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ABSTRACT
Existing algorithms for trajectory-based clustering usually rely on
simplex representation and a single proximity-related distance (or
similarity) measure. Consequently, additional information mark-
ers (e.g., social interactions or the semantics of the spatial layout)
are usually ignored, leading to the inability to fully discover the
communities in the trajectory database. This is especially true for
human-generated trajectories, where additional fine-grained mark-
ers (e.g., movement velocity at certain locations, or the sequence
of semantic spaces visited) can help capture latent relationships
between cluster members. To address this limitation, we propose
TODMIS: a general framework for Trajectory cOmmunity Discovery
using Multiple Information Sources. TODMIS combines addi-
tional information with raw trajectory data and creates multiple
similarity metrics. In our proposed approach, we first develop a
novel approach for computing semantic level similarity by con-
structing a Markov Random Walk model from the semantically-
labeled trajectory data, and then measuring similarity at the distri-
bution level. In addition, we also extract and compute pair-wise
similarity measures related to three additional markers, namely tra-
jectory level spatial alignment (proximity), temporal patterns and
multi-scale velocity statistics. Finally, after creating a single simi-
larity metric from the weighted combination of these multiple mea-
sures, we apply dense sub-graph detection to discover the set of dis-
tinct communities. We evaluated TODMIS extensively using traces
of (i) student movement data in a campus, (ii) customer trajectories
in a shopping mall, and (iii) city-scale taxi movement data. Exper-
imental results demonstrate that TODMIS correctly and efficiently
discovers the real grouping behaviors in these diverse settings.
Categories and Subject Descriptors: H.2.8 Database applications:
Data mining
General Terms: Algorithms; Experimentation.
Keywords: Trajectory community discovery, multiple informa-
tion, semantic information.

1. INTRODUCTION
The objective of trajectory clustering is to identify clusters from

a set of trajectory data of moving objects, where the trajectories in a
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specific cluster exhibit similarity in one or more movement-related
features [25, 9]. Examples of trajectory data include vehicle po-
sition data, animal movement data and human behavior tracking
data. The recent proliferation of location tracking systems, both
in outdoor environments (e.g., GPS) and in indoor buildings (e.g.,
using Wi-Fi-based positioning), has made it much easier to collect
detailed trajectory data. Consequently, there is an increasing in-
terest in performing data mining and behavior analysis over such
trajectory datasets [31, 4].

Our interest lies in developing an efficient and effective trajectory-
based grouping algorithm, that can accommodate the various latent
attributes embedded within the raw trajectory data. We are moti-
vated by a couple of important use cases:

1. Knowing the size of a group of people (e.g., friends, couples,
families, etc.) visiting a mall or browsing through a store
together will allow merchants to tailor discounts and promo-
tions specifically targeted to the group.

2. By combining knowledge of the real world physical inter-
connections among people with their online social media data
(e.g., from Twitter), computational social scientists may be
able to create far richer models of human social interaction
(e.g., identify differences in the type of social media content
consumed when alone versus when in a group).

In this paper, we focus on trajectory-based community discov-
ery, which aims to identify groupings of objects from trajectory
data based on additional behaviorally-driven markers of individual
and collective movement. The difference between cluster and com-
munity (or group) is that a cluster is a set of objects related purely
through spatial proximity, whereas a community is a set of objects
whose proximity or movement similarity is likely a manifestation
of some underlying mutual interaction or shared relationship. As
an example illustrated in the left part of Figure 1 (a), taxi drivers in
a city may be apportioned in groups, where each group internally
shares information for improved profits; drivers of the same group
may exhibit a set of distinct trajectory patterns. Similarly, as illus-
trated in the right part of Figure 1 (a), shoppers in a mall may move
around in groups, based on shared social relationships.

Previous studies normally perform trajectory clustering based on
only a single information source, such as location data [3, 9, 16];
by viewing shared location as the sole determinant of community
relationship, real relationships may be missed or non-existent com-
munities may be falsely identified. In the social graph community
detection literature [10, 22, 7], a community is usually defined over
a link-based graph capturing direct pair-wise interactions; such ex-
plicit interaction markers are obviously hard to directly obtain in
many practical environments due to privacy concerns or technolog-
ical limitations. Hence, we focus on infering groups based only
on trajectory-related information (e.g., spatial disperson, temporal
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(a) Trajectories on map

(b) Multiple information sources

Figure 1: Trajectory community discovery and its challenges.
(a) Human behavior traces naturally result in trajectory com-
munity which can help us to understand behavior and decision-
making process. (b) In a shopping mall, two trajectories in
a community are compared locally (left) and globally (right)
from different information sources. Only patterns in dashed
box are perfectly matched. We can see that only globally con-
sidering the multiple information sources, we can detect the
true community.

duration, movement velocity) of individual users and the semantic
information of the space.

In our approach, we assume that the trajectories are generated
and observed in physical spaces, with the individual’s movement
within the space being encoded by multiple information markers.
For example, the trajectories in a mall contain information on what
kind of stores the customers visit, how long they would stay, the
transition likelihood between stores, and how fast they are walking.
The key observation is that it is hard to detect the real community-
driven behavior from analysis performed over a single timescale or
over a single feature. Indeed, as seen in Figure 1 (b), apparently
unrelated trajectories may turn out to have strong similarity, when
viewed at certain time-scales or in terms of certain features (infor-
mation markers). Therefore, our approach is to develop a unified
framework for community discovery, given a set of trajectories and
semantic information of sites visited by those trajectories: this uni-
fied framework leverages upon different information markers em-
bedded within the basic trajectory data.

Furthermore, when choosing features for trajectory analysis, pre-
vious approaches usually leverage upon information from an in-
dividual trajectory or from long-term movement trends, but not
both. We propose to encode both the global statistical informa-
tion and individual information into the semantic feature, and then
extract similarity measures through the use of kernels that operate
on the probability distribution of semantic-level movement. This
approach avoids the “curse of dimensionality” and overcomes the
difficulty in measuring the similarity among features with unequal
length. More importantly, they jointly model the complicated inter-
connection of trajectories within members of a community.

More specifically, we propose an approach, Trajectory cOmmunity
Discovery using Multiple Information Sources (TODMIS). TOD-
MIS consists of three distinct phases:

• An explicit modeling of trajectory similarities along four dis-
tinct dimensions (or information markers): semantic prop-
erties of the locations, temporal duration of the trajectory,
spatial proximity to other objects and movement velocity at
different timescales. The similarities are computed by apply-
ing appropriate kernels for each dimension to extract the key
relevant features.

• A computation of a weighted similarity measure that linearly
combines the similarity measures along each dimension.

• The application of conventional graph clustering techniques
(more specifically, dense sub-graph detection algorithms),
over a graph with edges corresponding to the computed pair-
wise similarity score, to then identify the unknown number
of different communities (of varying sizes).

Our key contributions are summarized as follows.

1. Multi-Dimensional Linear Model for Community Detec-
tion: We propose a new unified model for trajectory-based
community detection using multiple dimensions. Different
dimensions are linearly combined into a single multi-attribute
weighted similarity score for each pair of objects. Applying
the model to different application scenarios requires only the
tuning of the relative weights for different dimensions.

2. Novel Similarity Metrics: First, we propose a model for ex-
tracting the semantic features from the trajectories. This fea-
ture measures the stationary distribution of the object’s res-
idency probability on different semantic sites (e.g., types of
stores in a mall), on which a semantic kernel is applied to de-
termine semantic similarity between trajectories. Second, to
compute the spatial proximity of trajectory pairs under realis-
tic conditions (such as inaccurate location measurements and
highly-crowded indoor spaces), we modify Global Align-
ment Kernels [2] to incorporate the inverse of crowd density
(at a particular location). Third, we design a novel velocity-
based similarity measure that computes velocity at multiple
temporal resolutions (both coarse and fine-grained) and thus
enables us to measure the velocity similarity on both the
whole trajectory and different partial trajectories. This ap-
proach allows us to go beyond spatial proximity and explic-
itly incorporate proximity measures under different move-
ment rates (e.g, stationary, moving slow or fast).

3. Experiments on Multiple Real-life Datasets: We evalu-
ate TODMIS against other prior trajectory-based clustering
and link-based community detection techniques on three dis-
tinct datasets: customer behavior in a shopping mall, student
behavior in a campus building and taxi driver behavior in
a city. Experimental results demonstrate that TODMIS cor-
rectly discovers the real grouping behaviors in all three cases,
and outperforms existing algorithms.

Section 2 discusses related work. Section 3 presents an overview
of our approach. Section 4 and Section 5 propose how to model se-
mantic, spatial, temporal and velocity information. Section 6 pro-
poses how to learn similarity with multiple information sources.
Section 7 presents the results of applying TODMIS on different
empirical datasets. Finally, Section 8 concludes the paper.

2. RELATED WORK
Trajectory clustering: Trajectory clustering is a diverse research

area, with significant diversity in clustering measures and the end
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Figure 2: The framework of the proposed approach (TODMIS).

goals. Trajectory has been studied using a variety of measures,
ranging from probability function of time [3], behavior correla-
tion representation [29], density-based distance function [16, 5]
and uncertainty measurement of trajectories [20]. Different similar-
ity measures (time and location distances) and clustering method-
ologies have their strengths and weaknesses [15]. In contrast to
most prior work, our method is able to handle multiple informa-
tion sources (not just movement trajectories but also the semantics
of the underlying space) and apply a general metric-based learning
framework to the clustering problem. Trajectory-based clustering
has been used for different broad objectives, such as discovering
common sub-trajectories [9], identifying spatial structures [18], es-
timating common patterns of behaviors and isolating outliers [1],
semantic region modeling [27], as well as application-specific ob-
jectives such as video surveillance and monitoring systems [21],
vehicle motion analysis [11] and discovering object groups that
travel together (the objects spatially close at a snapshot). But such
work is based purely on spatial locations, making it hard to to ex-
tend it to incorporate semantic, velocity or other information that
may contain distinctive markers of real community interaction.

Semantic trajectory analysis: There are three common types
of approaches for addressing semantic analysis of trajectories: 1)
segmentation-based method which segments a scene into seman-
tic regions [28] or maps a trajectory into a multidimensional space
[19]; 2) conceptual model which structures movement data into
countable semantic units [23]; 3) segmentation and annotation-based
approach which transforms the raw mobility data into stops and
moves [30]. But the previous analysis do not consider multiple in-
formation sources and are difficult to generalize to incorporate ad-
ditional similarity metrics. Our approach is different from not only
the previous techniques, but also the problem of finding semanti-
cally similar individuals, who may or may not be visiting the same
semantic sites within the same time period (for purposes such as
profile-building of individuals). Furthermore, on the feature design
for trajectory analysis, previous approaches usually extract either
individual information from the trajectory data or long-term move-
ment trends, but not both. For example, GAK [2] measure the sim-
ilarity between trajectories by applying the dynamic time warping
kernels to trajectories. On the other hand, the global statistical in-
formation measures the trend and probability how a user may act,
and is more robust to noise and missing information in individual
trajectories. Thus both the global statistical information and in-
dividual information are needed jointly to model the complicated
inter-connection of trajectories.

Community detection: Communities in networks are groups of
vertices within which connections are dense, but between which
connections are sparser. There are mainly four types of methods

[17, 10, 22, 7]: hierarchical clustering, similarity on edge between-
ness scores, counts of short loops and voltage differences in resis-
tor networks. These methods focus on detection given a network
structure and social-link distance between nodes which are hard
to be captured from trajectories. If we construct such input based
on spatial and temporal information, the detection results are not
promising (Figure 5 (d) and Figure 6 (d)).

3. OVERVIEW
First, we define a trajectory database X = [x1, ..., xk, ..., xN ]T ,

where each trajectory xk is a structured element containing infor-
mation from multiple aspects, namely, the two dimensional spatial
coordinate sequence ck, the site annotation of the sequence sk, the
time marker ek and velocity vk associated with each spatial coor-
dinate. Second, we have the following problem definition.
Problem definition: Given a set of trajectories, we aim to discover
a set of trajectory groups, which we name as the community in this
paper. The trajectories in a certain community demonstrate similar
behaviors, when evaluated under different measures (both spatial
and semantic).

DEFINITION 1. Given N trajectories, we define a trajectory
affinity graph G(α) with N vertices, denoted by xi, i = 1, ...N .
The weight of the edge between two vertices represent the similar-
ity of the two trajectories.

The similarity between the vertexes in the graph is a weighted com-
bination of a set of similarities calculated from multiple informa-
tion sources, i.e., the semantic kernel Ks, the temporal kernel Kβ ,
the spatial kernel Kp and the velocity kernel Kh. We denote the
weighted combined similarity K which is defined as:

K(k, k′) =
M∑

m=1

αmKm(k, k′), αm ≥ 0,
M∑

m=1

αm = 1

K(k, k) = 0, k, k′ = 1, ..., N
(1)

where Km denotes the element of one type of kernel (similarity)
from the kernel set. The αm denotes the pre-assigned weights re-
flecting the specific interests of the problem domain.

For example, when one prefers to find the trajectories with simi-
lar semantic relation, temporal relation and similar spatial relation,
and emphasize the semantic relation, the weight can be: α1 = 1/2,
α2 = 1/4, α3 = 1/4, α4 = 0. To acquire the best performance
of community discovery, we can fine-tune the kernel weight α on a
given validation set.
Trajectory community discovery framework: Our algorithm con-
sists of three phases - 1) modeling the similarity of trajectories by
first applying kernels along four dimensions: semantic-level move-
ment, temporal, spatial (proximity) and velocity; and then 2) deriv-
ing an overall similarity measure between every pair of trajectories

2111



Table 1: The notations used in this paper
Notation Description

X Trajectory dataset
N The number of trajectories
xk The k-th trajectories
S The set of semantic sites
Ms The number of sites in S
si The i-th sites
rk The semantic feature of k-th trajectory
Ks The semantic kernel

wk ∈ R4 The time stamp of k-th trajectory
Kβ Temporal kernel
Kp The spatial kernel
hk The velocity feature of k-th trajectory
Kh The velocity kernel
α The kernel weights

K(α) The combined kernel given α
z ∈ RN The probabilistic cluster

t The iteration number

in G(α) through a weighted combination of multiple information
sources [26]; finally followed by 3) detecting trajectory commu-
nities from these similarity values. The framework is illustrated in
Figure 2. Based on this framework, the problem of trajectory-based
community discovery is equivalent to the computation of cliques
on G(α). Note that unlike the traditional trajectory clustering ap-
proach, each trajectory is not necessarily assigned to a community
ID, as some trajectories in real-life data show a unique motion pat-
tern that are totally distinct from the rest. We denote these trajecto-
ries without any community ID as the “outliers" in our study. We
provide Table 1 to describe notations in this paper for convenience.

4. MODELING SEMANTIC INFORMATION
OF LOCATIONS

Given the trajectory database X, we can extract the following
description for the sequential record of the sites visited by an indi-
vidual user considering that the number of spatially distinct sites is
M . For example, the site visiting record of trajectory k: s1 →s3→
s8 → s4...

Our concern is to measure the traverse statistic on the sites from
X, and use this statistic to measure the semantic correlation of user
trajectories. To this end, we propose the solution outlined below.

Markov state transition: We construct the Markov state transi-
tion matrix A ∈ RMs×Ms , where A(sa, sb) represents the transi-
tion probability from site sa to site sb. To calculate A, firstly we
collect all the pairs from the whole trajectory database. Then we
count the number of occurrence of each transition pair. Finally, we
do column normalization of A, satisfying

∑
sa

A(sa, sb) = 1.

Temporal intervals: For many applications, the time spent at
each site and the time taken to transit from site sa to site sb can be
acquired. Let tk(sa) denotes the time spent of k-th trajectory at site
sa and tk(sa, sb) be the time taken to move from site sa to site sb.
Then, the temporal interval of k-th trajectory is: [tk(1), tk(1, 3),
tk(3), tk(3, 8), tk(8), tk(8, 4)].

The interval vector may indicate the corresponding level of inter-
est shown by the objects (for example, when a shop is very “inter-
esting”, the shoppers may choose to stay longer), or illustrates the
convenience of moving from site sa to site sb (showing the seman-
tic relation of two sites). This resembles a Markov Random Walk
with self-loop.

+a

b

c

θa

θb

θc

+d

e

f

θd

θe

θf

Coordinate 1 Coordinate 2

Figure 3: Location uncertainty. Due to the error of the signal
sensing and processing, the spatial coordinates may be inaccu-
rate. Therefore, a soft assignment of the coordinates to the sites
can be used to alleviate the negative effect of hard-assignment
to the nearest sites. The weights of soft assignment is deter-
mined as described in Eq.3.

To calculate A by considering temporal interval, firstly, we nor-
malize the time interval vectors for all user trajectories to ensure the
total time taken for each trajectory is 1. For example, we normal-
ize the vector of k-th trajectory so that tk(1) + tk(1, 3) + tk(3) +
tk(3, 8)+ tk(8)+ tk(8, 4) = 1. Secondly, accumulation is done by
using the time interval vector by A(sa, sb)= A(sa, sb) + tk(sa, sb).
We proceed similarly for the time spent at other locations. For ex-
ample, if we have tk(sa), then A(sa, sa)= A(sa, sa) + tk(sa). Fi-
nally, we normalize each column of A to ensure

∑
sa

A(sa, sb) = 1.

Dealing with location inaccuracy: In many cases, the loca-
tion information may be inaccurate due to the error of the sensors.
Therefore, probabilistic weighted accumulation is preferred over
determinant accumulation. The probabilistic weighting scheme is
shown in Figure 3, where the crosses denote the detected location
center, and the in-dashed circle represents the range of uncertainty
of the signals (localization error bounds).

In this case, the degree of site membership should be constructed.
A reasonable way is to use the Nadaraya-Watson kernel regression
on the Gaussian kernel to approximate the probabilistic site mem-
bership, which we denote by o. For example, the probabilistic site
membership of Coordinate 1 for site a, b and c in Figure 3 is:

oa =
exp(

−θ2a
σ

)∑
exp(

−θ2
i

σ
)

, ob =
exp(

−θ2b
σ

)∑
exp(

−θ2
i

σ
)

, oc =
exp(

−θ2c
σ

)∑
exp(

−θ2
i

σ
)

,

oa + ob + oc = 1.

(2)

where σ denotes the uncertainty range of the sensor. Similar cal-
culations can be done on Coordinate 2. Therefore, if there is a pair
from Coordinate 1 to Coordinate 2 for User k, and the transition
time is denoted by tk(c1, c2), we conduct probabilistic weighted
accumulation as follows:

A(si, sj) = A(si, sj) + tk(c1, c2) ∗ oi ∗ oj
i = [a, b, c], j = [d, e, f ]

(3)

Representative distribution of a user’s site visits: Given a user
trajectory, we calculate the stable distribution which represents the
probability a user appearing at one site. We denote such stable
distribution for k-th trajectory as rk ∈ RMs . To this end, we
firstly construct the Markov state transition matrix A by the above-
mentioned method. Then we collect the set of sites where the users
appears, and enumerate the number of visits. For example, by con-
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sidering the temporal interval information, we calculate the person-
alized appearance vector of k-trajectory:
ρok=[tk(1), 0, tk(3),tk(4),0,0,0,tk(8),0,0]T .
Furthermore, the values of ρok should be represented in a prob-

abilistic form based on the probabilistic site membership o to deal
with location inaccuracies. (This extension is straightforward and
omitted here). We normalize ρok, to make

∑
ρok = 1. Finally, for

each trajectory, we apply an iterative process to calculate the sta-
tionary distribution rk for each trajectory,where:
1. FOR t = 1 to TA

rk = ηA · rk + (1− η)ρok
2. Normalize rk so that

∑Ms
m=1 rk(m) = 1.

The process is inspired by the famous personalized Pagerank
method in [6]. To analyze the property of rk, we have the following
lemma.

LEMMA 1. Each semantic feature rk converges to a unique an-
alytical solution when TA → ∞1.

PROOF. At TA-th iteration, we have:

rk = (ηA)TAr0k + (1− η) ρok

(
I + ηA...+ (ηA)(TA−1)

)
(4)

where r0k denotes the initialized value of rk. Note that the maxi-
mum eigenvalue of A is 1. When 0 < η < 1 and TA → inf , the
first term converges to 0, which means that the final solution is ir-
relevant with the initial value r0k. For the second term, we have the
following analytical form:

rk = (1− η) (I − ηA)−1ρok (5)

From the analytical solution, we see that rk is determined by ρok
and η. When η = 0, rk = ρok. When η = 1, rk corresponds to the
eigenvector of A with eigenvalue 1.

Remark: If rank(A) = Ms−1 and 0 ≤ η < 1, for any ε satisfying
||ρok − ρok′ ||2 ≤ ε, then there exists δ so that ||rk − rk′ ||2 ≤ δ.

PROOF. If rank(A) = Ms−1, consider that the maximal eigen-
value of A is 1, when 0 ≤ η < 1, I − ηA is invertible and the
maximal eigenvalue is bounded. Therefore, for any ε:

||rk − rk′ ||2 = (1− η)2||(I − ηA)−1 (ρok − ρok′) ||2
≤ λ2

max||rk − rk′ ||2 ≤ λ2
maxε

2 (6)

where λmax denotes the maximal eigenvalue of (I − ηA)−1.

From the remark we see that, if the personalized pattern ρok and
ρok′ is similar, their semantic features will be similar as well. By
using rk as the stable distribution of the sites, the semantic diver-
gence between k-th and k

′
-th trajectory can be easily calculated.

The non-zero dimensions in rk not only tells that how long a user
has stayed on the certain site, but also provide a probability that
how likely a user would be visiting the site if it is not visited by user
k in the initial site occurrence vector ρok. The proposed stationary
feature encodes more abundant semantic information by using the
global statistical information, and thus it helps to better discrimi-
nate among the semantic behavior of different people.

Another issue to be considered is the semantic annotation of the
site. While each element of the probability vector rk denotes a site,
it is possible for multiple sites to be semantically equivalent: e.g.,
there may be three coffee shops in a shopping mall. To accommo-
date this equivalence, we apply a simple post-processing step on
each stationary distribution rk. We merge and accumulate the di-
mensions of the probabilities of those sites with the same semantic
1Typically, setting TA to 20 comfortably guarantees convergence.

meaning into one dimension, and then the Ms-dimensional station-
ary distribution feature rk is reduced to M ′, where M ′ < M . Note
that, after the post-processing step, rk is still guaranteed to be a sta-
ble probability distribution and

∑Ms
i=1 rk(i) = 1.

Given semantic residency distributions, rk and rk′ , their seman-
tic similarity can be computed by Histogram Intersection kernel:
Ks(k, k

′) =
∑Ms

m=1 min(rk(m), rk′(m)) or Radial Basis Func-
tion (RBF) kernel: Ks(k, k

′) = exp(−λ ∥rk − rk′∥2), where λ
denotes the bandwidth parameter of RBF kernel.

For parameter tuning of the semantic feature using RBF, we can
experiment with some reasonable choices of α (such as α=0.8, 0.7
or 0.6). When similarity is computed using the histogram inter-
section kernel, no parameters are required. When we use the RBF
kernel with parameter λ, we calculate the pairwise distance ma-
trix D with N × N , where D(i, j) = ||ri − rj ||2. A heuris-
tic setting of λ can be the inverse of the average of all the el-
ements in D where λ0 = 1

mean(D)
. Given λ0, we select λ =

[0.8λ0, 0.9λ0, λ0, 1.1λ0, 1.2λ0] to obtain a set of kernel matrices
Ks, and finally the kernel with the best performance is selected. In
our studies and presented results, we shall focus solely on the RBF
kernel, as it consistently provides superior results.

5. MODELING TEMPORAL SPATIAL AND
VELOCITY INFORMATION

5.1 Modeling temporal information
For each trajectory k, we extract a vector with four dimensional

time stamps w from the time marker ek: wk(1) records the first
showing time; wk(2) (the first meeting time stamp for two visitors
in a group; wk(3) denotes the ending time: wk(4) is the day index.
The time stamp trajectory features describe the temporal activity
pattern for real-life communities. For example, young people may
prefer to go shopping or play together in the afternoon and evening,
while the elderly may prefer to get up earlier and collectively go
for exercise. Moreover, the teenagers may be seen to spend an ap-
preciable amount of time waiting for the arrival of their friends,
whereas the elderly may be more punctual. To appropriately mea-
sure the temporal similarity, the temporal kernel can be formulated
as:

Kβ

(
k, k′) = e

−β1

3∑
i=1

(wk(i)−wk′ (i))2
e−β2(wk(4)−wk′ (4))2 (7)

where β1 and β2 denote the bandwidth factors. While these need to
be adjusted for the specific trajectory mining scenario, the adjust-
ment process is not very complicated. One feasible approach for
setting β1 and β2 is as follows:

1. Given N trajectories, calculate the average temporal pattern
distances as:

dβ1 =
1

N2

N∑
k′=1

N∑
k=1

3∑
i=1

(wk(i)− wk′(i))2 (8)

dβ2 =
1

N2

N∑
k′=1

N∑
k=1

(wk(4)− wk′(4))2 (9)

2. To acquire the best performance, one can conduct parameter
tuning near the initial setting. For example:

β1 = [ 0.8
dβ1

, 0.9
dβ1

, 1
dβ1

, 1.1
dβ1

, 1.2
dβ1

], β2 = 1
dβ2

(10)

We then select the best parameters that maximize the perfor-
mance of community discovery.
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5.2 Modeling spatial information
We can directly use the Global Alignment Kernel (GAK) [2] to

measure the spatial similarity between two trajectories. We denote
the similarity of spatial information as Kp. According to the anal-
ysis in [2], the GAK is positive definite.

However, GAK only measures the spatial closeness of individ-
ual trajectories, which may be incapable of discovering the true
communities if a large mass of additional trajectories exhibit sim-
ilar proximity. For example, if Alice, Bob and 100 other people
are waiting in a concourse area, then the spatial similarity between
the trajectories of Alice and Bob should not be too significant, be-
cause this concourse may be the only way for people to traverse
through the space. However, if Alice and Bob are the only two
people in the group study room on a college campus, and everyone
else is in a different classroom, then these two trajectories should
be viewed as significantly similar. Based on this intuitive obser-
vation, we propose a new Global Alignment Kernel with Inverse
Proportion (GAK-IP) (inspired by TF-IDF in IR research), that in-
tuitively weighs the spatial similarity in inverse proportion to how
many other people are located within the similar distance range.

To describe this in detail, we first explain how an unmodified
GAK works. Consider two time series (trajectories):

cx = (cx(1), ..., cx(n)), cy = (cy(1), ..., cy(m)) (11)

where each cx(i) or cy(j) can be the two dimensional spatial co-
ordinates or the indicator of a certain site. An alignment is π =
(π1, π2) where a pair of increasing integral vectors of length p ≤
n+m− 1. Note that such alignment may not be unique, we write
A(n,m) for the set of all alignments between two time series of
length n and m. The Global Alignment Kernel is defined as the
exponential soft-minimum of all alignment distances.

K0
p(cx, cy)

def
=

∑
π∈A(n,m)

e−Dπ(cx,cy) (12)

where Dπ (cx, cy)
def
=

|π|∑
i=1

φ(cx(π1(i)), cy(π2(i))),φ(cx, cy) = ||cx−

cy||2.
It is equivalent with the following formulation:

K0
p(cx, cy)

def
=

∑
π∈A(n,m)

|π|∏
i=1

κ(cx(π1(i)), cy(π2(i))),

κ(cx(π1(i)), cy(π2(i))) = e−||cx(π1(i))−cy(π2(i))||2

(13)

In our modified version of GAK-IP, we revise the definition of
distance as follows:

Dπ (cx, cy)
def
=

|π|∑
i=1

wπ(i)φ(cx(π1(i)), cy(π2(i))), (14)

where wπ(i) denotes the weight calculated by considering the num-
ber of people within a range or on the same site. We denote the
number of people on the site π(i) at the time when cx and cy ap-
pear together as nπ(i) ≥ 1, wπ(i) can be calculated as:

wπ(i) =
|π| ln(1 + nπ(i))
|π|∑
i=1

ln(1 + nπ(i))

. (15)

Note that using loge reduces the disproportionate impact of a site
where the pair are co-resident with a very large number of objects
(a high nπ(i)), which may cause that Kp will be highly dependent
at a certain location with crowded objects.

vk  hk(0)

vk(1)hk(1) vk(2)hk(2)

vk(3)hk(3) vk(4)hk(4) vk(6)hk(6)vk(5)hk(5)

hk=[1/4*hk(0), 1/4* hk(1), 1/4* hk(2), ½* hk(3), ½* hk(4), ½* hk(5), ½*hk(6)]

Temporal resolution 0

Temporal resolution 1

Temporal resolution 2

Figure 4: Temporal pyramid matching.
∑

hk(0) = 1,∑
hk(1)+

∑
hk(2) = 1, and

∑
hk(3)+

∑
hk(4)+

∑
hk(5)+∑

hk(6) = 1.

LEMMA 2. GAK-IP is positive definite.

PROOF. Since

Kp(cx, cy)
def
=

∑
π∈A(n,m)

|π|∏
i=1

(κ(cx(π1(i)), cy(π2(i))))
wπ(i) .

Obviously, by the enclosure property of kernel, the weighted
combination of kernel is still guaranteed to be positive definite.

5.3 Modeling velocity information
The information encoded in velocity pattern of moving objects

is also critical for real-life trajectory analysis. For example, the
younger taxi drivers tend to drive fast, while the experienced driver
will keep a safe speed. However, we face two challenges when
modeling the velocity pattern. The first is that trajectories are with
non-uniform lengths, which brings about difficulty in directly mea-
suring their pairwise similarity from velocity aspect. The second
challenge is that velocity characteristics are diversified on different
object, time and location, therefore, it is hard to directly construct
their velocity pattern correlation. To analyze the velocity consis-
tency of the trajectories by addressing the two challenges, we de-
sign a temporal pyramid kernel by considering different temporal
resolutions, which is inspired by [8] in image classification domain
on calculating the image level similarity.

We suppose each trajectory is attached with a velocity vector vk
with unequal lengths. We uniformly quantize the velocity into L
levels2. Given vk with length lk, we calculate the normalized his-
togram hk (0) on vk. Then we equally divide vk into two parts
vk → [vk (1) , vk (2)], where both vk(1) and vk(2) are also veloc-
ity vectors with lk

2
. We calculate the normalized histogram hk(1)

and hk(2) on vk(1) and vk(2), respectively, and normalize them so
that

∑
hk(1) +

∑
hk(2) = 1. Consequently, we further equally

divide vk(1) or vk(2) into two parts again and calculate the his-
tograms in the same way.

Such process can be conducted until a predefined level is achieved.
We concatenate all the histograms with predefined weights. The de-
tailed process is demonstrated in Figure 4. Note that Figure 4 cor-
responds to a three-level temporal pyramid, therefore, the weight of
each level is assigned with [1/4, 1/4, 1/2], where the bottom level is
assigned with the highest weight [8]. For a four-level pyramid, the
weight vector is [1/8,1/8,1/4,1/2].

Based on this, we can extract a velocity histogram hk of equal
length Dh with coarse-to-fine temporal resolution. The similar-
ity between user trajectory k and k′ can be either calculated with
histogram intersection or Chi-Square kernel. The histogram inter-

2In fact, the quantization scheme can be application dependent
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section and the Chi-Square kernel are:

Kh(k, k
′) =

Dh∑
i=1

min(hk(i), hk′(i))

Kh(k, k
′) = exp

(
− 1

2ϖ

Dh∑
i=1

(hk(i)−hk′ (i))2

(hk(i)+hk′ (i))

) (16)

where ϖ denotes the bandwidth parameter for the Chi-Square ker-
nel. ϖ may be tuned as follows:

1. Given N trajectories, calculate the average velocity pattern
distances as:

dh =
1

2N2

N∑
k′=1

N∑
k=1

Dh∑
i=1

(hk (i)− hk′ (i))2

(hk (i) + hk′ (i))
. (17)

2. Set the initial value ϖ0 as 1/dh.
3. To acquire the best performance, we can conduct parameter

tuning near the initial setting (e.g., setting candidate parame-
ter set as: ϖ = [0.8ϖ0, 0.9ϖ0, ϖ0, 1.1ϖ0, 1.2ϖ0]).

6. TRAJECTORY COMMUNITY DISCOV-
ERY FROM MULTI-SOURCE SIMILAR-
ITY MEASUREMENT

Now we have several types of kernels representing the similarity
from different information sources. The kernel set includes seman-
tic kernel Ks, temporal kernel Kβ , spatial kernel Kp and velocity
kernel Kh. Based on the similarity definition in Eq. 1, we detect
the trajectory communities from the trajectory database. Note that
the trajectory data is collected from open environment with diver-
sified customer behaviors, so that each trajectory does not have to
be assigned with a community label. To this end, we use the dense
sub-graph detection method proposed by [13] which robustly de-
tects a set of highly connected sub-graphs (cliques) from the graph,
where the nodes represent the trajectories and the weights of the
vertices represent the pair-wise similarity among trajectories.

The method represents a set of vertices by a probabilistic clus-
ter, which is a unit vector in the space of standard simplex. Then,
a quadratic function is introduced to measure the average edge
weight among them and the dominant set is defined as the sub-
graph with the largest average edge weight. In this paper, we refer
to such average edge weight as the dominance of a subgraph. More
detailed as:

1. The probabilistic cluster is defined as z ∈ ∆N , where ∆N =
{z|z ∈ RN , z ≥ 0, ||z||1 = 1} is the space of standard sim-
plex and N is the total number of vertices. In fact, z is a
unit mapping vector; the value of zi, which is the i-th di-
mension of z, is the probability that the probabilistic cluster
z contains the i-th vertex . Particularly, if z = Ii, whose i-th
dimensional value is 1, then it represents a probabilistic clus-
ter that contains only the i-th vertex with probability zi = 1.
Any i-th vertex with zi = 0 is not included by the cluster.

2. The dominance of the probabilistic cluster z is defined in Eq.
18, where K is the symmetric connection matrix (i.e., the
weighted combination of kernels where the diagonal element
is set to 0) of the consistency graph G.

g(z) = zTKz (18)

The dense sub-graph seeking problem can be formulated as a
standard quadratic optimization problem [13]. It can be solved by
the replicator dynamics method, where z is the probabilistic cluster

Algorithm 1 TODMIS algorithm
Input: Data: X, Parameters: α, η, λ, β1, β2, ϖ
Output: z∗c′ , c

′ = 1, ..., C
1: Construct Ks on X with parameters η and λ.
2: Construct Kβ on X with parameters β1 and β2.
3: Construct Kp on X with GAK-IP.
4: Construct Kh on X with parameter κ.
5: Construct K0 based on [Ks,Kβ ,Kp,Kh] and α.
6: c′ = 1.
7: while The vertex set in G(α) is not empty do
8: Get z∗c′ by solving Eqn. 19 on Kc′−1.
9: Exclude the vertexes with non-zero elements in z∗c′ from

G(α).
10: Form Kc′ by extracting the sub-matrix from Kc′−1.
11: c′ = c′ + 1
12: end while

and t indicates the iteration time.

maxz g(z) = zTKz, s.t.z ∈ ∆N

zi(t+ 1) = zi(t)
(Kz(t))i

z(t)TKz(t)
, i = 1, ..., N

(19)

For the graph G(α) with N vertices, the probabilistic cluster is
initialized as: z(0) =

{
zi(0) =

1
N
|z(0) ∈ ∆N

}
. Such iteration is

easy to implement and easy to calculate and according to the ex-
periment results, it converges in 4 iterations on average for a graph
with less than 100 vertices. After detecting one dense sub-graph
using the above process (i. e., find an optimal solution z∗ by using
the method in Eq. 19 [13]), we exclude the vertexes with non-zero
value in z∗, and start the optimization process again on the reduced
graph, where the new affinity matrix K′ is the sub matrix of K.
This process is repeated until the vertex set becomes empty. For
each z∗, we define the average similarity of the currently detected
dense sub-graph as (z∗)TKz∗. The whole procedure of TODMIS
is demonstrated in Algorithm 1.

According to the analysis in [13], the time complexity depends
on the number of edges, which is O(N2) for fully connected graph.
However, for processing large trajectory database, a sparse near-
est neighbor graph can be constructed instead of a fully connected
graph. Therefore, the time complexity can be reduced to O(qN),
which is linear with respect to the number of trajectories N and the
number of nearest neighbors q.

7. EXPERIMENTAL EVALUATION

7.1 Experiment setup
Real-life data sets: We conduct our experiments on three real

life data sets: 1) Campus student tracking data (Campus): We col-
lected 1,000 students’ trajectories with time duration as long as one
week in one level of a university campus building. Based on the
students’ real activities (ground truth data), we are able to label 40
real groups (a.k.a. trajectory community). 2) Customer shopping
behavior data (Mall): We collected 5,000 customers’ trajectories
(over an observation duration of two days) in one level of a big
shopping mall in Singapore. In this data set, we introduced 16
controlled groups (ground truth) to test if TODMIS can identify
these groups. 3) Taxi driver tracking data (City)[14]: We collected
10,000 taxi drivers’ trajectories (over an observation duration of
one week) from a big city in China. In this data set, there exist 650
groups (ground truth from taxi company), such that each group is
assigned a region to traverse by the company). The whole city has
more than 20,000 road segments, around 10,000 taxis belonging to
more than 100 taxi companies; each company partitions its drivers
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Figure 5: Precision evaluation (TODMIS performs the best in trajectory and social connection based community detection).

into several taxi groups (10 to 50 groups). The tracking records
including Taxi ID, instant speed, driving direction, location, com-
pany ID, taxi type ID and group ID (associated with company ID).
From the data, we observe that taxi drivers do exhibit a grouping
pattern (community): given a region (described as a set of road
segments), they always traverse in this region in a given time pe-
riod. Thus in this experiment, we create a grid-based representation
of the city (based on the road segments) and investigate the effec-
tiveness of TODMIS by applying it on the collected trajectories
of the drivers, and then comparing the identified groups with the
real groups defined by the company (ground truth). To compare
our detected trajectory community (trajectory-based) against a tra-
ditional social network-based clustering approach, we collected the
social contact information of the above taxi drivers, consisting of
the phone call (from a communicator on taxi) records including
caller taxi ID, callee taxi ID, start time, end time, start location and
end location.

Experiment environment: Our experiments and latency obser-
vations are conducted on a standard server (Linux), with four Intel
Core Quad CPUs, Q9550 2.83 GHz and 32 GB main memory.

Baseline methods: For the trajectory data, we compare our method
with BU algorithm [24], M-Atlas [16, 5] and Multifeature [1]. BU
algorithm is used to detect traveling companions from streaming
trajectories. M-Atlas is used to create and navigate a catalog of
the mobility behaviors of a territory (GPS data). Multifeature is
used to estimate common patterns of behaviors and isolates out-
liers in video data. For the social connection data, we compare
our method with DSHRINK (one of the latest community detec-
tion algorithms), a distance-based clustering algorithm for detect-
ing communities in incomplete information networks with missing
edges [12]. The parameters for the various baseline methods will
be described shortly.

Evaluation metrics: In our experiments, we use the total exe-
cution time (at different scales) to evaluate the computational ef-
ficiency. We utilize the precision and recall to evaluate effective-
ness. The detailed definitions of the above evaluation metrics are
explained in the experimental results. The parameters of all the
kernels for TODMIS are tuned strictly according to the methods
described in the previous sections.

7.2 Effectiveness evaluation
In this experiment, precision is defined as the fraction of re-

trieved communities that are relevant to the search. The recall is
defined as the fraction of the communities that are relevant to the
query that are successfully retrieved. The F1 score can be easily
calculated based on precision and recall, and we omit it here.

Single kernel: We conduct experiments to validate the advan-
tage of using multiple information sources over single informa-
tion source. We compare TODMIS using average kernel weight
(αm = 0.25,m = 1, ..., 4, which has been widely accepted in

multiple-feature fusion paradigm) with TODMIS using single ker-
nel corresponding to αm = 1,m = 1, ..., 4, respectively. For ex-
ample, in the Mall setting with 1,000 trajectories, the precision of
TODMIS using average weight is 0.61, which outperforms the best
performance of the single kernel version (the best precision is 0.45
achieved by using semantic kernel Ks). The recall of TODMIS
using average weight is 0.58, which outperforms the best recall of
the single kernel version (the best recall is 0.41 achieved by using
Ks). For the City scenario, with 2,000 trajectories, the precision
of TODMIS using average weight is 0.59, which outperforms the
best performance of the single kernel version (the best precision is
0.39 achieved by using velocity kernel Kh). The recall of TODMIS
using average weight is 0.58, which outperforms the best recall of
the single kernel version (the best recall is 0.35 achieved by using
Kh). Our experiments thus provide strong evidence of the benefit
of using multiple information sources.

Multiple kernels: Based on the results from Figure 5 and Fig-
ure 6, TODMIS performs better precision and recall than the base-
line methods. Note that even if we simplistically weigh the se-
mantic, temporal, spatial and velocity measures equally, TODMIS
still performs better. From the parameter tuning, we can find that
different measures impact the precision and recall in different sce-
narios. For the Campus scenario, we observe that the grouping
performance is more sensitive to the semantic and temporal simi-
larity measures (rather than the spatial and velocity measures). In-
tuitively, this is due to the fact that groups perform different activ-
ities in different spaces (e.g., lectures in lecture halls, project work
in group study rooms) and for different durations (e.g., lectures for
1.5 hours, project work for longer durations), whereas the spatial
and velocity information are less discriminative (especially because
the floor is very crowded). In the Mall scenario, the semantic simi-
larity measure (each store is treated as a distinct semantic label) is
obviously important as, intuitively, members of a group are likely
to visit the same stores in a similar sequence. However, unlike the
campus, we cannot perform any significant state-space reduction
during post-processing, as it is highly unlikely to find two outlets
of the same store in the mall. Also, similar to the Campus sce-
nario, the spatial and velocity similarity measures in the Mall are
less significant for clustering.

For the City scenario, the observations are quite different: for
taxi traffic, the semantic information of different sites and the ve-
locity information of drivers are more discriminative than the other
two measures (although the temporal and spatial measures do play
a role). Note that TODMIS is less accurate in our experiment on
taxi drivers’ trajectories, compared to the Campus and Mall scenar-
ios. The reason is that even though we utilize the road segment to
identify each taxi driver’s trajectory, taxi drivers do not traverse the
roads in groups (unlike students on campus or shoppers in the mall).
But TODMIS still achieves promising effectiveness as shown in
Figure 5 (c) and Figure 6 (c). In Figure 5 (d) and Figure 6 (d), we
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Figure 6: Recall evaluation (TODMIS performs the best in trajectory and social connection based community detection).
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Figure 7: Efficiency evaluation. TODMIS is efficient and scal-
able in different scenarios.

report the experiment results of community detection based on so-
cial links (phone calls between drivers). The precision and recall
tests are based on the real group (community) information from
the company. It is obvious that our method, even without velocity
kernel, is still better than DSHRINK (close to but not better than
TODMIS without velocity kernel). From the results, we notice that
the real social connection based community is actually not the same
as the community information from taxi companies. On investigat-
ing the reasons for the poor performance of DSHRINK, we found
that 4.5% taxi drivers actually make less than 5 calls per day and
18% taxi drivers make more out-going calls to other communities
(in the same company) than to their own community. For TOD-
MIS, we not only capture the calling behavior between drivers, but
also their semantic, temporal, spatial and velocity similarities from
the actual movement, which is a better indicator of the community
as opposed to the call records.

7.3 Efficiency evaluation
In Figure 7, we report the total execution time of the clustering

algorithm, as a function of the number of trajectories. We see that
TODMIS’s computational efficiency is close to Multi-feature but
better than the other two baseline methods. Moreover, TODMIS
shows a close-to-linear relationship between execution time and the
number of trajectories.

7.4 Sensitivity evaluation
The spatial granularity of trajectory data has great impact on the

clustering result/ community discovery quality. To study this, we
run TODMIS on the City scenario, with different trajectory (spatial
grid) granularities. More specifically, we experiment with different
road segment lengths (where each road segment defines a sample
point in the trajectory data). As shown in Figure 8, TODMIS is
tolerant to different trajectory granularities (different road segment
lengths). More specifically, the results for segment lengths of 200
meters and 400 meters are very similar, but the precision begins
to decrease if resolution gets coarser (segment lengths of 600 me-
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Figure 8: Sensitivity evaluation. TODMIS is tolerant to differ-
ent trajectory granularities.

ters and higher). Intuitively, we note that 55.4% of the true road
segments within our test area have length between 200-400 meters,
implying that larger values of segment lengths (e.g., 600 meters)
causes TODMIS to miss out features distinct to each individual true
segments. However, in general, we find that TODMIS is fairly ro-
bust to different trajectory granularity values.

7.5 Discussions
Outliers in trajectories: Since the trajectories are collected from

real-life scenarios, it is obvious that some outliers will be included
in the database. These outliers act differently with all the other
trajectories within the detected communities, so they cannot be in-
cluded into any of them. For example, for the taxi driver’s tra-
jectories, the taxi may encounter with traffic accident and stay in
certain location for a very long time to wait for the traffic police,
or some drivers may interrupt their business due to unpredictable
emergency. These trajectories act differently and they are not simi-
lar from other trajectories in all the information sources. Therefore,
they are automatically assigned to the “background" by our algo-
rithm and the average similarity of the background are very low
(usually less than 0.2).

Automatically learning kernel weights: Besides manually set-
ting, the weights for different kernels can be automatically learned
towards certain objective. For example, given labels describing if
the trajectories belong to the same community or different com-
munities, we can learn the kernel weights to maximize the per-
formance of community discovery. In future, we plan to apply to
techniques such as metric learning on multiple kernels [26] to learn
similarity weights better.

Noise tolerance and heterogeneity: Noise is ubiquitous due to
inaccurate signal sensing and localization. In our algorithm, the
risk of model degradation brought by noise can be alleviated by
the weighted combination of the information in multiple kernels.
For example, if the noise level of spatial kernel Kp is unexpect-
edly high, the influenced can be reduced by decreasing its weight
and the missing information can be complemented by other ker-
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nels such as the semantic kernel. Moreover, the trajectories are
collected from different people in real-life; hence, the community
behavior can be influenced by many factors, such as age, nation-
ality, culture and gender. Therefore, the compactness and average
similarity levels are not consistent from community to community.
Our proposed method is robust to such kind of heterogeneity, since
we can choose the sub-graphs with top ranked average similarity
levels as the discovered community, or we just choose the top c′

sub-graphs where there is a significant drop between the average
similarity level of c′-th and (c′ + 1)-th sub-graph.

8. CONCLUSIONS
In this paper, we proposed TODMIS, a trajectory-based com-

munity detection technique, consisting of three phases: 1) model-
ing semantic information of locations, temporal, spatial and veloc-
ity information with kernels; 2) creating a unified similarity mea-
sure via weighted combination of multiple information markers; 3)
identifying communities via dense sub-graph mining. Extensive
experiments were conducted on three real life data sets: customers
in a shopping mall, students in a campus building and taxi drivers in
a city. The results demonstrated that TODMIS outperformed other
clustering algorithms in detecting the correct groups from different
trajectory data.

In future work, we plan to enhance our work on trajectory-based
community discovery as follows: 1) we will collect more real-life
trajectory data; 2) we will attempt to construct a trajectory dictio-
nary from the underlying data, where each element in the dictionary
represents a canonical user behavior; 3) we will try to develop au-
tomated learning of kernel parameters and multi-marker weights
given some level of specific community information; 4) we will
study the usefulness of community-aware recommendation tech-
niques, especially for targeted mobile advertising.
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