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Retweeting: An Act of Viral Users, Susceptible Users, or Viral Topics?

Tuan-Anh Hoang∗ Ee-Peng Lim∗

Abstract

When a user retweets, there are three behavioral factors that

cause the actions. They are the topic virality, user virality

and user susceptibility. Topic virality captures the degree

to which a topic attracts retweets by users. For each topic,

user virality and susceptibility refer to the likelihood that a

user attracts retweets and performs retweeting respectively.

To model a set of observed retweet data as a result of these

three topic specific factors, we first represent the retweets

as a three-dimensional tensor of the tweet authors, their

followers, and the tweets themselves. We then propose the

V 2S model, a tensor factorization model, to simultaneously

derive the three sets of behavioral factors. Our experiments

on a real Twitter data set show that the V 2S model can

effectively mine the behavioral factors of users and tweet

topics during an election event. We also demonstrate that

the V 2S model outperforms the other topic based models in

retweet prediction.

1 Introduction

Several empirical research works have been conducted
on the information diffusion phenomena in Twitter
[10, 14, 21, 24]. Most of them studied diffusion at
the macro level which involves aggregated diffusion
patterns, e.g., persistence and shape of the adoption
curve of information items. There is little research on
modeling the act of retweeting which contributes to
diffusion, and explaining the retweet actions using the
underlying user behavioral factors and topic factors.

In this work, we attribute a user’s retweet actions
to three orthogonal factors, namely topic virality,
user virality and user susceptibility. When a user
retweets a message, one may attribute this to the viral
topical content of the message. Different topics may
demonstrate different degree of virality. Past studies
have shown that death of celebrities (e.g., Michael
Jackson, Steve Jobs) and political uprisings are topics
that are viral. There are also many other non-viral
topics. Other than topic virality, a user may retweet
a message due to the user from whom she receives the
message. This user, also known as the sender, may
be good at generating content that attracts readership.
∗Living Analytics Research Centre, Singapore Management

University

We say that such users are viral and they are viral for
some topics but not for others. Finally, a user may also
retweet due to her own susceptibility, which again is
topic specific.

Our research objective is therefore to develop a
model for retweets based upon the above three topic-
specific factors. Through the model, we would like to
explain retweet actions by the appropriate factors, and
to measure the underlying topic and user factors which
can be used in several interesting applications including
social media marketing, content recommendation, event
monitoring and detection.

To the best of our knowledge, modeling retweet ac-
tions using behavioral factors is a novel research prob-
lem. In [6], Hoang and Lim introduced the concepts of
message virality, user virality and susceptibility factors
in viral diffusion, and proposed different ways to mea-
sure these factors considering their inter-dependencies.
The above three factors are however not topic specific.
In this paper, we aim to develop a new model that in-
volves topic-specific user virality, topic-specific user sus-
ceptibility, and topic virality. Defined at the topic level,
these factors can be more easily used to predict future
retweet actions. There are nevertheless some technical
challenges in this work.

• To model retweets using the three factors, we need
to know if the followers are actually aware of any
tweet generated from a user. A follower is clearly
aware of the tweet when she retweets, but we cannot
say so when she does not retweet as the browsing of
incoming tweets cannot be observed.

• Each retweet action is jointly contributed by all these
topic-specific factors. How to separate the effects of
each factor from the other two and to measure them
are therefore challenges. This scenario is analogous to
the computation of hubs and authorities from a set of
links between web pages, except that we now have to
consider three (not two) factors simultaneously.

This paper addresses the first challenge by infer-
ring the window size of tweets read by users when they
retweet. We then address the second challenge by con-
structing a retweet tensor representing users retweeting
messages posted by their followees. We then develop a
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factorization based model on this tensor to simultane-
ously measure the three topic-specific factors. Our main
contributions in this work consist of the following.

• We propose a tensor factorization model which cap-
tures the relationships between retweet actions and
the above three factors. The model, known as
V 2S, represents retweets as a three-dimensional ten-
sor which is factorized into topic virality vector, user-
topic virality matrix, and user-topic susceptibility
matrix simultaneously.

• We convert the above constrained factorization prob-
lem into a unconstrained optimization which can be
solved using gradient descent methods.

• We apply the V 2S model to retweet prediction in a
real Twitter dataset and show that the V 2S model
outperforms other topic-based baseline models.

• An empirical analysis of the topic virality, user viral-
ity and user susceptibility factors for the same Twit-
ter dataset has been conducted to demonstrate the
efficacy of the V 2S model.

The rest of the paper is organized as follows. We
cover the related works in Section 2. Section 3 provides
justifications that behavioral factors should be modeled
at the topic level. We define our V 2S model and
solve the model in Section 4. We present our retweet
prediction experiments in Section 5. The empirical
analysis of topic and user factors is given in Section 6.
Finally, we conclude the paper in Section 7.

2 Related Work

2.1 Item Virality Most of the previous works only
measure item virality as the only factor related to
diffusion [3, 8, 11, 14, 15, 17]. An item’s virality
has been simply measured by its popularity, i.e., the
number of users adopting the item. In [8], another item
virality measure called viral coefficient is introduced.
Viral coefficient is defined by the average number of
new adopters generated by each existing adopter. For
Twitter data, the popularity of a tweet is therefore
measured by the number of its retweets, and the viral
coefficient is the same as retweet count per user. The
two item virality measures are very simple and does not
consider other user factors and topic level factors.

2.2 Retweet Modeling There have been some em-
pirical research on understanding the correlation be-
tween retweet likelihood and network metrics (e.g.,
number of followers and followees), as well as content
characteristics (e.g., the presence of URLs and hash-
tags) [16, 18, 20]. However, to the best of our knowledge,

there are only few works on modeling retweet actions.
Zi Yang et. al. proposed a factor graph based method
using the retweet traces as input data [22]. However,
as Twitter now does not include screen names of inter-
mediate users in retweet content, the trace of second or
subsequent hop of retweets cannot be fully observed by
a user who receive the retweet. Hence, this method is
no longer appropriate. Luo et. al. proposed a log-linear
model to explain retweets by social tie based features
[23], which are independent from user behaviors and
topics. Recently Peng et. al. [12] and Chen et. al. [4]
proposed methods that predict retweets based on au-
thor’s profile, content elements, network and temporal
characteristics. These features require a large dataset
covering user activities over a long time period. In con-
trast, our model only requires the retweet data and con-
siders new topic and user factors.

3 Topic and Retweet

In this section, we demonstrate our research motivation.
By performing topic analysis on a real dataset collected
from Twitter, we show that user behavioral factors and
item factor contributing to retweet actions should be
studied at topic level.

3.1 Dataset We first select a set of 58 Singapore-
based seed users which includes accounts of political
parties (e.g., PAPSingapore and wpsg), politicians (e.g.,
georgeyeo), political commentators (e.g, temasekre-
view), and bloggers (e.g., mrbrown). We then derived
the followers and followees of the seed users. This al-
lows us to create a larger set of 32,138 users who declare
themselves to be located in Singapore. We then crawled
tweets published by the set of users on a daily basis us-
ing Twitter REST API1. We collected 2,091,906 tweets
published between April and August 2011 for this study.
We apply the following steps for data preprocessing.

Constructing the user network. As Twitter
REST API does not provide the creation time of fol-
low links, we have to infer the follow links and their
timestamp based on the mention as suggested in [14].
That is, we create for users u and v a follow link from
u to v at the time when u mentions “@v” the kth time
in u’s tweets. In our experiments, we set k = 3.

User and tweet selection. We first remove users
who neither retweet nor get retweeted. The tweets
posted by these users are also removed as they do not
have any effect on other users’s retweets and getting
retweeted. Furthermore, in Twitter, topics of tweet
content change rapidly over time [7, 10], and so do
the user behaviors. We therefore only use a subset
of data collected within a short duration of time to

1Twitter API: http://dev.twitter.com/doc
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Table 1: Statistics of One-Week Dataset
#Users 32,138

#Tweets 86,729

#Original tweets 29,838

#Retweets 56,891

#Retweets from original tweets 26,202

study user behavior in that time. For this study, we
use tweets published within one week up to Singapore
General Election Day (May 8th, 2011). Since the
election is a socially interesting event, we expect that
tweets generated by the event to be well read, and highly
retweeted by the election voters. The statistics of the
final dataset are given in Table 1. The statistics suggest
that the selected original tweets are highly retweeted as
we have more retweets than tweets, and the number of
retweets from original tweets is approximately equals to
the number of original tweets.

Determining user awareness of receiving
tweets. In Twitter, the latest tweets posted by a
user’s followees always appear at the top of her time-
line. Hence, when a user has many followees and re-
ceives many tweets, some earlier received tweets may
not be read by the user as they are hidden by newer in-
coming tweets. In that case, the earlier tweets may have
been missed by the user and never been retweeted. As
Twitter REST API does not provide user click-through
information that reveals the tweets that have been seen
by users, we define a time window in which the received
tweets will be read. This time window size is deter-
mined as follows. We know that every retweet by a user
u comes with a corresponding tweet m that u must have
read. We first count the number of other tweets u re-
ceived within the time window from the time u received
m to the time u retweeted m. Based on this count we
estimate Nw

r the number of tweets a user may read on
her timeline whenever she performs a retweet. We found
that Nw

r follows a long tail distribution. For more than
90% of the times, Nw

r is not larger than 50. We there-
fore determine that a user u received and actually read
through the tweet m if and only if m is among last 50
tweets posted by u’s followees up to the time u makes a
retweet. Otherwise, the tweet m is considered not read
by the user u.

Topic discovery. We applied LDA model [2] to
automatically identify the topics of every original tweet.
We first remove all retweets and non-informative tweets,
e.g., tweets generated by third party applications like
FourSqure2 or Instagram3. We then remove from re-
maining tweets all stop words, slang words4, and non-
English phrases. Finally, we use the LDA implementa-
tion from Stanford’s Topic Modeling Toolbox5 to dis-
cover topics.

2https://foursquare.com/
3http://instagram.com/
4http://en.wikipedia.org/wiki/Slang
5
http://nlp.stanford.edu/software/tmt/tmt-0.4/
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Figure 1: Topic discovery and analysis

Figure 1(a) shows the likelihood of the LDA model
with respect to the number of topics K. As expected,
larger K gives larger likelihood. The amount of im-
provement decreases as K increases. In consideration
of time and space computational complexity, we set the
number of latent topics to 100. Moreover, as each tweet
is a short document, we are not interested in tweets that
cover many topics. We therefore only consider tweets
having some dominating topics. To do this, we filter
out tweets having sum of Kdom highest topic probabili-
ties (given the tweet) less than 0.95. Then, for each of
the remaining tweets, we normalize topic distribution of
the tweet such that sum of Kdom highest topic proba-
bilities equals to 1, and all other topics have probability
0. In this study, we set Kdom = 3.

3.2 Observations We now show observations that
how different topics get retweeted. In particular, we aim
to answer the following questions: (a)Topic and retweet
at network level : Do all topics get equally retweeted?
(b)Topic and retweet at author side: Does a user get
same amount of retweets for every topic? and (c)Topic
and retweet at receiver side: Does a user performs same
amount of retweets for every topic?

Topic and retweet at network level. In order to
compare the likelihood of being retweeted across topics,
for each topic k, we derive the relative popularities
of k among the set of all original tweets and the bag
of retweets. The former is called global popularity
of the topic k, denoted by T→t (k), and the later is
called retweet popularity, denoted by T→r (k). The two
popularities are defined as follows.

T→t (k) =
1

|M |
∑
m∈M

Tk(m)(3.1)

T→r (k) =
1∑

m∈R

|RT (m)|

∑
m∈MR

|RT (m)| · Tk(m)(3.2)

where M is the set of all original tweets which excluded
the retweets, MR is the set of original tweets that
have been retweeted, Tk(m) is the k-th component of
the topic distribution vector of the tweet m ∈ M ,
and RT (m) is the bag-of-retweets of m. The two
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popularities has Pearson rank correlation coefficient
0.536. The low coefficient clearly shows that the relative
popularity of a topic in the bag of retweets does not
strongly correlate the topic’s global popularity. This
implies that different topics have different likelihood of
being retweeted.

Topic and retweet at author side. To compare
the likelihood of user u getting retweeted for different
topics, we compare the relative popularities of each topic
k in the set of tweets that u posted, and in the bag-of-
retweets that u got. The former popularity is called
sender-specific popularity of u for topic k, while the
latter one is called sender-specific retweet popularity of u
for topic k. The two popularities are denoted by T→k

t (u)
and T→k

r (u) respectively, and are defined below.

T→k
t (u) =

1

|M→(u)|
∑

m∈M→(u)

Tk(m)(3.3)

T→k
r (u) =

1

|R→(u)|
∑

m∈M→(u)

[|RT (m)| · Tk(m)](3.4)

where M→(u) and R→(u) are the set of tweets posted
by u, and the bag-of-retweets u got respectively.

We compute Pearson rank correlation coefficient
between T→k

t (u) and T→k
r (u) for each user u, and

between T→k
r (u) and T→k

r (v) for each pair of different
users u and v. The distributions of the coefficients are
shown in Figure 1(b). The figure clearly shows that,
for each user, the relative popularities of topics in her
bag-of-retweets are different from that popularities in
her tweets, and are also different from the popularities
in the bag-of-retweets of other users. This implies that
(1) the same user has different likelihoods of getting
retweeted for different topics, and (2) the same topic
has different likelihoods of being retweeted when the
topic is mentioned in the tweets generated by different
users.

Topic and retweet at receiver side. To compare
the likelihood of retweeting by user v for different topics,
we compute the relative popularities of each topic k in
the set of tweets v received and read, and in the set
of tweets v retweeted. The former popularity is called
receiver-specific popularity of user v for the topic k, and
the latter is called receiver-specific retweet popularity of
user v for topic k. The two popularities are denoted by
T←k
t (v) and T←k

r (v) respectively, and are defined below.

T←k
t (v) =

1

|M←(v)|
∑

m∈M←(v)

Tk(m)(3.5)

T←k
r (v) =

1

|R←(v)|
∑

m∈R←(u)

Tk(m)(3.6)

where M←(v) and R←(v) is the set of tweets v has
received and read, and the set of tweets v has retweeted
respectively.

Similar to the case of author side, we compute
Pearson rank coefficient between T←k

t (v) and T←k
r (v)

for each user v, and between T←k
r (u) and T←k

r (v) for
each pair of different users u and v. The distributions
of the coefficients are shown in Figure 1(b). Again,
the figure clearly shows that, for each user, the relative
popularities of topics in the set of tweets she retweeted
are different from that popularities in the set of tweets
she received and read, and are also different from
the popularities in the set of tweets that other users
retweeted. This implies that (1) the same user has
different likelihoods of performing retweet for different
topics, and (2) the same topic has different likelihoods
of being retweeted when the topic is mentioned in tweets
received by different users.

4 Topic-specific Virality and Susceptibility
Modeling

Motivated by the observations in Section 3, we now pro-
pose a tensor factorization based model to incorporate
all user behavioral factors and content factors contribut-
ing to retweet actions at topic level.

4.1 Behavioral factors We consider each tweet is
an information item, and each retweet action is an
instance of information diffusion caused by following
three factors.

• Topic virality: This refers to the ability of a topic
to attract retweets. Each topic k is associated to
a virality score vkT ∈ [0, 1] indicating how viral the
topic is, i.e. how likely a tweet about the topic
gets retweeted. We use VT to denote the vector
(v1T , · · · , vKT ) of virality score of all K topics.

• Topic-specific user virality: This refers to the
ability of a user to get retweeted for a specific topic.
Each user u is associated to a topic-specific user
virality vector VU (u) = (v1U (u), · · · , vKU (u)) where
vkU (u) ∈ [0, 1] for ∀k = 1, · · · ,K, vkU (u) indicates
how viral user u is for topic k, i.e., how likely u gets
retweeted for her tweets about the topic k.

• Topic-specific user susceptibility: This refers to
the ability of a user to retweet for a specific topic.
Each user v is associated to a topic-specific user
susceptibility vector S(v) = (s1(v), · · · , sK(v)) where
sk(v) ∈ [0, 1] for ∀k = 1, · · · ,K, sk(v) indicates how
susceptible user v is to topic k, i.e., how likely v
retweets a tweet about the topic k after reading the
tweet.

Note that not all users have chances to tweet about
a given particular topic and then get their tweets
retweeted, or to read tweets about the topic that are
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diffused to them from their followees. We therefore may
not be able to measure virality and susceptibility for
every user for every topic due to the lack of historical
observations. Instead, we identify, for each topic k,
the subset Vk which includes all users tweeting about
the topic (with regards to the topic discovery step in
Section 3), and the subset Sk which includes all users
receving and reading tweets about the topic. We then
measure virality and susceptibility to topic k for users
in Vk and in Sk respectively.

4.2 The V 2S Model We use a tuple (u, v,m) to de-
note a retweet observation that m is a tweet posted by
user u, and received and read by v. We use a Ruvm

to denote whether v retweets m (Ruvm = 1) or not
(Ruvm = 0). A retweet observation is positive or nega-
tive when R(u, v,m) = 1 and 0 respectively. Our pro-
posed model measures the likelihood of Ruvm based on
topic-specific virality of u, topic-specific susceptibility of
v, overall topic virality, and the topics of m as follows.

We assume that the likelihood that v retweets m is
determined by (a) how m’s topic distribution T (m) =
(T1(m), · · · , TK(m)) correlates with u’s topic-specific
user virality VU (u); (b) how T (m) correlates with topic
virality VT ; and (c) how T (m) correlates with v’s topic-
specific user susceptibility S(v). Under this assumption,
we therefore may estimate Ruvm using the dot product
of T (m), VU (u), VT , and S(v). That is,

Ruvm ≈
K∑

k=1

[Tk(m) · vkU (u) · vkT · sk(v)](4.7)

Given the approximation in Equation 4.7, topic-specific
user virality and susceptibility, and topic virality can
be learnt by solving the following regularized tensor
factorization problem.

(V∗T ,V∗U ,S∗) =arg.min
VT ,VU ,S

L(VT ,VU ,S)(4.8)

subject to

(4.9)


vkT ∈ [0, 1] ∀k = 1, · · · ,K
vkU (u) ∈ [0, 1] ∀u ∈ Vk, ∀k = 1, · · · ,K
sk(v) ∈ [0, 1] ∀v ∈ Sk, ∀k = 1, · · · ,K

where L is the regularized sum-of-squares error function
which is defined as follows.

(4.10) L(VT ,VU ,S) =

=
∑

(u,v,m)∈K

[
Ruvm −

K∑
k=1

(Tk(m) · vkU (u) · vkT · sk(v))
]2

+αt · ||VT − T→r ·
K∑

k=1

vkT ||2 + βt · ||VT ||2+

+αu ·
[∑

u∈V ||VU (u)− T→r (u) ·
K∑

k=1

vkU (u)||2+

+
∑

v∈S ||S(v)− T←r (v) ·
K∑

k=1

sk(v)||2
]
+

+βu ·
[∑

u∈V ||VU (u)||2 +
∑

v∈S ||S(v)||2
]

where K is the set of all retweet observations, V =∪
k Vk, S =

∪
k Sk, T→r = (T→1

r , · · · , T→K
r )),

T→r (u) = (T→1
r (u), · · · , T→K

r (u)), and T←r (v) =
(T←1

r (v), · · · , T←K
r (v))

In Equation 4.10, the term ||VU (u) − T→r (u) ·∑K
k=1 v

k
U (u)||2 is the distance between VU (u) and

T→r (u) after weighting the latter by sum of all com-
ponents of the former. This term ensures that VU (u)
follows a distribution that is close to T→r (u) as we do
expect that users should be more viral for topics where
they are more likely get retweeted. Similarly, the terms∑

v∈S ||S(v) − T←r (v) ·
∑K

k=1 s
k(v)||2 and ||VT − T→r ·∑K

k=1 v
k
T ||2 ensure that S(v) and VT follow distributions

that are respectively close to T←r (v) and T→r . Lastly, the

terms ||VT ||2 and

[∑
u∈V ||VU (u)||2 +

∑
v∈S ||S(v)||2

]
are the Tikhonov regularization to avoid overfitting
problem [5].

Minimizing L as in Equation 4.10 is a non-convex
problem which could only be solved locally, e.g., by
gradient based methods [9]. However, due to the
conditions in Equation 4.9, we cannot directly apply
the gradient descent methods as they are used for
unconstrained problems. To deal with the conditions,
we employ the following transformation to transform
Problem 4.8 into a unconstrained problem.

(4.11) z = h−1(x) for ∀x ∈ [0, 1]

where h(z) = 1
2 · exp(z)− exp(−z)

exp(z) + exp(−z)
+ 1

2 is a S-shape

continuous monotone map from R to [0, 1].
Denote ZT = {h−1(vkT ), for ∀k = 1, · · · ,K}, ZU =

{h−1(vkU (u)), for ∀u ∈ Vk, ∀k = 1, · · · ,K}, and ZS =
{h−1(sk(v)), for ∀v ∈ Sk,∀k = 1, · · · ,K)}, then Prob-
lem 4.8 becomes a unconstrained optimization prob-
lem with respect to ZT , ZU , ZS which now can be
solved using gradient descent based methods. Hence,
the main computational cost in solving Problem 4.8 is
at evaluating L. From Equation 4.10, this includes (1)
cost of computing the sum of squared errors, which is
O(Kdom · |K|) since we normalized topic distribution of
tweets so that each tweet has at most Kdom topics; and
(2) cost of computing the regularization terms, which is
O(K · (2 + |V | + |S|)). Finally, the cost of evaluating
L is O(Kdom · |K|+K · (2 + |V |+ |S|)), which is linear
in all variables, i.e., number of retweet observations |K|,
number of topics K, and number of users |V |+ |S|. Our
method is therefore scalable to large datasets.
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In our implementation, we employ the alternating
gradient descent method. The main idea is to perform
gradient descent steps by {ZU ,ZS} directions while
keeping ZT unchanged, and later perform gradient de-
scent steps by ZT directions, while keeping ZU ,ZS un-
changed. In each gradient descent step, the step size is
determined by the line search method [9]. This process
repeats until we reach a predefined maximum number
of iterations or when the values converge. We found
that the converged measure values could be obtained
within 50 alternating iterations, each iteration includes
20 gradient descent steps. The control parameters αu,
αt, βu, and βt are also set through empirical evaluation
on a large set of tuples of values. We found that param-
eter set αu = βu = 0.0001 and αt = βt = 1 gives the
best performance. This parameter setting is reasonable
as we have many more variables vkU (u) and sk(v) that
affects to only a subset of retweet observations where
u and v are involved respectively; but in contrast, we
have much fewer variables vkT that affect a much larger
set of retweet observations (where the tweets are about
topic k). Hence, the variables vkT should be regularized
with larger weights.

5 Experimental Evaluation

In this section, we evaluate and compare our proposed
method with some baseline methods in retweet predic-
tion task using the One-Week dataset described in Sec-
tion 3. This dataset includes tweets published by Sin-
gapore based users within one week up to Singapore
General Election 2011.

5.1 Data Preprocessing Recall that for each topic
k, we only can measure user virality for the topic for
a subset Vk of users tweeting about the topic, and
measure topic-specific user susceptibility to the topic
for a subset of users Sk who receive and read tweets
about the topic. We first initialize Vk and Sk to be
the set of all users in our dataset. To ensure that
we have sufficient observations for each user and each
topic, we iteratively remove from Vk users who generate
less than 5 tweets about the topic k, and remove from
Sk users who read less than 5 tweets about the topic.
Table 2 shows the statistics of the final dataset ExpDB
which has much fewer users than the original dataset
due to the filtering steps. Nevertheless we still have
a large number of retweet obervations. The table also
shows that ExpDB is highly imbalanced with only 4.1%
positive observations. This makes the prediction task
much more difficult.

5.2 Comparative methods Other than V 2S, we
employed the following methods for comparison.
LDA-based methods.

Table 2: Statistics of the experimental dataset (ExpDB)
Average |Vk| 50

#Unique users in
∪
k Vk 266

Average |Sk| 382

#Unique users in
∪
k Sk 1,677

#Original tweets 8,173

#Retweet Observations 138,721

#Positive Retweet Observations 5,731

• B2: The likelihood of R(u, v,m) depends on how
much the message m matches with topics where u
is more retweetable, and topics where v is more likely
to retweet.

B1(u, v,m) =
K∑

k=1

[
Tk(m) · T→t (u)k · T←r (v)k

]

• B2: The likelihood of R(u, v,m) depends on how
much the message m matches with global retweetable
topics, and topics where v is more likely to retweet.

B2(u, v,m) =

K∑
k=1

[
Tk(m) · T→t

k · T←r (v)k
]

• B3: A combination of B1 and B2. That is

B3(u, v,m) = τ ·B1(u, v,m) + (1− τ) ·B2(u, v,m)

where τ ∈ (0, 1) is a parameter. In this experiment,
we set τ = 0.5.

In all of LDA-based methods, topic distribution of each
tweet and each user is computed as in Section 3.

Collaborative Topic Regression (CTR). Pro-
posed by Wang et. al. [19] that combines collabora-
tive filtering data with content-based features to per-
form recommendation tasks. Similar to our proposed
method, CTR is purely based on hidden user and con-
tent characteristics, and therefore is a suitable baseline.
We used the authors’ implementation with number of
topics is also set to 100 and all other parameters are
kept as default.

5.3 Metrics. We randomly divided both positive
and negative retweet observations into training set and
test set according to ratio 80% and 20%. This ensures
that we have the same fraction of positive observations
in both training and test sets. Then for each compar-
ative method, we generate a ranking of observations in
the test dataset based on the likelihood of retweet re-
turned by the method. We then construct a Precision-
Recall (PR) curve from the test set and the ranking,
and measure the area under the PR curve (AUPRC).
Methods with the higher AUPRC are the better.

Note that V 2S and LDA-based methods can be
applied to the whole ExpDB, but CTR only works
on users having at least one retweet. We therefore
trained and tested CTR with subsets of training and
test datasets that include including observations where
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Figure 2: Prediction performance comparisons

the receiver has at least one retweet. We compare
CTR against LDA-based methods and V 2S using these
subsets, and compare V 2S against LDA-based methods
using the whole dataset.

5.4 Performance comparision Figure 2(a) shows
the performance of LDA-based method and V 2S
method in the prediction task when the whole dataset
is used. Figure 2(b) shows the performance of all
comparative methods in the task using the subset of
retweet observations where each receiver has at least
one retweet. Among LDA-based methods, B1 outper-
forms B2 and B3 in both cases. This suggests that user
specific retweetable topics give a stronger retweet pre-
diction than global retweetable topics. The fact that
LDA-based methods outperform CTR can be explained
that CTR suffers from noise as the model infers tweet
topics and user preference simultaneously, while LDA-
based methods does not since we employ the topic nor-
malization step (see Section 3). Finally, in both Fig-
ures 2(a) and (b), the results indicate that our V 2S
model is the best among all the comparative methods.

6 Analysis of Virality and Susceptibility

In this section, we analyze the user and topic behav-
ioral factors, and the topic popularities obtained from
the experiment in Section 5. We make empirical com-
parisons among the measures to show their differences,
and provide example cases of highly viral topics/ users
and highly susceptible users.

6.1 Topic Virality Figure 3(a) shows distribution
of topic virality score. The figure clearly shows that
most of the topics have some degree of virality; some
topics are extremely viral with the virality score close
to 1. The Pearson rank correlation coefficient between
the topic global/ retweet popularity and topic virality
is 0.686 and 0.912 respectively. This indicates that
topic virality somewhat correlates but does not identical
to global popularity or retweet popularity. Moreover,
we found that the most viral topics do not necessarily
have high global or retweet popularity; and neither the
highest global popularity topics nor the highest retweet
popularity topics are the most viral ones.

Table 3: Top topics by global popularity, topic retweet

popularity, and virality

ID Label
Rank

Global Retweet
Virality

Popularity Popularity

74 Campaign Events 1 7 42

64 SDP6 Campaign 2 12 35

36 Election Results 3 1 7

2
PoliticianA7’s

4 14 39
Speech

5 PAP’s Victories 5 3 31

99 Job Advertisement 7 92 93

17
Spoke out against

8 22 45
Opposition Parties

12 Foreign Policy 9 17 5

15 Polling Day 10 11 2

10 WP8’s Victories 11 2 25

50
Election result

16 4 9
at Aljunied9

75
Election result

24 5 18
at Jo Chiat10

58 PoliticianB’s Lost 19 6

16
Supporters at

15 8 27
Rally Speeches

55 PoliticianC’s Lost 29 9 11

80 PoliticianD 27 10 1

70
Emotional responses

61 45 3
to Election Results

4
Waiting for

49 29 4
Election Results

14
Media Channels

28 25 6Reporting
Election Results

86
Oppositions

20 13 8
in Parliament

Table 3 shows the top ten topics by global popular-
ity, retweet popularity, and topic virality. Note that the
topic labels are manually assigned based on the topic
representative words (which are excluded from the ta-
ble due to space limitation), and further insights from
the top tweets of each topic. While most globally pop-
ular topics are related to election campaign, the most
retweeted ones are about results of the election. This
is reasonable as the dataset covers tweets generated in
the week before the election, including the day when the
election results were announced. Finally, the most viral
topics are about episodes around the election (topic 80)
and emotional responses to the election results (topic
70). The virality of topic 80 is expected as the elec-
tion candidate PoliticianD suffered from online flaming
throughout her election campaign. The virality of the
topic 70 agrees with the prior works by Berger et. al.
[1] and Pierce et. al. [13] that people are more likely to
share information that evokes high-arousal emotions.

We further examine “Job Advertisement” (topic
99), “WP’s Victories” (topic 10), and “PoliticianD”
(topic 80), the three topics that are ranked highly by
global popularity, retweet popularity and topic virality
respectively but not by others. For each topic, we select
a set of tweets with the normalized probability of the
topic (see Section 3) is not smaller than θ = 0.5, and
call them the on-topic tweets.

6http://en.wikipedia.org/wiki/Singapore Democratic Party
7We do not show the politician names as they are not the

focus of this paper
8http://en.wikipedia.org/wiki/Workers’ Party of Singapore
9http://en.wikipedia.org/wiki/Aljunied Group

Representation Constituency
10http://en.wikipedia.org/wiki/Joo Chiat Single

Member Constituency
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Figure 3: Topic virality and topic-specific user virality and susceptibility

Table 5: Top-10 viral users across the topics
Rank User name User type Topic ID Label

1 todayonline Media 36 Election Results

2 stcom Media 5 PAP’s Victories

3 temasekreview Blogger 10 WP’s Victories

4 todayonline Media 10 WP’s Victories

5 stcom Media 55 PoliticianC’s Lost

6 ge2011 Portal 36 Election Results

7 todayonline Media 58
PoliticianB’s

Lost

8 temasekreview Blogger 80 PoliticianD

9 todayonline Media 75
Election result
at Jo Chiat

10 wpsg Party Portal 74 Campaign Events

Table 4(a) shows that all tweets about “Job Ad-
vertisement” (topic 99) did not get any retweet even
though the topic is globally popular. We found that
the on-topic tweets of topic 99 are mostly generated by
sg job adm and sg job marketin, the two users who fol-
low each other and promote their advertising tweets11.

Table 4(b) shows that most of retweets on the topic
“WP’s Victories” (topic 10) are due to the top three
users: stcom, temasekreview, and todayonline. These
users are highly viral on the topic and followed by many
users. Hence, these users can enjoy lots of retweets on
the topic. On the other hand, the top three retweeted
users on the topic “PoliticianD” (topic 80) do not
contribute a major fraction of retweets on the topic,
most of user got retweeted on the topic 80 have similar
fraction of retweets. Furthermore, these most retweeted
user on the topic 80 are not the most viral ones. This
suggests that most retweets on the topic 80 are due
to the virality of the topic. Therefore, although topic
10 has higher retweet popularity than topic 80, it is
reasonable to assign topic 80 a higher topic virality rank.

6.2 User Virality and User Susceptibility Fig-
ure 3(b) shows the distribution of user virality score
across topics. The figure shows that most of users are
not viral for most of the topics, while a very small group
of users are highly viral for some topics. Table 5 lists
the top ten viral users across topics. The table shows
that most of the extremely viral users are mass media
streams who tweet about news they broadcast. The ta-
ble also shows that topics having extremely viral users
are all related to the election.

11Both sg job adm and sg job marketin have been sus-
pended by Twitter

Table 6: Top-10 susceptible users across the topics
Rank User name User type Topic ID Label

1 mdamerhamzah Young adult 74 Campaign Events

2 flippers1452 Teenage 75
Election result
at Jo Chiat

3 automathic
Social

72
PoliticianE’s

Activists speech

4 boonkhiang Artist 36 Election Results

5 nujnewyohc Teenage 36 Election Results

6 ekeked Young adult 10 WP’s Victories

7 rnlni7 Young adult 36 Election Results

8 nicocakes Young adult 36 Election Results

9 cherylquincy Young adult 36 Election Results

10 energywen Blogger 10 WP’s Victories

Figure 3(c) shows the distribution of user suscepti-
bility score across topics. Similar to user virality, the
figure shows that most of users are not susceptible to
most of the topics, while a very small group of users
are highly susceptible to some topics. Table 6 lists the
top ten susceptible users across topics. Again, topics
having extremely susceptible users are all related to the
election. The table also shows that most of extremely
susceptible users are at the young ages. This suggests
that young people tend to be more susceptible to online
events.

Finally, we examine the correlation between topic-
specific user virality and susceptibility. For user u, we
count the number of topics Km(u) where u’s topic-
specific virality and susceptibility are both measurable.
Then, for each of user u with Km(u) ≥ 5, we com-
pute Pearson rank correlation coefficient between the
u’s topic-specific user virality and user susceptibility
over the topics where the u’s behavioral factors are
mesurable. The distribution of the coefficients is shown
in Figure 3(d). The figure clearly shows that across
topics, user virality has quite a low correlation with
user susceptibility. This indicates that the likelihood
that a user gets retweets for a topic does not depend on
whether she retweets for the topic.

7 Conclusion

In this paper, we propose a novel framework to model
retweet actions based on user and content behavioral
factors. Motivated by differences between topic distri-
bution of the set of tweets and the bag-of-retweets at
both network and user levels, we model retweets using
user and item behavioral factors to the topic level. Our
framework takes into account topic-specific user virality
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Table 4: Comparion of “Job Advertisement” (topic 99), “WP’s Victories” (topic 10), and “PoliticianD” (topic 80).
(a) On-topic tweets and retweets

ID
Users generating on-topic tweets On-topic tweets Users receiving on-topic tweets

#Users
#Users with retweeted #Retweets

#Tweets
#Tweets with #Retweets #Users #Users #Retweets

on-topic tweets per user retweeted per tweet receiving retweeting per user

99 6 0 0 258 0 0 28 0 0

10 56 23 9.16 184 96 2.79 1085 240 2.14

80 56 26 1.57 104 29 1371 428 66 1.38

(b) On-topic most retweeted users

ID

Top Retweeted Users

User name
#On-topic tweets #On-topic tweets #Retweets Virality

#Receivers
Average of Average

(% in all)
with retweeted

(% in all) rank
#Retweeters Retweeter’s

(% in all) #Receivers (%) Susceptibility

10
stcom Media 17 (9.23) 16(16.7) 145 (28.26) 24 2697 10.2 0.5

temasekreview Blogger 24 (13.04) 21 (21.88) 140 (27.29) 1 938 16.3 0.63
todayonline Media 18 (9.78) 17 (17.71) 132 (25.73) 2 1767 7.03 0.46

80
thenooselite12 Comedy 4 (3.5) 4 (10) 16 (17.6) 2 96 15.4 0.56

stcom Media 2 (1.75) 2 (5) 12 (13.2) 34 404 2.91 0.54
fakemoe Parody 2 (1.75) 2 (5) 4 (4.4) 22 74 11.01 0.79

and susceptibility, and topic virality as predictive fac-
tors for retweet actions. We develop V 2S, a tensor fac-
torization based model, to measure these behavioral fac-
tors based on users’ tweeting and retweeting historical
data. Our experiments on a Twitter dataset shows that
the proposed V 2S model outperforms baseline models.

In the future, we would like to calibrate more
fine-grained factors contributing to retweeting. These
factors include users’ positions in the network, linguistic
features in content, and psychological factors of users.
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