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Abstract

This paper develops the asymptotic theory for estimators of two parameters
in the drift function in the fractional Vasicek model when a continuous record of
observations is available. The fractional Vasicek model is assumed to be driven by
the fractional Brownian motion with a known Hurst parameter greater than or equal
to one half. It is shown that the asymptotic theory for the persistent parameter
depends critically on its sign, corresponding asymptotically to the stationary case,
the explosive case, and the null recurrent case. In all three cases, the least squares
method is considered. When the persistent parameter is positive, the estimate
method of Hu and Nualart (2010) is also considered. The strong consistency and
the asymptotic distribution are obtained in all three cases.
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1 Introduction

The Vasicek model of (36) has found a wide range of applications in many fields, in-
cluding but not limited to economics, finance, biology, physics, chemistry, medicine and
environmental studies. An intrinsic property implied by the standard Vasicek model is
the short-range dependence of the stochastic component of the model because the auto-
covariance decays in a geometric rate. This property is at odd with abundant empirical
evidence that indicates the long-range dependence or long memory in time series data (see
e.g. (22; 10; 17)). As a result, stochastic models with long-range dependence have been
used to describe the movement of time series data in hydrology, geophysics, climatology
and telecommunication, economics and finance.

In continuous time, the factional Brownian motion (fBm) is an important stochastic
process to characterize the long-range dependence (see e.g. (23)). The fBm produces
burstiness, self-similarity and stationary increments in the sample path. Excellent surveys
on fBm can be found in (5) and (24).

If the Brownian motion in the Vasicek model is replaced with fBm, we get the following
fractional Vasicek model (fVm)

dXt = κ (µ−Xt) dt+ σdBH
t , (1.1)

where σ is a positive constant, µ, κ ∈ R, and BH
t is fBm (which will be defined formally

below) with a known Hurst parameter H ≥ 1/2. The long-range dependence in Xt is
generated by BH

t .
In Model (1.1), κ (µ−Xt) is the drift function and there are two unknown parameters

in it, µ and κ. Parameter κ determines the persistence in Xt. Depending on the sign of
κ, the model can capture the stationary, the explosive, and the null recurrent behavior.
The fVm was first used to describe the dynamics in volatility by (11). Other applications
of fVm can be found in (9; 7; 8; 12; 2) and references therein. Despite many applications
of fVm in practice, to the best of our knowledge, estimation and the asymptotic theory
in fVm has received little attention in the literature. The main purpose of the present
paper is to propose estimators for µ and κ and to develop the asymptotic theory for the
estimators.

A very important special case of fVm is the so-called fractional Ornstein-Uhlenbeck
(fOU) process given by:

dXt = −κXtdt+ σdBH
t , X0 = 0. (1.2)

The key difference between (1.1) and (1.2) is that µ is assumed to be zero and known
in (1.2) while µ is unknown in (1.1). A small difference between (1.1) and (1.2) is that
X0 = 0 in (1.2) while X0 may not be zero in (1.1). The order of the initial condition will
be assumed when we develop the asymptotic theory.

fOU is closely related to the following discrete time model

yt =
(

1 +
κ

T

)
yt−1 + ut, (1− L)H−1/2ut = εt, y0 = 0, (t = 1, ..., T ), (1.3)

2



where L is the lag operator, εt ∼ i.i.d.(0, σ2). When H = 1/2, ut = εt, yt follows a
standard AR(1) model with an i.i.d. error term. When 1/2 < H < 1, ut is a stationary
long memory process given by

ut = (1− L)−(H−1/2) εt =
∞∑
j=0

Γ(j +H − 1/2)

Γ(H − 1/2)Γ(j + 1)
εt−j,

where Γ(x) is the gamma function. Davydov (1970) and (29) related the process in (1.3)
to that in (1.2) by showing the following functional limit theorem,

δHΓ(H + 1/2)

σTH
y[Ts] ⇒ Xs ,∀0 ≤ s ≤ 1.

where [z] denotes the smallest integer greater than or equal to z, δH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H)

(see

also (31) and (33)). If κ = 0, yt has a unit root; if κ > 0, yt is asymptotically stationary;
if κ < 0, yt has an explosive root.

Depending on the sign of κ, alternative estimation methods have been proposed in the
literature to estimate κ in fOU and the asymptotic theory for these estimators have been
obtained. When κ > 0, (20; 35; 32) studied the maximum likelihood (ML) estimator;
(18) studied the least squares (LS) estimator; (31) studied the minimum contrast (MC)
estimator; (18) introduced and studied an estimator based on the ergodic property of
Xt. When κ < 0, two estimators have been studied, namely, the ML estimator ((33))
and the LS estimator ((3; 15)). When κ = 0 , the ML method and the MC method
were considered in (20; 31). (28) is a textbook treatment of alternative methods and the
asymptotic theory for estimating fOU.

In almost all empirically relevant cases, the parameter, µ, in the drift function of
Model (1.1) is unknown. Thus, it is important to estimate both κ and µ. In this paper,
we consider the problem of estimating both κ and µ in fVm based on a continuous record
of observations over the period of [0, T ] with a known Hurst parameter H ∈ [1

2
, 1). As

in fOU, the asymptotic theory for κ critically depends on the sign of κ, namely whether
κ > 0, κ < 0 or κ = 0. When κ > 0, two estimators are considered, i.e., the LS estimator
and the estimator of Hu and Nualart (2010). The estimator of Hu and Nualart does not
contain any stochastic integral and hence is simpler to calculate. Our results suggest that,
unless H = 1/2, the estimator of Hu and Nualart is asymptotically more efficient than that
of LS. The relative asymptotic efficiency increases with H. When κ < 0 or κ = 0, the LS
estimator is considered. Strong consistency and asymptotic distributions are established
for both κ and µ in all three cases. The proof is based on the Malliavin calculus, the
Young integral and the Stratonovich integral for fractional stochastic integrals (Weilin,
I thought we are going to use either Ito-Skorohod integral or Young integral
to interpret the stochastic integral in the paper). To the best of our knowledge,
this is the first paper in the literature where fVm is estimated and the asymptotic theory
is developed.

The rest of the paper is organized as follows. Section 2 contains some basic facts about
fBm and introduces the LS method and the method of Hu and Nualart for estimating
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the two parameters in the drift function of fVm. In Section 3, we establish consistency
and the asymptotic distributions for κ and µ in all three cases. Section 4 contains some
concluding remarks and gives directions of further research. All the proofs are collected
in the Appendix.

We use the following notations throughout the paper:
p→,

a.s.→,
L−→, ⇒, and

d
= denote

convergence in probability, convergence almost surely, convergence in distribution, weak
convergence, and equivalence in distribution, respectively, as T →∞.

2 The Estimation Methods

Before introducing our estimation techniques, we first state some basic facts about fBm.
For a more complete treatment on the subject, see (25; 5; 24) and the references therein.

The fBm with the Hurst parameter H ∈ (0, 1), BH
t for t ∈ R, is a zero mean Gaussian

process with covariance

E(BH
t B

H
s ) = RH(s, t) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (2.1)

This covariance function implies that the fBm is self-similar with the self-similarity pa-
rameter H, that is,

BH
λt

d
= λHBH

t . (2.2)

For t > 0, (23) presented the following integral representation for BH
t (see also in (13)):

BH
t =

1

cH

{∫ 0

−∞

[
(t− u)H−1/2 − (−u)H−1/2

]
dWu +

∫ t

0

(t− u)H−1/2dWu

}
, (2.3)

whereWt is a standard Brownian motion, cH =

[
1

2H
+
∫∞

0

(
(1 + s)H−1/2 − sH−1/2

)2

ds

]1/2

.

If H = 1/2, BH
t becomes a standard Brownian motion Wt. If 0 < H < 1/2, BH

t is neg-
atively correlated. For 1/2 < H < 1, BH

t has the long-range dependence in the sense
that if r(n) = E(BH

1 (BH
n+1 − BH

n )), then
∑∞

n=1 r(n) = ∞. In this case, BH
t is referred

to as a persistent fBm, since the positive (negative) increments are likely to be followed
by positive (negative) increments. Given that the long-range dependence is empirically
found in many financial time series, the fVm with H ∈ [1/2, 1) is the focus of the present
paper. To estimate κ and µ in fVm, we assume that one observes the whole trajectory of
Xt for t ∈ [0, T ]. The asymptotic theory is developed by assuming T →∞.

Motivated by the work of (18; 3; 15), we denote the LS estimator of κ and µ to be the
minimizer of the following quadratic function

L(κ, µ) =

∫ T

0

(
Ẋt − κ (µ−Xt)

)2

dt , (2.4)
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where Ẋt denotes the differentiation of Xt with respect to t, although
∫ T

0
Ẋ2
t dt does not

exist. Consequently, we obtain the following analytical expression for the LS estimator of
κ and µ (denoted by κ̂LS and µ̂LS, respectively),

κ̂LS =
(XT − x)

∫ T
0
Xtdt− T

∫ T
0
XtdXt

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 , (2.5)

µ̂LS =
(XT − x)

∫ T
0
X2
t dt−

∫ T
0
XtdXt

∫ T
0
Xtdt

(XT − x)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

. (2.6)

When H = 1/2, it is well-known that we can interpret the stochastic integral
∫ T

0
XtdXt

as the Itô integral. When H ∈ (1
2
, 1), Xt is no longer a semimartingale. In this case, for

κ̂LS and µ̂LS to consistently estimate κ and µ, we have to interpret the stochastic integral∫ T
0
XtdXt carefully. In fact, we interpret it differently when the sign of κ is different. If

κ > 0, we interpret it as an Itô-Skorohod integral; if κ < 0, we interpret it as a Young
integral; if κ = 0, we can interpret it either as an Itô-Skorohod integral or as a Young
integral. The asymptotic distributions of κ̂LS are different in these three cases.

If κ > 0, we can consider an alternative estimator of κ and µ (denoting them by κ̂HN
and µ̂HN , respectively). This estimator is motivated from (18) where the stationary and
ergodic properties of a process that is closely related to Xt were used to construct a new
estimator for κ in the fOU model. To fix the idea, the strong solution of fVm in (1.1) is
given by

Xt = µ+ (X0 − µ) exp(−κt) + σ

∫ t

−∞
e−κ(t−s)dBH

s , (2.7)

which leads to the following discrete time representation (Weilin, could you please
check if the following equation is correct for fBm?)

Xt = µ+ e−κ (Xt−1 − µ) + σ

∫ 1

0

e−κ(1−s)dBH
t+s, (2.8)

By the ergodic theorem, as T →∞, 1
T

∫ T
0
Xtdt

a.s.→ µ. So an alternative estimator of µ is

µ̂HN =
1

T

∫ T

0

Xtdt . (2.9)

Moreover, following (18), we can show that when κ > 0,

T

∫ T

0

X2
t dt−

(∫ T

0

Xtdt

)2
a.s.→ T 2σ2κ−2HHΓ (2H) .

Hence, an alternative estimator of κ is

κ̂HN =

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

T 2σ2HΓ (2H)


− 1

2H

. (2.10)
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Compared with the LS estimators in (2.5) and (2.6) which involve stochastic integral∫ T
0
XtdB

H
t , the alternative estimators in (2.9) and (2.10) do not contain any stochastic

integral. Hence, they are conceptually easier to understand and numerically easier to
compute than the LS estimators.

3 Asymptotic Theory for κ and µ

In the case of Brownian motion- or Levy process-driven Vasicek models, it is known that
the asymptotic theory for κ depends on the sign of κ (see, (39)). In the case of fVm, we
show below that the asymptotic theory for κ continues to depend on the sign of κ.

3.1 Asymptotic theory when κ > 0

In the context of fVm in (1.1), we can represent the stochastic integral
∫ T

0
XtdXt as∫ T

0

XtdXt = κµ

∫ T

0

Xtdt− κ
∫ T

0

X2
t dt+ σ

∫ T

0

XtdB
H
t .

When H = 1/2 , the stochastic integral
∫ T

0
XtdB

H
t =

∫ T
0
XtdBt and can be interpreted as

the well-known Itô stochastic integral. It can be approximated by the forward Riemann
sums. When H > 1/2, we interpret

∫ T
0
XtdB

H
t as the Itô-Skorohod stochastic integral.

In this case, following (14),
∫ T

0
XtdB

H
t is approximated by the Riemann sums defined in

terms of the Wick product, i.e.,∫ T

0

XtdB
H
t = lim

|π|→0

n−1∑
i=0

Xti �
(
BH
ti+1
−BH

ti

)
, (3.1)

where π : 0 = t0 < t1 < · · · < tn = T is a partition of [0, T ] with |π| = max0≤i≤n−1 (ti+1 − ti).
Unfortunately, this approximation is less useful for computing the stochastic integral

because the Wick product cannot be calculated just from the values of Xti and BH
ti+1
−BH

ti
.

In other words, unless H = 1/2, there is no computable representation of the term∫ T
0
XtdXt given the observations Xt, t ∈ [0, T ].
Using the Itô-Skorohod integral for fBm and the Malliavin derivative for Xt, we can

rewrite κ̂LS and µ̂LS as

κ̂LS =

XT−X0

T
1
T

∫ T
0
Xtdt−

(
1

2T
X2
T − 1

2T
X2

0 − αHσ
2

T

∫ T
0

∫ t
0
s2H−2e−κsdsdt

)
1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2 , (3.2)

µ̂LS =

XT−X0

T
1
T

∫ T
0
X2
t dt− 1

T

∫ T
0
Xtdt

(
X2
T

2T
− X2

0

2T
− αHσ

2

T

∫ T
0

∫ t
0
s2H−2e−κsdsdt

)
XT−X0

T
1
T

∫ T
0
Xtdt−

(
X2
T

2T
− X2

0

2T
− αHσ2

T

∫ T
0

∫ t
0
s2H−2e−κsdsdt

) ,(3.3)
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where αH = H(2H − 1). Clearly, κ̂LS and µ̂LS in (3.2) and (3.3) are easier to compute
than those in (2.5) and (2.6).

Before we prove the consistency of κ̂LS and µ̂LS, we first obtain the consistency of
µ̂HN and µ̂HN which follows directly from the ergodicity.

Theorem 3.1. Let H ∈ [1
2
, 1), X0/

√
T = op(1), and κ > 0 in (1.1). Then as T → ∞,

κ̂HN
a.s.→ κ and µ̂HN

a.s.→ µ.

Remark 3.1. The almost sure convergence of κ̂HN in Theorem 3.1 extends that of (18)
from fOU to fVm.

Remark 3.2. Applying the well-known result that 1
T

∫ T
0

∫ t
0
s2H−2e−κsdsdt→ κ1−2HΓ(2H−

1) to (3.2) and (3.3) and using Lemma 5.2 in (18), we can show that, as T →∞, κ̂LS
a.s.→ κ

and µ̂LS
a.s.→ µ for H ∈ [1

2
, 1).

To establish the asymptotic distributions for the two sets of estimators, we first con-
sider κ̂LS and µ̂LS, and then use the asymptotic theory for κ̂LS and µ̂LS to develop the
asymptotic theory for µ̂HN and µ̂HN .

Theorem 3.2. Let H ∈ [1
2
, 1), X0/

√
T = op(1), and κ > 0 in (1.1). Then as T →∞,

√
T (κ̂LS − κ)

L−→ N (0, κCH) , (3.4)

where CH = (4H − 1)
(

1 + Γ(3−4H)Γ(4H−1)
Γ(2H)Γ(2−2H)

)
.

Remark 3.3. A straightforward calculation shows that

T 1−H (µ̂LS − µ) =
XT−x
TH

1
T

∫ T
0
X2
t dt− 1

T

∫ T
0
XtdXt

1
TH

∫ T
0
Xtdt

XT−x
T

1
T

∫ T
0
Xtdt− 1

T

∫ T
0
XtdXt

−
µ
(
XT−x
TH

1
T

∫ T
0
Xtdt− 1

TH

∫ T
0
XtdXt

)
XT−x
T

1
T

∫ T
0
Xtdt− 1

T

∫ T
0
XtdXt

.

For H ∈ [1
2
, 1), we can easily obtain the following asymptotic distribution of µ̂LS,

T 1−H (µ̂LS − µ)
L−→ N

(
0,
σ2

κ2

)
as T →∞. (3.5)

Theorem 3.3. Let H ∈ [1
2
, 1), X0/

√
T = op(1), and κ > 0 in (1.1). Then as T →∞,

T 1−H (µ̂HN − µ)
L−→ N

(
0,
σ2

κ2

)
. (3.6)

Moreover, if H ∈ [1
2
, 3

4
), X0/

√
T = op(1), and κ > 0 in (1.1), then

√
T (κ̂HN − κ)

L−→ N (0, κρH) , (3.7)

where ρH = 4H−1
4H2

(
1 + Γ(3−4H)Γ(4H−1)

Γ(2H)Γ(2−2H)

)
= CH

4H2 .
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Remark 3.4. When comparing the two sets of the asymptotic theory for κ, we can draw
a few conclusions. First, the rate of convergence for κ̂HN is the same as that for κ̂LS
which is

√
T and independent on H. Second, the two asymptotic variances depend on H.

When H = 1/2, the two estimators have the same asymptotic variance which is 2κ. In
this case, the asymptotic distribution is identical to that in (16), i.e., N (0, 2κ). When
1/2 < H < 1, 4H2 > 1 and hence the asymptotic variance of κ̂HN is smaller than that of
κ̂LS, suggesting that the method of Hu and Nualart can estimate κ more efficiently. Third,
the asymptotic distribution of κ̂LS and κ̂HN is the same as that in fOU respectively; see
p. 1034 and p. 1037 in (18).

Remark 3.5. The two sets of asymptotic theory for µ are identical and the rate of con-
vergence is T 1−H . These two features are different from κ.

Remark 3.6. The asymptotic variance of κ̂HN and κ̂LS depends on H. Figure 1 plots ρH
and CH as a function of H. Obviously, both ρH and CH monotonically increase in H over
the interval [1

2
, 3

4
). They reach the minimum value of 2 when H = 1/2. As H → 3/4, both

diverge to ∞. Hence, both ρH and CH have a singularity at H = 3/4. Since ρH diverges
faster than CH , the relative asymptotic efficiency of κ̂HN to κ̂LS increases in H.

Hurst parameter
0.5 0.55 0.6 0.65 0.7 0.75

V
al

ue

0

5

10

15

20

25

30

35

40

ρ
H

C
H

FIGURE 1. Plot of ρH and Cρ

Remark 3.7. It seems challenging to obtain the asymptotic distribution for estimators of
κ when H > 3/4. It is expected that the asymptotic normality cannot hold when H > 3/4.
This conjecture arises because of the results obtained in (6), where it is shown that the
asymptotic distribution of the empirical quadratic variations of fBm is normal if H < 3/4
but is non-normal if H > 3/4.
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3.2 Asymptotic theory when κ < 0

When κ < 0, the model is explosive. Inspired by (3), we interpret the stochastic inte-

gral
∫ T

0
XtdXt in (2.5) and (2.6) as the Young integral (see (42)) to get the consistent

estimation of κ and µ. In this case,
∫ T

0
XtdXt = (X2

T −X2
0 ) /2.

Applying the Young integral to (2.5) and (2.6), we can rewrite κ̂LS and µ̂LS as

κ̂LS =
(XT −X0)

∫ T
0
Xtdt− T

2
(X2

T −X2
0 )

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

=
XT
T
eκT eκT

∫ T
0
Xtdt− X0

T
eκT eκT

∫ T
0
Xtdt− 1

2
X2
T e

2κT + 1
2
X2

0e
2κT

e2κT
∫ T

0
X2
t dt− e2κT 1

T

(∫ T
0
Xtdt

)2 , (3.8)

µ̂LS =
(XT −X0)

∫ T
0
X2
t dt−

X2
T−X

2
0

2

∫ T
0
Xtdt

(XT −X0)
∫ T

0
Xtdt− T

X2
T−X

2
0

2

=
eκT

T

∫ T
0
X2
t dt− XT+X0

2T
eκT
∫ T

0
Xtdt

eκT

T

∫ T
0
Xtdt− XT+X0

2
eκT

(3.9)

Before considering the strong consistency of κ̂LS and µ̂LS, we first introduce a lemma,
which will be used to prove the strong consistency.

Lemma 3.1. Let H ∈ [1
2
, 1), X0 = Op(1), and κ < 0 in (1.1) (Weilin, although I

assume X0 = Op(1) in this subsection, we may be able to allow for a larger
initial condition here). Then, as T →∞, we have

eκT

TH

∫ T

0

XtdB
H
t

a.s.→ 0 .

Theorem 3.4. Let H ∈ [1
2
, 1), X0 = Op(1), and κ < 0 in (1.1). Then, as T → ∞,

κ̂LS
a.s.→ κ and µ̂LS

a.s.→ µ.

The asymptotic distributions for κ̂LS and µ̂LS is developed in the following Theorem.

Theorem 3.5. Let H ∈ [1
2
, 1), X0 = Op(1), and κ < 0 in (1.1). Then as T →∞,

e−κT

2κ
(κ̂LS − κ)

L−→
σ

√
HΓ(2H)

|κ|H ν

X0 − µ+ σ

√
HΓ(2H)

|κ|H ω
, (3.10)

where ν and ω are two independent standard normal variates. Moreover, as T →∞,

T 1−H (µ̂LS − µ)
L−→ N

(
0,
σ2

κ2

)
. (3.11)
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Remark 3.8. In (3.10), if we set X0 = µ, the limiting distribution of e−κT

2κ
(κ̂LS − κ)

becomes ν/ω which is a standard Cauchy variate. This limiting distribution is the same
as that in fOU (see, e.g., (3; 15)) and that in the Vasicek model driven by the standard
Brownian motion (see, e.g., (16)). Moreover, the asymptotic theory in (3.10) is similar
to that in the explosive discrete time and continuous time models when discrete-sampled
data are available (see, e.g., (40? ; 39; 38)).

Remark 3.9. In the context of fOU, (3) showed that the LS estimator of κ is consistent
and derived the asymptotic Cauchy distribution. Our result not only extends their result
on κ to a more general model with an unknown µ and a more general initial condition,
but also covers the asymptotic theory for µ. The asymptotic distribution of µ̂LS is normal
with the rate of convergence being T 1−H and the variance being σ2/κ2 when κ < 0. This
asymptotic distribution is the same as that of µ̂LS and µ̂HN when κ > 0 as shown in (3.5)
and (3.6).

3.3 Asymptotic theory when κ = 0

When κ = 0, fVm is null recurrent. In this case, we have

Xt = X0 + σBH
t ,

and the parameter µ vanishes. By a simple calculation, we have

κ̂LS =
σBH

t

∫ T
0

(
x+ σBH

t

)
dt− Tσ

∫ T
0

(
x+ σBH

t

)
dBH

t

T
∫ T

0
(x+ σBH

t )
2
dt−

(∫ T
0

(x+ σBH
t ) dt

)2 (3.12)

=
BH
T

∫ T
0
BH
t dt− T

∫ T
0
BH
t dB

H
t

T
∫ T

0
(BH

t )2dt−
(∫ T

0
BH
t dt

)2 .

Interestingly, for κ̂LS to consistently estimate κ, the stochastic integral
∫ T

0
BH
t dB

H
t can

be interpreted either as the Itô-Skorohod integral or as the Young integral.
If we interpret

∫ T
0
BH
t dB

H
t as the Itô-Skorohod integral, we have

κ̂LS =
BH
T

∫ T
0
BH
t dt− T

2

((
BH
T

)2 − T 2H
)

T
∫ T

0
(BH

t )2dt−
(∫ T

0
BH
t dt

)2 .

By the law of the iterated logarithm for fBm, we get κ̂LS
a.s.→ 0.

If we interpret
∫ T

0
BH
t dB

H
t as the Young integral, we have

κ̂LS =
BH
T

∫ T
0
BH
t dt− T

2

(
BH
T

)2

T
∫ T

0
(BH

t )2dt−
(∫ T

0
BH
t dt

)2 .

10



Again by the law of the iterated logarithm for fBm, we get κ̂LS
a.s.→ 0.

Using the results above and the scaling properties of fBm, we develop the following
asymptotic distribution for κ̂LS.

Theorem 3.6. Let H ∈ [1
2
, 1), X0 = Op(1), and κ = 0 in (1.1). Then as T →∞,

T κ̂LS
L−→
BH

1

∫ 1

0
BH
u du−

∫ 1

0
BH
u dB

H
u∫ 1

0
(BH

u )2du−
(∫ 1

0
BH
u du

)2 . (3.13)

Remark 3.10. This limiting distribution is neither a normal variate nor a mixture of
normals. In addition, the distribution depends on H. If H = 1/2 the limiting distribution
becomes a Dickey-Fuller-Phillips type of distribution (see, e.g. (27)) which has been widely
used for testing unit root in autoregression with an intercept included. (? )) derived
the limiting distribution of the LS estimator of κ in fOU when κ = 0. The limiting
distribution is another Dickey-Fuller-Phillips type of distribution (see, e.g. (Phillips1987))
and corresponds to that in autoregression with an intercept.

4 Concluding Remarks and Future Directions

Models with a long-range dependence are growing their popularity due to their empirical
success in practice. In the continuous time setting, the long-range dependence can be
modelled with the help of fBm when the Hurst parameter is greater than one half. Con-
sequently, statistical inference for stochastic models driven by fBm is important. This
paper considers the Vasicek model driven by fBm and deals with the estimation problem
of the two parameters in the drift function in fVm and their asymptotic theory when a
continuous record of observations is available.

As the time span goes to infinity, it is shown that the LS estimators of µ and κ are
strongly consistent regardless of the sign of the persistent parameter κ. Moreover, the
asymptotic distribution of the LS estimator of µ is asymptotically normal regardless of
the sign of κ. However, the asymptotic distribution of the LS estimator of κ critically
depends on the sign of κ. In particular, when κ > 0 and H ∈ [1

2
, 3

4
), we have shown

that the asymptotic distribution of the LS estimator of κ is normal with the rate of
convergence being the square root of time span. The asymptotic variance depends on H
which monotonically increases inH. When κ < 0, it is shown that the limiting distribution
is a Cauchy-type with the rate of convergence being e−κT . If µ is the same as the initial
condition, it becomes the standard Cauchy distribution. When κ = 0, the asymptotic
distribution is neither normal nor a mixture of normals, but a Dickey-Fuller type of
distribution. The rate of convergence is T . When κ > 0, we also consider an alternative
estimation technique by exploiting the ergodic property of fVm. The asymptotic theory
for the alternative estimator is established.

This study also suggests several important directions for future research. First, what
are the asymptotic properties of the ML estimators for κ and µ? Given that the model
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is fully parametrically specified, one may wish to estimate fVm using ML. Based on the
fractional version of Girsanov’s theorem, one can obtain the Radon-Nikodym derivative
and the log-likelihood function. Consequently, the ML estimators can be obtained. The
asymptotic properties of ML estimators can be derived by using the Laplace transform.

Second, the present study assumes a continuous record is available for parameter
estimation. This assumption is too strong in almost all empirically relevant cases. How
to estimate parameters in fVm from discrete time observations and how to obtain the
asymptotic theory are open questions.

Third, when κ > 0 and H ≥ 3
4
, the asymptotic distribution remains unknown for the

LS estimator. When H = 3/4, the fourth moment Berry-Esseen bound is perhaps needed
to obtain the asymptotic normality for κ̂LS. When H > 3/4, it may be expected that the
asymptotic normality cannot hold any more for κ̂LS due to a result obtained in (6).
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APPENDIX: Proof of Theoretic Results

A.1. Proof of Theorem 3.1

We first consider the strong consistency of µ̂HN . Based on the assumption X0 = X0, we
can obtain that the solution of (1.1)

Xt =
(
1− e−κt

)
µ+X0e

−κt + σ

∫ t

0

e−κ(t−s)dBH
s . (A.1)

For t ≥ 0, we define

Yt = σ

∫ t

−∞
e−κ(t−s)dBH

s . (A.2)

Since κ > 0, (Yt, t ≥ 0) is Gaussian, stationary and ergodic. Then, using the ergodic
theorem and the fact E [Y0] = 0, we obtain

1

T

∫ T

0

Ytdt
a.s.→ E (Y0) = 0 . (A.3)

Combining (A.1) and (A.2), we can rewrite Yt as,

Yt = Xt +
(
e−κt − 1

)
µ−X0e

−κt + σ

∫ 0

−∞
e−κ(t−s)dBH

s . (A.4)

Hence,

1

T

∫ T

0

Ytdt =
1

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt + e−κt
(
σ

∫ 0

−∞
eκsdBH

s

)]
dt

=
1

T

∫ T

0

Xtdt+
µ

T

∫ T

0

(
e−κt − 1

)
dt− X0

T

∫ T

0

e−κtdt (A.5)

+
σ

T

∫ T

0

e−κt
(∫ 0

−∞
eκsdBH

s

)
dt .
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For the second term in (A.5), it is obvious that

µ

T

∫ T

0

(
e−κt − 1

)
dt

a.s.→ −µ .

Since X0 = op(
√
T ), we obtain

X0

T

∫ T

0

e−κtdt
a.s.→ 0 .

Using an argument similar to that in Lemma 5.1 of (18), we have

E
[∫ 0

−∞
eκsdBH

s

]2

= κ−2HHΓ(2H) . (A.6)

Hence,
∫ 0

−∞ e
κsdBH

s has the limiting (normal) distribution of
∫ T

0
e−κ(T−s)dBH

s . Moreover,
a standard calculation yields ∫ T

0

e−κtdt
a.s.→ 1

κ
. (A.7)

It is now necessary to investigate the almost sure asymptotic behavior of the last

term in (A.5). Denote FT = σ√
T

∫ T
0
e−κt

(∫ 0

−∞ e
κsdBH

s

)
dt. From (A.6) and (A.7), we

see that supT E [|F 2
T |] < ∞ and supT E [|F 4

T |] < ∞. For any fixed ε > 0, it follows from
Chebyshev’s inequality that

P
(∣∣∣∣σT

∫ T

0

e−κt
(∫ 0

−∞
eκsdBH

s

)
dt

∣∣∣∣ > ε

)
= P

(
|FT | >

√
Tε
)
≤ 81

T 2ε4
E
[∣∣F 2

T

∣∣]2 .
Then, the Borel-Cantelli lemma implies that

σ

T

∫ T

0

e−κt
(∫ 0

−∞
eκsdBH

s

)
dt

a.s.→ 0 . (A.8)

Plugging all these convergency results to (A.5), we obtain

µ̂HN =
1

T

∫ T

0

Xtdt
a.s.→ µ . (A.9)

To establish the strong consistency of κ̂HN defined in (2.10), we need to consider the

16



strong consistency of 1
T

∫ T
0
X2
t dt. From the expression of Yt in (A.4), we obtain

1

T

∫ T

0

Y 2
t dt =

1

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt + e−κt
(
σ

∫ 0

−∞
eκsdBH

s

)]2

dt (A.10)

=
1

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt]2 dt+
1

T

∫ T

0

[
e−κt

(
σ

∫ 0

−∞
eκsdBH

s

)]2

dt

+
2

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt] [e−κt(σ ∫ 0

−∞
eκsdBH

s

)]
dt

=
1

T

∫ T

0

[
µ
(
e−κt − 1

)
−X0e

−κt]2 dt+
2

T

∫ T

0

Xt

[
µ
(
e−κt − 1

)
−X0e

−κt] dt
+

1

T

∫ T

0

X2
t dt+

1

T

∫ T

0

[
e−κt

(
σ

∫ 0

−∞
eκsdBH

s

)]2

dt

+
2

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt] [e−κt(σ ∫ 0

−∞
eκsdBH

s

)]
dt .

By (A.8) and Lemma 3.3 in (18), it is not hard to see that

σ2

T

∫ T

0

[∫ t

0

e−κ(t−s)dBH
s + e−κt

(∫ 0

−∞
eκsdBH

s

)]2

dt− σ2

T

∫ T

0

[∫ t

0

e−κ(t−s)dBH
s

]2

dt
a.s.→ 0 .

Combining the above result and (A.8), we deduce that

2

T

∫ T

0

[
σ

∫ t

0

e−κ(t−s)dBH
s

] [
e−κt

(
σ

∫ 0

−∞
eκsdBH

s

)]
dt

a.s.→ 0 .

Using (A.1) and (??), we obtain

2

T

∫ T

0

[
Xt + µ

(
e−κt − 1

)
−X0e

−κt] [e−κt(σ ∫ 0

−∞
eκsdBH

s

)]
dt

a.s.→ 0 . (A.11)

A standard calculation yields

2

T

∫ T

0

Xt

[
µ
(
e−κt − 1

)
−X0e

−κt] dt a.s.→ −2µ2 , (A.12)

1

T

∫ T

0

[
µ
(
e−κt − 1

)
−X0e

−κt]2 dt a.s.→ µ2 . (A.13)

By (A.10) - (A.13) and the ergodic theorem, we obtain

1

T

∫ T

0

X2
t dt

a.s.→ E
(
Y 2

0

)
+ µ2 . (A.14)
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Moreover, it is well-known that (see, e.g., Lemma 5.1 of (18))

E(Y 2
0 ) = αHσ

2

∫ ∞
0

∫ ∞
0

e−κ(s+u) |u− s|2H−2 duds = σ2κ−2HHΓ (2H) . (A.15)

Combining (A.14) and (A.15), we have

1

T

∫ T

0

X2
t dt

a.s.→ σ2κ−2HHΓ (2H) + µ2 . (A.16)

By (A.9), (A.16) and the arithmetic rule of convergence, we obtain the almost sure
convergence of κ̂HN defined in (2.10), i.e., κ̂HN

a.s.→ κ.

A.2. Proof of Theorem 3.2

Based on (2.5), (1.1) and (A.1), we can rewrite κT as

κ̂LS =
(XT − x)

∫ T
0
Xtdt− κµT

∫ T
0
Xtdt+ κT

∫ T
0
X2
t dt− σT

∫ T
0
XtdB

H
t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

= κ+
(XT − x)

∫ T
0
Xtdt− κµT

∫ T
0
Xtdt− σT

∫ T
0
XtdB

H
t + κ

(∫ T
0
Xtdt

)2

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

= κ−
σT
∫ T

0
XtdB

H
t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 +

(
XT −X0 − κµT + κ

∫ T
0
Xtdt

) ∫ T
0
Xtdt

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

= κ−
σT
∫ T

0

(
(1− e−κt)µ+X0e

−κt + σ
∫ t

0
e−κ(t−s)dBH

s

)
dBH

t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

+

(
XT − x+ κ

∫ T
0

(
X0e

−κt − µe−κt + σ
∫ t

0
e−κ(t−s)dBH

s

)
dt
) ∫ T

0
Xtdt

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 .

As a consequence, we have the following decomposition
√
T (κ̂LS − κ) (A.17)

= −
σ
(
µ
BHT√
T

+ x−µ√
T

∫ T
0
e−κtdBH

t + σ√
T

∫ T
0

∫ t
0
e−κ(t−s)dBH

s dB
H
t

)
1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2

+

(
XT−x√

T
+ κ(x−µ)√

T

∫ T
0
e−κtdt− σ√

T
e−κT

∫ T
0
eκsdBH

s + σ
BHT√
T

)
1
T

∫ T
0
Xtdt

1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2

= I1 + I2 + I3 ,
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where

I1 =
σ
(
µ−x√
T

∫ T
0
e−κtdBH

t − σ√
T

∫ T
0

∫ t
0
e−κ(t−s)dBH

s dB
H
t

)
1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2 ,

I2 =

(
XT−x√

T
+ κ(x−µ)√

T

∫ T
0
e−κtdt− σ√

T
e−κT

∫ T
0
eκsdBH

s

)
1
T

∫ T
0
Xtdt

1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2 ,

I3 =

(
−µσ + σ

T

∫ T
0
Xtdt

)
BHT√
T

1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2 .

First consider I1. Using (A.15), we have

E

[(
µσ√
T

∫ T

0

e−κtdBH
t

)2
]

=
µ2σ2

T
αH

∫ T

0

∫ T

0

e−κ(s+u) |u− s|2H−2 duds
a.s.→ 0 .

This implies
µσ√
T

∫ T

0

e−κtdBH
t

p→ 0 . (A.18)

Since X0 = op(
√
T ), we have

X0σ√
T

∫ T

0

e−κtdBH
t

p→ 0 . (A.19)

Furthermore, from Theorem 3.4 of (18), (A.9) and (A.16), we obtain

− σ2
√
T

∫ T
0

∫ t
0
e−κ(t−s)dBH

s dB
H
t

1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2

L−→ N (0, κCH) , (A.20)

where CH = (4H − 1)
(

1 + Γ(3−4H)Γ(4H−1)
Γ(2H)Γ(2−2H)

)
. Combining (A.18), (A.19), (A.20) and ap-

plying Slutsky’s theorem, we have

I1
L−→ N (0, κCH) . (A.21)

Next, we consider I2. From Lemma 5.2 and Eq. (3.8) in (18), we have

XT −X0√
T

a.s.→ 0 ,
σ√
T
e−κT

(∫ T

0

σeκsdBH
s

)
a.s.→ 0 . (A.22)

A straightforward calculation shows that

κ (X0 − µ)√
T

∫ T

0

e−κtdt
a.s.→ 0 . (A.23)

19



Combining (A.22), (A.23), (A.9) and (A.16), we have

I2
a.s.→ 0 . (A.24)

Finally, consider I3. Based on (A.1), we have(
−µσ +

σ

T

∫ T

0

Xtdt

)
BH
T√
T

(A.25)

=
σ

T

∫ T

0

(
(X0 − µ) e−κt + σ

∫ t

0

e−κ(t−s)dBH
s

)
dt · B

H
T√
T

=

(
σ (X0 − µ)

T
3
2
−H

∫ T

0

e−κtdt− σ2

κT
3
2
−H

e−κT
∫ T

0

eκsdBH
s +

σ2

κ

BH
T

T
3
2
−H

)
BH
T

TH
.

It is easy to see that
σ (X0 − µ)

T
3
2
−H

∫ T

0

e−κtdt
a.s.→ 0 . (A.26)

From Lemma 5.2 and Eq. (3.8) in (18)), we obtain

σ2

κT
3
2
−H

e−κT
∫ T

0

eκsdBH
s

a.s.→ 0 . (A.27)

Since H ∈ [1
2
, 3

4
), we have

E

[(
σ2

κ

BH
T

T
3
2
−H

)2
]

=
σ4

κ2
T 4H−3 ,

which implies
σ2

κ

BH
T

T
3
2
−H

p→ 0 . (A.28)

By (A.25) - (A.28), we obtain

I3
p→ 0 . (A.29)

Finally, by (A.17), (A.21), (A.24), (A.29) and Slutsky’s theorem, we obtain the desired
result in (3.4).

A.3. Proof of Theorem 3.3

We first consider the asymptotic distribution of µ̂HN . Using (A.1), we obtain

T 1−H
(

1

T

∫ T

0

Xtdt− µ
)

= T 1−H
[

1

T

∫ T

0

(
(x− µ) e−κt + σ

∫ t

0

e−κ(t−s)dBH
s

)
dt

]
(A.30)

=
X0 − µ
TH

∫ T

0

e−κtdt+
σ

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dt .
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A simply calculation yields

X0 − µ
TH

∫ T

0

e−κtdt
a.s.→ 0 . (A.31)

Moreover, a standard calculation together with Fubini’s stochastic theorem (see, e.g.,
(25)) yields

σ

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dt =

σ

TH

∫ T

0

eκs
∫ T

s

e−κtdtdBH
s (A.32)

= − σ

κTH

∫ T

0

e−κ(T−s)dBH
s +

σBH
T

κTH
.

From Eq. (3.8) of (18), we know that

σ

κTH

∫ T

0

e−κ(T−s)dBH
s

a.s.→ 0 . (A.33)

It is well-known that
BH
T

TH
L−→ N (0, 1) . (A.34)

By (A.32), (A.33), (A.34) and Slutsky’s theorem, we have

σ

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dt

L−→ N (0,
σ2

κ2
) . (A.35)

Combining (A.30), (A.31) and (A.35) and by Slutsky’s theorem, we obtain

T 1−H
(

1

T

∫ T

0

Xtdt− µ
)
L−→ N (0,

σ2

κ2
) . (A.36)

Note that

T 1−H (µ̂HN − µ) = T 1−H
(
µ̂HN −

1

T

∫ T

0

Xtdt

)
+ T 1−H

(
1

T

∫ T

0

Xtdt− µ
)
. (A.37)

Using (2.9), (A.36) and (A.37), we obtain (3.6).
To obtain the asymptotic distribution of κ̂HN , from (1.1), we have∫ T

0

XtdXt = κµ

∫ T

0

Xtdt− κ
∫ T

0

X2
t dt+ σ

∫ T

0

XtdB
H
t .

Using the well-known results of the Stratonovich integral for fBm (Weilin, I thought
we have proposed to use the Ito-Skohorod integral here. Why change to the
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Stratonovich integral?) and the Malliavin derivative for Xt (see, (14; 25; 18)), we can
obtain

κµ

∫ T

0

Xtdt− κ
∫ T

0

X2
t dt+ σ

∫ T

0

XtdB
H
t =

X2
T −X0

2
− αHσ2

∫ T

0

∫ t

0

u2H−2e−κududt.

(A.38)
Combining (A.38) and the above equation, we deduce that∫ T

0

XtdXt =
X2
T −X0

2
− αHσ2

∫ T

0

∫ t

0

u2H−2e−κududt . (A.39)

Based on (2.5) and (2.10), we can rewrite κ̂HN as

κ̂HN =

(
T 2σ2HΓ (2H)

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

) 1
2H

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2


1

2H

(A.40)

=

(
T 2σ2HΓ (2H)

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

) 1
2H

κ̂
1

2H
LS ,

Substituting (A.39) into (A.40), we have

κ̂HN =

 T 2σ2HΓ (2H)

(XT −X0)
∫ T

0
Xtdt− T

(
1
2
X2
T − 1

2
X2

0 − αHσ2
∫ T

0

∫ t
0
u2H−2e−κududt

)
 1

2H

κ̂
1

2H
LS

=

(
σ2HΓ (2H) κ̂LS

XT
T

1
T

∫ T
0
Xtdt− X0

T
1
T

∫ T
0
Xtdt− 1

2T
X2
T + 1

2T
X2

0 + αHσ2 1
T

∫ T
0

∫ t
0
u2H−2e−κududt

) 1
2H

.

Hence,
√
T (κ̂HN − κ) (A.41)

=
√
T
(
κ̂HN − κ1− 1

2H κ̂
1

2H
LS + κ1− 1

2H κ̂
1

2H
LS − κ

)
=
√
T
(
κ̂HN − κ1− 1

2H κ̂
1

2H
LS

)
+
√
Tκ1− 1

2H

(
κ̂

1
2H
LS − κ

1
2H

)
=

[(
σ2HΓ (2H)

XT
T

1
T

∫ T
0
Xtdt− X0

T
1
T

∫ T
0
Xtdt− 1

2T
X2
T + 1

2T
X0 + αHσ2 1

T

∫ T
0

∫ t
0
u2H−2e−κududt

) 1
2H

−κ1− 1
2H

]
√
T κ̂

1
2H
LS +

√
Tκ1− 1

2H

(
κ̂

1
2H
LS − κ

1
2H

)
.

By Theorem 3.2 and the delta method, we get

√
T
(
κ̂

1
2H
LS − κ

1
2H

)
L−→ N

(
0,

(
1

2H
κ

1−2H
2H

)2

κCH

)
. (A.42)
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By (A.9), Eq. (4.3) and Lemma 5.2 of (18), we can obtain(
σ2HΓ (2H)(

XT
T
− X0

T

)
1
T

∫ T
0
Xtdt− 1

2T
X2
T + 1

2T
X2

0 + αHσ2 1
T

∫ T
0

∫ t
0
u2H−2e−κududt

) 1
2H

(A.43)

= κ1− 1
2H + op(

1√
T

) .

Finally, by Slutsky’s theorem, Remark 3.2, (A.41), (A.42), and (A.43), we obtain the
desired asymptotic distribution in (3.7).

A.4. Proof of Lemma 3.1

Using (A.1), we obtain

eκT

TH

∫ T

0

XtdB
H
t (A.44)

=
eκT

TH

∫ T

0

[(
1− e−κt

)
µ+X0e

−κt + σ

∫ t

0

e−κ(t−s)dBH
s

]
dBH

t

=
µeκT

TH
BH
T +

X0 − µ
TH

eκT
∫ T

0

e−κtdBH
t +

σeκT

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dB

H
t .

First, it is easy to see that
µeκT

TH
BH
T

a.s.→ 0 . (A.45)

For H ∈ (1
2
, 1), from Lemma 6 of (3), we have

X0 − µ
TH

eκT
∫ T

0

e−κtdBH
t

a.s.→ 0 . (A.46)

Let us mention that (A.46) also follows obviously in the case H = 1/2.
Next, we consider the last term of (A.44). If H = 1/2, a simple calculation yields

E
[
σeκT

T
1
4

∫ T

0

∫ t

0

e−κ(t−s)dBsdBt

]2

=
σ2e2κT

T
1
2

∫ T

0

∫ t

0

e−2κ(t−s)dsdt (A.47)

=
σ2

2κ
T

1
2 e2κT +

σ2

4κ2
√
T
− σ2e2κT

4κ2
√
T
.

If H ∈ (1
2
, 1), by the isometry property of the double stochastic integral, we have

E
[
σeκT

T
H
2

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dB

H
t

]2

= σ2α2
H

IT
e−2κTTH

,
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where

IT =

∫
[0,T ]4

e−κ|v−s|e−κ|u−r||u− v|2H−2|r − s|2H−2dudvdrds .

Taking the derivative of IT and e−2κTTH with respect to T , we have

dIT
d (e−2κTTH)

=
4
∫

[0,T ]3
e−κ(T−s)e−κ|u−r|(T − u)2H−2|r − s|2H−2dudrds

HTH−1e−2κT − 2κTHe−2κT
.

By changing variables T − s = x1, T − r = x2, T − u = x3, we get

dIT
d (e−2κTTH)

=
4
∫

[0,T ]3
e−κx1e−κ|x2−x3|x2H−2

3 |x1 − x2|2H−2dx1dx2dx3

HTH−1e−2κT − 2κTHe−2κT
.

Indeed, we can decompose the above integral into the integrals in the six disjoint
regions {xτ(1) < xτ(2) < xτ(3)}, where τ runs over all permutations of the indices {1, 2, 3}.
In the case x1 < x3 < x2 making the change of variables x1 = a, x3−x1 = b and x2−x3 = c
(other cases can be handled in a similar way), we obtain

dIT
d (e−2κTTH)

=
4
∫

[0,T ]3
e−κae−κc (a+ b)2H−2 (b+ c)2H−2 dadbdc

HTH−1e−2κT − 2κTHe−2κT
.

As a consequence,

dIT
d (e−2κTTH)

≤
4
∫

[0,T ]3
e−κ(a+c)b4H−4dadbdb

HTH−1e−2κT − 2κTHe−2κT
. (A.48)

Then, from (A.47) - (A.48), we obtain

|σe
κT

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dB

H
t |L2(Ω) ≤ CT−

H
2 , (A.49)

with H ∈ [1
2
, 1) and C denotes a suitable positive constant.

Consequently, we deduce from (A.49) and Lemma 2.1 of (21) that

σeκT

TH

∫ T

0

∫ t

0

e−κ(t−s)dBH
s dB

H
t

a.s.→ 0 .

Finally, the result in Lemma 3.1 follows by combining (A.44), (A.45), (A.46) and (4).

A.5. Proof of Theorem 3.4

We prove the convergence of κ̂LS first. For the sake of simple notations, we introduce the
two processes with T ≥ 0

ZT =

∫ T

0

eκsBH
s ds , (A.50)
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ξT =

∫ T

0

eκsdBH
s . (A.51)

By the definition of the Young integral, BH
0 = 0, and the definition of ZT , we can write

ξT = eκTBH
T − κ

∫ T

0

eκsBH
s ds = eκTBH

T − κZT . (A.52)

By Lemma 2.1 of (15), we obtain Z∞ =
∫∞

0
eκsBH

s ds which is well-defined and

ZT
a.s.→ Z∞ , (A.53)

ξT
a.s.→ ξ∞ := −κZ∞ . (A.54)

Using (A.50) and the Young integral, we can rewrite the solution of (1.1) as

Xt = X0e
−κt + (1− e−κt)µ+ e−κtσ

∫ t

0

eκsdBH
s (A.55)

= X0e
−κt + (1− e−κt)µ+ e−κtσξt

= X0e
−κt + (1− e−κt)µ+ e−κtσ

[
eκtBH

t −
∫ t

0

BH
s e

κsκds

]
= X0e

−κt + (1− e−κt)µ+ σBH
t − σe−κtκ

∫ t

0

BH
s e

κsds

= X0e
−κt + (1− e−κt)µ+ σBH

t − σe−κtκZt .

To prove the consistency of κ̂LS, we will analyze separately the numerator and the
denominator of the estimator (3.8). First, we consider the term eκT

∫ T
0
Xtdt. Using

L’Hôspital’s rule, (A.53), (A.54) and (A.55), we obtain

eκT
∫ T

0

Xtdt = eκT
∫ T

0

[
X0e

−κt +
(
1− e−κt

)
µ+ σe−κtξt

]
dt (A.56)

= −X0

κ

(
1− eκT

)
+ eκTµT +

µ

κ
eκT
(
e−κT − 1

)
+ σ

∫ T
0
e−κtξtdt

e−κT

a.s.→ −X0

κ
+
µ

κ
+ σZ∞ .

Combining (A.53), (A.54) and (A.55), we deduce that

1

T
eκTXT =

eκT

T

[
X0e

−κT +
(
1− e−κT

)
µ+ σe−κT ξT

]
(A.57)

=
1

T

[
X0 + µeκT − µ+ σξT

]
a.s.→ 0.
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By (A.53) and (A.54), we have

X2
T e

2κT = e2κT
[
X0e

−κT +
(
1− e−κT

)
µ+ σe−κT ξT

]2
(A.58)

= e2κT
[ (
X0e

−κT )2
+
(
1− e−κT

)2
µ2 + σ2e−2κT ξ2

T + 2X0e
−κTσe−κT ξT

+2µ
(
1− e−κT

)
σe−κT ξT + 2X0e

−κT (1− e−κT )µ]
= X2

0 +
(
eκT − 1

)2
µ2 + σ2ξ2

T + 2X0σξT + 2µσξT (eκT − 1) + 2µX0

(
eκT − 1

)
a.s.→ X2

0 + µ2 + σ2κ2Z2
∞ − 2σX0κZ∞ + 2µσκZ∞ − 2X0µ .

By (A.53) and (A.54) again, we obtain

e2κT

∫ T

0

X2
t dt = e2κT

∫ T

0

[
X0e

−κt +
(
1− e−κt

)
µ+ σe−κtξt

]2
dt

= e2κTX0

∫ T

0

e−2κtdt+ e2κT

∫ T

0

µ2(1− e−κt)2dt+ σ2e2κT

∫ T

0

e−2κtξ2
t dt

+2e2κTµX0

∫ T

0

e−κt
(
1− e−κt

)
dt+ 2e2κTX0σ

∫ T

0

e−2κtξtdt

+2e2κTµσ

∫ T

0

(
1− e−κt

)
e−κtξtdt

=
X0

2κ

(
e2κT − 1

)
+ µ2

[
e2κTT − 1

2κ
(1− e2κT ) +

2

κ
(eκT − e2κT )

]
+σ2e2κT

∫ T

0

e−2κtξ2
t dt+ 2µX0

[
1

2κ
(1− e2κT )− 1

κ

(
eκT − e2κT

)]
+2σX0

∫ T
0
e−2κtξtdt

e−2κT
+ 2µσ

(∫ T
0
e−κtξtdt

e−2κT
−
∫ T

0
e−2κtξtdt

e−2κT

)
a.s.→ −X0

2κ
− µ2

2κ
− σ2

2
κZ2
∞ +

µX0

κ
+X0σZ∞ − µσZ∞ . (A.59)

A standard calculation together with (A.56) yields

e2κT

T

(∫ T

0

Xtdt

)2

=
1

T

(
eκT
∫ T

0

Xtdt

)2
a.s.→ 0 . (A.60)

Combining (A.56), (A.57), (A.58), (A.59), (A.60) and (3.8), we obtain the strong consis-
tency of κ̂LS.

It remains to show the almost sure convergence of µ̂LS. From (1.1) and the fact that
BH

0 = 0, we can rewrite Xt as

Xt = X0 + µκt− κ
∫ t

0

Xsds+ σBH
t . (A.61)
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By (1.1), (3.9), (A.61) and the Young integral, we can rewrite µ̂LS as

µ̂LS =
(XT −X0)

∫ T
0
X2
t dt−

∫ T
0
XtdXt

X0+µκT+σBHT −XT
κ

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

(A.62)

=
(XT −X0)

∫ T
0
X2
t dt− µT

∫ T
0
XtdXt −

X0+σBHT −XT
κ

∫ T
0
Xt

[
κ (µ−Xt) dt+ σdBH

t

]
(XT −X0)

∫ T
0
Xtdt− T

∫ T
0
XtdXt

= µ+
XT−X0

κ
σ
∫ T

0
XtdB

H
t −

σBHT
κ

∫ T
0
XtdXt

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

= µ+
eκT XT−X0

κ
σ
T
eκT
∫ T

0
XtdB

H
t −

σBHT
κT

e2κT X
2
T−X

2
0

2

eκT XT−X0

T
eκT
∫ T

0
Xtdt− e2κT X

2
T−X

2
0

2

.

Finally, using (A.56), (A.57), (A.58), Lemma 3.1 and (A.62), we obtain the desired
strong consistency for µ̂HN . (Weilin, this is not entirely clear to me.)

A.6. Proof of Theorem 3.5

Using (1.1), (A.61) and the Young integral, we can rewrite κ̂LS as

κ̂LS =
(XT −X0)

∫ T
0
Xtdt− T

∫ T
0
Xt

[
κ (µ−Xt) dt+ σdBH

t

]
T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 (A.63)

=
(XT −X0 − κµT )

∫ T
0
Xtdt+ κT

∫ T
0
X2
t dt− σT

∫ T
0
XtdB

H
t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2

= κ+
σBH

T

∫ T
0
Xtdt− σT

∫ T
0
XtdB

H
t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 .

Hence,

e−κT (κ̂LS − κ) =
σBH

T e
−κT ∫ T

0
Xtdt− σTe−κT

∫ T
0
XtdB

H
t

T
∫ T

0
X2
t dt−

(∫ T
0
Xtdt

)2 (A.64)

=

σBHT
T

eκT
∫ T
0 Xtdt

e2κT
∫ T
0 X2

t dt
− σeκT

∫ T
0 XtdBt

e2κT
∫ T
0 X2

t dt

1− 1
T

(eκT
∫ T
0 Xtdt)

2

e2κT
∫ T
0 X2

t dt

.
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A standard calculation yields

−
σeκT

∫ T
0
XtdB

H
t

e2κT
∫ T

0
X2
t dt

= −σ
eκT
∫ T

0

[
µ+ (X0 − µ) e−κt + σ

∫ t
0
e−κ(t−s)dBH

s

]
dBH

t

e2κT
∫ T

0
X2
t dt

(A.65)

= − σ

e2κT
∫ T

0
X2
t dt

[
µeκTBH

T − σeκT
∫ T

0

∫ s

0

e−κ(t−s)dBH
t dB

H
s

+eκT
∫ T

0

e−κtdBH
t

[
(X0 − µ) + σ

∫ T

0

eκsdBH
s

]]
.

By Lemma 6 and Lemma 3 of (3), we have

eκT
∫ T

0

e−κsdBH
s
L−→ N

(
0,
HΓ(2H)

|κ|2H

)
, (A.66)∫ T

0

eκsdBH
s
L−→ N

(
0,
HΓ(2H)

|κ|2H

)
. (A.67)

Moreover, it is easy to check
µeκTBH

T
a.s.→ 0 . (A.68)

Obviously, both eκt and eκs are non-random Hölder continuous functions. According
to Lemma 7 of (3) and the relationship between the divergence integral and path-wise
integral (see e.g. Eq. (2.4) in (3)), we can deduce that

σeκT
∫ T

0

∫ t

0

e−κsdBH
s e

κtdBH
t

p→ 0 . (A.69)

By (A.59), (A.65) - (A.69) and Slutsky’s theorem, we have

−
σeκT

∫ T
0
XtdB

H
t

e2κT
∫ T

0
X2
t dt

L−→
2κσ

√
HΓ(2H)

|κ|H ν

X0 − µ+ σ

√
HΓ(2H)

|κ|H ω
, (A.70)

with ν and ω being two independent standard normal random variables. Combining
(A.56), (A.59), (A.64), and (A.70), we obtain (3.10).

Let us now obtain the asymptotic distribution of µ̂LS. From (A.62), we can rewrite
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µ̂LS as

µ̂LS =
(XT −X0)

∫ T
0
X2
t dt−

∫ T
0
XtdXt

X0+µκT+σBHT −XT
κ

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

=
(XT −X0)

∫ T
0
X2
t dt− µT

∫ T
0
XtdXt −

X0+σBHT −XT
κ

∫ T
0
Xt

[
κ (µ−Xt) dt+ σdBH

t

]
(XT −X0)

∫ T
0
Xtdt− T

∫ T
0
XtdXt

= µ+
XT−X0

κ
σ
∫ T

0
XtdB

H
t −

σBHT
κ

∫ T
0
XtdXt

(XT −X0)
∫ T

0
Xtdt− T

∫ T
0
XtdXt

= µ+
XT−X0

κ
σ
∫ T

0
XtdB

H
t −

σBHT
κ

X2
T−X

2
0

2

(XT −X0)
∫ T

0
Xtdt− T

X2
T−X

2
0

2

.

As a consequence, we have

T 1−H (µ̂LS − µ) =

2σ
κTHXT

∫ T
0
XtdB

H
t − 2X0σ

κTHX2
T

∫ T
0
XtdB

H
t −

σBHT
κTH

+
σBHT
κTH

X2
0

X2
T

2
TXT

∫ T
0
Xtdt− 2X0

TX2
T

∫ T
0
Xtdt− 1 + X0

X2
T

=

2σ
κeκTXT

eκT

TH

∫ T
0
XtdB

H
t − 2X0σ

κX2
T e

2κT
e2κT

TH

∫ T
0
XtdB

H
t −

σBHT
κTH

+ σ
κ

e2κTX2
0

e2κTX2
T

BHT
TH

2
TeκTXT

eκT
∫ T

0
Xtdt− 2X0

Te2κTX2
T
e2κT

∫ T
0
Xtdt− 1 +

e2κTX2
0

e2κTX2
T

.

By (A.56) - (A.58), (A.34), Lemma 3.1, and the above equation, we can obtain the desired
result in (3.11).

A.7. Proof of Theorem 3.6

By the law of the iterated logarithm for fBm (see e.g. (34)), we get

BH
T

∫ T
0
BH
t dt− T

∫ T
0
BH
t dB

H
t

T
∫ T

0
(BH

t )2dt−
(∫ T

0
BH
t dt

)2

a.s.→ 0. (A.71)

As a consequence, we obtain the almost sure convergence from (3.12) and (A.71). By the
scaling properties of fBm of (2.2) (see also in (25)), we have

BH
T

d
= THBH

1 ,

BH
T

∫ T
0
BH
t dt

d
= T 2H+1BH

1

∫ 1

0
BH
u du ,

T
∫ T

0
BH
t dB

H
t

d
= T 2H+1

∫ 1

0
BH
u dB

H
u ,

T
∫ T

0
(BH

t )2dt
d
= T 2H+2

∫ 1

0
(BH

u )2du ,(∫ T
0
BH
t dt

)2 d
= T 2H+2

(∫ 1

0
BH
u du

)2

,

; (A.72)

Combining (3.12) and (A.72), we can obtain the desired asymptotic distribution.
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