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ABSTRACT
Aggregate nearest neighbor query, which returns a common inter-
esting point that minimizes the aggregate distance for a given query
point set, is one of the most important operations in spatial databas-
es and their application domains. This paper addresses the problem
of finding the aggregate nearest neighbor for a merged set that con-
sists of the given query point set and multiple points needed to be
selected from a candidate set, which we name as merged aggregate
nearest neighbor(MANN) query. This paper proposes an effective
algorithm to process MANN query in road networks based on our
pruning strategies. Extensive experiments are conducted to exam-
ine the behaviors of the solutions and the overall experiments show
that our strategies to minimize the response time are effective and
achieve several orders of magnitude speedup compared with the
baseline methods.

Categories and Subject Descriptors
H.2.8 [Database Application]: Spatial databases

Keywords
Query Processing; Nearest Neighbor; Road Networks

1. INTRODUCTION
Location-based services (LBSs) become more and more impor-

tant in our everyday life. Worldwide revenues from LBSs are ex-
pected to break the US$4 billion mark in 2012, according to ABI
Research. This huge and ever-growing market has attracted lot-
s of attentions from both academy and industry. In this paper, we
study a new location-based query, namely Merged Aggregate Near-
est Neighbor (MANN), on a spatial road network.

Formally, given a target set P , a query set Q, a candidate set C
and an integer n, a MANN query returns an optimal target point
p ∈ P and a set of n candidates Cs from C (Cs ⊆ C), such that
the aggregate distance from target point p to all the points in Q and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505738.

Cs is minimized, i.e., q(P , Q, n, C) = {⟨p,Cs⟩|p ∈ P ∧ Cs ∈
Γ(C, n) ∧ ∀p′ ∈ P ,∀C′ ∈ Γ(C, n), f(p, Cs ∪ Q) ≤ f(p′, C′ ∪
Q)}. Here, f(p, S) is the aggregate distance function and it could
be sum or max or others based on application needs. Take sum as
an example, f(p, S) =

∑
∀s∈S ||p, s|| with ||p, s|| returning the

network distance between p and s in a given road network; and
function Γ(C, n) is a function which returns all the subsets C′s
that are formed by n candidate points of C, i.e., ∀C′ ∈ Γ(C, n),
C′ ⊆ C and |C′| = n. As we consider the merged set of Q and
Cs and the aggregated distance, we simply name the new query as
MANN.

MANN can be fit into many real life applications. For example,
three friends want to play basketball. They need to find a basketball
court and meanwhile invite seven of their friends to play basketball.
Here, target set P is the set of basketball courts available, candidate
set C is a set of friends, and n is 7. MANN can help to select 7
friends and meanwhile locate a basketball court such that the total
distance from 10 participants’ locations to the court is minimum.
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Figure 1: Example of a MANN query

Figure 1 shows a simple example of the MANN query that will
be used as the running example throughout this paper. The star
points form the target set P , the circle points form the candidate
set C, the square points form the query set Q, and the integers next
to the edges represent the edges’ length. Suppose n is 2 and the
aggregate distance function considered is sum, we list in Table 1
some potential answers and MANN will return p2 as the answer
target point, and c3 and c4 as the corresponding answer candidate
points.

As shown in the above example, MANN is complex. It consider-
s the distance from the target point to points in Q and the distance
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Table 1: Distance from p to points in Cs ∪Q
p

∑
∀q∈Q ||p, q|| Cs

∑
∀c∈Cs

||p, c||
p1 3+1+5=9 {c1, c2} 4+5=9
p2 4+6+2=12 {c3, c4} 2+2=4
p3 7+5+9=21 {c5, c7} 4+9=13
p4 12+10+14=36 {c1, c6} 2+5=7

from the same target point to n candidate points, while both the
target point and the n candidate points are unknown. To the best of
our knowledge, MANN query has not been studied in the literature
and the most close one is ANN query [11]. However, ANN only
considers the distance from a target point to the query points that
are fixed and there is no need to locate n candidate points. Given
the definition of MANN, there are two naive solutions to process
MANN query, namely p-oriented and c-oriented. The p-oriented
algorithm considers target point p ∈ P first and it locates, for each
target point p ∈ P , the n points from C that are nearest to p as
the candidate points. The one that has the minimum aggregated
distance to all the query points and the n candidate points is the
answer. On the other hand, the c-oriented algorithm considers can-
didate points first. It enumerates all the potential candidate set Cs

and there are in total
(|C|

n

)
potential Css. For each potential Cs, an

ANN query is issued with Q ∪ Cs as the input, and the one with
minimal aggregated distance forms the answer to MANN. Obvi-
ously, both approaches are inefficient as they blindly scan either all
the points in P or all those

(|C|
n

)
potential Css.

Motivated by the fact that existing algorithms cannot support
MANN queries efficiently, we develop a few pruning strategies in
this paper to prune away unnecessary target points and develop a
search algorithm to process MANN queries efficiently.

Our main contribution presented in this paper is threefold. (1)
We formalize the MANN query in road networks. (2) We pro-
pose an efficient algorithm to support MANN queries based on our
pruning strategies. (3) We perform comprehensive simulation study
based on the real dataset to evaluate our algorithm and the exper-
imental results demonstrate that our algorithm achieves excellent
search performance and also has great scalability.

2. PRELIMINARY
In this section, we first present the formal definition of road net-

works and MANN, and then we give the definition of candidate
result, which will be used in our algorithm. Table 2 defines the
common symbols used in this paper.

Table 2: Frequently used symbols
Symbol Description
de(p, q) the Euclidean distance between p and q
||p, q|| the minimum network distance from p to q
||p, S||sum the aggregate network distance from point p

and all the points in set S, i.e., ||p, S||sum =∑
∀s∈S ||p, s||

||p, S||max the maximum network distance from p to a
point of S, i.e., ∀s ∈ S, ||p, s|| ≤ ||p, S||max

and ∃s′ ∈ S such that ||p, s′|| = ||p, S||max

We model a road network G as a weighted graph that consists of
a set of nodes N and edges E, i.e., G = (N,E). A node n ∈ N
represents a road intersection and an edge (n, n′) ∈ E represents
a road segment connecting nodes n and n′. w(n, n′) denotes the
edge weight, which can represent the travel distance or trip time,
and we assume all distances are positive. For simplicity, we use
distance hereafter. A path P (u, v) stands for a set of edges con-

necting nodes u and v and its distance |P (u, v)|=
∑

(n,n′)∈P (u,v)

w(n, n′). Among all paths connecting node u and node v, the
one with the smallest distance is referred to as the shortest path,
denoted by SP (u, v). The network distance ||u, v|| between u
and v is the distance of their shortest path SP (u, v), i.e., ||u, v||
= |SP (u, v)|. On road network, MANN query is introduced, as
defined in Definition 1.

Definition 1. MANN Query. Given a set of target points P and a
road network G(N,E), a MANN query q(P,Q, n,C) specifies a
query set Q that contains one or multiple query points, an integer
n, and a candidate set C that contains at least n candidate points.
It returns a target point p ∈ P and a set of n candidate points from
candidate set C (denoted as Cs) such that the aggregated distance
from p to all the points in Q and Cs is minimum, i.e., q(P,Q, n,C)
= {⟨p, Cs⟩|p ∈ P∧ Cs ∈ Γ(C, n)∧ ∀p′ ∈ P,∀C′ ∈ Γ(C, n),
f(p, Cs ∪Q) ≤ f(p′, C′ ∪Q)} �

Here, Γ(C, n) is a function to return all the subsets of C that con-
tain n points of C, i.e., Γ(C, n) = {C′|C′ ⊆ C ∧ |C′| = n};
and f(p, S) is an aggregate distance function and it can be sum or
max or other operations based on application needs. If sum is con-
sidered, f(p, S) = ||p, S||sum; if max is considered, f(p, S) =
||p, S||max. To simplify our discussion, we use sum as the default
setting for f(p, S).

To facilitate our discussion, we also introduce a concept, namely
Candidate Result, as defined in Definition 2. If function f con-
siders sum, the candidate result p.CR of a target point p actual-
ly contains the n nearest candidate points. Take the running ex-
ample depicted in Figure 1 as the example. p1.CR = {c1, c2},
p2.CR = {c3, c4}, and p3.CR = {c5, c7}. Given two target
points p1 and p2, we say p1 is better than p2 for a given MANN
query q(P,Q, n,C) if f(p1, p1.CR ∪Q) ≤ f(p2, p2.CR ∪Q)}.
Back to our running example. Target points p2 is better than p1
as f(p1, p1.CR ∪ Q) = ||p1, {c1, c2, q1, q2, q3}||sum = 18, and
f(p2, p2.CR ∪Q) = ||p2, {c3, c4, q1, q2, q3}||sum = 16.

Definition 2. Candidate Result. Given a target point p ∈ P and a
MANN query q(P,Q, n,C) on a road network G(N,E), the can-
didate result of p is defined as the set of n candidate points, denot-
ed as p.CR, that can minimize the aggregated distance from p to n
candidate points, i.e., ∀C′ ∈ Γ(C, n), f(p, p.CR) ≤ f(p, C′). In
other words, if p is returned by q(P,Q, n,C), p.CR must be the
corresponding candidate points returned.

3. FAST-PRUNING ALGORITHM
As we explain in Section 1, the baseline p-oriented algorithm

and c-oriented algorithm do not perform well because they need to
blindly scan all the target points p ∈ P or all the potential candidate
point set Cs formed by n candidate points of C. In this section,
we develop a pruning strategy to improve the performance of p-
oriented algorithm via pruning away certain target points. In the
following, we first present how to find the candidate result, based
on which pruning strategy is developed, finally we present the Fast-
Pruning (FP) Algorithm.

3.1 Candidate Result
First, we introduce the algorithm used to locate the candidate re-

sult p.CR for a given target point p in Algorithm 1, which extends
the Dijkstra algorithm. It explores the road network from the target
point p, and always explores nodes that have the shortest distances
to p. Although the candidate result p.CR contains only n candidate
points, our network expansion stops when the set p.CR contains n
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candidate points and meanwhile all the query points in Q have been
visited. This is because the pruning rule used by FP is based on
f(p,Q ∪ p.CR) and Algorithm 1 returns not only p.CR but also
f(p,Q ∪ p.CR). If we consider max, instead of maintaining the
aggregated distance, it needs to maintain the maximum distance.
As the adjustment is straightforward, we omit the details to save
space. It’s worth noting that finding the candidate result of a target
point can be costly, so reducing the times of invoking Algorithm 1
is quite important, which is the main point of our work.

Algorithm 1 Find Candidate Result
Input: p,Q,C, n,G(N,E)
Output: p.CR,||p,Q ∪ p.CR||sum
1: if |C| < n then
2: return p.CR = ∅, ||p,Q ∪ p.CR||sum =∞;
3: aggregate_dist← 0; Cp ← ∅;
4: H ← new min-heap;
5: insert H(p, ||p, p|| = 0);
6: while (H ̸= ∅) and

(
|Q| > 0 or |p.CR| < n

)
do

7: (u, ||u, p||)← H.deheap();
8: if u ∈ Q then
9: update aggregate_dist by ||u, p||;

10: remove u from Q;
11: else if u ∈ C and |p.CR| < n then
12: update aggregate_dist by ||u, p||;
13: insert u to p.CR;
14: explore u’s neighbor nodes and put them into H;
15: return p.CR, ||p,Q ∪ p.CR||sum = aggregate_dist;

3.2 Pruning Rules for Target Points
Based on a given target point p and its corresponding candidate

result, we develop two pruning strategies for different aggregate
distance functions to prune away certain target points that definitely
will not produce results better than p. In the following, we first
present the corresponding lemma that builds the theory foundation
of our pruning strategy and then present our pruning rules.

Lemma 1. Let V be a point set in a Euclidean Space with V =
{v1, v2, · · · , vn} and vm be the geometry center of V . Then, for
any point p in the space, we have

n× de(p, vm) ≤
∑
vi∈V

de(p, vi) (1)

Proof. Given four real numbers a1,a2,b1,b2, we have√
a1

2 + b1
2 +

√
a2

2 + b2
2 ≥

√
(a1 + a2)

2 + (b1 + b2)
2 (2)

By the mathematical induction, we have

n∑
i=1

√
ai

2 + bi
2 ≥

√√√√(

n∑
i=1

ai)

2

+ (

n∑
i=1

bi)

2

(3)

Assume point p is located at ⟨x, y⟩, and point pi is located at
⟨xi, yi⟩. Then, the geometry center vm is located at ⟨

∑n
i=1 xi

n
,
∑n

i=1 yi
n
⟩.

If we replace ai and bi by (x− xi) and (y − yi) respectively, then
we have
∑n

i=1

√
(x−xi)

2+(y−yi)
2 ≥ √

(
∑n

i=1 x−xi)
2+(

∑n
i=1 y−yi)

2

≥ n×

√
(x−

∑n
i=1

xi
n

)
2
+(y−

∑n
i=1

yi
n

)
2

= n× de(p, vm)

The proof completes. �

Theorem 1. Given a MANN query q(P,Q, n,C) and a road net-
work G(N,E), let qm be the geometry center of Q. Assume sum
is considered. ∀p1, p2 ∈ P , if de(p1, qm) ≥ ||p2,Q∪p2.CR||sum

|Q| , it
is certain that p1 can’t be better than p2.

proof Based on Lemma 1, we have

|Q| × de(p1, qm) ≤
∑
qi∈Q

de(p1, qi). (4)

As the Euclidean distance between two objects does not exceed the
network distance, we have∑

qi∈Q

de(p1, qi) ≤
∑
qi∈Q

||p1, qi|| (5)

If de(p1, qm) ≥ ||p2,Q∪p2.CR||sum

|Q| , then we have

||p2, Q ∪ p2.CR||sum ≤ |Q| × de(p1, qm) (6)

≤
∑
qi∈Q

||p1, qi||

≤ ||p1, Q ∪ p1.CR||

Here, pi.CR is the candidate result corresponding to pi. It is obvi-
ous that p1 can’t be better than p2. Our proof completes. �

The above pruning rule is to prune away certain target points
based on sum function. We also develop following pruning rules
for max function.

Lemma 2. Let V be a point set in the Euclidean Space, the geom-
etry center of V is vm. For any point p in the space, we have

de(p, vm) ≤ max
vi∈V

de(p, vi) (7)

Proof. Assume the above statement is not valid, i.e., if de(p, vi) =
maxvi∈V de(p, vi), we have de(p, vm) > de(p, vi). We then can
draw a circle cirp centered at p with de(p, vi) as the radius. Since
de(p, vi) = maxvi∈V de(p, vi) and de(p, vm) > de(p, vi), all the
points of V must be located inside the circle cirp. But the point
vm is located outside of the circle cirp, as shown in Figure 2. If
we set the line l(p, vm) that passes point p and vm as the x-axis
and set the intersection point o of l(p, vm) and the circumference
of circle cirp as the origin, we can find that all the points of V are
located at one side of the y-axis while vm is on the other side. This
contradicts our statement that vm is the geometry center of points
in V and hence our assumption is invalid. The proof completes. �

vm

y

x
p o

r=de(p,vi) 

Figure 2: An invalid assumption of Lemma 2

Theorem 2. Given a MANN query q(P,Q, n,C) and a road net-
work G(N,E), let qm be the geometry center of Q. Assume max is
considered. ∀p1, p2 ∈ P , if de(p1, qm) ≥ ||p2, Q ∪ p2.CR||max,
it is certain that p1 can’t be better than p2.

Proof. Based on Lemma 2, we have

max
qi∈Q

de(p1, qi) ≥ de(p1, qm) (8)
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We all understand that

maxqi∈Q||p1, qi|| ≥ max
qi∈Q

de(p1, qi) (9)

Based on our statement, we know de(p1, qm) ≥ ||p2, Q∪Cp2 ||max

and hence we have

||p2, Q ∪ Cp2 ||max ≤ max
qi∈Q

de(p1, qi) (10)

≤ maxqi∈Q||p1, qi||
≤ ||p1, Q ∪ p1.CR||max

It is obvious that p1 can’t be better than p2 and our proof completes.
�

3.3 FP Algorithm
Based on the pruning rules we propose, the FP algorithm is de-

veloped. Its pseudo-code is listed in Algorithm 2. Since our prun-
ing rule (i.e., Theorem 1) is based on Euclidean distance, we as-
sume all the target points are indexed by a R-tree with its root n-
ode root being an input for Algorithm 2. The algorithm mainly
contains two steps. The first step is to complete the initialization
for the pruning distance d, which captures the aggregate distance
corresponding to current result maintained by S (lines 1-7). The
second step is to prune away the target points based on Theorem 1
and update the pruning distance d if necessary. They are detailed
in the following.

In our first step, we find the geometry center qm for the input
query set Q, and then retrieve the nearest target point qm.NN of
qm based on best-first NN search [1]. We then retrieve the candi-
date result (qm.NN).CR corresponding to qm.NN based on Al-
gorithm 1, and initialize the pruning distance d as ||qm.NN,Q ∪
(qm.NN).CR||sum. In most cases, the target point closer to the
center of Q usually has a smaller aggregate distance to Q and hence
initializing the pruning distance d based on qm.NN and its corre-
sponding candidate result is a good choice. The experimental re-
sults to be presented in Section 4 will further justify our selection.

Next, we start our second step to evaluate the target points. In
order to enable an early termination of this step, we strategically
visit target points based on ascending order of their mindist to qm.
To be more specific, we visit the nodes of R-tree that indexes all the
target points based on best-first order, with the help of the min-heap
H . Initially, H has only one node, that’s the root of the R-tree.
Thereafter, we de-heap the top entry ⟨e, de⟩ of H for evaluation.
Note that e is the entry within H that has the smallest mindist to qm.
If e’s mindist to qm (i.e., de) is already larger than the d/|Q|, it is
guaranteed that all the remaining entries in H and all the unvisited
objects will have their mindist to qm larger than d/|Q| and can be
pruned away based on Theorem 1. Otherwise, we need evaluate
e. If e is a non-leaf node, all its child nodes are en-heap to H .
Otherwise, e must be an object. We then check whether e is better
than the current result and update the pruning distance d and result
S if necessary.

Lemma 3. The result identified by Algorithm 2 must be the real
result for a MANN query.

Proof. Assume the above statement is not valid, and the real result
q(P,Q, n,C) (=⟨p, p.CR⟩) is different from the one ⟨e, e.CR⟩ re-
turned by Algorithm 2. Given the fact that the target point p is
not returned by Algorithm 2, it must be enclosed by a node N

such that mindist(N , qm) ≥ ||e,Q∪e.CR||sum

|Q| . In other words,

de(p, qm) ≥ mindist(N, qm) ≥ ||e,Q∪e.CR||sum

|Q| . Based on The-
orem 1, we understand that p cannot be better than e. Consequently,
our assumption is invalid and the proof completes. �

Notice that we invoke Algorithm 1 to look for the candidate re-
sult corresponding to each examined object e (Line 16). However,
it is not always necessary to locate the candidate result if we know
the aggregated distance generated by e and its candidate result will
not be shorter than that of the current best candidate maintained
by S of Algorithm 2 (i.e., d). To enable this early termination of
Algorithm 1, we can add following code right before Line 14 of
Algorithm 1. In addition, Algorithm 2 can be easily adjusted to
support max function based on Theorem 2. We skip the details for
space saving.

if (aggregate_dist ≥ ||S.e,Q ∪ S.Ce||sum) then
return S = ∅, aggregate_dist =∞;

Algorithm 2 FP Algorithm for sum function
Input: P,Q,C, n,G(N,E), root
Output: q(P,Q, n,C)
1: H ← new min-heap;
2: get the geometry center of set Q, denoted as qm;
3: H.enheap(⟨root,mindist(qm, root)⟩);
4: get qm’s NN in Euclidean Space, denoted as qm.NN , based

on best-first order and maintain all the unexamined nodes in H
based on ascending order of their mindist to qm;

5: retrieve qm.NN ’s candidate result (qm.NN).CR based on
Algorithm1;

6: d← ||qm.NN,Q ∪ (qm.NN).CR||sum;
7: initialize result S ← ⟨qm.NN, qm.NN.CR⟩;
8: while H is not empty do
9: ⟨e, de⟩ ← H.deheap();

10: if de ≥ d/|Q| then
11: breaks;
12: else if e is not an object then
13: for each child e.c of e do
14: H.enheap(⟨e.c,mindist(qm, e.c)⟩);
15: else
16: retrieve e’s candidate result e.CR based on Algorithm1;
17: if ||e,Q ∪ e.CR||sum ≤ d then
18: d← ||e,Q ∪ e.CR||sum; S ← ⟨e, e.CR⟩;
19: return S;

In the following, we use an example, as shown in Figure 1, to
illustrate how FP algorithm works. Here, Q = {q1, q2, q3}, P =
{p1, p2, p3, p4, p5, p6}, n = 2, and C={c1, c2, c3, c4, c5, c6,
c7, c8, c9, c10, c11}. First, we derive the geometry center qm of
all the query points, denoted as the green triangle in Figure 3, and
locate its nearest target point p1 (i.e., qm.NN = p1). Notice that
we adopt the best-first order for NN search, and we maintain all
the unexamined nodes in H for later exploration. Thereafter, we
invoke Algorithm 1 to find the candidate result p1.CR of p1, that
is {c1,c2}. We initialize the result set S as ⟨p1, p1.CR⟩, and the
pruning distance d is set to ||p1, Q ∪ p1.CR||sum = 18. Next, we
evaluate the nodes maintained in H . This is to continue previous
NN search, and try to locate the next NN objects of qm. As we do
not depict the R-tree structure of target points, we use target points
directly. Since ||p1,Q∪p1.CR||sum

|Q| = 6, we only need to explore
the target points whose Euclidean distance to qm do not exceed 6,
i.e., the target points located inside the shaded circle centered at
qm as shown in Figure 3 1. Then, we retrieve p2 as the next NN of
qm and its corresponding candidate result and update the pruning
1Note that the shaded circle may keep shrinking as better results
are retrieved and pruning distance d gets reduced.
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Figure 3: Process of the running example

distance to a smaller value 16. Next, we explore target point p3 and
retrieve its candidate result {c5, c7}. After the evaluation of p3, the
algorithm can terminate as the rest objects have their mindist to qm
larger than d/|Q| (i.e., 16

3
). The algorithm ends and the final result

is ⟨p2, p2.CR(= {c3, c4})⟩.

4. EXPERIMENTAL STUDY
In this section, we conduct several experiments to evaluate the

performance of proposed FP algorithm in supporting MANN queries.
In addition, we also implement baseline algorithms, i.e., the p-
oriented algorithm explained in Section 1 as the competitors. The
performance metrics considered include the total execution time
and I/O cost. All the algorithms were implemented in C++. The ex-
periments are conducted on a machine with an Intel Core i7-3770
CPU @ 3.40GHz and 16GB RAM. We assume the buffer size is
1Mb, managed by LRU, and the page size is 4Kb.

We use the real road network California Road Network[6]. Based
on the road network, we generate the target points and candidate
points uniformly. Three parameters are studied, and they are i) the
number of query points |Q|, ii) the Euclidean extent of Q, iii) the
value of n, . In each set of experiments, we only change the value
of one parameter while fixing others at their default values. Table 3
lists the settings for each parameter, and the bold one represents
the default setting. Notice that the Euclidean extent of Q is defined
as the ratio of the area of the minimum bounding rectangle (M-
BR) of Q to the overall area of the MBR corresponding to the road
network. In each set of experiments, 10 queries are generated ran-
domly, and the average performance is reported in the following.

Table 3: Parameter settings
Parameter Value
size of Q 4, 8, 16, 32, 64
Q’s Euclidean extent 1%, 2%, 4%, 8%, 16%
value of n 4, 8, 16, 32, 64

4.1 Impact of |Q|
Our first set of experiments is to evaluate the impact of |Q| on

the search performance, with the results shown in Figure 4. It is
obvious that FP performs much better than the baseline algorithm.
For example, compared with the baseline algorithm, when |Q| =
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Figure 4: The impact of |Q|

16 and sum is the function considered, FP only takes about 1%
execution time.

Our second observation is that the impact of |Q| is quite dif-
ferent between different functions. When sum is considered, F-
P cuts down its execution time as |Q| increases. This is because
given a fixed n setting, when |Q| enlarges, the pruning distance
||qm.NN,Q∪(qm.NN).CR||

|Q| used by FP algorithm decreases and hence
less target points are evaluated which helps to improve the search
performance. From our statistics, when |Q| increases to 64, FP
only needs to explore about 26% target points of that when |Q| is
4.

On the other hand, when max is considered, the cost of FP in-
creases. As |Q| increases, it is very likely the maximum distance
from a target point to a query point enlarges as well and hence less
target points are pruned.

4.2 Impact of Q’s Euclidean extent
Our second set of experiments is to evaluate the impact of the

Euclidean extent of Q on the search performance, shown in Fig-
ure 5.

As the Euclidean extent of Q enlarges, the pruning distance used
in our algorithms always gets larger, and we compare the Euclidean
distance de(p, qm) between the evaluated target point p and Q’s
geometry center qm with the pruning distance. As the Euclidean
extent of Q does not affect de(p, qm), more target points need to
be visited as the Euclidean extent of Q increases. Nevertheless, FP
is still 7 times faster than the baseline algorithm in the worst case,
i.e., Q% is 16 and max is considered.

4.3 Impact of n

Our last set of experiments is to investigate the impact of n on
the overall performance, and the result is depicted in Figure 6. We
observe that the impact of n is dependent on the function consid-
ered. when sum is considered, both the execution time and I/O
cost increase as n increases. The reason is just contrary to that of
|Q|, given a fixed |Q| setting, when n enlarges, the pruning dis-
tance ||qm.NN,Q∪(qm.NN).CR||

|Q| used by our algorithms increases
and hence more target points are evaluated which leads to the in-
crease of the cost.
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Figure 5: The impact of the Euclidean extent of Q
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Figure 6: The impact of n

On the other hand, when max is considered, the effect of n is
much less. But notice that, the cost starts to increase a little no-
table when n increases to 64, which is four times of |Q|. It means
||p,Q ∪ p.CR||max may be affected by ||p, p.CR||max as there
are much more candidate points in the candidate result of a target
point.

5. RELATED WORK
Nearest Neighbor(NN) query and its variants in road networks

have been well studied. [8] introduces a storage scheme for object
search in road networks and proposes two algorithms. Hereafter
many efficient algorithms have been proposed [3, 4, 2, 9, 5].

The most related studies to our problem are group queries [11,
12, 7, 10]. [11] is the first work to process ANN query in road
networks. [12] presents a pruning technique based on the network
Voronoi diagram to accelerate ANN query processing. [7, 10] can
be regarded as two special cases of ANN query. While they all
assume that the query points are given, while in MANN queries, the

query points are consisted of the given query points and multiple
points needed to be selected from a candidate set. MANN queries
will find the optimal aggregate point as well as the undetermined
query points.

6. CONCLUSIONS
This paper studies the merged aggregate nearest neighbor (MAN-

N) query. We develop an algorithm for processing this query, the
Fast-Pruning algorithm. It uses the Euclidean aggregate distance
between a target point and the query set as the pruning distance to
prune away unnecessary target points, the experiment results show
that it can discard a considerable part of target points which in turn
save the execution time and I/O cost.
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