 4 and 5 above suggest that the tests are robust to ‘‘mild’’
dynamic misspecification. Note however that when the lag differ-
ential |r − s| is large the performance of the tests is likely to dete-
riorate. Suppose that r = 0 and s = sn = [cn]. Then the effects of
severe dynamic misspecification on the tests can be explained by
the earlier limit results (12) and (13):

(i) Under severe misspecification the tests are likely to be
oversized. When H0 holds, the statistic t̂(x, θ̂ ) is of order
Op


h
√
n

. To keep the presentation simple suppose that the

parametric model does not involve an intercept.9 Then, using
(12) and the limit theory of Phillips (2009) we find

1
h
√
n
t̂(x, θ̂ )

d
−→

 1
0 G(η)dLG̃(η, 0)

LG̃(1, 0)S∗
w


∞

−∞
K 2(λ)dλ

1/2 ,

where G̃(η) = G(η − c)1 (1 ≥ η ≥ c),

S∗

w =


∞

λ=−∞
w (λ)

 1
η=c


G(η) − θ∗G̃(η)

2
dLG(η − c, λ)dλ

∞

−∞
w (λ) dλLG̃(1, 0)

,

and θ∗ =

 1
0 G(η)G̃(η)dη 1

0 G̃(η)2dη
.

(ii) Further,whenmisspecification is severe, the tests are expected
to have poor asymptotic power against integrable alternatives.
When H1 holds, the statistic t̂(x, θ̂ ) is convergent. In this case,
using (13), Phillips (2009) and Chang et al. (2001) we find

t̂(x, θ̂ )
d
−→ N (0, 1) .

9 A similar result holds when an intercept is included, but not reported here
because of the length of the expressions involved.
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Table 1
(r = 0): Size and power of linearity tests Fsum and Fmax under the null hypothesis of linearity (f1) against alternatives (f2–f5) in (23).

Fsum f1 f2 f3 f4 f5 Fmax f1 f2 f3 f4 f5

n = 250

b = 0.10 0.125 1.000 0.943 0.890 0.936 b = 0.10 0.091 1.000 0.945 0.895 0.944
b = 0.20 0.021 1.000 0.912 0.832 0.917 b = 0.20 0.034 0.998 0.931 0.867 0.939
b = 0.30 0.018 0.993 0.854 0.732 0.856 b = 0.30 0.034 0.985 0.873 0.796 0.895
b = 0.40 0.016 0.920 0.844 0.676 0.799 b = 0.40 0.036 0.872 0.727 0.757 0.873
b = 0.45 0.017 0.863 0.767 0.618 0.709 b = 0.45 0.038 0.731 0.550 0.719 0.818
n = 500

b = 0.10 0.115 1.000 0.992 0.972 0.958 b = 0.10 0.090 1.000 0.990 0.969 0.962
b = 0.20 0.032 1.000 0.976 0.934 0.941 b = 0.20 0.040 0.997 0.981 0.946 0.957
b = 0.30 0.025 0.992 0.951 0.871 0.914 b = 0.30 0.041 0.982 0.955 0.898 0.942
b = 0.40 0.025 0.947 0.940 0.824 0.862 b = 0.40 0.043 0.886 0.882 0.863 0.913
b = 0.45 0.023 0.870 0.888 0.748 0.768 b = 0.45 0.043 0.776 0.735 0.805 0.847
n = 1000

b = 0.10 0.107 1.000 1.000 0.993 0.970 b = 0.10 0.088 0.999 0.999 0.991 0.976
b = 0.20 0.035 0.999 0.995 0.976 0.959 b = 0.20 0.042 0.996 0.996 0.979 0.972
b = 0.30 0.031 0.986 0.990 0.958 0.955 b = 0.30 0.042 0.969 0.981 0.961 0.972
b = 0.40 0.033 0.920 0.961 0.899 0.888 b = 0.40 0.045 0.854 0.919 0.905 0.923
b = 0.45 0.027 0.839 0.903 0.818 0.799 b = 0.45 0.043 0.737 0.801 0.841 0.863

Table 2
Size of linearity tests Fsum and Fmax .

Fsum Fmax

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

n = 250

b = 0.10 0.125 0.177 0.282 0.372 0.438 0.481 0.091 0.109 0.174 0.245 0.307 0.351
b = 0.20 0.021 0.035 0.099 0.172 0.242 0.293 0.034 0.043 0.079 0.131 0.174 0.223
b = 0.30 0.018 0.022 0.047 0.078 0.110 0.142 0.034 0.036 0.056 0.081 0.104 0.133
b = 0.40 0.016 0.019 0.035 0.051 0.059 0.077 0.036 0.039 0.051 0.066 0.079 0.090
b = 0.45 0.017 0.016 0.031 0.040 0.048 0.057 0.038 0.039 0.046 0.059 0.067 0.076
n = 500

b = 0.10 0.115 0.194 0.335 0.443 0.518 0.575 0.090 0.131 0.221 0.308 0.384 0.442
b = 0.20 0.032 0.044 0.109 0.194 0.278 0.349 0.040 0.048 0.094 0.158 0.205 0.253
b = 0.30 0.025 0.030 0.058 0.093 0.136 0.170 0.041 0.044 0.065 0.091 0.115 0.142
b = 0.40 0.025 0.027 0.044 0.056 0.069 0.091 0.043 0.041 0.054 0.070 0.077 0.088
b = 0.45 0.023 0.027 0.034 0.040 0.047 0.065 0.043 0.045 0.053 0.057 0.065 0.069
n = 1000

b = 0.10 0.107 0.196 0.351 0.479 0.564 0.630 0.088 0.133 0.236 0.340 0.421 0.487
b = 0.20 0.035 0.050 0.127 0.216 0.296 0.372 0.042 0.054 0.102 0.161 0.215 0.258
b = 0.30 0.031 0.036 0.072 0.102 0.141 0.181 0.042 0.047 0.067 0.098 0.118 0.142
b = 0.40 0.033 0.035 0.048 0.061 0.067 0.084 0.045 0.047 0.056 0.066 0.076 0.084
b = 0.45 0.027 0.028 0.037 0.044 0.047 0.057 0.043 0.049 0.052 0.058 0.062 0.068

We report briefly some simulation findings concerning the
finite sample properties of these linearity tests. The simulation is
based on 5000 replications of the model

yt = f (xt−r) + ut , xt = xt−1 + vt ,

with (vt , ut) ∼ i.i.d.N (0, I), and the following functions

f1(x) = x, f2(x) = sign(x) |x|
3
2 , f3(x) = 2sign(x) |x|

1
2

f4(x) = ln(0.1 + |x|), f5(x) = 5e−x2 . (23)

We test the null of linearity (f = f1) against the nonlinear alter-
natives f = f2, . . . , f5. The functions f2, f3, f4 are locally integrable,
and f5, is integrable. The nonparametric fitted regression from a
modelwhich is possiblymisspecified in terms of its dynamic struc-
ture is f̂ (x) =

n
t=1 Kh (xt − x) yt/

n
t=1 Kh (xt − x) and the fitted

parametric model is yt = θ̂0 + θ̂1xt + ût .
We use the normal kernel for K (x), sample sizes n = 250,

500, 1000 and explore robustness of the tests against a range of
possible lags: r = 0, 1, 2, 3, 4, 5. The bandwidth is h = n−b

with settings b = 0.1, 0.2, 0.3, 0.4, 0.45. The weight function w
for the construction of the variance estimator σ̂ 2

w is w(x) =

exp(− |x|1/2 /2). The ‘‘grid’’ Xk is given by {−5, . . . ,−1, 0,
1, . . . , 5}. Nominal size is set at 5%.

The findings reveal good size control for all sample sizes
provided the bandwidth h ≤ n−0.2 (Table 1). The tests also show
good power (Table 1). The Fsum test appears to have superior power
against polynomial alternatives, while the Fmax test is superior
against logarithmic and integrable alternatives. Size becomes
conservative as the bandwidth decreases. The Fsum test is more
conservative than the Fmax test. Size is also robust against lag
misspecification, with greater resilience for smaller bandwidths
(Table 2). Hence, if dynamic misspecification is suspected, then
smaller bandwidth choice in testing is recommended for better size
control.

Finally, we provide some discussion about the role of the
weight function that is utilised for the construction of the variance
estimator σ̂ 2

w . The simulation results show that in some cases
there is a power drop against the polynomial alternative f2 when
the sample size increases for the weight function w (x) (Table 1).
As mentioned, the purpose of the integrable weight function is
to prevent the variance estimator diverging under H1. Without a
weight function the tests are inconsistent (the test statistics vanish
as n → ∞). On the other hand the weight function results in
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information loss because data away from the origin are down-
weighted. In general, ‘‘thick tailed’’ weighting functions involve
smaller information loss. However, there can be a drop in power
when the term f (·)2w(·) is large, as for example when f (x) is a
higher order polynomial. In general, this term assumes large values
when f is a higher order polynomial. Therefore, against higher
order polynomial alternatives, ‘‘thin tailed’’ weight functions are
recommended.10

5. Concluding discussion

The results presented here show that the temporal invariance
of linear cointegrating relations fails in the nonlinear case and
mistiming of the regression function results in inconsistency in
kernel regression. In consequence, correct dynamic specification
takes on new significance in nonlinear cointegrating systems.
Specification tests for nonlinear cointegration therefore need to
take lag distribution and timing effects specifically into account.

The nonlinear setting clearly opens up many new possibilities
for specification testing, including testing functional form in
a particular locality corresponding to the kernel regression,
allowance for short memory in the regression equation errors
and endogeneity in the regressors. The differing effect on
nonstationarity of various nonlinear functional forms in regression
also means that simple residual based tests for stationarity,
such as KPSS (1992) tests, may be misleading in the nonlinear
context. Indeed, the long run and memory properties of the
regressor may be substantially altered through nonlinear filtering.
Since nonlinear functionals can change the integration order, the
dependent variable in a nonlinear model may well have less
memory than the regressor, meaning that misspecification may be
harder to detect than it is in linear models. Specification tests for
cointegrationmodelswhere there is nonlinearity of unknown form
are therefore likely to present far greater challenges than in the
case of parametric linear cointegration.
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Appendix A. Supporting results

The following six limit results extend the WP framework as
needed to accommodate sample covariances of convolution inte-
grable functions (f ) and integrable kernels (K) involving xt . It will
be convenient to use notation φϵ(x) =


2πϵ2

−1/2 exp

−x2/2ϵ2


and φ(x) = φ1(x). We also often write the density p1 (v) as p (v),
and use the following (standard) notation for conditional expecta-
tion and conditional probability: Et (·) = E(· | Fn,t) and Pt (·) =

P(· | Fn,t). In the following proofs, we use A as a generic constant
whose value may change in each location.

Set

Sn(η) :=
cn
n

[nη]
t=1

f (xt−r) K

cn


xt−s − x

√
n


, 0 < η ≤ 1.

10 In more extensive simulations (not reported in detail here), a thicker tailed
(than w(x)) weight function w∗(x) = exp(− |x| /2) was also used. For w∗(x) all the
tests havemonotonic power against the polynomial alternative f2 . Nevertheless, the
thinner tailed w(x) results in overall better performance.

Proposition A below provides limit theory for Sn(η), and
is a partial generalisation of the main limit result of WP, for
sample covariances of integrable transformations of nonstationary
sequences and time translated sequences. Note that if we set
f = 1 we obtain the sample average term of WP (Theorem 2.1).
Proposition A is fundamental for the proof of Theorems 1–4 of the
paper. It is also of independent interest (see the Remark below).

Proposition A. Suppose that Assumptions 2.1–2.3 and the fol-
lowing conditions hold:

f √
n

cn
z + x − v

 ≤ f0 (z, x, v) for n

large enough, with

v


z f0(z, x, v) |K(z)| pr−s(v)dzdv < ∞,

v


z
|f0 (z, x, v)| |K (z)| dz

2

pr−s(v)dv < ∞ and
v


z
f 20 (z, x, v)K 2(z)pr−s(v)dzdv < ∞,

for and each x ∈ R, and r, s ∈ N;

Then, we have the following:

(i) If Assumption 2.2 (a) holds and n → ∞

Sn(η)
d
−→ Ef


x +


rs

vi


∞

−∞

K (λ) dλLG(η, 0).

(ii) If Assumption 2.2 (b) holds and n → ∞

Sn(η)
p
−→ Ef


x +


rs

vi


∞

−∞

K (λ) dλLG(η, 0),

uniformly in η ∈ (0, 1].

Remark. Replace Assumption 2.3(a) by the requirement limn→∞√
n/cn = m0 > 0. Then, we have the following modification

of Proposition A, which is relevant to parametric estimation (e.g.
Example 1):

Sn(η)
d
−→


∞

−∞

Ef


x + λm0 +


rs

vi


K (λ) dλLG(η, 0).

Lemma 1. Suppose that

(a) Assumption 2.1 holds.
(b)

f √
n

cn
z + x − v

 ≤ f0 (z, x, v), for n large enough and

(i)

v


z f0(z, x, v) |K(z)| pr−s(v)dzdv < ∞,

(ii)

v


z |f0 (z, x, v)| |K (z)| dz

2 pr−s(v)dv < ∞ and
(iii)


v


z f

2
0 (z, x, v)K 2(z)pr−s(v)dzdv < ∞,

for r, s ∈ N and x ∈ R.
Let

Ln,ϵ(η) :=
cn
n

[nη]
t=1


∞

−∞

f
√

n

xt−r,n + zϵ


× K


cn


xt−s,n −

x
√
n

+ zϵ


φ (z) dz.

Then

Ln,ϵ(η) =
cn
n

[nη]
t=1

Et−(r∨s)−1


∞

−∞

f
√

n

xt−r,n + zϵ


× K


cn


xt−s,n −

x
√
n

+ zϵ


φ (z) dz + op(1),

uniformly in η.
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Proof of Lemma 1. Without loss of generality, we shall assume
that r = 1 and s = 0. The proof for the general case is identical
but requires more complicated notation. Consider

Ln,ϵ (η)

=
cn
n

[nη]
t=1


∞

−∞

f
√

n

xt−1,n + zϵ


K

cn


xt,n −

x
√
n

+ zϵ


φ (z) dz  
:=zt

=
cn
n

[nη]
t=1

Et−2zt +
cn
n

[nη]
t=1


zt − Et−2zt


. (24)

We show that the second term in (24) is op (1) . Notice that
(zt − Et−2zt) , Fn,t−1


is amartingale difference sequence. Hence,

EEt−2


cn
n

[nη]
t=1

(zt − Et−2zt)

2

=

 cn
n

2
E


[nη]
t=1

Et−2z2t −

[nη]
t=1

(Et−2zt)2


. (25)

The first term on right hand side of (25) equals cn
n

2 [nη]
t=1

EEt−2


∞

−∞

f
√

n

xt−1,n + zϵ


× K


cn


xt,n −

x
√
n

+ zϵ


φ (z) dz
2

=

 cn
n

2 [nη]
t=1

E


v


l
f
√

nl + x − v

K (cnl) φϵ

×


l − xt−1,n −

v
√
n

+
x

√
n


dl
2

p(v)dv

≤
Acn
n


v


m

f √
n

cn
m + x − v

 |K (m)| dm
2

p(v)dv

≤
Acn
n


v


m

|f0 (m, x, v)| |K (m)| dm
2

p(v)dv → 0,

where the last inequality holds for n large enough. The second term
on the R.H.S. of (25) equals cn
n

2
E

[nη]
t=1


Et−2


∞

−∞

f
√

n

xt−1,n + zϵ


× K


cn


xt,n −

x
√
n

+ zϵ


φ (z) dz
2

=

 cn
n

2 [nη]
t=1

E


v


z
f
√

n

xt−1,n + zϵ


× K


cn


xt−1,n +

v
√
n

−
x

√
n

+ zϵ


φ (z) p(v)dzdv
2

≤
φ2

ϵ (0)
n


v


l

f √
n

cn
l + x − v


K (l)

 p(v)dvdl
2

≤
A
n


v


l
f0 (l, x, v) |K (l)| p(v)dvdl

2

→ 0,

as required. �

Lemma 2. Suppose that Assumptions 2.1 and 2.3 hold. Set

L∗

n,ϵ(η) =
cn
n

[nη]
t=1

Et−(r∨s)−1


∞

−∞

f
√

n

xt−r,n + ϵz


× K


cn


xt−s,n −

x
√
n

+ ϵz


φ(z)dz.

Then

lim
n→∞

sup
0≤η≤1

L∗

n,ϵ(η) −
τ

n

[nη]
t=1

φϵ(xt−(r∨s),n)

 = 0,

where τ := Ef

x +


rs vi

 
∞

−∞
K (z) dz.

Proof of Lemma 2. In view of Assumption 2.3 and the Lipschitz
continuity of φϵ the result follows from standard arguments
(see Kasparis and Phillips, 2009, for more details). �

Lemma 3. Suppose that:

(a) Assumptions 2.1 and 2.4 hold.
(b)

f √
n

cn
z + x − v

 ≤ f0 (z, x, v) for n large enough with

v


z

f0(z, x, v)K(z)pr−s(v)dzdv < ∞, for each x ∈ R, and r > s ∈ N.
(c) K has an integrable Fourier transform.

Let q ∈ N with q ≥ 2. Then:

(i)

lim
n→∞

sup
0≤η≤1

cn
n
E
 [nη]

t=1

f
√

nxt−r,n


×


Et−r−1K


cn


xt−s,n −

x
√
n

q  = 0,

(ii)

lim
n→∞

sup
0≤η≤1

cn
n

× E


[nη]
t=1

f
√

nxt−r,n
 q

j=1

Et−r−1K

cn


xt−s,n −

x̄j
√
n


  


Dn(η)

= 0,

(iii)

lim
n→∞

sup
0≤η≤1

cn
n
E
 [nη]

t=1

f
√

nxt−r,n
 q

j=1

× K

cn


xt−s,n −

x̄j
√
n

  = 0.

Proof of Lemma 3. We shall prove part (ii). Without loss of
generality, assume that r = 1, s = 0.

E |Dn(η)| =
cn
n


l

 [nη]
t=1

q
j=1


lj
f
√

ndt−1,0,nl


× K

cn


dt−1,0,nl +

lj − x̄j
√
n


p(lj)dlj

ht−1,0,n (l) dl

≤
1
n

n
t=1

1
dt−1,0,n


m

q
j=2


l1


lj
f0 (m, l1)

× K (m) K

m +

cn
√
n


lj − l1 + x̄j − x̄1


p(lj)dljdm
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≤ A

m


l1

q
j=2


lj
f0 (m, l1) K (m)

× K

m +

cn
√
n


lj − l1 + x̄j − x̄1


p(lj)dljdm → 0,

as n → ∞. Note that the second inequality above holds for n
large enough. Further, the limit above holds by dominated con-
vergence since K


m +

cn√
n (lj − l1 + x̄j − x̄1)


→ 0 almost every-

wherewith respect to the Lebesguemeasure,

l1


m f0 (m, l1) K (m)

p(l1)dl1dm < ∞, and sups K(s) < ∞.
Parts (i) and (iii) follow using similar arguments to those used

above. �

Lemma 4. Suppose that:
(a) Assumptions 2.2 and 2.4 hold.
(b)

f √
n

cn
z + x − v

 ≤ f0 (z, x, v) for n large enough with

v


z

f0(z, x, v)K(z)pr−s(v)dzdv < ∞, for each x ∈ R and r > s ∈ N.

Set

Dn(η) :=
cn
n

[nη]
t=1

f
√

nxt−r,n

Et−r−1K


cn


xt−s,n −

x
√
n


.

Then

sup
n

sup
0≤η≤1

E |Dn(η)| < ∞.

Proof of Lemma 4. Without loss of generality, assume that r = 1
and s = 0. We have

E |Dn(η)| =

 cn
n


E

[nη]
t=1


v

f √nxt−1,n


× K

cn


xt−1,n +

v
√
n

−
x

√
n

 p(v)dv

=

 cn
n


E

[nη]
t=1


s


v

f √ndt−1,0,ns


× K

cn


dt−1,0,ns +

v
√
n

−
x

√
n

 p(v)ht−1,0,n (s) dvds

≤ A

m


v

f0 (m, v, x) K (m) p(v)dvdm < ∞,

as required. �

Lemma 5. Suppose that Assumptions 2.1–2.3 and the conditions
of Theorem 1 hold. Let q, r, s ∈ N with q > 1 and r < s. Then

sup
0≤η≤1

 cnn
[nη]
t=1


∞

−∞

{Et−s−1f [(xt−r)]}q

× K

cn


xt−s,n −

x
√
n


− τL(η, 0)

 p
−→ 0,

where τ :=

Ef

x +


rs vi

q ∞

−∞
K (z) dz.

Proof of Lemma 5. Set

L∗∗

n,ϵ(η) =
cn
n

[nη]
t=1


∞

−∞


Et−s−1f

√
n

xt−r,n + ϵz

q
× K


cn


xt−s,n −

x
√
n

+ ϵz


φ(z)dz.

and

L∗∗

n (η) =
cn
n

[nη]
t=1


Et−s−1f

√
nxt−r,n

q
K

cn


xt−s,n −

x
√
n


.

It can be shown along the lines of Lemma 2 that

lim
n→∞

sup
0≤η≤1

L∗∗

n,ϵ(η, x) −
τ

n

[nη]
t=1

φϵ(xt−s,n)

 = 0,

where τ is defined in Lemma 2. In addition, using arguments
similar to those used in the proof of Theorem 1 in Kasparis and
Phillips (2009) we get

lim
ϵ→0

lim
n→∞

sup
0≤η≤1

E
L∗∗

n (η) − L∗∗

n,ϵ(η)
 = 0. �

Proof of Proposition A. We shall prove part (ii) of Proposition A.
The proof for part (i) is similar. Set,

Ln(η) =
cn
n

[nη]
t=1


∞

−∞

f
√

nxt−1,n

K

cn


xt,n −

x
√
n


φ(z)dz.

Ln,ϵ(η) =
cn
n

[nη]
t=1


∞

−∞

f
√

n

xt−1,n + ϵz


× K


cn


xt,n −

x
√
n

+ ϵz


φ(z)dz

(note that Ln,ϵ(η) is as in Lemma 1). By Lemmas 1 and 2 we have

lim
n→∞

sup
0≤η≤1

Ln,ϵ(η, x) − Ef


x +


rs

vi



×


∞

−∞

K (z) dz
1
n

[nη]
t=1

φϵ(xt−s,n)

 = 0. (26)

Further, it can be shown that

lim
ϵ→0

lim
n→∞

sup
0≤η≤1

E
Ln(η) − Ln,ϵ(η)

 = 0. (27)

The asymptotic result of (27) is an extension of Theorem 2.1 of WP
to sample covariances. For a detailed proof of (27) see Kasparis and
Phillips (2009). The subsequent arguments are similar to those in
WP. Consider the term (Eq. (26))

lim
ϵ↓0

1
n

[nη]
t=1

φϵ(xt−s,n) = lim
ϵ↓0

 η

0
φϵ(G(λ))dλ + op(1)

= lim
ϵ↓0


∞

−∞

φ(x)L (η, ϵx) dx + op(1)

= L (η, 0)


∞

−∞

φ(x)dx + oa.s.(1)

= L (η, 0) + oa.s.(1), (28)

where the first equality above is a consequence of the strong ap-
proximation (Assumption 2.2), and holds uniformly in 0 ≤ η ≤ 1.
The second equality, given above, follows from the occupa-
tion times formula (e.g. WP). In view of (26)–(28), the result
follows. �

Appendix B. Proofs of the main results

Proof of Theorem 1. Write

f̂ (x) − Ef


x +


rs

vi



=


f (xt−r) − Ef


x +


rs

vi


Kh(xt−s − x)




Kh(xt−s − x)

+


Kh(xt−s − x)ut
Kh(xt−s − x)

.
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Then it follows directly from Proposition A that the first term
on right hand side above is op(1). Further, an application of the
martingale CLT11 togetherwith Proposition A show that the second
term is Op


1/

h
√
n

, and the result of Eq. (5) follows. �

Proof of Theorem 2. We prove the result for one lag differential
(i.e., |s − r| = 1) and the result for the general case follows in the
same way.

First, we consider the case r > s. Set τ := Ef (x − vt). We
have

√
nh

f̂ (x) − Ef (x − vt)



=

:=Rn  
1√
nh


Et−2 {[f (xt−1) − Ef (x − vt)] Kh(xt − x)}

1
√
nh


Kh(xt − x)

+

1√√
nh

 :=αt  
f (xt−1)Kh(xt − x) − Et−2f (xt−1)Kh(xt − x)

1
√
nh


Kh(xt − x)

+

1√√
nh

 :=βt  
τEt−2Kh(xt − x) − τKh(xt − x)

1
√
nh


Kh(xt − x)

+

1√√
nh

 :=γt  
Kh(xt − x)ut

1
√
nh


Kh(xt − x)

:=
Rn + Mn(x)

1
√
nh

n
t=1

Kh(xt − x)
.

Notice that

E |Rn| = E
  1

√
nh

1/2 n
t=1

Et−2

×


(f (xt−1) Ef (x − vt)) K

xt
h

−
x
h

 
≤


1

√
nh

1/2 n
t=1


y

 
u


f
√

ndt−1,0,ny

− Ef (x − vt)


× K

√
ndt−1,0,ny

h
+

v

h
−

x
h


p1(v)dv

ht−1,0,n(y)dy

=


1

√
nh

1/2 h
√
n

n
t=1

(dt−1,0,n)
−1

×


z
|[Ef (hz + x − vt) − Ef (x − vt)] K (z)|

× ht−1,0,n


hz + x − vt
√
ndt−1,0,n


dz

≤
√

nh1+2γ 1/2 1
n

n
t=1

(dt−1,0,n)
−1

z
f1(z, x)K (z) dz → 0.

11 An explicit martingale CLT for this term is obtained in the proof of Theorem 2.

Hence,
√
nh

f̂ (x) − Ef (x − vt)


=

Mn(x)

1
√
nh

n
t=1

Kh(xt − x)
+ op(1). (29)

Next,

Mn, Fn,n−1


is a martingale sequence. We shall establish

a martingale CLT for this term. Set

T1,n :=
1

√
nh

n
t=1

Et−2 (αt + βt + γt)
2 .

First, we show that

T1,n
p
−→

Varf (x − vt) + σ 2

u


LG(1, 0)


∞

−∞

K 2(s)ds. (30)

By Lemma 3 we get

T1,n =
1

√
nh

n
t=1

Et−2

f 2(xt−1)K 2

h (xt − x)


−
1

√
nh

n
t=1

[Et−2f (xt−1)Kh(xt − x)]2

+
1

√
nh

τ 2
n

t=1

Et−2K 2
h (xt − x)

−
1

√
nh

τ 2
n

t=1

[Et−2Kh(xt − x)]2

+
1

√
nh

n
t=1

Et−2K 2
h (xt − x)u2

t

−
1

√
nh

2τ
n

t=1

f (xt−1)Et−2K 2
h (xt − x)

+
1

√
nh

2τ
n

t=1

f (xt−1) [Et−2Kh(xt − x)]2

=
1

√
nh

n
t=1

Et−2

f 2(xt−1)K 2

h (xt − x)


+
1

√
nh

τ 2
n

t=1

Et−2K 2
h (xt − x)

+
1

√
nh

n
t=1

K 2
h (xt − x)σ 2

t,u

−
1

√
nh

2τ
n

t=1

f (xt−1)Et−2K 2
h (xt − x) + op(1)

=: T2,n + op(1).

Next, note that

E
√
nh

n
t=1

K 2
h (xt − x)

σ 2
t,u − σ 2

u


≤

1
√
nh

n
t=1


EK 2q

h (xt − x)
1/q 

E
σ 2

t,u − σ 2
u

p1/p → 0, (31)

as n → ∞ for some p, q > 1 and 1/p + 1/q = 1. Eq. (31) holds
by the Toeplitz lemma. To see this, notice that by Assumption 2.3σ 2

t,u − σ 2
u

 = oa.s.(1). Hence, E
σ 2

t,u − σ 2
u

p → 0 by dominated

convergence, for E
σ 2

t,u − σ 2
u

p ≤ 2p−1

supt Eσ

2p
t,u + σ

2p
u


< ∞,
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due to Assumption 2.6.Moreover, using arguments similar to those
used in the proof of Lemma 3, we get EK 2q

h (xt − x) → 0 as n → ∞

and supn
√

nh
−1n

t=1


EK 2q

h (xt − x)
1/q

< ∞. Therefore, (31)
holds (e.g. Hall and Heyde, 1980, p.31).

Hence, by (31), Lemma 1 and Proposition A, we get

T2,n
p
−→

Varf (x − vt) + σ 2

u


LG(1, 0)


∞

−∞

K 2(s)ds.

Next, fix δ > 0 and ζ > 0 and consider

T3,n :=
1

√
nh

n
t=1

Et−2 (αt + βt + γt)
2 1

×


1

√
nh

1/2

|αt + βt + γt | > δ


.

Using Lemmas 1, 3(i) and Proposition A we can show that
(see Kasparis and Phillips, 2009)

T3,n = op(1). (32)

Finally, in view of Hall and Heyde (1980, Theorem 3.2), (30) and
(32) give

Mn(x)
d
−→


Varf (x + vt) + σ 2

u


LG(1, 0)


∞

−∞

K 2(s)ds
1/2

W

=: M(x),

whereW is a standard normal variate independent of LG(1, 0).

Next, the quadratic variation ofMn(x), is [Mn] :=
√

nh
−1n

t=1

(αt + βt + γt)
2. The following condition (see Theorem 6.1 and

Corollary 6.7 of Jacod and Shiryaev (1986))

sup
n

√
nh
−1/2

max
0≤t≤n

E |αt + βt + γt | < ∞ (33)

is sufficient for

([Mn] , Mn(x))
d
−→ ([M] , M) . (34)

Using Lemma 4, it can be shown that (33) holds (see Kasparis and
Phillips, 2009). Next, consider the predictable quadratic variation
of Mn(x), ⟨Mn⟩ :=

1
√
nh

n
t=1 Et−2 (αt + βt + γt)

2. We shall show
that

lim
n→∞

E |[Mn] − ⟨Mn⟩| = 0. (35)

In view of (34), (35) implies

(⟨Mn⟩ ,Mn(x))
d
−→ ([M] ,M) . (36)

According to Hall and Heyde (1980, Theorem 2.23), (32) and
tightness of ⟨Mn⟩ are sufficient for (35). Let λ > 0 and notice
that

lim
λ→∞

sup
n

P (⟨Mn⟩ > λ) ≤ lim
λ→∞

1
λ
sup
n

E (⟨Mn⟩) = 0,

for supn E (⟨Mn⟩) < ∞ due to Lemmas 3(i) and 4. Therefore, the
sequence ⟨Mn⟩ is tight.

Finally, it follows from (29) that the NW estimator
n

t=1

Kh(xt − x)

1/2 
f̂ (x) − Ef (x + vt)


=

Mn(x)√
nh
−1 n

t=1
Kh(xt − x)

1/2 + op(1)

=
⟨Mn⟩

1/2√
nh
−1 n

t=1
Kh(xt − x)

1/2

Mn(x)
⟨Mn⟩

1/2 =: AnBn.

Now by Theorem 1, it can be easily seen that

An
p
−→


σ 2
u + Varf (x − vt)


LG(1, 0)


∞

−∞
K 2(s)ds

1/2
LG(1, 0)


∞

−∞
K(s)ds

1/2
=


σ 2
u + Varf (x − vt)

  ∞

−∞

K 2(s)ds
1/2

.

In addition, (36) implies that Bn
d
−→ W , and the result for r > s

follows. The proof for r < s follows from Lemma 5 and arguments
similar to those used in the previous part. �

Proof of Theorem 3. Write√
nh
−1

n
t=1

Kh(xt−s − x)


σ̂ 2

=
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nh
−1

n
t=1


f (xt−r) − f̂ (x)

2
Kh(xt−s − x)

+
√

nh
−1

n
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u2
t Kh(xt−s − x) + 2
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×

n
t=1

ut


f (xt−r) − f̂ (x)


Kh(xt−s − x) =: αn + βn + γn.

It follows directly from Proposition A and Theorem 2 that

αn
p
−→ Var


f


x +


rs

vi


∞

−∞

K(s)ds.

In addition, manipulations similar to those used in the proof of
Theorem 2 give

βn + γn = σ 2
u


∞

−∞

K(s)ds + Op

√
nh
−1/2


,

as required. �

Proof of Theorem 4. Consider t̂(x, θ̂ ) for x ∈ Xk. In view of the
Op

diag

√
n, n


consistency of θ̂ , and using arguments similar to

those in the proof of Theorem 2 we have

t̂(x, θ̂ ) =


n

t=1
Kh (xt−s − x)

σ̂ 2
w


∞

−∞
K(s)2ds
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1/2 

f̂ (x) − θ0 − θ1x


+ op(1)

=
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
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whereMn(x) is as in the proof of Theorem 2. Let λ be a (k × 1) non
zero vector. By Lemma 3(ii) and (iii), and using arguments similar
to those used in the proof of Theorem 2 we get

λ′ (Mn(x̄1), . . . ,Mn(x̄k))′

d
−→


LG(1, 0)


∞

−∞

K 2(λ)dλ
k

j=1

λ2
j σ(x̄j)2

1/2

N (0, 1) ,

where σ(·)2 is given by (6), and LG is independent of N (0, 1).
Therefore, in view of the above, the Cramér–Wold device gives:

(Mn(x̄1), . . . ,Mn(x̄k))′

d
−→


LG(1, 0)


∞

−∞

K 2(λ)dλ
1/2

N (0, Ω) , (37)

where Ω=diag

σ(x̄1)2, . . . , σ (x̄k)2


. Finally, by (37), Theorem 3

and in view the results in Jacod and Shiryaev (1986) on the joint
convergence of a martingale (vector) and its quadratic variation,
we get
t̂(x̄1, θ̂ ), . . . , t̂(x̄k, θ̂ )

′ d
−→ N (0, Ik) .

The result of Theorem 4 now follows easily. �

Proof of Theorem 5. The result follows from Proposition A,
Theorems 1 and 2, and the limit theory of Park and Phillips (1999,
2001) for locally integrable functions. �
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