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GRANGER CAUSALITY AND
STRUCTURAL CAUSALITY IN

CROSS-SECTION AND PANEL DATA

XUN LU
Hong Kong University of Science and Technology

LIANGJUN SU
Singapore Management University

HALBERT WHITE
University of California, San Diego

Granger noncausality in distribution is fundamentally a probabilistic conditional
independence notion that can be applied not only to time series data but also to cross-
section and panel data. In this paper, we provide a natural definition of structural
causality in cross-section and panel data and forge a direct link between Granger
(G−) causality and structural causality under a key conditional exogeneity assump-
tion. To put it simply, when structural effects are well defined and identifiable,
G−non-causality follows from structural noncausality, and with suitable conditions
(e.g., separability or monotonicity), structural causality also implies G−causality.
This justifies using tests of G−non-causality to test for structural noncausality under
the key conditional exogeneity assumption for both cross-section and panel data. We
pay special attention to heterogeneous populations, allowing both structural hetero-
geneity and distributional heterogeneity. Most of our results are obtained for the
general case, without assuming linearity, monotonicity in observables or unobserv-
ables, or separability between observed and unobserved variables in the structural
relations.

1. INTRODUCTION

Recently, White and Lu (2010, WL) have provided conditions establishing
the equivalence of Granger (G−) causality and a natural notion of struc-
tural causality in structural vector autoregressions (VARs) and in time-series
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264 XUN LU ET AL.

natural experiments. The goal of this paper is to establish the analogous equiv-
alence between G−causality and structural causality in cross-section and panel
data under certain conditional exogeneity assumptions.

As G−causality is mostly examined in the time series context, it might be
thought that it is strictly a time-series concept; if so, it would make no sense
to talk about G−causality in cross-sections. In fact, however, G−causality is
fundamentally a conditional independence notion, as pointed out by Florens
and Mouchart (1982) and Florens and Fougère (1996). Holland (1986) states
that “in my opinion, Granger’s essential ideas involving causation do not re-
quire the time-series setting he adopted.” As we show, G−causality has di-
rectly relevant and useful causal content not only for time-series cross-section
panels, but also for pure cross-sections under certain conditional exogeneity
assumptions.

In this paper, we focus on the aspects of the relation between G−causality and
structural causality specific to cross-section or panel data. An important data fea-
ture here is unobserved heterogeneity. We pay special attention to two sources of
heterogeneity that impact testing for structural causality, namely, structural het-
erogeneity and distributional heterogeneity. The structural heterogeneity refers
to cross-group variation in unobservable constants (e.g., unknown nonrandom
parameters) that enter the structural equation. Although unobserved heterogene-
ity has a long tradition in the literature on panel studies (see, Hsiao, 2014 and
references therein), this type of heterogeneity with a group structure has recently
received considerable attention (see, e.g., Sun, 2005, Lin and Ng, 2012, Deb and
Trivedi, 2013, Lu and Su, 2014, Su, Shi, and Phillips, 2014, Bonhomme and
Manresa, 2015, Sarafidis and Weber, 2015, and Bester and Hansen, 2016). The
group structure has sound theoretical foundations from game theory or macroe-
conomic models where multiplicity of Nash equilibria is expected (see, e.g., Hahn
and Moon, 2010). The distributional heterogeneity refers to the cross-group vari-
ation in certain conditional distributions, but seems to have received relatively
less attention in the literature.1 Browning and Carro (2007) provide some exam-
ples of such heterogeneity in micro-data. A similar question concerning distri-
butional heterogeneity is also discussed in Hausman and Woutersen (2014) and
Burda, Harding, and Hausman (2015) for duration models. The presence of either
source of heterogeneity plays a central role in linking and testing G−causality
and structural causality.

The main contributions of this paper can be clearly articulated. First, we intro-
duce a heterogeneous population data generating process (DGP) for both cross-
section and dynamic panel data and extend the concept of G−causality from the
time series analysis to such settings. In particular, we focus on various versions of
G−causality “in distribution” which are suitable for studying nonseparable and
nonparametric structural equations. In the cross-section data, time is not explicitly
involved, thus G−non-causality is a simple conditional independence relation. In
panel data, time plays an explicit role and we pay special attention to the role of
temporal precedence in defining G−causality.
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GRANGER CAUSALITY AND STRUCTURAL CAUSALITY 265

Second, as in the time-series context, we give a natural definition of struc-
tural causality in cross-section and panel data. We distinguish the structural
causality from various average causal effects. We show that given the con-
ditional form of exogeneity, structural noncausality implies G−noncausality.
If we further assume monotonicity or separability in the structural equations,
structural causality implies G−causality. In the case where we do not assume
monotonicity or separability, we strengthen structural causality to structural
causality with positive probability (w.p.p.) and show that structural causality
w.p.p. implies G−causality. These results justify using tests of G−non-causality
to test for structural noncausality. We emphasize that appropriately choosing
covariates that ensure the conditional exogeneity assumption is the key to
endowing G−non-causality with a structural interpretation. For example, we
show that both leads and lags can be appropriate covariates in the panel data
setting.

Third, we establish the linkage between population-group conditional exogene-
ity and its sample analogue in a heterogeneous population where the latter forms
the basis for linking G−causality and structural causality. We show that with-
out the conditional exogeneity at the sample level, the derivative of conditional
expectation can be decomposed into three parts: a weighted average marginal
effect, a bias term due to endogeneity, and a bias term due to heterogeneity. Thus,
as emphasized in the literature (see, e.g., Angrist and Kuersteiner, 2004, 2011),
without such assumptions as conditional exogeneity, it is impossible to give the
G−non-causality test a causal interpretation. We show that conditional exogene-
ity ensures that the two bias terms vanish, in which case certain average subgroup
causal effects with mixing weights are identified.

The plan of the paper is as follows. In Section 2, we provide a review on
various concepts of causality. In Section 3, we first specify the cross-section
heterogeneous population DGP and the sampling scheme. We define the cross-
section structural causality and static G−causality and establish the equivalence
of G−causality and structural causality under certain conditional exogeneity
conditions. Testing for G−causality and structural causality is also discussed.
In Section 4 we consider structural causality and G−causality in panel data. We
focus on dynamic panel structures and derive some testable hypotheses. Section
5 concludes. All the mathematical proofs are gathered in the Appendix.

2. LITERATURE REVIEW

This paper builds on the vast literature on causality. For reviews on causality in
econometrics, see Zellner (1979), Heckman (2000, 2008), Imbens (2004), Hoover
(2008), Kuersteiner (2008), Angrist and Pischke (2009), Imbens and Wooldridge
(2009), among others. Broadly speaking, we can divide the literature into two
categories. The first includes G−causality and Sims causality. The second per-
tains to the causality defined on structural equations and that defined on potential
outcomes.2
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266 XUN LU ET AL.

2.1. G−causality and Sims causality
G−causality and Sims causality were originally proposed to study time series
data. Granger (1969) defines G−causality “in mean” based on conditional expec-
tations, while Granger (1980) and Granger and Newbold (1986) generalize it to
G−causality “in distribution” based on conditional distributions. In this paper, we
focus on G−causality “in distribution”, which we simply refer to as G−causality.
To define it, we first introduce some notation. For any sequence of random vectors
{Yt , t = 0,1, ...}, we let Y t ≡ (Y0, ...,Yt ) denote its “t−history”, and let σ(Y t )
denote the sigma-field generated by Y t . Let {Dt ,Yt , Xt } be a sequence of ran-
dom vectors, where {Dt } is the cause of interest, {Yt } is the response of interest,
and {Xt } is some variates. Granger and Newbold (1986) say that Dt−1 does not
G−cause Yt+k with respect to σ(Y t−1, Xt−1) if for all t = 1,2, ...,

Ft+k

(
· ∣∣ Dt−1,Y t−1, Xt−1

)
= Ft+k

(
· ∣∣ Y t−1, Xt−1

)
, k = 0,1, ..., (2.1)

where Ft+k
( · | Dt−1,Y t−1, Xt−1

)
denotes the conditional distribution function

of Yt+k given
(
Dt−1, Y t−1, Xt−1

)
, and Ft+k

( · | Y t−1, Xt−1
)

denotes that of Yt+k

given
(
Y t−1, Xt−1

)
. As Florens and Mouchart (1982) and Florens and Fougère

(1996) have noted, eq.(2.1) is equivalent to the conditional independence relation:

Yt+k ⊥ Dt−1 |Y t−1, Xt−1, (2.2)

where we use X ⊥ Y | Z to denote that X and Y are independent given Z. If

E
(

Yt+k
∣∣Dt−1,Y t−1, Xt−1

)
= E

(
Yt+k

∣∣Y t−1, Xt−1
)

a.s., (2.3)

we say that Dt−1 does not G−cause Yt+k with respect to σ
(
Y t−1, Xt−1

)
“in mean”. Eq.(2.3) is a conditional mean independence statement. In the litera-
ture, most of the discussion on G−causality focuses on k = 0 (see, e.g., Granger,
1980, 1988, and Kuersteiner, 2008). The definition of G−causality does not
rely on any economic theory or structural assumptions. Granger (1969, p. 430)
emphasizes that “The definition of causality used above is based entirely on the
predictability of some series.” Therefore, G−causality does not necessarily reveal
any underlying causal relation, and it is entirely unfounded to draw any structural
or policy conclusions from the G−causality tests.

“Sims noncausality” was originally defined in Sims (1972). Florens (2003) and
Angrist and Kuersteiner (2004, 2011) give a generalized definition:

Y ∞
t ⊥ Dt−1 |Dt−2,Y t−1, Xt−1, t = 1, ...,

where Y ∞
t = (Yt ,Yt+1, ...). Chamberlain (1982) and Florens and Mouchart (1982)

show that under some mild regularity conditions, G−noncausality with k = 0 and
Sims noncausality are equivalent when the covariates {Xt } are absent. When the
covariates {Xt } are present, however, G−non-causality and Sims noncausality
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GRANGER CAUSALITY AND STRUCTURAL CAUSALITY 267

are in general not equivalent. For an excellent review on the relationship between
G−noncausality and Sims noncausality, see Kuersteiner (2008). Similar to
G−noncausality, Sims noncausality is completely based on predictability and has
no structural interpretation.

2.2. Structural causality and causality in the potential outcome
framework

On the other hand, causality defined on structural equations or potential outcomes
is mostly discussed in cross-section data. The structural equation approach can
be traced back to the work of the Cowles Commission in the 1940s (see, e.g.,
Haavelmo, 1943, 1944, and Koopmans, 1950), though most of their work was
based on linear equations. More recently, researchers have generalized linear
equations to nonseparable and nonparametric equations (see, e.g., Chesher, 2003,
2005, Matzkin 2003, 2007, and Altonji and Matzkin, 2005). In 2015, Economet-
ric Theory published a special issue in memory of Trygve Haavelmo (Volume 31,
Issue 01 and 02) which contains many interesting discussions on recent develop-
ments of causality related to Haavelmo’s structural models.

Consider a simple case where the response of interest is Yi and the cause of
interest is Di . The causal relation between Di and Yi can be characterized by an
unknown structural equation r such that

Yi = r(Di ,Ui ),

where Ui is other unobservable causes of Yi . For example, when Yi is the demand,
Di is the price and Ui represents certain demand shocks, r is the demand function
that is derived from utility maximization. r is a general function and does not
need to be linear, parametric, or separable between observable causes Di and
unobservable causes Ui . Here r has a structural or causal meaning and we define
the causal effect of Di on Yi based on r. Let D and U be the support of Di and
Ui , respectively. If r (d,u) is a constant function of d for all d ∈ D and all u ∈ U,
then we simply say that Di does not structurally cause Yi (see, e.g., Heckman,
2008, and White and Chalak, 2009). For a binary Di , the effect of Di on Yi is
r(1,u) − r(0,u) when Ui = u. The effect can depend on unobservable u, thus
unobservable heterogeneity is allowed. For a continuous Di , the marginal effect
of Di on Yi is ∂r(d,u)/∂d when Di = d and Ui = u. To identify the effects of Di

on Yi , we often impose the assumption of conditional exogeneity:

Di ⊥ Ui | Xi ,

where Xi is some observable covariates. This includes the special case where Di

and Ui are independent, corresponding to Di being randomized.
Halbert White has made substantial contribution on defining, identifying and

estimating causal effects in structural equations. White and Chalak (2009) ex-
tend Judea Pearl’s causal model to a settable system which incorporates features
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268 XUN LU ET AL.

of central interest to economists and econometricians: optimization, equilibrium,
and learning. Roughly speaking, a settable system is “a mathematical framework
describing an environment in which multiple agents interact under uncertainty”
(White and Chalak, 2009, p. 1760). In the settable system, a variable of interest
has two roles: “responses” and “settings”. When the value of the variable is deter-
mined by the structural equation, these values are called “responses”. In contrast,
when the value is not determined by the structural equation, but is instead set to
one of its admissible values, these values are called “settings”. They show that
on the settable system, causes and effects can be rigorously defined. Chalak and
White (2012) provide definitions of direct, indirect and total causality on the set-
table system, in terms of functional dependence, and show how causal relations
and conditional independence are connected. Chalak and White (2011) provide
an exhaustive characterization of potentially identifying conditional exogeneity
relationships in liner structural equations and introduce conditioning and condi-
tional extended instrumental variables to identify causal effects. White and Chalak
(2013) provide a detailed discussion on the identification and identification failure
of causal effects in structural equations. White and Chalak (2010) discuss how to
test the conditional exogeneity assumption.

The treatment effect literature adopts the potential outcome framework (see,
e.g., Rubin, 1974, Rosenbaum and Rubin, 1983, and Holland, 1986). For a cause
of interest Di and response of interest Yi , we define a collection of potential out-
comes {Yi (d) , d ∈ D}, where D is the support of Di . Then we can define causal
or treatment effect based on the potential outcomes. Specifically, for two values
d and d∗ in D, we define Yi (d∗)− Yi (d) as the causal effects of Di on Yi when
Di changes from d to d∗. If Yi (d) = Yi (d∗) for all d and d∗ ∈ D, we say that
Di has no causal effects on Yi . For example, when Di is binary, i.e., D = {0,1},
Yi (0) and Yi (1) are the potential outcomes, corresponding Di = 0 and Di = 1,
respectively. The treatment or causal effect is Yi (1)− Yi (0). Two average effects
often discussed in the literature are

the average treatment effect (ATE) : E(Yi (1)−Yi (0)),

and

the average treatment effect on the treated (ATT) : E(Yi (1)−Yi (0) | Di = 1).

Note that we only observe one outcome in data. For example, when Di is binary,
the observed outcome is simply Yi = Di Yi (1) + (1 − Di )Yi (0). To identify the
effects, we often impose the assumption of unconfoundedness or selection on
observables:

Yi (d) ⊥ Di | Xi ,

where Xi is observable covariates. Lechner (2001), Imbens (2004), Angrist and
Pischke (2009), and Imbens and Wooldridge (2009) provide reviews on identi-
fication and estimation of various effects in the potential outcome framework.
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GRANGER CAUSALITY AND STRUCTURAL CAUSALITY 269

White and Chalak (2013, p. 280) show that the structural equation framework is
equivalent to the potential outcome framework. For example, the potential out-
come Yi (d) is simply r(d,Ui ). The unconfoundedness assumption Yi (d) ⊥ Di |
Xi in the potential outcome framework is equivalent to the conditional exogeneity
assumption Ui ⊥ Di | Xi in the structural equation framework.

2.3. Relationship between these two types of causality

We emphasize that G−causality and Sims causality are entirely based on pre-
dictability, while the causality defined on structural equations or potential out-
comes is a real causal relation. In the literature, there are several papers that
link these two types of causality. White and Lu (2011) provide a direct link
between G−causality and structural causality in structural equations. They show
that given the conditional exogeneity assumption, structural noncausality is
essentially equivalent to G−noncausality. Angrist and Kuersteiner (2004, 2011)
and Kuersteiner (2008) discuss the link between Sims noncausality and the
noncausality defined in the potential outcome framework under the assumption of
selection on observables. Angrist, Jordà, and Kuersteiner (2013) study the mon-
etary policy effects in the potential outcome framework. Lechner (2011) links
Granger/Sims noncausality to various average effects defined in the potential
outcome framework. However, all the discussions so far have been made in the
context of time series data.

3. STRUCTURAL CAUSALITY AND G−CAUSALITY IN
CROSS-SECTION DATA

3.1. Structural causality

We first specify a population DGP for a single time period, omitting the time
index. We write N+ : ={1,2, ...} and N := {0}∪N+. We also write N̄+ := N+ ∪
{∞} and N̄ := {0}∪ N̄+.

Assumption A.1 (Cross-Section Heterogeneous Population DGP). Let
(�,F, P) be a complete probability space, let N ∈ N+, and for the members
of a population j ∈ {1, ..., N } let the random vector Yj be structurally determined
by a triangular system as

Yj = r
(
Dj , Zj ,Uj ; bj

)
, (3.1)

where r is an unknown measurable ky × 1 function, ky ∈ N+; Dj , Zj , and Uj ,
j = 1,2, ..., are vectors of nondegenerate random variables on (�,F, P) having
dimensions kd ∈ N+, kz ∈ N, and ku ∈ N̄, respectively; and bj is a nonrandom
real vector of dimension kb ∈ N̄. Suppose also that Wj is a random vector on
(�,F, P) with dimension kw ∈ N. The triangular structure is such that Yj does
not structurally determine Dj , Zj , and Uj , and neither Yj nor Dj structurally
determines Wj .

Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000086
Downloaded from https:/www.cambridge.org/core. Singapore Management University (SMU), on 07 Feb 2017 at 05:33:05, subject to the

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466616000086
https:/www.cambridge.org/core


270 XUN LU ET AL.

To keep causal concepts clear, it is important to distinguish between the popu-
lation DGP, defined above, and the sample DGP, defined later. For now, we leave
sampling aside. We may also refer to members of the population as “units” or
“individuals” and the distribution of the population as a mixture distribution.
Mixture distributions appear in many contexts in the literature and arise natu-
rally where a statistical population contains two or more subpopulations (see, e.g.,
Lindsay, 1995, and Mclachlan and Basford, 1988). As will be clear in a moment,
the sources of population heterogeneity are in general not observed.

We interpret Yj as the response of interest. It is determined by variables Dj ,
Zj , and Uj , and the constants bj . The variables can be binary, categorical, or
continuous. Immediately below, we formalize a natural notion of causality for this
system. For now, it is heuristically appropriate to view Dj as observable causes of
interest (e.g., a treatment), Zj as other observable causes not of primary interest,
and Uj as unobservable causes.3

The structural function r is unknown, and our goal will be to learn about it
from a sample of the population. Nevertheless, when Wj has positive dimension,
r embodies the a priori exclusion restriction that Wj does not determine Yj . The
typical sources of this restriction, as well as the identities of Dj , Zj , and Uj , their
status as observable or not, and the priority or precedence relations embodied in
the assumed triangularity, are economic theory and specific domain knowledge.

The assumed triangularity rules out explicit simultaneity for succinctness and
clarity. For the causality in simultaneous structural equations, there are different
views in the literature. White and Chalak (2009, 2013) follow Strotz and Wold
(1960) and argue that simultaneous equations are not causal structural relations,
but are instead “mutual consistency conditions holding between distinct sets of
structural equations – for example, between one set of structural equations govern-
ing partial equilibrium and another governing full equilibrium”. However, other
researchers argue that simultaneous structural equations can be given a causal
interpretation. For example, Angrist, Graddy, and Imbens (2000) provide a poten-
tial outcome interpretation for general nonlinear simultaneous equation models.
They also show that the standard linear instrumental variable estimator identifies
a weighted average of the causal effects.

By definition, the constants bj are fixed for a given individual. Nevertheless,
they may vary across individuals; we call this variation structural heterogeneity.
If the bj ’s are identical, we write them as b0. We assume that bj ’s are unknown.
Note that the presence of bj facilitates writing r without a j subscript, as differ-
ences in the structural relations across population members can be accommodated
by variations in the possibly infinite-dimensional bj .

To give a definition of causality for the structural system in Assumption A.1, let
Dj := supp(Dj ) denote the support of Dj , i.e., the smallest closed set containing
Dj with probability 1.

DEFINITION 3.1 (Cross-Section Structural Causality). Let j be given. If the
function r(·, z,u; bj ) : Dj → R

ky is constant on Dj for all admissible z and u,
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GRANGER CAUSALITY AND STRUCTURAL CAUSALITY 271

then Dj does not structurally cause Yj , and we write Dj 
⇒S Yj . Otherwise, Dj

structurally causes Yj , and we write Dj ⇒S Yj .

Here we implicitly assume that there is variation in potential cause Dj (i.e., Dj

is nondegenerated) and under the set of counterfactual policies Dj , the structural
function r is invariant. Therefore, the invariant function r fully characterizes the
causal/structural relationship between Yj and (Dj , Zj ,Uj ).

Structural causality is structural functional dependence in a specific context.
Similar definitions can be given for Zj and Uj , but we leave these implicit,
as these are not the main causes of interest. Causality for components of Dj

is defined in an obvious way. If we define Yj (d) := r
(
d, Zj ,Uj ; bj

)
as the

potential outcomes (see, e.g., Rubin, 1974, Rosenbaum and Rubin, 1983, and
Holland, 1986), then the equivalent definition of structural noncausality is that
Yj (d) = Yj (d∗) a.s. for all (d,d∗) ∈ Dj .

Structural causality can be easily understood in the familiar linear structure for
scalar Yj ,

Yj = bj,0 + D′
j bj,1 + Z ′

j bj,2 +Uj ,

where bj := (bj,0,b′
j,1,b′

j,2)
′. If bj,1 = 0, then Dj does not structurally cause Yj .

Otherwise, it does. This is so natural and intuitive that one might wonder why
causality is such a thorny topic. One main reason for confusion arises from the
relation between causality and simultaneity as discussed above; the triangular
systems considered here obviate this issue. Another main reason for confusion
is the failure to distinguish carefully between structural equations of the sort writ-
ten above and regression equations, which may look similar but need not have
structural content. The equation above is entirely structural. We will encounter
regressions (conditional expectations) only after suitable structural foundations
are in place.

Observe that heterogeneity in bj ’s permits Dj to cause Yj for some j and not
for others.

The nondegeneracy of Dj ensures that Dj contains at least two points, so Dj

is a variable rather than a constant. Variation in potential causes is fundamental
for defining causality (c.f. Holland, 1986); this is what makes possible analogous
definitions of causality for Zj and Uj . Significantly, however, because bj ’s are
fixed constants, they cannot be causes of Yj . Instead, bj ’s can be effects or can
determine effects. This follows from the following formal definition:

DEFINITION 3.2 (Intervention and Effect). Let j be given, and let d and d∗
be distinct admissible values for Dj . Then d → d∗ is an intervention to Dj . Let
(z,u) be admissible values for (Zj ,Uj ). The difference y∗

j − yj = r
(
d∗, z,u; bj

)−
r
(
d, z,u; bj

)
is the effect on Yj of the intervention d → d∗ to Dj at (z,u).

This is also referred to as the “causal effect” in the treatment effect literature
(see, e.g., Rubin, 1974). For the linear case with scalar d, the effect of a one-unit
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intervention d → d +1 is

y∗
j − yj = (

bj,0 + (d +1)bj,1 + z′bj,2 +u
)− (

bj,0 +d bj,1 + z′bj,2 +u
) = bj,1.

For unit j, this effect is fixed; i.e., it is the same constant for all (z,u). Because
bj can differ across units, this permits effect heterogeneity.

Alternatively, if Yj = bj,0 + Zj D′
j bj,1 +Uj , with scalar Zj , then the effect of

d → d∗ is

y∗
j − yj = (

bj,0 + zd∗′bj,1 +u
)− (

bj,0 + zd ′bj,1 +u
) = z

(
d∗ −d

)′
bj,1.

Here, the effect of Dj on Yj depends on z but not u. In this case, bj,1 determines
the effect of Dj on Yj , together with Zj . When an effect depends on a variable
(i.e., an element of Zj or Uj ), it is standard (especially in the epidemiological
literature) to call that variable an effect modifier.

For simplicity, we call y∗
j − yj the effect of d → d∗. Chalak and White (2012)

discuss indirect, direct, and total effects in structural equations. In the potential
outcome framework, Rubin (2004) discusses “direct” and “indirect” casual effect
using principal stratification.

We distinguish the structural causal effect from various average causal effects,
such as E[r(d∗, Zj ,Uj ; bj ) − r(d, Zj ,Uj ; bj )]. It is clear that structural non-
causality implies zero average causal effects, while the converse is not necessarily
true.

To describe identified effects in samples from heterogeneous populations,
we define population groups Jg, g = 1, ...,�, as collections of population
units having identical bj and identical distributions of (Dj ,Uj ) | X j , where
X j := (Z ′

j ,W ′
j )

′. We define G := {1, ...,�}. As the population is finite, so is the
number of groups: � ≤ N . We define Ng := #{j ∈Jg}, where #{·} is the cardinal-
ity of the indicated set, and let pg := Ng/N be the proportion of population units
belonging to group Jg. The bj ’s by themselves need not define groups, as the
distributions of (Dj ,Uj ) | X j may differ for units with identical bj . We call cross-
group variation in the distributions of (Dj ,Uj ) | X j distributional heterogeneity,
to distinguish this from structural heterogeneity that refers to cross-group varia-
tion in bj .

Note that because groups are defined by unobservable constants, bj , and dis-
tributions involving the unobservable Uj , in general, we do not know for sure
whether two units belong to the same group. Interestingly, in the related litera-
ture, Bester and Hansen (2016) consider estimating grouped effects in panel data
models when each individual’s group identity is known, and Su, Shi, and Phillips
(2014) consider identifying latent group structures in panel data models via a vari-
ant of Lasso. Nevertheless, both groups of researchers have only focused on the
structural heterogeneity in the panel framework.

Given A.1, it follows that (Yj , Dj ) | X j is identically distributed for all units
j in group Jg. As a convenient shorthand, for j ∈ Jg, we write (Yj , Dj ) | X j ∼
(Yg, Dg) | Xg, where A ∼ B denotes that A is distributed as B.
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Typically, we do not observe an entire population. Instead we observe observa-
tions sampled from the population in some way. For simplicity and concreteness,
we consider simple random sampling. At the sample level, we write4

Y = r (D, Z ,U ; B) ,

where B is the randomly sampled bj . Note that the randomness of B arises solely
from the sampling process. We write X := (Z ′,W ′)′ and distinguish X from the
causes D by calling X a vector of covariates.

For any random vector X , we let f (x) and F (x) denote the joint prob-
ability density function (PDF) and cumulative distribution function (CDF),
respectively. For any two random vectors X and Y, we use f (y|x) and F (y|x)
to denote the conditional PDF and CDF of Y given X = x, respectively. We
also use subscript j and g to denote individual j and group g, respectively.
For example, Fg(u,d, x) and fg (u|d, x) denotes the CDF of (Ug, Dg, Xg)
and the conditional PDF of Ug given Dg, Xg for group g, respectively. Note
that Fg(u,d, x) := N−1

g

∑
j∈Jg Fj (u,d, x), which defines the mixture CDF of

(Ug, Dg, Xg).

3.2. G−causality: a first encounter
We now define G−causality for cross-section data based on Granger’s philoso-
phy of nonpredictability. Holland (1986, p. 957) considers a special case where
D is randomized and applies G−causality to cross-section data.5 As in Holland,
we define G−non-causality as a conditional independent statement. Following
Dawid (1979), we write X ⊥ Y | Z to denote that X and Y are independent
given Z and X 
⊥ Y | Z if X and Y are not independent given Z . Translat-
ing Granger and Newbold’s (1986, p. 221) definition to the cross-section context
gives

DEFINITION 3.3 (G−Causality). Let Y, Q, and S be random vectors. If
Q ⊥ Y | S, then Q does not G−cause Y with respect to (w.r.t.) S. Otherwise,
Q G−causes Y w.r.t. S.

Here Y, Q, and S can be any random vectors, and this notion has no structural
content. When S is a constant, we have the simplest form of G−non-causality:
independence. Correlation is an example of G−causality.

To give G−causality structural meaning, we impose A.1, assume that D obeys
a suitable exogeneity condition, and take Q = D and S = X. The exogeneity
assumed for D ensures identification for various measures of its effects and can
often be structurally justified. It also turns out to be ideally suited to endowing
G−causality with structural meaning.

To see how this works in a simple setting, consider the homogeneous case with
D being a binary scalar, in which average treatment effects (AT E) and average
treatment effects on the treated (AT T ) are often discussed (see, e.g., Rubin, 1974,
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Hahn, 1998, Hirano, Imbens and Ridder, 2003 and Angrist and Pischke, 2009).
Define the covariate-conditioned effect of treatment on the treated as

AT TX := E (Y (1)−Y (0) | D = 1, X) ,

where Y (1) is the potential response to treatment and Y (0) is the potential
response in the absence of treatment. Using A.1, we write Y (1) := r(1, Z ,U ; b0)
and Y (0) := r(0, Z ,U ; b0). AT TX thus has a clear structural interpretation. From
this, we can construct AT T,

AT T := E (Y (1)−Y (0) | D = 1) = E(AT TX | D = 1) .

Note that here we define AT T and AT TX based on our structural equation r .
Nevertheless, they can be defined without a structural model, i.e., based on the
two potential outcomes Y (0) and Y (1) (see, e.g., Rubin, 1974 and Angrist and
Pischke, 2009).

To identify AT TX , it suffices that D ⊥ Y (0) | X. Given A.1, it suffices for
this that D ⊥ U | X, as is readily verified. This conditional exogeneity is a
common identifying assumption in cross-sections.6 Classical strict exogeneity
((D, Z) ⊥ U ) is sufficient but not necessary for this. Using D ⊥ U | X in the
second line below, we have

AT TX = E [r(1, Z ,U ; b0) | D = 1, X ]− E [r(0, Z ,U ; b0) | D = 1, X ]

= E [r(1, Z ,U ; b0) | D = 1, X ]− E [r(0, Z ,U ; b0) | D = 0, X ]

= E(Y | D = 1, X)− E(Y | D = 0, X) =: μ(1, X)−μ(0, X).

Thus, AT TX can be expressed in terms of the distribution of observables (here
μ(1, X) and μ(0, X)), so this effect is identified (e.g., Hurwicz, 1950). Simi-
larly, AT T is identified. The identification result based on conditional exogeneity
has been extensively discussed in the treatment effect literature (see, e.g., Rubin,
1974, Holland, 1986 and Angrist and Pischke, 2009).

To see the structural meaning for G−causality, observe that E(Y | D = 1, X)−
E(Y | D = 0, X) = 0 a.s. is another way to write E(Y | D, X) = E(Y | X) a.s.
Thus, in this context, G−non-causality in mean of D for Y w.r.t. X is equivalent
to AT TX = 0 a.s.

Note that, even for binary treatments, G−causality in mean does not tell the
full story, as G−causality in distribution can hold even when AT TX or AT T
vanishes. For example, suppose

Y = U D,

with D ⊥ U , E(U ) = 0, E(U 2) < ∞, and E(D2) < ∞ . Then D structurally
causes Y ; its effect on Y is U , a random effect. These effects may be posi-
tive or negative; however, they average out, as AT T = 0.7 Here, and as we will
show generally, G−non-causality essentially has the interpretation that Y is not
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structurally caused by D under the key conditional exogeneity assumption. In
this example, we have G−causality (D 
⊥ Y ), as E(Y 2 | D) = D2 E(U 2). Testing
G−non-causality will detect the structural causality here, in contrast to testing
AT T = 0 or, equivalently, G−non-causality in mean of D for Y.

When D is nonbinary, A.1 together with suitable exogeneity conditions,
similarly suffices to identify certain effects that give structural meaning to
G−causality. This makes it generally possible to test for structural causality by
testing for G−causality.

With heterogeneity, matters become somewhat more complicated. In particular,
in the binary case, μ(1, X)−μ(0, X) is no longer AT TX . Instead, with suitable
exogeneity (Assumption A.2 below), we have that for each x, μ(1, x)−μ(0, x)
recovers a blended effect

μ(1, x)−μ(0, x) =
�∑
g=1

ζg|x AT Tg|x ,

where the ζg|x ’s are nonnegative weights adding to one, and for all j ∈ Jg,
AT Tg|x := E[Yj (1) − Yj (0) | Dj = 1, X j = x], is the group-specific covariate-
conditioned average effect of treatment on the treated. Here, Yj (1) is the poten-
tial response to treatment and Yj (0) is the potential response in the absence of
treatment.

3.3. Exogeneity and effect identification with heterogeneity

With heterogeneity, an identifying exogeneity condition relevant for analyzing
G−causality is

Assumption A.2 (Heterogeneous Cross-Section Exogeneity). For all g ∈ G,
(i) Dg | Xg ∼ D | X ; and (i i) Dg ⊥ Ug | Xg.

Observe that this imposes structures for all groups, namely, all g ∈ G. Although
this condition is not the weakest possible (see Chalak and White (2012) and the
discussion below), A.2 generally suffices to identify effects and link G−causality
and structural causality. A.2(i) restricts the allowed distributional heterogeneity:
for all g ∈ G, the conditional distributions of Dg given Xg are assumed identical.
A.2(i i) imposes conditional exogeneity for all groups. Below, we discuss this
further.

THEOREM 3.1. Suppose A.1 - A.2(i) hold. If A.2(i i) holds, then D ⊥ U | X.

It is also of interest to know whether the converse holds. A strict converse
does not hold, as certain fortuitous cancellations in population-group condi-
tional distributions can yield sample conditional exogeneity without population-
group conditional exogeneity. Nevertheless, the converse does hold under a mild
regularity condition ruling out exceptional cases. We introduce the following
definition.
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DEFINITION 3.4. {Ug | Dg, Xg, g ∈ G} is regular if∑
g∈G

pg fg(u | d, x) fg(x) =
∑
g∈G

pg fg(u | x) fg(x) for all (u,d, x) (3.2)

implies Ug ⊥ Dg | Xg for all g ∈ G.
When #G = 1, {Ug | Dg, Xg, g ∈ G} is necessarily regular. To understand what
regularity rules out, consider the next simplest case, with #G = 2 and Xg absent.
Then {Ug | Dg, g ∈ G} fails to be regular if and only if U2 
⊥ D2 (say) and

f1(u | d) = f1(u)− 1− p1

p1
[ f2(u | d)− f2(u)] for all (u,d),

where the two groups have been re-indexed for convenience. Suppose that p1,
f1(u), f2(u), and f2(u | d) are arbitrary. Then it is easily arranged that f1(u | d)
can be negative for (u,d) in a set of positive probability, so f1(u | d) does not
define a conditional density, and {Ug | Dg, g ∈ G} is regular after all. If this f1(u |
d) is nevertheless a conditional density, it is clearly highly special, as it ensures
that eq.(3.2) holds for the given p1 and the functions defined by f1(u), f2(u), and
f2(u | d) (all of which are typically unknown), but not necessarily otherwise.

In the general case, {Ug | Dg, Xg, g ∈ G} fails to be regular if and only if
Ug 
⊥ Dg | Xg for some g ∈ G and

f1(u | d, x) = f1(u | x)− (p1 f1(x))−1
�∑
g=2

pg [ fg(u | d, x) − fg(u | x)] fg(x)

× for all (u,d, x),

where we again re-index the groups. As before, this is clearly a very special pop-
ulation configuration; ruling out such cases by imposing regularity is a weak re-
striction.

The converse result is

THEOREM 3.2. Suppose A.1 - A.2(i) hold, and suppose {Ug | Dg, Xg,g ∈ G}
is regular. If D ⊥ U | X, then A.2(i i) holds.

Theorems 3.1-3.2 also hold with {Yg | Dg, Xg, g ∈G} regular, D ⊥ U | X replaced
by D ⊥ Y | X, and A.2(i i) replaced by Dg ⊥ Yg | Xg, g ∈ G. This result plays a
central role in linking structural causality and G−causality.

3.4. Linking structural causality and G−causality
As we have seen, A.1 imposes structures where causal effects are well defined;
A.2 permits recovering versions of these. As we now prove, this gives structural
meaning to G−causality generally. Recall that the bj ’s are identical in group Jg;
thus, the same structural causality relations hold for all j in a given group. We
write Dg 
⇒S Yg when Dj 
⇒S Yj for (all) j in group Jg. Our next result shows
that structural noncausality implies G−non-causality.
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PROPOSITION 3.3. Let A.1 - A.2 hold. Then structural noncausality
(Dg 
⇒S Yg, ∀g ∈G) implies that D does not G−cause Y w.r.t. X, i.e., D ⊥ Y | X.

This result is intuitive: when structural effects are well defined and identifiable,
G−non-causality follows from structural noncausality. Holland (1986, p. 958)
gives a similar result for the random experiment case. Our Proposition 3.3 jus-
tifies using tests of G−noncausality to test structural noncausality: if we reject
G−noncausality, we must reject structural noncausality.

As WL show, structural causality does not imply G−causality. Without further
assumptions, the concepts are not equivalent. Nevertheless, if, as is commonly
assumed in the literature (see WL for discussion), r obeys separability between
observable causes D and unobservable causes U , or r obeys a specific form of
monotonicity in U , then, with suitable regularity, structural causality does imply
G−causality. We have

THEOREM 3.4. Given A.1 - A.2, suppose {Yg | Dg, Xg,g ∈ G} is regular.
Suppose further that for all g ∈ G, either (i) or (i i) holds:

(i) For all j ∈ Jg, for unknown measurable functions r1 and r2,

Yj = r1
(
Dj , Zj ; bj

)+ r2
(
Zj ,Uj ; bj

) ; (3.3)

(ii) For all j ∈Jg, for � = 1, ...,ky, r�(d, z,u; bj ) = r0,�(d, z,u�; bj ) for scalar
u�, where r0,�(d, z, ·; bj ) is strictly monotone increasing for each admissi-
ble (d, z), and Fj,�(y� | d, x) := P[Yj,� ≤ y� | Dj = d, X j = x] is strictly
monotone in y� for each admissible (d, x).

Then structural causality (for some g ∈ G, Dj ⇒S Yj for (all) j in Jg) implies
that D G−causes Y w.r.t. X, i.e., D 
⊥ Y | X.

Kasy (2011) gives a discussion of structures satisfying (i i). Even without sep-
arability or monotonicity, there is an equivalence between G−causality and a
stronger notion of structural causality that handles certain exceptional cases where
the causal structure and the conditional distribution of (Uj , Dj ) given X j inter-
act in just the right way to hide the structural causality. WL call this stronger
notion structural causality with positive probability and provide discussions. We
let Yj := supp(Yj ) and Xj := supp(X j ).

DEFINITION 3.5 (Structural Causality with Positive Probability). Suppose
A.1 holds, and let j be given. Suppose that for each y ∈ Yj , there exists a mea-
surable function f j,y : Xj → [0,1] such that
∫

1
{
r
(
Dj , Zj ,u; bj

)
< y

}
d Fj

(
u | X j

) = f j,y
(
X j

)
a.s., (3.4)

where Fj (u | X j ) := E[1{Uj ≤ u} | X j ]. Then Dj does not structurally cause Yj

almost surely (a.s.) w.r.t. X j (Dj 
⇒S(X j ) Yj ). Otherwise, Dj structurally causes
Yj with positive probability (w.p.p.) w.r.t. X j

(
Dj ⇒S(X j ) Yj

)
.
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By the definition of a group, the same structural causality w.p.p. relations hold
for all j in a given group. We thus write Dg 
⇒S(Xg) Yg when Dj 
⇒S(X j ) Yj holds
for all j in group Jg.

Below is an example in WL in which Dj structurally causes Yj , while Dj does
not structurally cause Yj a.s. Consider the structural equation r

Yj = r
(
Dj ,Uj

) = Dj√
D2

j +1
Uj1 + 1√

D2
j +1

Uj2,

where Uj ≡ (Uj1,Uj2) and Dj are all N (0,1) random variables and Dj , U1 j , and
U2 j are mutually independent. For simplicity, there is no bj , Zj , or X j . It is clear
that Dj structurally causes Yj here. Nevertheless, Dj does not structurally cause
Yj a.s. To see this, note that Yj and Dj are independent. Thus, the LHS of eq.(3.4)
becomes
∫

1
{
r
(
Dj ,u1,u2

)
< y

}
d Fj (u1,u2)

=
∫

1
{
r
(
Dj ,u1,u2

)
< y

}
d Fj

(
u1,u2|Dj

) = Pr
[
Yj < y|Dj

] = �(y) ,

where Fj (·) and Fj
(·|Dj

)
denote the CDF of Uj and the conditional CDF of Uj

given Dj , and � is the standard normal CDF. Thus the RHS does not depend on
Dj , i.e., Dj does not structurally cause Yj a.s.

Theorem 3.5 below gives a result linking G−causality and structural causality
a.s.

THEOREM 3.5. Suppose A.1 - A.2 hold. Suppose also that {Yg | Dg, Xg,g ∈
G} is regular. If Dj structurally causes Yj w.p.p. w.r.t. X j (for some g ∈ G,
Dj ⇒S(X j ) Yj for all j in Jg), then D G−causes Y w.r.t. X, i.e., D 
⊥ Y | X.

Together, Proposition 3.3 and Theorem 3.5 establish that cross-section
G−causality and structural causality are essentially equivalent under the key con-
ditional exogeneity assumption. We say “essentially” as Theorem 3.5 rules out
the two ways that G−non-causality can mask structural causality. The first arises
from subtle interactions between the causal structure and the conditional distribu-
tion of (Uj , Dj ) given X j . The second arises under heterogeneity, from delicate
cancellations among the conditional distributions of Yj given Dj and X j across
groups. These exceptional possibilities only trivially mitigate the power of tests
for G−causality as tests for structural causality. Errors of interpretation and in-
ference need not result, as long as these exceptions are recognized.

3.5. Identification and identification failure

To gain further insight into the relation between G−causality and effect identi-
fication, we now undertake a deeper analysis of G−causality in mean. For this,
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let qg(d, x) := fg(d, x)/
∑
h∈G (ph fh(d, x)) . Under A.1, the law of iterated ex-

pectations gives

E (Y | D = d, X = x) =
∑
g∈G

pg qg(d, x)

∫
r(d, z,u; bg) d Fg(u | d, x).

For concreteness, consider identifying average marginal effects for a continu-
ous treatment d. To allow both discrete and continuous Ug, let νg(u | d, x) define
a σ−finite measure dominating that defined by Fg(u | d, x) and let fg(u | d, x)
define the associated Radon-Nikodym density for Ug given (Dg, Xg). Assum-
ing differentiability and mild regularity, derivations parallel to those of White and
Chalak (2013) give

∂

∂d
E(Y | D = d, X = x)

=
∑
g∈G

pg qg(d, x)

∫
∂

∂d
r(d, z,u; bg) fg(u | d, x) dνg(u | d, x)

+
∑
g∈G

pg qg(d, x)

∫
[r(d, z,u; bg)

∂

∂d
ln fg(u | d, x)]

× fg(u | d, x) dνg(u | d, x)

+
∑
g∈G

pg
∂

∂d
qg(d, x)

∫
r(d, z,u; bg) fg(u | d, , x)dνg(u | d, x).

After some manipulation, this regression derivative can be written as

∂

∂d
E (Y | D = d, X = x) = β̄(d, x)+ δ1(d, x)+ δ2(d, x). (3.5)

The first of the three terms on the right is a weighted average marginal effect,

β̄(d, x) :=
∑
g∈G

pg qg(d, x)βg(d, x), where βg(d, x)

:= E
[
(∂/∂d)r(Dg, Zg,Ug; bg) | Dg = d, Xg = x

]
is the covariate-conditioned average marginal effect of Dj on Yj at (Dj = d, X j =
x) for j ∈ Jg, g ∈ G. Thus, when the other two terms vanish, the regression
derivative identifies the structurally meaningful weighted effect β̄(d, x); and,
when β̄(d, x) is nonzero for (d, x) in a set of positive probability, we have
G−causality in mean of D for Y w.r.t. X . When the other two terms do not
vanish, we generally have identification failure, and there is no necessary link
between G−causality and structural causality.

The second term is a pure endogeneity bias,

δ1(d, x) :=
∑
g∈G

pg qg(d, x) E
(
εg Sg | Dg = d, Xg = x

)
,
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where εg := Yg− E
(
Yg | Dg = d, Xg = x

)
is the regression residual for the given

group and Sg := (∂/∂d) ln fg(Ug | Dg, Xg) is the exogeneity score of White and
Chalak (2013). Observe that E(εg Sg | Dg = d, Xg = x) represents a specific
form of omitted variable bias, where the exogeneity score is the omitted variable.
A sufficient (but not necessary) condition for this bias to vanish is A.2(i i), Dg ⊥
Ug | Xg for all g ∈ G.

The third term is a pure heterogeneity bias,

δ2(d, x) :=
∑
g∈G

pg
∂

∂d
qg(d, x) E

(
Yg | Dg = d, Xg = x

)
,

due to heterogeneity of fg(d | x) across members of G.8 A sufficient (but not
necessary) condition for this to vanish is A.2(i), Dg | Xg ∼ D | X for all g ∈ G.

Thus, A.2 ensures that the regression derivative identifies the weighted effect

β̄(d, x) = β̄∗(d, x) :=
∑
g∈G

pg q∗
g(x)β∗

g(d, x),

where q∗
g(x) := fg(x)/

∑
h (ph fh(x)) and β∗

g(d, x) := ∫
(∂/∂d)r(d, z,u; bg)

d Fg(u | x). This identification provides the link between G−causality in mean
and structural causality.

Although A.2 is not necessary for effect identification, cases where identifica-
tion holds in the absence of A.2 are quite special, analogous to failures of reg-
ularity. Thus, for practical purposes, A.2 can be viewed as playing the key role
in identifying effects of interest and thereby linking G−causality and structural
causality.

Further, as Proposition 6.1 and Corollary 6.2 of WL show, in the absence of
structural causality, G−causality is essentially equivalent to exogeneity failure.
Here, this is reflected in the fact that when βg(d, x) vanishes for all g, A.1 and
mild regularity conditions give

∂

∂d
E (Y | D = d, X = x) = δ1(d, x)+ δ2(d, x).

Thus, with structural noncausality a.s., G−causality in mean implies the fail-
ure of A.2(i), A.2(i i), or both; conversely, failure of A.2 essentially ensures
G−causality in mean.

3.6. Testing for G−causality and structural causality in cross-section
data

As just seen, the hypothesis of G−non-causality, and thus of structural noncausal-
ity under the conditional exogeneity assumption, is a specific conditional inde-
pendence. In the literature, there are many conditional independence tests that
apply to IID data (e.g., see Delgado and González-Manteiga, 2001; Fernandes and
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Flores, 2001; Su and White, 2007, 2008, 2014; Song, 2009; Linton and Gozalo,
2014; Huang, Sun, and White, 2016). These methods can be computationally
challenging, as they are nonparametric. Angrist and Kuersteiner (2004, 2011)
develop a semi-parametric test for conditional independence. Based on the fact
that Y ⊥ D | X implies ψ1(Y ) ⊥ ψ2(D) | X for any measurable vector functions
(ψ1,ψ2), WL propose several convenient regression-based tests.

4. STRUCTURAL CAUSALITY AND G−CAUSALITY IN PANEL DATA
The literature contains considerable discussion about G−causality in the panel
data setting. Nevertheless, the focus is mainly on linear or parametric models.
For example, Chamberlain (1984) discusses G−causality “conditional on un-
observables [‘fixed effect’]” in a linear model and a logit model. Holtz-Eakin,
Newey, and Rosen (1988) consider a traditional linear vector autoregression
(VAR) and use GMM to test G−causality. Nair-Reichert and Weinhold (2001)
discuss G−causality in a dynamic mixed fixed- and random-coefficients linear
model allowing heterogeneity across individuals. Dumitrescu and Hurlin (2012)
test for G−causality in a linear dynamic panel model with fixed coefficients that
vary across individuals. There is also a growing literature on nonlinear and non-
separable panel models (see, e.g., Hoderlein and White (2012) and the references
therein). We are not aware that G−causality has been discussed in such models
so far.

We emphasize that in panel data, G−causality is also entirely based on pre-
dictability and has no causal interpretation. In this section, we link G−causality
and structural causality in general panel structures. Since the static panel case is
similar to the cross-sectional case, we focus on a dynamic data generating process.
To simplify notation, for given �y ∈ N+, we let Y j,t−1 denote the finite history
Y j,t−1 := (Yj,t−�y , ...,Yj,t−1).

Assumption B.1 (Panel Population DGP). Let (�,F, P) be a complete prob-
ability space, let N ∈ N+, and let �y ∈ N+. For the members of a population
j ∈ {1, ..., N }, let the random vectors Yj,t , t = 1,2, ..., be structurally determined
by a triangular system as

Yj,t = r
(
Y j,t−1, Dj,t , Zj,t ,Uj,t ; bj,t

)
, (4.1)

where r is an unknown measurable ky × 1 function, ky ∈ N+; Yj,τ (τ = 1 −
�y, ...,0), Dj,t (kd ×1,kd ∈ N+), Zj,t (kz ×1, kz ∈ N), and Uj,t (ku ×1, ku ∈ N̄)
are vectors of nondegenerate random variables on (�,F, P); and bj,t is a non-
random real vector of dimension kb ∈ N̄. Suppose also that Wj,t , t = 1,2, ..., are
random vectors on (�,F, P) with dimension kw ∈ N. The triangular structure
is such that for t = 1,2, ..., neither {Yj,s}∞s=1−�y

nor {Dj,s}∞s=1 structurally deter-
mine Wj,t ; {Yj,s}∞s=1−�y

does not structurally determine Dj,t , Zj,t , or Uj,t ; and
{Dj,s}∞s=1 does not structurally determine Zj,t or Uj,t .
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The interpretation of structural eq.(4.1) is the same as that for eq.(3.1), ex-
cept that here we have multiple time periods t = 1,2, ... The elements of(
Yj,t , Dj,t , Zj,t ,Wj,t ,Uj,t

)
and bj,t ’s can contain both time-varying and time-

invariant elements. For now, we do not distinguish these. The elements of
(Dj,t , Zj,t ,Wj,t ,Uj,t ) can contain lags of underlying variables. By permitting
only finite histories Y j,t−1, Dj,t , Zj,t , we restrict attention to Markov-type data
generating processes; this greatly simplifies the analysis and corresponds to the
structures usually considered in practice.

As in the cross-section case, we can have both structural heterogeneity and
distributional heterogeneity. We specify the relevant structural and distributional
heterogeneities below.

We again impose random sampling from the population. For simplicity, we
assume all time periods can be observed for every individual, so we observe a
balanced panel. Similar to the cross-section case, we write

Yt = r (Y t−1, Dt , Zt ,Ut ; Bt ) , t = 1, ...,T,

by suppressing the cross-sectional subscript i. We assume that we observe data
(Yt , Dt , Zt ,Wt ), t = 1, ...,T, and relevant lags prior to t = 1.

4.1. Linking structural causality and G−causality in dynamic panels
We first define structural causality for the dynamic panel structure. Let Dj,t be the
support of Dj,t .

DEFINITION 4.1 (Structural Causality in Dynamic Panels). Let j and t be
given. If the function r(y j,t−1, ·, zj,t ,uj,t ; bj,t ) : Dj,t → R

ky is constant on Dj,t

for all admissible y j,t−1, zj,t and uj,t , then Dj,t does not structurally cause Yj,t ,
and we write Dj,t 
⇒S Yj,t . Otherwise, Dj,t structurally causes Yj,t , and we write
Dj,t ⇒S Yj,t .

We let X j,t := (Z ′
j,t ,W ′

j,t )
′ denote the covariates at time t . WL consider

retrospective conditional exogeneity and retrospective G−causality (White and
Kennedy, 2009). We also allow this. For this, we letX j,t denote a covariate his-
tory that may contain X j,t and lags or leads of X j,t , as in Wooldridge (2005, p. 41)
or WL; i.e., for some m ∈ N+,

X j,t := SX
(
X j,t−m, ..., X j,t , ...X j,t+m

)
, t = 1,2, ...,

where SX is a given selection matrix. We assume
{

X j,t , ..., X j,t−m
} ⊆X j,t and

allow X j,t also to contain leads of X j,t . When Xj,t contains leads, we have the
retrospective case, as in WL. We denote randomly sampled covariates X t . For
simplicity, we also assume that all needed elements of X t are observable. Tem-
poral precedence plays an important role in panel data. In particular, compared
with the cross-sectional case, we now have a richer set of covariates (including
both leads and lags) to choose from.
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To provide a link between structural causality and G−causality for dynamic
panels, we condition on not only covariates X t but also lags of Yt . For this,
we denote Ỹ j,t−1 := (Yj,t−my ,...,Yj,t−1), where my ∈ N+ and my ≥ �y ; i.e.,

{Y j,t−1} ⊆ {Ỹ j,t−1}. Similarly, we let Ỹ t−1 be the randomly sampled Ỹ j,t−1.
Similar to the cross-section case, for each t, we define population group Jg,t ,

g ∈ {1, ...,�t }, as a collection of population units having identical bj,t and iden-
tical distribution of (Uj,t , Dj,t ) |X j,t , Ỹ j,t−1. We also let Gt := {1, ...,�t }. For
given t, we write Dg,t 
⇒S Yg,t to denote Dj,t 
⇒S Yj,t for all j in group Jg,t ,
g ∈ Gt .

Next, we impose an exogeneity assumption analogous to A.2.

Assumption B.2 (Heterogeneous Dynamic Panel Exogeneity). Let t be given.
For all g ∈ Gt , (i) Dg,t |Xg,t , Ỹ g,t−1 ∼ Dt |X t , Ỹ t−1; and (i i) Dg,t ⊥ Ug,t |
Xg,t , Ỹ g,t−1.

Here, as before for all g ∈ Gt , the conditional distributions of Dg,t given
(Xg,t , Ỹ g,t−1) are assumed to be identical and we write the common distribution
as Dt |X t , Ỹ t−1.

The analog of Theorem 3.1, relating population and sample conditional exo-
geneity, is

THEOREM 4.1. Suppose B.1–B.2(i) hold, and let t be given. If B.2(i i) holds,
then Dt ⊥ Ut |X t , Ỹ t−1.

Proposition 4.2 provides a link between structural noncausality and G−non-
causality.

PROPOSITION 4.2. Suppose that B.1 and B.2 hold. Let t be given. Then
structural noncausality (Dg,t 
⇒S Yg,t , ∀g ∈ Gt ) implies that Dt does not
G−cause Yt w.r.t.X t , Ỹ t−1, i.e., Dt ⊥ Yt |X t , Ỹ t−1.

We can also define structural causality with positive probability for dynamic
structures and show that structural causality and G−causality are “essentially”
equivalent under the key conditional exogeneity assumption. For brevity, we omit
the details.

So far, we have not carefully distinguished between time-varying and time-
invariant elements of unobservable bj,t and Uj,t . Below, we briefly discuss the
case where we allow time-invariant components of Uj,t and the randomly sampled
bj,t to be arbitrarily dependent or correlated with the cause of interest Dj,t .
For this, we denote Uj,t ≡ (Ūj,t ,Ūj,0), where Ūj,t is time varying and Ūj,0
time-invariant. Similarly, we denote bj,t ≡ (b̄j,t , b̄j,0). The randomly sampled
Ūj,t , Ūj,0, b̄j,t , b̄j,0 are denoted as Ūt , Ū0, B̄t , B̄0, respectively. In princi-
ple, we want to remove the time-invariant Ūj,0 and b̄j,0, using, e.g., the first
difference. For this, it is convenient to impose a separable assumption on the
structural equation.9 We also impose a conditional exogeneity assumption at the
sample level.
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Assumption B.3. Suppose that B.1 holds with

Yj,t = r1
(
Dj,t ,Ūj,0; b̄j,0

)+r2
(
Y j,t−1, Dj,t , Zj,t ,Ūj,t ; b̄j,t

)
, j = 1, ..., N , t = 1, ...,

where r1 and r2 are two unknown ky ×1 measurable functions.

Assumption B.4. Suppose that for given t, Dt ⊥ (
Ūt ,Ūt−1, B̄t , B̄t−1

) |
Xt , Ỹ t−1.

B.4 is a sample-level assumption, which can be supported by a correspond-
ing assumption at the heterogeneous population level. Note that in general, B.4
is a strong assumption, as we condition on Ỹ t−1, which is a function of both
Dt−1 and Ūt−1. Nevertheless, this assumption is plausible under the null of struc-
tural noncausality, as Ỹ j,t−1 is a constant function of Dj,t−1 under the null.
One simple example is that bj,t ’s are constants over j and t and {Dj,t }∞t=1 ⊥
{{Yj,t }0

t=1−�y
,{Uj,t }∞t=1,{X j,t }∞t=1}. Under the null of structural noncausality for

all t, Ỹ j,t−1 is a function of {{Yj,s}0
s=1−�y

,{Uj,s}t
s=1,{X j,s}t

s=1}. Then it is easy
to show that in this case, B.4 is satisfied. Certainly, it will be interesting to relax
B.4, but we leave this for future research.

PROPOSITION 4.3. Suppose that B.1–B.4 hold. Suppose that Dg,t 
⇒S Yg,t
and Dg,t−1 
⇒S Yg,t−1 ∀g ∈ Gt ∪Gt−1. Then, Dt ⊥ Yt | Xt , Ỹ t−1.

Proposition 4.3 suggests that when there are time-invariant components in the
unobservables, we can test for structural noncausality by testing for G−non-
causality Dt ⊥ Yt | Xt , Ỹ t−1 under the conditional exogeneity assumption B.4.

4.2. Testing for G−causality and structural causality in panel data
As shown above, we can perform a G−non causality test to test for structural
noncausality. Testing G−non-causality in panel data is also simply a conditional
independence test. Here we focus on testing Dt ⊥ Yt | Xt , Ỹ t−1.

First, assume that the joint distributions of (Dt ,Yt , Xt ) are identical over t .
In this case, we can pool the data and implement a conditional independence test
as discussed in Section 3.6.

Second, suppose that the joint distributions of (Dt ,Yt , Xt ) are different over
time t . In this case, for each time period t, using the cross-section data, we can
implement a conditional independence test for Dt ⊥ Yt | (Xt , Ỹ t−1) and obtain a
test statistic, sayWt . Thus we have T test statistics, {W1,W2, ...,WT } and each
one can be used to test for structural noncausality for each t. We may also want to
test the hypothesis that for all t, Dj,t does not structurally cause Yj,t . For this, we
can construct our test statistic by taking the average of the T test statistics, i.e.,
W ≡ 1

T

∑T
t=1Wt , as in Im, Pesaran, and Shin (2003) and Dumitrescu and Hurlin

(2012). Other forms of “averages” are possible and special care is needed to take
into account the dependence structure over time.
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5. CONCLUSION

This paper provides direct links between Granger causality and structural causal-
ity in cross-section and panel data. We extend Granger causality to cross-
section and panel data and give a natural definition of structural causality in
heterogeneous populations. We show that under the key conditional exogeneity
assumption, Granger causality is essentially equivalent to structural causality in
cross-section and panel data. Similar to the results in White and Lu (2010) for
time-series data, our results here should enable researchers to avoid the misuse of
Granger causality and to establish the desired structural causal relation.

NOTES

1. Strictly speaking, if the conditional distributions are parameterized or treated as infinite-
dimensional parameters, then distributional heterogeneity may also be thought of as a special case
of structural heterogeneity.

2. The classification is certainly overly simplistic. We ignore the early literature on the philosophy
of causality (for a review, see, e.g., Holland, 1986 and Hoover, 2008). We also ignore the litera-
ture on causality discussed in other disciplines, notably in machine learning (see, e.g., Pearl, 2009,
2015, White and Chalak, 2009, and White, Chalak, and Lu, 2011). In particular, Heckman and Pinto
(2015) compare Haavelmo’s structural framework of causality with the framework of Directed Acyclic
Graphs (DAG) studied in the Bayesian network.

3. Although Uj is typically called “unobservable,” it is better to view its elements as variables that
will be omitted from empirical analysis. This may be because they are unobservable; it may also be
because the researcher has purposefully or inadvertantly neglected them.

4. For notational simplicity, we suppress the observation subscript i.
5. Using our notation, Holland considers the case where D ⊥ (X,U ) , which implies our condi-

tional exogeneity assumption D ⊥ U | X below.
6. See, e.g., Altonji and Matzkin (2005), Hoderlein and Mammen (2007, 2009), Imbens and Newey

(2009), White and Lu (2011), and White and Chalak (2013).
7. AT T = E(Y (1)−Y (0) | D = 1) = E(U −0 | D = 1) = E(U ) = 0.

8. The conditional density fg(d | x) can also be interpreted as Imbens’s (2000) generalized propen-
sity score.

9. There is a recent literature which allows time-invariant unobservables to be arbitrarily correlated
with causes of interest in the general nonseparable models (see, e.g., Evdokimov, 2010). We leave the
problem of linking G-causality and structural causality in this general setting for future research.
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APPENDIX

Proof of Theorem 3.1. To show D ⊥ U | X, we establish that f (u | d, x) = f (u | x)
for all (u,d, x). We have

f (u | d, x) = f (u,d, x)

f (d, x)
=

∑
g∈G pg fg(u,d, x)∑
g∈G pg fg(d, x)

=
∑
g∈G pg fg(u | d, x) fg(d, x)∑

g∈G pg fg(d, x)

=
∑
g∈G pg fg(u | d, x) f (d | x) fg(x)∑

g∈G pg f (d | x) fg(x)
=

∑
g∈G pg fg(u | x) fg(x)∑

g∈G pg fg(x)

= f (u, x)

f (x)
= f (u | x),

where the first equality in the second line holds since A.2(i) (i.e., Dg | Xg ∼ D | X)
implies fg(d, x) = f (d | x) fg(x), say, and the second holds by A.2(i i), fg(u | d, x) =
fg(u | x). n

Proof of Theorem 3.2. Note that

f (u | x) = f (u, x)

f (x)
=

∑
g∈G pg fg(u | x) fg(x)∑

g∈G pg fg(x)
.

We also have

f (u | d, x) = f (u,d, x)

f (d, x)
=

∑
g∈G pg fg(u,d, x)∑
g∈G pg fg(d, x)

=
∑
g∈G pg fg(u | d, x) fg(d, x)∑

g∈G pg fg(d, x)

=
∑
g∈G pg fg(u | d, x) f (d | x) fg(x)∑

g∈G pg f (d | x) fg(x)
=

∑
g∈G pg fg(u | d, x) fg(x)∑

g∈G pg fg(x)
.

The first equality in the second line follows from A.2(i). Then f (u | d, x) = f (u | x) for
all (u,d, x) if and only if∑
g∈G

pg fg(u | d, x) fg(x) =
∑
g∈G

pg fg(u | x) fg(x) for all (u,d, x).

By assumption, {(Ug | Dg, Xg), g ∈G} is regular. It follows immediately that for all g ∈G,
Dg ⊥ Ug | Xg . n

Proof of Proposition 3.3. Take any g ∈ G and let j belong to group Jg, Dg 
⇒S
Yg means that Yj = r̃(Zj ,Uj ; bj ). Thus Uj ⊥ Dj | X j implies that Yj ⊥ Dj | X j by
Dawid (1979, Lemmas 4.1 and 4.2). This holds for all g ∈ G. Applying Theorem 3.1
gives D ⊥ Y | X. n
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Proof of Theorem 3.4. We prove this by showing that Y ⊥ D | X implies that Dg 
⇒S
Yg for all g ∈G. Given the assumed regularity, Theorem 3.2 ensures that Y ⊥ D | X implies
that Yg ⊥ Dg | Xg for all g ∈ G.

Given (i), eq.(3.3) and A.2(ii) imply that for all j in group Jg
E

(
Yj |X j = x, Dj = d

) = r1
(
d, z; bj

)+ E
[
r2

(
z,Uj ; bj

) | Dj = d, X j = x
]

= r1
(
d, z; bj

)+ E
[
r2

(
z,Uj ; bj

) | X j = x
]
.

Clearly, r1
(
d, z; bj

)
is constant in d if and only if E

(
Yj |Dj = d, X j = x

)
is constant in

d. Yj ⊥ Dj | X j implies that E
(
Yj |Dj = d, X j = x

)
is constant in d, which then implies

that r1
(
d, z; bj

)
is constant in d. Thus Dj 
⇒S Yj , so Dg 
⇒S Yg .

Given (i i), let ky = 1 without loss of generality. Then by A.2(ii) for all j in group Jg
FUj (u | x) : = E

[
1
{
Uj ≤ u

}∣∣ X j = x
]

= E
[

1
{
r
(
d, z,Uj ; bj

) ≤ r
(
d, z,u; bj

)}∣∣ X j = x
]

= E
[

1
{
r
(
Dj , Zj ,Uj ; bj

) ≤ r
(
d, z,u; bj

)}∣∣ Dj = d, X j = x
]

= E
[

1
{
Yj ≤ r

(
d, z,u; bj

)}∣∣ Dj = d, X j = x
]

= : Fj
(
r
(
d, z,u; bj

) | d, x
)
.

By strict monotonicity of Fj (y | d, x) in y,

r
(
d, z,u; bj

) = F−1
j

(
FUj (u | x) | d, x

)
.

Now Yj ⊥ Dj | X j implies that F−1
j

(
FUj (u | x) | d, x

)
is constant in d, so r

(
d, z,u; bj

)
is

also a constant function in d, i.e., Dj 
⇒S Yj , so Dg 
⇒S Yg .
As either (i) or (i i) holds for each g ∈ G, we have Dg 
⇒S Yg for all g ∈ G. n

Proof of Theorem 3.5. To show that A.1 - A.2 and the assumed regularity for Yg,
together with Dg ⇒S(Xg) Yg for some g ∈ G imply D 
⊥ Y | X, we let j in group Jg,
g ∈ G, be such that Dj ⇒S(X j ) Yj . A.2(i i) ensures that Dj ⊥ Uj | X j , so

P[Yj ≤ y | Dj = d, X j = x] =
∫

1
{
r(d, z,u; bj ) ≤ y

}
d Fj (u | d, x)

=
∫

1
{
r(d, z,u; bj ) ≤ y

}
d Fj (u | x).

By assumption, Dj ⇒S(X j ) Yj , so there exists y∗ ∈ supp(Yj ) such that there is no mea-

surable mapping f j,y∗ for which
∫

1{r(d, z,u; bj ) ≤ y∗}d Fj (u | d, x) = f j,y∗(x) a.e.-x .
Specifically, this rules out the possibility that
∫

1
{
r(d, z,u; bj ) ≤ y∗}

d Fj (u | X j ) = f j,y∗(X j ) ≡ P[Yj ≤ y∗ | X j ] a.s.

Thus, there exists y∗ ∈ supp(Yj ) such that

P
[
Yj ≤ y∗ | Dj = d, X j = x

] 
= P
[
Yj ≤ y∗ | X j = x

]

for x in a set of positive probability, so Yj 
⊥ Dj | X j . Given the regularity assumed for Yg,
Theorem 3.2 (for Yg) gives D 
⊥ Y | X. n
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Proof of Theorem 4.1. The proof is analogous to that of Theorem 3.1. n

Proof of Proposition 4.2. The proof is analogous to that of Proposition 3.3. n

Proof of Proposition 4.3. Under B.3, Dg,t 
⇒S Yg,t and Dg,t−1 
⇒S Yg,t−1 ∀g ∈
Gt ∪Gt−1 imply that for j ∈ Jg, there exist two measurable functions r̃1 and r̃2 such that

Yj,t = r̃1(Ūj,0, b̄j,0)+ r̃2
(
Y j,t−1, Zj,t ,Ūj,t , b̄j,t

)
, j = 1, ..., N , t = 1, ...

Hence,

Yj,t −Yj,t−1 = r̃2
(
Y j,t−1, Zj,t ,Ūj,t ; b̄j,t

)− r̃2
(
Y j,t−2, Zj,t−1,Ūj,t−1; b̄j,t−1

)
.

At the sample level, this means that

Yt −Yt−1 = r̃2
(
Y t−1, Zt ,Ūt ; B̄t

)− r̃2
(
Y t−2, Zt−1,Ūt−1; B̄t−1

)
.

Then B.4 implies that

Dt ⊥ (Xt , Ỹ t−1,Ūt ,Ūt−1, B̄t , B̄t−1) | Xt , Ỹ t−1,

which further implies that Dt ⊥ (Yt −Yt−1) | Xt , Ỹ t−1by Dawid (1979, Lemmas 4.1 and
4.2), as (Yt − Yt−1) is a function of (Xt , Ỹ t−1,Ūt ,Ūt−1, B̄t , B̄t−1). Then we have Dt ⊥
Yt | Xt , Ỹ t−1 as Yt−1 is a component of Ỹ t−1. n
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