
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2013 

Accountable Trapdoor Sanitizable Signatures Accountable Trapdoor Sanitizable Signatures 

Junzuo LAI 

Xuhua DING 
Singapore Management University, xhding@smu.edu.sg 

Yongdong Wu 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
LAI, Junzuo; DING, Xuhua; and Wu, Yongdong. Accountable Trapdoor Sanitizable Signatures. (2013). 
Information Security Practice and Experience: 9th International Conference, ISPEC 2013, Lanzhou, China, 
May 12-14, 2013: Proceedings. 7863, 117-131. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1971 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Accountable Trapdoor Sanitizable Signatures

No Author Given

No Institute Given

Abstract. Sanitizable signature (SS) allows a signer to partly delegate signing rights to a predeter-
mined party, called sanitizer, who can later modify certain designated parts of a message originally
signed by the signer and generate a new signature on the sanitized message without interacting with
the signer. One of the important security requirements of sanitizable signatures is accountability, which
allows the signer to prove, in case of dispute, to a third party that a message was modified by the
sanitizer. Trapdoor sanitizable signature (TSS) enables a signer of a message to delegate the power of
sanitization to any parties at anytime but at the expense of losing the accountability property. In this
paper, we introduce the notion of accountable trapdoor sanitizable signature (ATSS) which lies between
SS and TSS. As a building block for constructing ATSS, we also introduce the notion of accountable
chameleon hash (ACH), which is an extension of chameleon hash (CH) and might be of independent
interest. We propose a concrete construction of ACH and show how to use it to construct an ATSS
scheme.

Key words: Trapdoor Sanitizable Signature, Accountability, Chameleon Hash

1 Introduction

Ateniese et al. [1] introduced the notion of sanitizable signature (SS) and presented a generic construction
based on chameleon hash (CH) [18]. Sanitizable signatures allow a signer to partly delegate signing rights
to a predetermined party, called a sanitizer. During signature generation on a message, the signer chooses a
specific sanitizer who, with the knowledge of the putative signature, can later modify certain designated parts
of the message and generate a new signature on the sanitized message without interacting with the signer. The
capability of modification renders sanitizable signatures useful in many applications, such as authenticated
multicast, authenticated database outsourcing and authenticated multimedia content distribution.

Sanitizable signatures are required to possess the following five security properties [1]:

Unforgeability. An outsider (i.e., neither the signer nor the sanitizer) should not be able to forge the
signer’s or the sanitizer’s signature.

Immutability. The sanitizer should not be able to produce valid signatures for messages where it has
modified other than the designated parts.

Privacy. Sanitized messages and their signatures should not reveal the original data.
Transparency. An outsider should not be able to decide whether a message has been sanitized or not.
Accountability. In case of a dispute, the signer can prove to a trusted third party that a certain message

was modified by the sanitizer.

Subsequently Canard et al. [8] introduced the notion of trapdoor sanitizable signature (TSS), which is
an extension of SS. TSS enables a signer to delegate the power of sanitization for a signed message to any
party. They also proposed a generic construction of TSS based on identity-based chameleon hash (IBCH)
[2]. However, TSS does not satisfy the security requirement of accountability.

In this paper, we introduce the notion of accountable TSS (ATSS) which lies between TSS and SS.
Like SS, our ATSS scheme satisfies the accountability property; it allows a signer to generate an ATSS
signature on a message for a predetermined candidate sanitizer. The ATSS signature alone does not provide
the candidate sanitizer the power to modify the underlying message and generate a valid signature on the
modified message. In order to generate a valid signature on a modified message, similar to TSS, the candidate
sanitizer needs to obtain a trapdoor from the signer, in addition to the signer’s signature.

wydong
Typewritten Text
ISPEC 2013 by Junzuo Lai, Xuhua Ding and Yongdong Wu



One possible application of ATSS is content authentication in tiered multimedia distribution systems
[12]. Such a system consists of a top-tier primary content provider and a number of lower-tier affiliating
providers each with its own users. An example is a movie distributer in Hollywood that has a number of
country distributers worldwide. Whenever a new movie is released, the Hollywood distributer signs the video
stream for a country distributor using ATSS and sends the video stream and the signature to the country
distributor for previewing. Upon receiving the video stream, the country distributor verifies the authenticity
of the movie using the signature. If the country distributor is interested in distributing the movie, it enters
a contract with or make a payment to the Hollywood distributor. The latter in turn sends a trapdoor to the
former. With the knowledge of the trapdoor, the country distributor can then modify/adapt the movie for
its local market (e. g., adding subtitles in the local language) and generate a valid signature on the modified
video stream.

1.1 Our Contribution

Contributions of the paper can be summarized as follows:

1. We introduce the notion of ATSS. In an ATSS scheme, a signer needs to predetermine a user as a
candidate sanitizer during the signature generation. This signature alone does not allow the candidate
sanitizer to produce a new signature on a sanitized message. To generate a new signature on a sanitized
message, the candidate sanitizer needs to obtain a trapdoor from the original signer.

2. We extend the notion of CH by introducing the notion of accountable CH (ACH) and define its security
requirements. We propose a concrete construction of ACH that satisfies the security requirements in the
random oracle model [6].

3. Based on ACH, we present a generic construction of ATSS. Instantiating the generic construction with
our concrete ACH scheme, we can obtain the first ATSS scheme.

1.2 Related Work

Sanitizable Signature. The notion of SS was introduced by Ateniese et al. [1]. Such signatures allow a sanitizer
to modify certain designated parts of a signed message and generate a new signature on the sanitized message
without interacting with the signer. Klonowski and Lauks [17] presented several extensions of SS, including
limitation of the set of possible modifications of a single mutable block and limitation of the number of
modifications of mutable blocks. Pöhls et al. [22] integrated SS schemes into the XML signature specification.

Ateniese et al. [1] identified five security requirements of SS schemes, unforgeability, immutability, privacy,
transparency and accountability. Brzuska et al. [7] revisited these security requirements and investigated their
relationships, showing for example that transparency implies privacy.

Miyazaki et al. [21] used the notion of SS in a slightly different vein. Their SS schemes [21, 15, 20] allow
a sanitizer to only delete predetermined parts of a signed message.

The notion of incremental cryptography [5] and homomorphic signatures, which encompass transitive
[19], redactable [16] and context-extraction signatures [24], are also related to SS. We refer the reader to [1]
for details.

Trapdoor Sanitizable Signature. Canard et al. [8] introduced the notion of TSS, in which the power of saniti-
zation is given to possibly several entities. Based on IBCH, Canard et al. [8] proposed a generic construction
of TSS. Recently, Yum et al. [25] presented another generic construction of TSS from ordinary signature
schemes; therefore, one-way functions imply TSS. Bao et al. [4] extended TSS for the hierarchical setting.

Chameleon Hash. Our work is also related to CH functions, which are randomized collision-resistant hash
functions with the additional property that given a trapdoor, one can efficiently generate collisions. CH was
first introduced by Krawczyk and Rabin [18]. Other CH constructions were proposed subsequently [9, 3, 14,
13, 11] .

Ateniese and Medeiros [2] extended CH to identity-based setting [23] and introduced the notion of IBCH.
Zhang et al. [26] and Chen et al. [10] followed their work.

2



1.3 Organization

The rest of the paper is organized as follows. Some preliminaries are given in Section 2. The notion and
security requirements of ATSS are introduced in Section 3. In Section 4, we present the notion and security
requirements of ACH, and propose a concrete construction. In Section 5, we propose a generic construction
of ATSS from ACH and present a specific ATSS scheme based on our ACH scheme. Finally, we state our
conclusion in Section 6.

2 Preliminaries

If L is a positive integer, then [1, L] = {1, 2, . . . , L}. If A,B are two sets, A\B = {x ∈ A|x /∈ B}. If x1, x2, . . .
are strings, then x1∥x2∥ . . . denotes their concatenation. We denote by R the range of random number. We
say that a function f(λ) is negligible if for every c > 0 there exists an λc such that f(λ) < 1/λc for all λ > λc.

2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic multiplicative group of the same
order p. A bilinear pairing is a map e : G×G→ GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G,∀a, b ∈ Z∗
p, we have e(ga1 , g

b
2) = e(g1, g2)

ab;
– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) ̸= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for ∀g1, g2 ∈ G.

2.2 Computational Diffie-Hellman (CDH) Assumption

The security of our ACH scheme will be reduced to the hardness of the computational Diffie-Hellman (CDH)
problem in the bilinear map group system ⟨p,G,GT , e⟩ in which the ACH scheme is constructed.

Definition 1 Given a bilinear map group system ⟨p,G,GT , e⟩, a generator g of G and elements ga, gb ∈ G
where a, b are selected uniformly at random from Z∗

p, the CDH problem in the bilinear map group system is

to compute gab. We say that the CDH assumption holds in a bilinear map group system ⟨p,G,GT , e⟩ if no
probabilistic polynomial-time algorithm can solve the CDH problem in the bilinear map group system with
non-negligible probability.

3 Accountable Trapdoor Sanitizable Signature and Its Security Requirements

ATSS lies between sanitizable signature and trapdoor sanitizable signature. Like a TSS scheme, an ATSS
scheme includes the algorithms: GlobalSetup, KeyGen, Sign, Trapdoor, Sanitize and Verify. However, in ATSS,
besides the private key of the signer, the inputs of the Sign algorithm include the public key of a candidate
sanitizer and a transaction identifer TID. In order to generate a new signature on a sanitized message, in
ATSS, the inputs of the Sanitize algorithm include the private key of the candidate sanitizer and a trapdoor
associated with the transaction identifier TID generated by the signer using Trapdoor algorithm, not just a
trapdoor associated with the transaction identifier as in TSS or just the private key of the sanitizer as in SS.

In addition, to settle disputes about the origin of a message-signature pair, an algorithm Proof enables
the signer to produce a proof π. The proof π is generated from a set of previously signed messages. A Judge
algorithm then uses the proof π to decide if a valid message-signature pair was created by the signer or the
sanitizer (the lack of such a proof is interpreted as a signer origin).

Concretely, an ATSS scheme is a tuple of algorithms described as follows:

GlobalSetup takes as input a security parameter λ. It produces a common public parameter param to be
used by all parties in the system.

param← GlobalSetup(λ).

3



KeyGen takes as input a security parameter λ and the common public parameter param. It generates a
public/private key pair (pk, sk). Every party in the system uses this randomized algorithm to generate
a private/public key pair himself or herself.

(pk, sk)← KeyGen(λ, param).

For presentation simplicity, we assume there exist a single singer and multiple sanitizers in the system.
We denote by (pksig, sksig) the key pair of the signer, and by (pksan, sksan) the key pair of a sanitizer.

Sign takes as input a sanitizer’s public key pksan, a message m = m1∥ · · · ∥mL, a set of indices I ⊆ [1, L]
that are sanitizable, a transaction identifier TID and the signer’s private key sksig. It outputs a signature
σ on m.

σ ← Sign(pksan,m, I,TID, sksig).

We assume that each message signed has a unique transaction identifier.
Trapdoor takes as input a message m, a set of indices I that are sanitizable, a transaction identifier TID,

a valid signature σ on (pksig, pksan,m, I,TID) and the signer’s private key sksig. It outputs a trapdoor
tdTID.

tdTID ← Trapdoor(m, I,TID, σ, sksig).

Sanitize takes as input the signer’s public key pksig, a message m, a set of the indices I that are sanitizable,
a transaction identifier TID, a valid signature σ on (pksig, pksan,m, I,TID), a trapdoor tdTID associated
with TID, the sanitizer’s private key sksan and a new message m′. It outputs a new signature σ′ on
(pksig, pksan,m

′, I,TID).

σ′ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan).

Verify takes as input param, the signer’s public key pksig, a sanitizer’s public key pksan, a message m, a set
of the indices I that are sanitizable, a transaction identifier TID and a putative signature σ. It outputs
1 if the signature σ on m is valid and 0 otherwise.

0/1← Verify(param, pksig, pksan,m, I,TID, σ).

Proof takes as input param, the signer’s private key sksig, a valid signature σ on (pksig, pksan,m, I,TID), and

a set of (polynomially many) additional message-signature pairs ((pksig, pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q.

It outputs a proof π ∈ {0, 1}∗.

π ← Proof(param, sksig, ((pksig, pksan,m, I,TID), σ), ((pksig, pk
(i)
san,m

(i), I(i),TID(i)), σ(i))i=1,2,...,q).

Judge takes as input param, the signer’s public key pksig, the sanitizer’s public key pksan, a valid signature
σ on (pksig, pksan,m, I,TID) and a proof π. It outputs a decision d ∈ {Sig/San} indicating whether the
message-signature pair ((pksig, pksan,m, I,TID), σ) was created by the signer or the sanitizer.

d← Judge(param, ((pksig, pksan,m, I,TID), σ), π).

The usual correctness properties should hold for an ATSS scheme, saying that genuinely signed or
sanitized messages are accepted. Formally, for any security parameter λ, any message m = m1∥ · · · ∥mL,
any set of indices I ⊆ [1, L], any transaction identifier TID, param ← GlobalSetup(λ), (pksig, sksig) ←
KeyGen(λ, param), (pksan, sksan)← KeyGen(λ, param), σ ← Sign(pksan,m, I,TID, sksig), tdTID ← Trapdoor(m,
I,TID, σ, sksig), and σ′ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan), we must have

Verify(param, pksig, pksan,m, I,TID, σ) = 1 and Verify(param, pksig, pksan,m
′, I,TID, σ′) = 1.

4



The security requirements of an ATSS scheme include unforgeability, indistinguishability and account-
ability. The unforgeability and indistinguishability requirements of ATSS are extended from the security
requirements of TSS [8]. Informally, unforgeability requires that an outsider be not able to forge a signature
on the original or the sanitized message, and indistinguishability requires that an outsider be not able to
decide whether a message has been sanitized or not.

Accountability requires that the origin of a (sanitized) signature be undeniable. We distinguish between
sanitizer- and signer-accountability, as did in [7]. Informally, sanitizer-accountability implies that if a message
has not been signed by the signer, then even a malicious sanitizer should not be able to make a judge accuse
the signer, and signer-accountability implies that if a signed message has not been sanitized, then even a
malicious signer should not be able to make the judge accuse the sanitizer.

Unforgeability: An ATSS scheme is existentially unforgeable under adaptive chosen message attacks, if
for any probabilistic polynomial-time adversary A, the probability that A succeeds in the following game
between A and a challenger is negligible in the security parameter λ:

Setup The challenger runs

param← GlobalSetup(λ), (pksig, sksig)← KeyGen(λ, param), (pksan, sksan)← KeyGen(λ, param),

and sends the common public parameter param, the signer’s public key pksig and the sanitizer’s public
key pksan to the adversary A.

Query phase The adversary A adaptively issues queries:
1. OSign

ATSS query on (m, I,TID), where I ⊆ [1, L] is a set of indices and TID is a transaction identifier:
The challenger forwards the valid signature σ on (pksig, pksan,m, I,TID) to the adversary.

2. OTrapdoor
ATSS query on (m, I,TID, σ), where σ is a valid signature on (pksig, pksan,m, I,TID): The chal-

lenger forwards the corresponding trapdoor tdTID to the adversary.
3. OSanitize

ATSS query on (m, I,TID, σ,m′), where mi = m′
i for all i /∈ I: The challenger forwards the new

valid signature σ′ on (pksig, pksan,m
′, I,TID) to the adversary.

Output A outputs (m∗, I∗,TID∗, σ∗) and succeeds if the following conditions hold.
1. Verify(param, pksig, pksan,m

∗, I∗,TID∗, σ∗) = 1.

2. A never queries OSign
ATSS oracle on (m∗, I∗,TID∗).

3. (m∗, σ∗) does not come fromOSanitize
ATSS oracle, i.e.,A never queriesOSanitize

ATSS oracle on (m, I∗,TID∗, σ,m∗),
where σ is a valid signature on (pksig, pksan,m, I∗,TID∗) and mi = m∗

i for all i /∈ I∗.

4. A never queriesOTrapdoor
ATSS oracle on (m, I∗,TID∗, σ), where σ is a valid signature on (pksig, pksan,m, I∗,TID∗)

and mi = m∗
i for all i /∈ I∗.

Indistinguishability: The indistinguishability of an ATSS scheme requires that the output distributions of
Sign algorithm and Sanitize algorithm be computational indistinguishable. In other words, for all sufficiently
large λ, any param← GlobalSetup(λ), (pksig, sksig)← KeyGen(λ, param), (pksan, sksan)← KeyGen(λ, param),
any set of indices I ⊆ [1, L], any message pairsm,m′ such thatmi = m′

i for all i /∈ I, any transaction identifier
TID, the following distribution ensembles DSanitize and DSign are computational indistinguishable:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig), tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig,pksan,I,TID.

Sanitizer-accountability: An ATSS scheme is sanitizer-accountable, if for any probabilistic polynomial-
time adversary A, the probability that A succeeds in the following game between A and a challenger is
negligible in the security parameter λ:

Setup The challenger runs

param← GlobalSetup(λ), (pksig, sksig)← KeyGen(λ, param),

and sends the common public parameter param and the signer’s public key pksig to the adversary A.

5



Query phase The adversary A adaptively issues queries:
1. OSign

ATSS query on (pksan,m, I,TID), where pksan is a sanitizer’s public key chosen by A, I ⊆ [1, L] is
a set of indices and TID is a transaction identifier: The challenger forwards the valid signature σ on
(pksig, pksan,m, I,TID) to the adversary.

2. OTrapdoor
ATSS query on (pksan,m, I,TID, σ), where σ is a valid signature on (pksig, pksan,m, I,TID): The

challenger forwards the corresponding trapdoor tdTID to the adversary.
Output A outputs (pksig, pk

∗
san,m

∗, I∗,TID∗, σ∗) and succeeds if the following conditions hold.
1. Verify(param, pksig, pk

∗
san,m

∗, I∗,TID∗, σ∗) = 1.

2. ((pksig, pk
∗
san,m

∗, I∗,TID∗), σ∗) ̸= ((pksig, pk
(i)
san,m(i), I(i),TID(i)), σ(i)) for all i = 1, 2, . . . , q, where

(pk
(i)
san,m(i), I(i),TID(i)) and σ(i) for i = 1, 2, . . . , q denote the queries and answers to and from oracle

OSign
ATSS .

3. Sig← Judge(param, ((pksig, pk
∗
san,m

∗, I∗,TID∗), σ∗), π∗), where

π∗ ← Proof(param, sksig, ((pksig, pk
∗
san,m

∗, I∗,TID∗), σ∗), ((pksig, pk
(i)
san,m

(i), I(i),TID(i)), σ(i))i=1,2,...,q).

Signer-accountability: An ATSS scheme is signer-accountable, if for any probabilistic polynomial-time
adversary A, the probability that A succeeds in the following game between A and a challenger is negligible
in the security parameter λ:

Setup The challenger runs

param← GlobalSetup(λ), (pksan, sksan)← KeyGen(λ, param),

and sends the common public parameters param and the sanitizer’s public key pksan to the adversary
A.

Query phase The adversary A adaptively issues OSanitize
ATSS query on (pksig,m, I,TID, σ, tdTID,m

′), where
pksig is a singer’s public key chosen by A, σ is a valid signature on (pksig, pksan,m, I,TID), tdTID is the
trapdoor associated with TID and mi = m′

i for all i /∈ I: The challenger forwards the new valid signature
σ′ on (pksig, pksan,m

′, I,TID) to the adversary.
Output A outputs (pk∗sig, pksan,m

∗, I∗,TID∗, σ∗, π∗) and succeeds if the following conditions hold.
1. Verify(param, pk∗sig, pksan,m

∗, I∗,TID∗, σ∗) = 1.
2. San← Judge(param, ((pk∗sig, pksan,m

∗, I∗,TID∗), σ∗), π∗).

3. ((pk∗sig, pksan,m
∗, I∗,TID∗), σ∗) ̸= ((pk

(i)
sig, pksan,m

(i), I(i),TID(i)), σ(i)) for all i = 1, 2, . . . , q, where

((pk
(i)
sig, pksan,m

(i), I(i),TID(i)), σ(i)) for i = 1, 2, . . . , q denote the answers from oracle OSanitize
ATSS .

4 Accountable Chameleon Hash and Its Construction

In this section, we first introduce and formulate accountable chameleon hash (ACH). Then, we present a
construction of ACH and analyze its security in the random oracle model.

4.1 Accountable Chameleon Hash

ACH is a new paradigm which lies between chameleon hash (CH) and identity-based chameleon hash (IBCH).
The inputs of the Hash algorithm of an ACH include two users’ public keys and a transaction identifier TID,
not just the public key of a single user as in a CH scheme or just an identity as in an IBCH scheme. In order
to find a collision, the inputs of the Forge algorithm of an ACH scheme include one user’s private key and a
trapdoor information associated with the transaction identifer TID generated by the other user, not just a
single user’s private key as in a CH scheme or just a trapdoor information associated with an identity as in
an IBCH scheme.

Concretely, an ACH scheme consists of the following algorithms:

6



GlobalSetup takes as input a security parameter λ. It produces a common public parameter param to be
used by all parties in the system.

param← GlobalSetup(λ).

KeyGen takes as input a security parameter λ and the common public parameter param. It generates a
public/private key pair (pk, sk). All parties in the system use this randomized algorithm to generate a
private/public key pair himself or herself.

(pk, sk)← KeyGen(λ, param).

Hash takes as input param, user i’s public key pki, user j’s public key pkj , a message m and a unique
transaction identifier TID. It chooses a random r and outputs a hash value h.

h← Hash(param, pki, pkj ,TID,m, r).

Trapdoor takes as input user i’s private key ski and a transaction identifier TID. It outputs the trapdoor
information tdi,TID associated with user i and the transaction identifier TID.

tdi,TID ← Trapdoor(ski,TID).

Forge takes as input user j’s private key skj , the trapdoor information tdi,TID associated with user i and a
transaction identifier TID, the hash value h on a message m with user i’s public key pki, user j’s public
key pkj , the transaction identifier TID, random r, and a message m′. It outputs a random r′.

r′ ← Forge(skj , tdi,TID, pki, pkj ,TID,m, r, h,m′).

For correctness, we require that

Hash(param, pki, pkj ,TID,m, r) = h = Hash(param, pki, pkj ,TID,m
′, r′) and m′ ̸= m,

where

r′ ← Forge(skj , tdi,TID, pki, pkj ,TID,m, r, h,m′), tdi,TID ← Trapdoor(ski,TID).

The security of an ACH scheme consists of two requirements: resistance to collision forgery under active
attacks and forgery indistinguishability.

Resistance to collision forgery under active attacks: The accountable chameleon hash scheme is
secure against (existential) collision forgery under active attacks if, for any probabilistic polynomial-time
algorithm A, the probability that A succeeds in the following game between A and a challenger is negligible
in the security parameter λ:

Setup The challenger runs

param← GlobalSetup(λ), (pki, ski)← KeyGen(λ, param), (pkj , skj)← KeyGen(λ, param),

and sends the common public parameter param, user i’s public key pki and user j’s public/private key
pair (pkj , skj) to the adversary A.

Query phase The adversary A adaptively issues queries OTrapdoor
ACH on a transaction identifier TID. The

challenger forwards the trapdoor information tdi,TID associated with user i and the transaction identifier
TID to the adversary.

Output A outputs (TID∗,m, r,m′, r′) and succeeds if the following conditions hold.

1. Hash(param, pki, pkj ,TID
∗,m, r) = Hash(param, pki, pkj ,TID

∗,m′, r′) and m′ ̸= m.

2. A never queries OTrapdoor
ACH on TID∗.

7



Forgery indistinguishability: An ACH scheme is said to be forgery indistinguishable if, for all sufficiently
large λ, any param ← GlobalSetup, (pki, ski) ← KeyGen(λ, param), (pkj , skj) ← KeyGen(λ, param), all
transaction identifier TID, and all pairs of messages m and m′, the following distribution ensembles are
computational indistinguishable:

DForge = {(m′, r̂, h)|r $← R, h← Hash(param, pki, pkj ,TID,m, r), tdi,TID ← Trapdoor(ski,TID),

r̂ ← Forge(skj , tdi,TID, pki, pkj ,TID,m, r, h,m′)}λ,param,pki,pkj ,TID,

DHash = {(m′, r′, h′)|r′ $←R, h′ ← Hash(param, pki, pkj ,TID,m
′, r′)}λ,param,pki,pkj ,TID.

4.2 Construction

Our specific construction of an ACH scheme consists of the following algorithms:

GlobalSetup Given a security parameter λ, it first generates a bilinear map group system ⟨p,G,GT , e⟩. Then,
it picks a generator g of G and chooses a cryptographic hash function H : {0, 1}∗ → G. The common
public parameter is

param = (p,G,GT , e, g,H).

KeyGen Given a security parameter λ and the common public parameter param, user i first chooses xi ∈ Z∗
p

randomly. Then, set his public key as

pki = gxi ,

and the private key as ski = xi.
Hash Given param, user i’s public key pki, user j’s public key pkj , a message m ∈ Z∗

p and a unique
transaction identifier TID, it chooses R ∈ G uniformly at random and computes

h = e(R, g) · e(H(TID)m, pki · pkj),
Finally, it outputs the hash value h.

Trapdoor Given user i’s private key ski = xi and a transaction identifier TID, it computes

tdi,TID = H(TID)ski = H(TID)xi ,

and outputs the trapdoor information tdi,TID associated with user i and transaction identifier TID.
Forge Given user j’s private key skj , the trapdoor information tdi,TID associated with user i and transaction

identifier TID, the hash value h on a message m with user i’s public key pki, user j’s public key pkj ,
transaction identifier TID, random R, and a message m′, it computes and outputs

R′ = R · (H(TID)skj · tdi,TID)m−m′
.

Note that, for a forgery, we have

Hash(param, pki, pkj ,TID,m
′, R′) = e(R′, g) · e(H(TID)m

′
, pki · pkj)

= e(R · (H(TID)skj · tdi,TID)m−m′
, g) · e(H(TID)m

′
, pki · pkj)

= e(R, g) · e((H(TID)skj · tdi,TID)m−m′
, g) · e(H(TID)m

′
, pki · pkj)

= e(R, g) · e((H(TID)xj ·H(TID)xi)m−m′
, g) · e(H(TID)m

′
, gxi+xj )

= e(R, g) · e((H(TID)xi+xj )m−m′
, g) · e((H(TID)xi+xj )m

′
, g)

= e(R, g) · e((H(TID)xi+xj )m, g),

= e(R, g) · e(H(TID)m, gxi+xj )

= e(R, g) · e(H(TID)m, pki · pkj)
= Hash(param, pki, pkj ,TID,m,R).

So, the above scheme satisfies correctness. We now turn to security.

8



Theorem 1 In the random oracle model, the above construction of accountable CH is secure against (exis-
tential) collision forgery under active attacks, assuming that the CDH assumption holds in the bilinear map
group system ⟨p,G,GT , e⟩.

Proof. Suppose there exists an adversary A against the collision resistance of above accountable CH scheme.
We are going to construct another PPT B that makes use of A to solve the CDH problem in a bilinear map
group system ⟨p,G,GT , e⟩ with non-negligible probability.
B is given as input a random 3-tuple (g, ga, gb), and B’s goal is to compute gab. B runs A executing the

following steps.

Setup B first chooses xj ∈ Z∗
p randomly. Then, set the common public parameters as param = (p,G,GT , e, g,H),

user i’s public key as pki = ga, and user j’s public/private key pair as (pkj , skj) = (gxj , xj). The user i’s
private key ski = a, which is unknown to B. Here H is a random oracle controlled by B. B also maintains
a list L which is initially empty. Finally, B sends (param, pki, (pkj , skj)) to the adversary A.

Query phase The adversary A adaptively issues queries:
1. H query on a transaction identifier TID: B responds as follows:

– If a tuple (TID, Q, t, coin) appears in the list L, B forwards Q to A.
– Otherwise, B picks coin ∈ {0, 1} at random such that Pr[coin = 0] = ρ. (ρ will be determined

later.) Then B chooses t ∈ Z∗
p randomly and computes Q = (gb)coin · gt. Finally, the tuple

(TID, Q, t, coin) is added to the list L and Q is sent to A.
2. OTrapdoor

ACH on a transaction identifier TID: Let (TID, Q, t, coin) be the corresponding tuple in the list
L. B responds as follows:
– If coin = 0, B computes tdi,TID = (ga)t and sends tdi,TID to A. Observe that tdi,TID = H(TID)ski ,

which is the trapdoor information associated with user i and the transaction identifier TID.
– Otherwise, B aborts and terminates.

Output A outputs (TID∗,m,R,m′, R′) such that

Hash(param, pki, pkj ,TID
∗,m,R) = Hash(param, pki, pkj ,TID

∗,m′, R′) and m′ ̸= m.

Let (TID∗, Q∗, t∗, coin∗) be the corresponding tuple in the list L. B proceeds as follows:
– If coin∗ = 0, B aborts and terminates.
– Otherwise, B computes and outputs

(R/R′)1/(m
′−m)

(gbgt∗)xj · (ga)t∗
.

Observe that,

Hash(param, pki, pkj ,TID
∗,m,R) = e(R, g) · e(H(TID∗)m, pki · pkj) = e(R · (H(TID∗)xi+xj )m, g),

and

Hash(param, pki, pkj ,TID
∗,m′, R′) = e(R′, g) · e(H(TID∗)m

′
, pki ·pkj) = e(R′ · (H(TID∗)xi+xj )m

′
, g).

If Hash(param, pki, pkj ,TID
∗,m,R) = Hash(param, pki, pkj ,TID

∗,m′, R′), we have

R · (H(TID∗)xi+xj )m = R′ · (H(TID∗)xi+xj )m
′
,

(R/R′)1/(m
′−m) = H(TID∗)xi+xj .

If coin∗ = 1, H(TID∗) = gbgt
∗
; hence

(R/R′)1/(m
′−m) = (gbgt

∗
)a+xj ,

(R/R′)1/(m
′−m)

(gbgt∗)xj · (ga)t∗
= gab.

9



Therefore, if B does not abort during the simulation, B will be able to solve the CDH problem. Observe that
the probability that B does not abort during the simulation is given by ρq(1 − ρ) which is maximized at

ρ = 1− 1/(q+1), where q is the number of OTrapdoor
ACH queries by the adversary A. Hence, the probability that

B does not abort is at most 1/(τ(q+1)), where τ denotes the base of the natural logarithm. This completes
the proof.

Theorem 2 The above construction of ACH is forgery indistinguishable.

Proof. The ACH scheme is said to be forgery indistinguishable, if for all sufficiently large λ, any param ←
GlobalSetup, (pki, ski) ← KeyGen(λ, param), (pkj , skj) ← KeyGen(λ, param), all transaction identifier TID,
and all pairs of messages m and m′, the following distribution ensembles are computational indistinguishable:

DForge = {(m′, R̂, h)|R $←R, h← Hash(param, pki, pkj ,TID,m,R), tdi,TID ← Trapdoor(ski,TID),

R̂← Forge(skj , tdi,TID, pki, pkj ,TID,m,R, h,m′)}λ,param,pki,pkj ,TID,

DHash = {(m′, R′, h′)|R′ $← R, h′ ← Hash(param, pki, pkj ,TID,m
′, R′)}λ,param,pki,pkj ,TID.

In our ACH construction, because of the non-degeneracy of bilinear pairing, given a hash value h =
Hash(param, pki, pkj ,TID,m,R), there is exactly one random element R̂ ∈ G, such that

Hash(param, pki, pkj ,TID,m,R) = Hash(param, pki, pkj ,TID,m
′, R̂).

Since R is chosen uniformly, R̂ is also distributed uniformly and the forgery indistinguishability of our
construction follows.

5 Generic Construction of ATSS from ACH

Based on IBCH, Canard et al. [8] proposed a generic construction of TSS. In their construction, to sign a
message m = m1∥ · · · ∥mL, the signer first sets m̃ = m̃1∥ · · · ∥m̃L, where m̃i = mi if i /∈ I and otherwise,
m̃i = hi = IBCH.Hash(param, ID,mi, ri). The set of indices I ⊆ [1, L] that are sanitizable and the identity
ID associated with the transaction are generated by the signer. Then, the signer signs the message m̃ using
a conventional signature scheme. Obviously, an entity with the trapdoor associated with ID generated by
the signer can modify mi and generate a new signature on the sanitized message. Our construction of ATSS
is similar to the construction proposed by Canard et al. [8], but in order to achieve accountability we use
ACH in place of IBCH. In order to generate a new signature on a sanitized message, the sanitizer need to
use his private key and a trapdoor information associated with the transaction identifier generated by the
signer to find a collision of the ACH. The signer can then use the collision to convince a trusted third party
that a message is sanitized, as nobody apart from the sanitizer has more than a negligible probability of
successfully finding a second message that produces the same signing value.

Now, given a regular signature scheme Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify), and an ACH scheme Π =
(Π.GlobalSetup,Π.KeyGen,Π.Hash,Π.Trapdoor,Π.Forge), we define the 8-tuple algorithms (GlobalSetup,KeyGen,
Sign,Trapdoor,Sanitize,Verify,Proof, Judge) of an ATSS scheme as follows:

GlobalSetup Given a security parameter λ, it first runs

paramΠ ← Π.GlobalSetup(λ),

and chooses two cryptographic hash functions H1 : {0, 1}∗ → {0, 1}λ,H2 : {0, 1}∗ → R. Then, it
publishes the common public parameter param = (paramΠ ,H1,H2).

KeyGen Given a security parameter λ and the common public parameter param, it first runs

(pkΣ , skΣ)← Σ.KeyGen(λ), (pkΠ , skΠ)← Π.KeyGen(λ, paramΠ).

10



Then, it picks a key κsig ∈ {0, 1}λ for the hash function H1, sets the public key pk = (pkΣ , pkΠ)
and the private key sk = (skΣ , skΠ , κsig). Finally, it publishes pk and keeps sk secret. We denote by
pksig = (pksig,Σ , pksig,Π) and sksig = (sksig,Σ , sksig,Π , κsig) the public key and private key of the signer,
and by pksan = (pksan,Σ , pksan,Π) and sksan = (sksan,Σ , sksan,Π , κsan) the public key and private key
of a sanitizer.

Sign Given a sanitizer’s public key pksan = (pksan,Σ , pksan,Π), a message m = m1∥ · · · ∥mL, a set of
indices I ⊆ [1, L] that are sanitizable, a transaction identifier TID and the signer’s private key sksig =
(sksig,Σ , sksig,Π , κsig), it proceeds as follows.
1. Compute z = H1(κsig,TID).
2. For all i ∈ [1, L]\I, set m̃i = mi.
3. For all i ∈ I, compute ri = H2(z, i) and

hi = Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and set m̃i = hi. Let r be the concatenation of all ri, i ∈ I.
4. Set m̃ = m̃1∥ · · · ∥m̃L and run

σ̃ ← Σ.Sign(m̃, sksig,Σ).

5. Finally, set σ = σ̃∥r and output the signature σ on m.
Trapdoor Given a message m, a set of the indices I that are sanitizable, a transaction identifier TID, a valid

signature σ on (pksig, pksan,m, I,TID) and the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), it runs

tdTID ← Π.Trapdoor(sksig,Π ,TID),

and outputs the trapdoor tdTID associated with TID.
Sanitize Given the signer’s public key pksig = (pksig,Σ , pksig,Π), a message m = m1∥ · · · ∥mL, a set of

indices I ⊆ [1, L] that are sanitizable, the transaction identifier TID, a valid signature σ = σ̃∥r on
(pksig, pksan = (pksan,Σ , pksan,Π),m, I,TID), a trapdoor tdTID associated with TID, the sanitizer’s private
key sksan = (sksan,Σ , sksan,Π , κsan) and a new message m′ = m′

1∥ · · · ∥m′
L, it proceeds as follows.

1. Let I ′ = {i ∈ [1, L]|mi ̸= m′
i}. Check whether I ′ ⊆ I. If not, output ⊥, denoted an error.

2. Retrieve {ri, i ∈ I} from the signature σ = σ̃∥r.
3. For all i ∈ I ′, compute hi ← Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri) and

r′i ← Π.Forge(sksan,Π , tdTID, pksig,Π , pksan,Π ,TID,mi, ri, hi,m
′
i).

4. For all i ∈ I\I ′, set r′i = ri. Let r
′ be the concatenation of all r′i, i ∈ I.

5. Set σ′ = σ̃∥r′ and output the new signature σ′ on (pksig, pksan,m
′, I,TID).

Verify Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), a sanitizer’s public key pksan =
(pksan,Σ , pksan,Π), a message m = m1∥ · · · ∥mL, a set of indices I ⊆ [1, L] that are sanitizable, a trans-
action identifier TID and a putative signature σ = σ̃∥r, it proceeds as follows.
1. Retrieve {ri, i ∈ I} from the signature σ = σ̃∥r.
2. For all i ∈ [1, L]\I, set m̃i = mi.
3. For all i ∈ I, compute

hi = Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and set m̃i = hi.
4. Set m̃ = m̃1∥ · · · ∥m̃L and output Σ.Verify(pksig,Σ , m̃, σ̃).

Proof Given param, the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), a valid message-signature pair
((pksig = (pksig,Σ , pksig,Π), pksan = (pksan,Σ , pksan,Π),m, I,TID), σ), and a set of (polynomially many)

additional message-signature pairs MesSigS = ((pksig, pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q generated

originally by the signer, it first searches the setMesSigS to find a tuple ((pksig, pk
(i)
san,m(i), I(i),TID(i)), σ(i))

such that
1. pksan = pk

(i)
san, I = I(i) and TID = TID(i).

11



2. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj ̸= m
(i)
j }. Note that, m = m1∥ · · · ∥mL and m(i) = m

(i)
1 ∥ · · · ∥m

(i)
L .

3. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj , rj) = Π.Hash(param, pksig,Π , pk
(i)
san,Π ,TID,m

(i)
j , r

(i)
j ) for

all j ∈ I ′, where σ = σ̃∥r, r = {rj , j ∈ I}, σ(i) = σ̃∥r(i) and r(i) = {r(i)j , j ∈ I}.
Then, it computes zi = H1(TID

(i), κsig). Finally, it outputs the proof π = (pksig, pk
(i)
san,m(i), I(i),TID(i), σ(i), zi).

Judge Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), the sanitizer’s public key pksan =

(pksan,Σ , pksan,Π), a valid message-signature pair ((pksig, pksan,m, I,TID), σ) and a proof π = (pksig, pk
(i)
san,

m(i), I(i),TID(i), σ(i), zi). Let σ = σ̃∥r where r = {rj , j ∈ I}, and σ(i) = σ̃∥r(i) where r(i) = {r(i)j , j ∈ I},
it first checks whether the following conditions hold:

1. pksan = pk
(i)
san, I = I(i) and TID = TID(i);

2. (m,σ) ̸= (m(i), σ(i));

3. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj ̸= m
(i)
j }. Note that, m = m1∥ · · · ∥mL and m(i) = m

(i)
1 ∥ · · · ∥m

(i)
L ;

4. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj , rj) = Π.Hash(param, pksig,Π , pksan,Π ,TID,m
(i)
j , r

(i)
j ) for

all j ∈ I ′;

5. r
(i)
j = H2(zi, j) for all j ∈ I.

If so, it outputs San indicating the message-signature pair ((pksig, pksan,m, I,TID), σ) was created by
the sanitizer; else it outputs Sig indicating the message-signature pair ((pksig, pksan,m, I,TID), σ) was
created by the signer.

It is obvious that the above ATSS scheme satisfies correctness. We now state the security theorems of the
scheme, including unforgeability, indistinguishability and accountability.

Theorem 3 (Unforgeability) If the signature scheme Σ is existential unforgeable under adaptive chosen
message attacks and the ACH scheme Π is resistant to collision forgery under active attacks, the above
construction of ATSS is existential unforgeable under adaptive chosen message attacks.

Proof. As usual [8], for presentation simplicity, we assume that a message consists of a single block (extension
to the general case is straightforward). Let A be a forger against the above ATSS scheme and let (m∗, I∗ =
{1},TID∗, σ∗) be the forgery produced by A. We distinguish between two cases of forgery:

Case 1: m∗ is a non-sanitized message and A never queries OSign
ATSS oracle on (m∗, I∗,TID∗).

Case 2: m∗ is a sanitized message.A never queriesOSanitize
ATSS on (m, I∗,TID∗, σ,m∗) orOTrapdoor

ATSS on (m, I∗,TID∗, σ),
where σ is a valid signature on (pksig, pksan,m, I∗,TID∗) and m ̸= m∗.

To prove this theorem, we will show that in the first case, we can use A as a sub-routine to construct another
algorithm B, which is a forgery against the signature scheme Σ, and in the second case, we can use A as
a sub-routine to construct another algorithm B, which is a forgery against the ACH scheme Π. Initially, B
will choose a random bit b ∈ {1, 2} that indicates its guess for the case of forgery that A will produce. B
proceeds differently for each case.

Case 1. Given a public key pk∗ and a signing oracle OSign
Σ of the signature scheme Σ, using A as a sub-

routine, B simulates a forger against the signature scheme Σ. B proceeds as follows.
Setup B first runsΠ.Setup algorithm to generate a pair of keys (pkΠ , skΠ) and picks a key κsig ∈ {0, 1}λ

for the hash function H1. Then, B sets the signer’s public key pksig of the above ATSS scheme as
pksig = (pk∗, pkΠ). The signer’s private key sksig = (sk∗, skΠ , κsig) and sk∗ is unknown to B. Next,
B runs KeyGen algorithm of the above ATSS to generate a pair of key

(pksan = (pksan,Σ , pksan,Π), sksan = (sksan,Σ , sksan,Π , κsan))

for the sanitizer. Finally, B gives the signer’s public key pksig and the sanitizer’s public key pksan to
A.

Query phase A adaptively issues queries:

12



1. OSign
ATSS queries: B runs Sign algorithm of the above ATSS scheme with the knowledge of κsig and

the help of its OSign
Σ oracle, and sends the results to A.

2. OTrapdoor
ATSS queries: B runs Trapdoor algorithm of the above ATSS scheme with the knowledge of

skΠ , and sends the results to A.
3. OSanitize

ATSS queries: B runs Sanitize algorithm of the above ATSS scheme with the knowledge of skΠ
and sksan, and sends the results to A.

Output A outputs a forgery (m∗, I∗ = {1},TID∗, σ∗ = σ̃∗∥r∗) against the above ATSS scheme. B
proceeds as follows.
1. Computes h∗ = Π.Hash(param, pkΠ , pksan,Π ,TID∗,m∗, r∗) and set m̃∗ = h∗.
2. Output (m̃∗, σ̃∗).

It is obvious that if (m∗, I∗,TID∗, σ∗ = σ̃∗∥r∗) is a successful forgery against the above ATSS scheme,
(m̃∗, σ̃∗) is a successful forgery against the signature scheme Σ.

Case 2. Given user i’s public key pki, user j’s public/private key pair (pkj , skj) and a trapdoor generation

oracle OTrapdoor
Π of the ACH scheme Π, using A as a sub-routine, B simulates a forger against the ACH

scheme Π. B proceeds as follows.
Setup B first runs Σ.KeyGen algorithm to generate a pair of keys (pkΣ , skΣ) and picks a key κsig ∈
{0, 1}λ for the hash function H1. Then, B sets the signer’s public key pksig of the above ATSS scheme
as pksig = (pkΣ , pki). The signer’s private key sksig = (skΣ , ski, κsig) and ski are unknown to B.
Next, B runs Σ.KeyGen algorithm to obtain another pair of key (pk′Σ , sk

′
Σ) and picks another key

κsan ∈ {0, 1}λ for the hash function H1, and sets the sanitizer’s public/private key pair as

pksan = (pk′Σ , pkj), sksan = (sk′Σ , skj , κsan).

Finally, B gives the signer’s public key pksig and the sanitizer’s public key pksan to A.
Query phase A adaptively issues the following queries:

1. OSign
ATSS queries: B runs Sign algorithm of the above ATSS scheme with the knowledge of skΣ and

κsig, and sends the results to A.
2. OTrapdoor

ATSS queries: B runs Trapdoor algorithm of the above ATSS scheme with the help of its

OTrapdoor
Π oracle, and sends the results to A.

3. OSanitize
ATSS queries: B runs Sanitize algorithm of the above ATSS scheme with the help of its OTrapdoor

Π

oracle and the knowledge of sksan, and sends the results to A.
Output A outputs a forgery (m∗, I∗,TID∗, σ∗ = σ̃∗∥r∗) against the above ATSS scheme. Note that,

in this case, m∗ is a sanitized message. So, there exists a message m, corresponding to a signature
σ = σ̃∗∥r, which has been asked to OSign

ATSS oracle, such that

Hash(param, pki, pkj ,TID
∗,m∗, r∗) = Hash(param, pki, pkj ,TID

∗,m, r).

B outputs (TID∗,m∗, r∗,m, r).
It is obvious that if (m∗, I∗,TID∗, σ∗ = σ̃∗∥r∗) is a successful forgery against the above ATSS scheme,
(TID∗,m∗, r∗,m, r) is a collision against the ACH scheme Π.

This completes the proof.

Theorem 4 (Indistinguishability) If the ACH scheme Π is forgery indistinguishable, in the random ora-
cle model, the following distributions DSanitize and DSign are computational indistinguishable for all sufficiently
large λ, any param← GlobalSetup, (pksig, sksig)← KeyGen(λ, param), (pksan, sksan)← KeyGen(λ, param),
any set of indices I ⊆ [1, L], any message pairs m,m′ such that mi = m′

i for all i /∈ I, and any transaction
identifier TID:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig), tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig,pksan,I,TID.

13



Proof. To keep the presentation compact and without loss of generality, we assume that messages m and m′

consists of a single block. In the above ATSS scheme, DSanitize = {(m′, σ̂ = σ̃∥r̂)}λ,param,pksig,pksan,I,TID and
DSign = {(m′, σ′ = σ̃′∥r′)}λ,param,pksig,pksan,I,TID, where

r
$←R, h← Π.Hash(param, pksig,Π , pksan,Π ,TID,m, r), σ̃ ← Σ.Sign(h, sksig,Σ),

Π.Hash(param, pksig,Π , pksan,Π ,TID,m, r) = Π.Hash(param, pksig,Π , pksan,Π ,TID,m′, r̂),

and

r′
$←R, h′ ← Π.Hash(param, pksig,Π , pksan,Π ,TID,m, r), σ̃′ ← Σ.Sign(h′, sksig,Σ).

Note that, r
$← R and r′

$← R are derived from the assumption that H2 is a random oracle. Because Π
is forgery indistinguishable, it is obvious that DSanitize and DSign are indistinguishable. This completes the
proof.

Theorem 5 (Sanitizer-accountability) If the signature scheme Σ is existential unforgeable under adap-
tive chosen message attacks, the above construction of ATSS is sanitizer-accountable.

Proof. Assume that the scheme is not sanitizer-accountable and there is a successful adversary A. We will
show that we can use A as a sub-routine to construct another algorithm B, which is a forgery against the
signature scheme Σ. Again, without loss of generality, we assume that a message consists of a single block.

Given a public key pk∗ and a signing oracle OSign
Σ of the signature scheme Σ, using A as a sub-routine,

B simulates a forger against the signature scheme Σ. B proceeds as follows.

Setup B first runs Π.Setup algorithm to generate a pair of keys (pkΠ , skΠ) and picks a key κsig ∈ {0, 1}λ
for the hash function H1. Then, B sets the signer’s public key pksig of the above ATSS scheme as
pksig = (pk∗, pkΠ). The signer’s private key sksig = (sk∗, skΠ , κsig) and sk∗ is unknown to B. Finally, B
gives the signer’s public key pksig to A.

Query phase A adaptively issues queries:
1. OSign

TSS queries on (pksan,m, I,TID): B runs Sign algorithm of the above ATSS scheme with the

knowledge of κsig and the help of its OSign
Σ oracle, and sends the results to A.

2. OTrapdoor
TSS queries on (pksan,m, I,TID, σ): B runs Trapdoor algorithm of the above ATSS scheme with

the knowledge of skΠ , and sends the results to A.
Output A outputs (pksig, pk

∗
san = (pk∗san,Σ , pk

∗
san,Π),m∗, I∗ = {1},TID∗, σ∗ = σ̃∗∥r∗) against the sanitizer-

accountability of above ATSS scheme. B does as follows.
1. Compute h∗ = Π.Hash(param, pkΠ , pksan,Π ,TID∗,m∗, r∗) and set m̃∗ = h∗.
2. Output (m̃∗, σ̃∗).

Let (pk
(i)
san,m(i), I(i),TID(i)) and σ(i) for i = 1, 2, . . . , q denote the queries and answers to and from oracle

OSign
ATSS . If A is a successful adversary, then the message-signature pair ((pksig, pk

∗
san,m

∗, I∗,TID∗), σ∗) is not

sanitized from ((pksig, pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q. Hence, (m̃∗, σ̃∗) is a successful forgery against

the signature scheme Σ. This completes the proof.

Theorem 6 (Signer-accountability) If the ACH scheme Π is resistant to collision forgery under active
attacks, in the random oracle model, the above construction of ATSS is signer-accountable.

Proof. Assume that the scheme is not signer-accountable and there is a successful adversary A. We will show
that we can use A as a sub-routine to construct another algorithm B, which is a forgery against the ACH
scheme Π. As before, we assume that a message consists of a single block. B proceeds as follows.

Setup B first runs KeyGen algorithm of the above ATSS to generate a pair of keys

(pksan = (pksan,Σ , pksan,Π), sksan = (sksan,Σ , sksan,Π , κsan))

for the sanitizer. Then, B gives the sanitizer’s public key pksan to A.

14



Query phase A adaptively issues queries OSanitize
ATSS query (pksig,m, I,TID, σ, tdTID,m

′): B runs Sanitize al-
gorithm of the above ATSS scheme with the knowledge of the private key sksan and the trapdoor tdTID,
and sends the results to A.

Output A outputs (pk∗sig, pksan,m
∗, I∗ = {1},TID∗, σ∗, π∗) against the signer-accountability of above

ATSS scheme. Let σ∗ = σ̃∗∥r∗ and π∗ = (pk∗sig, pksan,m
′, I∗ = {1},TID∗, σ′ = σ̃′∥r′, z′), B outputs

(TID∗,m∗, r∗,m′, r′).

Now, we show that (TID∗,m∗, r∗,m′, r′) is a collision against the accountable CH schemeΠ. Let ((pk
(i)
sig, pksan,

m(i), I(i),TID(i)), σ(i)) for i = 1, 2, . . . , q denote the answers from oracleOSanitize
ATSS . IfA is a successful adversary,

then

1. ((pk∗sig, pksan,m
∗, I∗,TID∗), σ∗) ̸= ((pk

(i)
sig, pksan,m

(i), I(i),TID(i)), σ(i))i=1,2,...,q;
2. σ̃∗ = σ̃′ and H2(z

′, 1) = r′;
3. Hash(param, pksig,Π , pksan,Π ,TID∗,m∗, r∗) = Hash(param, pksig,Π , pksan,Π ,TID∗,m′, r′).

Note that, B does not know the trapdoor tdTID∗ associated with TID∗ since ((pk∗sig, pksan,m
∗, I∗,TID∗), σ∗) ̸=

((pk
(i)
sig, pksan,m

(i), I(i),TID(i)), σ(i))i=1,2,...,q. Assuming that H2 is a random oracle, then

((pk∗sig, pksan,m
′, I∗,TID∗), σ′) ̸= ((pk

(i)
sig, pksan,m

(i), I(i),TID(i)), σ(i))i=1,2,...,q,

with overwhelming probability, becauseA cannot find z′ such thatH2(z
′, 1) = r′. Therefore, (TID∗,m∗, r∗,m′, r′)

is a collision against the accountable CH scheme Π. This completes the proof.

6 Conclusion and Future Work

In this paper, we motivated and introduced the notion of accountable trapdoor sanitizable signature (ATSS).
As a building block of ATSS and that might be of independent interest, we also introduced the notion of
accountable chameleon hash (ACH), which is an extension of chameleon hash. We defined the security
requirements for ACH, and proposed a concrete construction that satisfies the requirements based on the
CDH assumption in the random oracle model. Finally, Based on ACH, we proposed a generic construction of
ATSS. Instantiating the generic construction with our ACH scheme, we constructed the first ATSS scheme.
An important future research problem is to construct ACH schemes (and thus accordingly, ATSS schemes)
in the standard model.

References

1. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signatures. In ESORICS,
pages 159–177, 2005.

2. Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and applications. In Financial Cryp-
tography, pages 164–180, 2004.

3. Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem in chameleon hashes. In SCN, pages
165–179, 2004.

4. Feng Bao, Robert H. Deng, Xuhua Ding, Junzuo Lai, and Yunlei Zhao. Hierarchical identity-based chameleon
hash and its applications. In ACNS, pages 201–219, 2011.

5. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of hashing and signing.
In CRYPTO, pages 216–233, 1994.

6. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

7. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob Schelbert, Dominique
Schröder, and Florian Volk. Security of sanitizable signatures revisited. In Public Key Cryptography, pages 317–
336, 2009.

8. Sébastien Canard, Fabien Laguillaumie, and Michel Milhau. Trapdoor sanitizable signatures and their application
to content protection. In ACNS, pages 258–276, 2008.

15



9. Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. Chameleon hashing without key exposure. In ISC, pages
87–98, 2004.

10. Xiaofeng Chen, Fangguo Zhang, Willy Susilo, Haibo Tian, Jin Li, and Kwangjo Kim. Identity-based chameleon
hash scheme without key exposure. In ACISP, pages 200–215, 2010.

11. Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Baodian Wei, and Kwangjo Kim. Key-exposure free chameleon
hashing and signatures based on discrete logarithm systems. Cryptology ePrint Archive, Report 2009/035, 2009.
http://eprint.iacr.org/.

12. Robert H. Deng and Yanjiang Yang. A study of data authentication in proxy-enabled multimedia delivery
systems: Model, schemes and application. ACM T. on Multimedia Computing, Communications and Applications,
5(4):28.1–28.20, 2009.

13. Wei Gao, Fei Li, and Xueli Wang. Chameleon hash without key exposure based on schnorr signature. Computer
Standards & Interfaces, 31(2):282–285, 2009.

14. Wei Gao, Xueli Wang, and Dongqing Xie. Chameleon hashes without key exposure based on factoring. J.
Comput. Sci. Technol., 22(1):109–113, 2007.

15. Tetsuya Izu, Nobuyuki Kanaya, Masahiko Takenaka, and Takashi Yoshioka. Piats: A partially sanitizable signa-
ture scheme. In ICICS, pages 72–83, 2005.

16. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature schemes. In
CT-RSA, pages 244–262, 2002.

17. Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In ICISC, pages 343–355, 2006.
18. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS, 2000.
19. Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In CT-RSA, pages 236–243, 2002.
20. Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Invisibly sanitizable digital signature scheme. IEICE

Transactions, 91-A(1):392–402, 2008.
21. Kunihiko Miyazaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryôichi Sasaki, Hiroshi Yoshiura, Satoru Tezuka,

and Hideki Imai. Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans-
actions, 88-A(1):239–246, 2005.

22. Henrich Christopher Pöhls, Kai Samelin, and Joachim Posegga. Sanitizable signatures in xml signature - perfor-
mance, mixing properties, and revisiting the property of transparency. In ACNS, pages 166–182, 2011.

23. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.
24. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In ICISC, pages 285–304, 2001.
25. Dae Hyun Yum, Jae Woo Seo, and Pil Joong Lee. Trapdoor sanitizable signatures made easy. In ACNS, pages

53–68, 2010.
26. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Id-based chameleon hashes from bilinear pairings.

Cryptology ePrint Archive, Report 2003/208, 2003. http://eprint.iacr.org/.

16


	Accountable Trapdoor Sanitizable Signatures
	Citation

	tmp.1389768043.pdf.rr9uB

