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Discrete Choice Modeling with Nonstationary Panels
Applied to Exchange Rate Regime Choice∗

Sainan Jin
Guanghua School of Management

Peking University

August 23, 2007

Abstract

This paper develops a regression limit theory for discrete choice nonstationary
panels with large cross section (N) and time series (T ) dimensions. Some results
emerging from this theory are directly applicable in the wider context of M-
estimation. This includes an extension of work by Wooldridge (1994) on the
limit theory of local extremum estimators to multi-indexed processes in nonlinear
nonstationary panel data models.
It is shown that the ML estimator is consistent without an incidental param-

eters problem and has a limit theory with a fast rate of convergence N1/2T 3/4

(in the stationary case, the rate is N1/2T 1/2) for the regression coefficients and
thresholds, and a normal limit distribution. In contrast, the limit distribution
is known to be mixed normal in time series modeling, as shown in Park and
Phillips (2000, hereafter PP), and Phillips, Jin, and Hu (2007, hereafter, PJH).
The approach is applied to exchange rate regime choice by monetary author-

ities, and we provide an analysis of the empirical phenomenon known as “fear of
floating”.
JEL Classification: C23, C25
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1 Introduction

Discrete choice panel data modeling has become a standard tool for empirical eco-
nomic research. While traditional micro panel data empirical applications have been
to large cross section (N) and fixed time series (T )1, growing interest in cross-country
analysis of macroeconomic policy decisions, currency crises and emerging stock mar-
ket behavior has promoted the use of large dimensional panel data techniques. Often
the time-series components exhibit strong evidence of nonstationarity. The goal of
the present paper is to provide new asymptotics for such cases, in particular, for or-
dered discrete choice panel data regressions with individual effects that accommodate
nonstationary data.

Phillips and Moon (1999, hereafter PM) developed a linear regression limit theory
for nonstationary panels. Underlying their theory are asymptotics for multi-indexed
processes in which both indexes may pass to infinity. This paper seeks to extend
their limit theory to the maximum likelihood (ML) estimation of ordered discrete
choice panel models. Since ML estimation in discrete choice models involves nonlinear
optimization, we employ and further develop the asymptotic theory for nonlinear
functions of integrated time series recently given in Park and Phillips (1999), PP,
and PJH.

Panel models raise some additional problems that need to be addressed in this
nonlinear nonstationary setting. Among these are the presence of an infinite dimen-
sional space of fixed effects, the need for a multi-indexed (N,T ) → ∞ asymptotic
theory of extremum estimation, and the possibility of multiple convergence rates.
Some results emerging from this theory are directly applicable in the wider context
of M-estimation. This includes an extension of work by Wooldridge (1994) on the
limit theory of local extremum estimators to multi-indexed processes in nonlinear
nonstationary panel data models.

In a panel discrete choice setting, we show that ML estimation provides consistent
estimates of the full set of model parameters including the regression coefficients β0,
the thresholds µ0 and the fixed effect αi0. The ML estimator of the regression coeffi-
cients and thresholds has a normal limit distribution, whereas the limit distribution is
known to be mixed normal in the time series case, as shown in PP and PJH. Another
finding in this nonstationary setting is that fixed effects bias is removed asymptot-
ically when N/T 2 → 0, while in fixed effects nonlinear stationary panel modeling
with large N large T , the fixed effects bias disappears asymptotically with the rate
condition N/T → 0, as shown in Hahn and Newey (2004).

The new results also stand in contrast to those of the binary choice models with
zero thresholds where there are dual rates of convergence for the regression coeffi-
cients: a fast rate of convergence of N1/2T 3/4 in a direction that is orthogonal to
that of the true coefficient vector β0; and a slower rate of convergence of N

1/2T 1/4 in
other directions. This dual-rate phenomenon was discovered by PP in the time series
binary choice setting. The difference in the asymptotic behavior in the present case

1See Baltagi (2005), Chamberlain (1984), Hsiao (2003), Matyas and Sevestre (1992) and Wooldrige
(2002) for a review of traditional micro panel data literature.
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arises from the fact that, for the ordered discrete choice case with nonstationary pan-
els, we allow for scaled thresholds (

√
Tµ) consonant with the nonstationary nature

of the data, and the signal from the regressors involves a nonlinear function of the
covariates xit evaluated at the linear form x0itβ0 −

√
Tµj0 instead of x

0
itβ0. The latter

(i.e. x0itβ0) generally attenuates the signal from xit in the direction β0 because large
deviations of x0itβ0 enter as arguments of a density function which downweights large
deviations, so they contribute less, as was pointed out in PP. On the other hand,
the presence of scaled thresholds helps prevent the attenuation of the signal along
β0 because they recenter the main contribution to the signal at a spatial point away
from the origin, thereby assuring the same rate of convergence in all directions. In
addition, with scaled thresholds, the asymptotics involve functionals of local time at
the thresholds instead of zero.

We apply our approach to model the choice of exchange rate regime by monetary
authorities, and we explore the empirical phenomenon known as “fear of floating”,
which occurs when countries report a floating regime but actually intervene to smooth
exchange rate fluctuations. This latter phenomenon was discussed in Calvo and
Reinhart (2002) and has attracted much recent attention in international finance.
We show that, consistent with the existing literature, fixed regimes are preferred by
countries with smaller size, weaker government, more concentration in trade, and
more foreign denominated liabilities. Also, countries that undergo a rapid process of
financial deepening favor a more flexible exchange rate. We further show that fear
of floating is positively associated with foreign denominated liabilities, and monetary
shocks, among other variables.

The remainder of the paper is organized as follows. The next section outlines
the discrete choice panel model with individual effects and assumptions. Section 3
gives the main results on the limit theory of the ML estimator. Section 4 presents an
application to exchange rate regime choice. Section 5 concludes. Some useful lemmas
and proofs of the main theorems are given in the Appendix of Jin (2006). Notation
is given in a table at the end of the paper.

2 Basic Model, Assumptions

We will start with

y∗it = αi0 + x0itβ0 − εit, for t = 1, ..., T, and i = 1, ...N (1)

where αi0 is the unobserved individual specific effect, xit is anm×1 vector of explana-
tory variables and εit is an error. The dependent variable y∗it is unobserved. Instead,
what is observed is the indicator yit, which takes the following possible (J+1) values
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yit = 0 if y∗it ∈ (−∞,
√
Tµ10] (2)

= 1 if y∗it ∈ (
√
Tµ10,

√
Tµ20]

...

= J − 1 if y∗it ∈ (
√
TµJ−10 ,

√
TµJ0 ]

= J if y∗it ∈ (
√
TµJ0 ,∞).

Following PJH, the threshold parameters in (2) are scaled by
√
T so that the

thresholds have the same order of magnitude as the dependent variable y∗it in (1)
when the time series components of xit are integrated processes. This avoids trivial
asymptotic results and means, in effect, that the threshold levels adjust according
to the sample size of the data. This seems realistic in a model where the covariates
are allowed to be recurrent time series like integrated processes. We assume xit is
predetermined, i.e., xi,t+1 is adapted to some filtration (F i

t ) with respect to which
εit is measurable. In addition, following standard parametric discrete choice panel
data modeling, we assume that εit is i.i.d. across i and t conditional on (F i

t−1) with
marginal distribution F, which is assumed to be known and standardized like a stan-
dard normal or the standard logistic. The model given by (1) and (2) is taken as
correctly specified. The parameters of interest are assembled in the vector γ, whose
true value γ0 = (β

0
0, µ

0
0)
0 is an interior point of a subset of Rm+J which we assume to

be compact and convex.
In the ordered discrete choice panel model with error distribution F, the con-

ditional probability distribution of yit, P (yit = j|F i
t−1) := Pj(xit;αi0, γ0) is given

by

P0(xit;αi0, γ0) = 1− F (αi0 + x0itβ0 −
√
Tµ10),

PJ(xit;αi0, γ0) = F (αi0 + x0itβ0 −
√
TµJ0 ),

Pj(xit;αi0, γ0) = F (αi0 + x0itβ0 −
√
Tµj0)− F (αi0 + x0itβ0 −

√
Tµj+10 )

for j = 1, ..., J − 1.
The corresponding conditional expectation of yit is

m(xit;αi0, γ0) =
JX

j=0

j · Pj(xit;αi0, γ0)

=
JX

j=1

F (αi0 + x0itβ0 −
√
Tµj0).

If uit is defined as the residual in the equation

yit = mit + uit =
JX

j=1

F (αi0 + x0itβ0 −
√
Tµj0) + uit, (3)
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then (uit,F i
t ) is a martingale difference with conditional moments

σk,it = σk(xit;αi0, γ0)

= E(ukit|F i
t−1)

=
JX

j=0

(j −mit)
k · Pj(xit;αi0, γ0), say.

Define zk,it as zk(xit;αi0, γ0) = ukit − σk,it, ηkl,it as ηkl(xit;αi0, γ0) = E(zk,it ·
zl,it|F i

t−1), and akl,it as akl(xit;αi0, γ0) = zk,itzl,it − ηkl,it. Then (zk,it,F i
t ), (akl,it,F i

t )
are also martingale differences. Obviously, σ1,it = 0 and z1,it = uit. Further, define
τklpq,it = E(akl,it · apq,it|F i

t−1), giving fourth conditional moments for zk,it.
For our asymptotic development we need more precise assumptions on the process

generating xit, and the following assumption is helpful.
Assumption 1: Let xit = xit−1 + vit with xi0 = 0 and where

vit =
∞X
s=0

Ciseit−s

where

(a) {Cis} is a double sequence of (m×m) random matrices, i.i.d. across i for all s.

(b)
P∞

s=0 sE k C isk<∞.

(c) The innovations eit are i.i.d. across i and over t with mean zero and E(eite
0
it) =

Im and E k eit kr< ∞ for some r > 8, have a distribution that is absolutely
continuous with respect to Lebesgue measure and have characteristic function
ϕit which satisfies limktk→∞ktkκϕit = 0 for some κ > 0 and i = 1, 2, ...,N.

(d) Cis and ejt are independent for all i, j, t and s.

Remarks

(a) From Assumption 1, we have Ci(1) =
P∞

s=0Cis <∞ a.s. and i.i.d. across i. The
assumption of i.i.d. random coefficient and the independence between Cis and
ejt are not necessary, we can relax this assumption easily with more complicated
proofs.

(b) The linear process structure and the moment conditions on the innovations
make available the use of embedding arguments and for which 1√

T
xi[T.] ⇒

Vi(·) = Ci(1)Wi(·) in D[0, 1]m, the m-fold Cartesian product of the space
D[0, 1] endowed with the modified Skorohod metric (see Billingsley, 1999),
where Ci(1) =

P∞
s=0Cis < ∞ a.s. under Assumption 1, and Vi is a vector

Brownian motion in (Ωi,F i, P i) with variance matrix Ci(1)Ci(1)
0, and Wi(·)

is a standard vector Brownian motion.
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We also impose a mild restriction on the fixed effects parameters, which is useful
in the proof of limit theory.

Assumption 2:
sup
1≤i≤N

|αi0| < M

for some M < ∞. As in PP, we rotate the regressor space to help isolate the
effects of the nonlinearities. In particular, we assume that β0 6= 0 and rotate the
regressor space using an orthogonal matrix H = (h1,H2) with h1 = β0/(β

0
0β0)

1/2.
Let (θ10, θ

20
0 )
0 = θ0 = H 0β0. Then we can write (1) as:

y∗it = αi0 + x0itβ0 − εit

= αi0 + x0itHH 0β0 − εit

= αi0 + (H
0xit)

0H 0β0 − εit

= αi0 + x1,itθ
1
0 + x02,itθ

2
0 − εit,

where

x1,it = h01xit and x2,it = H 0
2xit,

θ10 = h01β0 = (β
0
0β0)

1/2 and θ20 = H 0
2β0 = 0.

Accordingly, we now define

V1i = h01Vi and V2i = H 0
2Vi,

which are Brownian motions of dimensions 1 and (m−1) respectively. Our subsequent
theory involves the local time of the scalar process V1i, which we denote by LV1i(t, s),
where t and s are the temporal and spatial parameters. LV1i(t, s) is a stochastic
process in time (t) and space (s) and represents the sojourn density of the process
V1i around the spatial point s over the time interval [0, t]. The reader is referred
to Revuz and Yor (1994) for an introduction to the properties of local time and to
Phillips (1998, 2001), PP for applications of this process in econometrics. In our
analysis, it is more convenient to use the scaled local time of V1i given by

L1i(t, s) = (1/σ11,i)LV1i(t, s),

where σ11,i is the variance of V1i.
Now we come back to the estimation of the ordered choice model. Let Λ(i, t, j) =

1 {yit = j}. The conditional log likelihood function can be written as:

logLNT (α, γ) =
NX
i=1

logLiT (αi, γ) =
NX
i=1

TX
t=1

JX
j=0

Λ(i, t, j) logPj(xit;αi, γ).
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Let the first derivative of F be denoted f and the second derivative be denoted ḟ .
The scores are

SβNT (α, γ) =
NX
i=1

SβiT (αi, γ) =
∂ logLNT

∂β

=
NX
i=1

TX
t=1

JX
j=0

Λ(i, t, j)

Pj(xit; γ)
pj(xit;αi, γ)xit,

SµjNT (α, γ) =
NX
i=1

SµjiT (αi, γ) =
∂ logLNT

∂µj

=
√
T

NX
i=1

TX
t=1

µ
Λ(i, t, j − 1)

Pj−1(xit;αi, γ)
− Λ(i, t, j)

Pj(xit;αi, γ)

¶
f(αi + x0itβ −

√
Tµj),

SαiT (αi, γ) =
∂ logLNT

∂αi
=

TX
t=1

JX
j=0

Λ(i, t, j)

Pj(xit;αi, γ)
pj(xit;αi, γ),

where

p0(xit;αi, γ) = −f(αi + x0itβ −
√
Tµ1),

pJ(xit;αi, γ) = f(αi + x0itβ −
√
TµJ),

pj(xit;αi, γ) = f(αi + x0itβ −
√
Tµj)− f(αi + x0itβ −

√
Tµj+1)

for j = 1, . . . , J − 1.
Note that the ratio Λ(i,t,j)

Pj(xit;αi,γ)
appears in all score functions. SinceE(Λ(i, t, j)|F i

t−1) =

Pj(xit;αi, γ), the expected value of the ratio is 1. Let

Λ(i, t, j) =

Q
s=0,...,J & s6=j(yit − s)Q
s=0,...,J & s 6=j(j − s)

, (4)

then evaluated at true parameter values, the ratio can be written as a sum of mar-
tingale differences

Λ(i, t, j)

Pj(xit;αi0, γ0)
=

1

Pj(xit;αi0, γ0)

Q
s=0,...,J & s6=j(yit − s)Q
s=0,...,J & s6=j(j − s)

=
1

Pj(xit;αi0, γ0)

Q
s=0,...,J & s6=j(mit + uit − s)Q

s=0,...,J & s6=j(j − s)

=
JX

k=1

gk(xit; j, αi0, γ0)(u
k
it − σk,it) + 1

=
JX

k=1

gk(xit; j, αi0, γ0)zk,it + 1,

where gk(xit; j, αi0, γ0) is defined to be the coefficient associated with zk,it for a given
j and where zk,it = ukit − E(ukit|F i

t−1), which is a martingale difference. Using the
above results, we have
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SβiT (αi0, γ0) =
TX
t=1

JX
k=1

Ak,itzk,itxit, (5)

SµjiT (αi0, γ0) =
√
T

TX
t=1

JX
k=1

Bk,itzk,it, (6)

SαiT (αi0, γ0) =
TX
t=1

JX
k=1

Ak,itzk,it, (7)

where

Ak,it =
JX

J=0

gk(xit; j, αi0, γ0)pj(xit;αi0, γ0)

=
JX

J=0

f(αi0 + x0itβ0 −
√
Tµj0)[gk(xit; j, αi0, γ0)− gk(xit; j − 1, αi0, γ0)],

Bk,it = f(αi0 + x0itβ0 −
√
Tµj0)[gk(xit; j − 1, αi0, γ0)− gk(xit; j, αi0, γ0)].

For the hessian, we have

Sββ,NT (α, γ) =
∂2 logLNT

∂β∂β0
=

NX
i=1

Sββ,iT (αi, γ)

=
NX
i=1

Ã
−

TX
t=1

JX
k=1

JX
l=1

AkAlzkzlxitx
0
it +

TX
t=1

JX
k=1

Cββ,kzkxitx
0
it

!
,

Sβµ,NT (α, γ)(j) =
∂2 logLNT

∂β∂µj
=

NX
i=1

Sβµ,iT (αi, γ)(j)

=
NX
i=1

Ã
−
√
T

TX
t=1

JX
k=1

JX
l=1

AkBl(j)zkzlx
0
it +
√
T

TX
t=1

JX
k=1

Cβµj ,kzkx
0
it

!
,

Sβα,iT (αi, γ) =
∂2 logLNT

∂β∂αi

= −
TX
t=1

JX
k=1

JX
l=1

AkAlzkzlx
0
it +

TX
t=1

JX
k=1

Cβαi,kzkx
0
it,

Sµµ,NT (α, γ)(j, j) =
∂2 logLNT

∂2µj
=

NX
i=1

Sµµ,iT (αi, γ)(j, j)

=
NX
i=1

Ã
−T

TX
t=1

JX
k=1

JX
l=1

Bk(j)Bl(j)zkzl − T
TX
t=1

JX
k=1

Cµjµj ,kzk

!
,
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Sµµ,NT (α, γ)(j, j − 1) =
∂2 logLNT

∂µj∂µj−1
=

NX
i=1

Sµµ,iT (αi, γ)(j, j − 1)

=
NX
i=1

Ã
−T

TX
t=1

JX
k=1

JX
l=1

Bk(j)Bl(j − 1)zkzl

!
for j = 2, ..., J,

Sµµ,NT (α, γ)(j, j + 1) =
∂2 logLNT

∂µj∂µj+1
=

NX
i=1

Sµµ,iT (αi, γ)(j, j + 1)

=
NX
i=1

Ã
−T

TX
t=1

JX
k=1

JX
l=1

Bk(j)Bl(j + 1)zkzl

!
for j = 1, ..., J − 1,

Sµµ,NT (α, γ)(j, s) = 0

for s > j + 1 and s < j − 1,

Sµα,iT (αi, γ)(j) =
∂2 logLNT

∂µj∂αi

= −
√
T

TX
t=1

JX
k=1

JX
l=1

Bk(j)Al(i)zkzl +
√
T

TX
t=1

JX
k=1

Cµjαi,kzk,

Sαα,iT (αi, γ) =
∂2 logLNT

∂2αi
= −

TX
t=1

JX
k=1

JX
l=1

AkAlzkzl +
TX
t=1

JX
k=1

Cαiαi,kzk,

where we omit the arguments (xit;αi, γ) in the functions A,B,C and z for sim-
plicity and where

Cββ,k(xit;αi, γ) = Cβαi,k(xit;αi, γ) = Cαiαi,k(xit;αi, γ)

=
JX

j=0

ṗj(xit;αi, γ)gk(xit; j, αi, γ),

Cβµj ,k(xit;αi, γ) = Cαiµj ,k(xit;αi, γ) = ṗj(xit;αi, γ)gk(xit; j, αi, γ),

Cµjµj ,k(xit;αi, γ) = ḟ(αi + x0itβ −
√
Tµj)(gk(xit; j − 1, αi, γ)− gk(xit; j, αi, γ)).

The ML estimator involves nonlinear functions of the integrated process xit and
it is helpful to be specific about the functions we need to consider. In the analysis
below, we use the approach of PP and PJH in studying nonlinear transformations
of integrated processes. A function f : R → R is called regular if it is bounded,
integrable, and differentiable with bounded derivative. We denote by FR the class of
regular functions. We also consider the class FI of bounded and integrable functions
and the class F0 of functions that are bounded and vanish at infinity. Clearly, FR ⊂

8



FI ⊂ F0. The following assumption about the distribution function F and density f
of εit places uniform tail conditions on F and f , and places some explicit component
functions in the classes. Both probit and logit functions satisfy conditions (a) - (c)
and (8) of Assumption 3 (as discussed in PP and PJH), as is easily verified. The
notation ġ and g̈ is used to denote the first and second derivatives of g.
Assumption 3: F is three times differentiable with bounded derivatives and satisfies

sup
|x|<Mm

F
³
x−M1+η

m µ
´

F (x)
= o (1) , sup

|x|≤Mm

1− F
³
x+M1+η

m µ)
´

1− F (x)
= o(1),

sup
|x|<Mm

f
³
x±M1+η

m µ
´

f (x)
= o (1) , (8)

as Mm →∞ for any η, µ > 0. Further, for k, l = 1, . . . , J :
(a) ηklAkBl, ηklAkAl, ηklBkBl ∈ FR,

(b) ηkkAk, ηkkBk, (ηklȦkBl), (ηklȦkAl), (ηklḂkBl), η
1/2
kk Ċk ∈ FI ,

(c) τklpqAkAlApAq, τklpqAkAlBpBq, τklpqBkBlBpBq, ηklCkCl ∈ F0.

3 Main Results

Corresponding to the rotation in the regressors and parameters, define

G =

µ
H 0
0 IJ

¶
and let ρ = (θ0, µ

0
)0. Then the score and hessian functions for the new parameter ρ

are obtained from SρNT (α, ρ) = G0SγNT (α, γ) and Sρρ,NT (α, ρ) = G0Sγγ,NT (α, γ)G.
The estimator for the main parameter of interest ρ is obtained formally by con-

centrating out the fixed effects αi from the log likelihood function. We solve

bαi(ρ) ≡ argmax
α
logLiT (αi, ρ) and bρ ≡ argmax

ρ

NX
i=1

logLiT (bαi(ρ), ρ)
where bαi(ρ) solves

SαiT (bαi(ρ), ρ) = 0 (9)

Using Lemmas 1, 2 and Theorem 1 in Jin (2006), we are able to characterize the
asymptotic properties of the fixed effects estimator and the limit forms of the score
and hessian functions of the regression coefficients and thresholds.

Theorem 1 Let Assumptions 1-3 hold. Then as (N,T )→∞
(a)

T−1/4SαiT (αi0, ρ0) ⇒ q
1/2
44,iWi(1), (10)

T−1/2Sαα,iT (αi0, ρ0) ⇒ −q44,i (11)
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jointly, where q44,i =
PJ

j=1

½
1
θ10
L1i

µ
1,

µj0
θ10

¶R∞
−∞

f2(s)
F (s)(1−F (s))ds

¾
,

and Wi is m−dimensional Brownian motion with covariance matrix I, which is
independent of Vi.

(b) We could easily derive along the lines of the proof of Theorem R3 in PJH

T 1/4(bαi(ρ0)− αi0)⇒ q
−1/2
44,i Wi(1) (12)

(c)

N−1/2T−3/4SρNT (αi0, ρ0) = N−1/2T−3/4
NX
i=1

SρiT (αi0, ρ0)⇒ N(0, Q11),

N−1T−3/2Sρρ,NT (αi0, ρ0) = N−1T−3/2
NX
i=1

SρρiT (αi0, ρ0)→p −Q11

jointly, where

Q11 = E(Q11,i) =

⎛⎝ q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞⎠ , Q11,i =

⎛⎝ q11,i q12,i q13,i
q21,i q22,i q23,i
q31,i q32,i q33,i

⎞⎠ (13)

with

q11,i =
JX

j=1

(
(µj0)

2

(θ10)
3
L1i

Ã
1,
µj0
θ10

!Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q12,i =
JX

j=1

(
µj0
(θ10)

2

Z 1

0
dL1i

Ã
r,
µj0
θ10

!
V2i(r)

0
Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q13,i(j) =
µj0
(θ10)

2
L1i

Ã
1,
µj0
θ10

!Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds,

q22,i =
JX

j=1

(
1

θ10

Z 1

0
V2i(r)V2i(r)

0dL1i

Ã
r,
µj0
θ10

!Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q23,i(j) =
1

θ10

Z 1

0
dL1i

Ã
r,
µj0
θ10

!
V2i(r)

0
Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds,

q33,i(j, j) =
1

θ10
L1i

Ã
1,
µj0
θ10

!Z ∞

−∞

f2(s)

F (s)(1− F (s))
ds,

q33,i(j, q) = 0 for q 6= j.

To analyze the asymptotic behavior of parameters of interest, we follow Cox and
Reid (1987) and Lancaster (2000, 2002) and reparameterize the model from (α0, ρ0)0

10



to
¡
λ0, ρ0

¢0 so that ρ and λi are information orthogonal. Thus, αi = α(λi, ρ) is chosen
such that the reparameterized log likelihood

NX
i=1

logLiT (αi, ρ) =
NX
i=1

logLiT (α(λi, ρ), ρ) =
NX
i=1

logL∗iT (λi, ρ),

and
logLiT (αi, ρ) = logL

∗
iT (λi, ρ)

satisfies

E

µ
∂2 log∗ LiT

∂ρ∂λi

¶
= 0

The orthogonalization treatment and asymptotic results for the score and hes-
sian in Theorem 1 help deliver the limit distributions of bρ, which are established in
Theorem 3.

General results for nonlinear nonstationary estimation in the case of panel data
are not readily available in the literature. Theorem 10.1 of Wooldridge (1994) pro-
vided a standard approach to local extremum estimation for a single-indexed process.
We extend this theorem for multi-indexed processes, which is suitable in nonlinear
nonstationary panel data analysis.

Theorem 2 (Joint Limits for Local Extremum Estimation in Panel: Extension of
Wooldridge (1994, Theorem 10.1))
Let {QNT :W ×Θ→ R, N = 1, 2, ...;T = 1, 2, ...} be a double-indexed sequence of ob-
jective functions defined on the data space W and the parameter space Θ ⊂ RP with
score SNT and hessian HNT . Assume that

1. θ0 ∈ int(Θ);

2. QNT satisfies the standard measurability and second order differentiability con-
ditions on W ×Θ, N = 1, 2, ...;T = 1, 2, ....

3. There are sequences of nonstochastic positive definite diagonal matrices {CN :
N = 1, 2, ...}, {CT : T = 1, 2, ...} and {DN : N = 1, 2, ...} {DT : T = 1, 2, ...}
such that the condition

max
N o
NT

k C−1N C−1T [HNT (θ0)−HNT (θ)]C
−1
T C−1N k= op(1) (14)

holds with
N o
NT ≡ {θ ∈ Θ :k CNCT (θ − θ0) k≤ 1} ;

4. CNCTD
−1
N D−1T → 0 as (N,T )→∞;

5. After normalization, the score SNT and hessian HNT have joint limits:

(1) D−1N D−1T HNT (θ0)D
−1
T D−1N →p A0 as (N,T )→∞, where A0 is a nonran-

dom, positive definite matrix;

11



(2) D−1N D−1T SNT (θ0)⇒ N(0, B0) as (N,T )→∞, where B0 is a nonrandom,
positive definite matrix.

Then there exists a sequence of estimators
nbθNT : N = 1, 2, ...;T = 1, 2, ...

o
such that

SNT (bθNT ) = 0 w.p.a.l. (15)

DNDT (bθNT − θ0) = −
£
D−1N D−1T HNT (θ0)D

−1
T D−1N

¤−1
D−1N D−1T SNT (θ0) + op(1),

and
DNDT (bθNT − θ0)⇒ N(0, A−10 B0A

−1
0 ) as (N,T )→∞. (16)

The above results help establish the form of the limit distribution of the ML
estimator bρ, whose limit distribution is provided in the following.
Theorem 3 Let Assumptions 1-3 hold. Then as N/T 1/2 → 0

N1/2T 3/4 (bρ− ρ0)⇒ N
¡
0, Q−111

¢
,

where Q11 is defined as in Theorem 1.

Remarks

(a) As usual for local extremum estimation problems, Theorem 3 establishes the
existence of a consistent root of the likelihood equation. The log likelihood
function is well known to be concave in the logit and probit cases, and in such
cases the consistent root is unique and is the global maximum.

(b) The ML estimator is consistent without an incidental parameters problem and
has a normal limit distribution, while the limit distribution is mixed normal
in time series modeling, as shown in PP and PJH. Further, estimators of the
regression coefficients and thresholds converge at a faster rate N1/2T 3/4 (in the
stationary case, the rate is N1/2T 1/2).

(c) The results also stand in contrast to those of the binary choice models with zero
thresholds, where there are dual rates of convergence for the regression coeffi-
cients: a fast rate of convergence of N1/2T 3/4 in a direction that is orthogonal
to that of the true coefficient vector β0; and a slower rate of convergence of
N1/2T 1/4 in other directions. This dual-rate phenomenon was discovered by
PP in the time series binary choice setting. The difference in the asymptotic
behavior in the present case arises from the fact that, for the ordered discrete
choice case with nonstationary panels, we allow for scaled thresholds (

√
Tµ)

consonant with the nonstationary nature of the data, and the signal from the
regressors involves a nonlinear function of the covariates xit evaluated at the
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linear form x0itβ0 −
√
Tµj0 instead of x

0
itβ0. The latter (i.e. x

0
itβ0) generally at-

tenuates the signal from xit in the direction β0 because large deviations of x
0
itβ0

enter as arguments of a density function which downweights large deviations, so
they contribute less, as was pointed out in PP. On the other hand, the presence
of scaled thresholds helps prevent the attenuation of the signal along β0 because
they recenter the main contribution to the signal at a spatial point away from
the origin, thereby assuring the same rate of convergence in all directions. In
addition, with scaled thresholds, the asymptotics involve functionals of local
time at the thresholds instead of zero.

(d) In fixed effects nonlinear stationary panel modelling with large N large T , the
fixed effects bias is removed when N/T → 0, as shown in Hahn and Newey
(2004). However, in this nonstationary setting, the rate condition becomes
N/T 1/2 → 0. It is difficult to derive the explicit formula for the fixed effects
bias or further conduct bias reduction when the time series component of xit
is an integrated process and the normed hessian converges weakly to a random
limit matrix, not a constant matrix, as the time dimension passes to infinity.

(e) From Theorem 3, we have

N1/2T 3/4G0
µ bβ − β0bµ− µ0

¶
⇒ N(0, Q−111 ),

that is,

N1/2T 3/4
µ bβ − β0bµ− µ0

¶
⇒ N(0, GQ−111 G

0),

which we formalize as follows.

Corollary 1 Under Assumptions 1-3, as N/T 1/2 → 0

N1/2T 3/4
µ bβ − β0bµ− µ0

¶
⇒ N(0, GQ−111 G

0).

4 Application to Exchange Rate Regime Choice and Fear
of Floating

Until recently, most of the empirical literature on exchange rate regimes utilized the
IMF “de jure” classification published in IFS (International Financial Statistics),
which required member states to self-declare their arrangements to IMF as belonging
to one of four categories: peg, limited flexibility, managed floating, and independent
floating. However, the classification of regimes is problematic. Deviations of actual
behavior from announcements are very common. Recently, several attempts have
been made to provide “de facto” classification. Levy-Yeyati and Sturzenegger (LS)
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(2003) constructed a classification based on data on official exchange rates and in-
ternational reserves using a cluster analysis methodology. Shambaugh (2004) offered
another classification based on statistical analysis of the official exchange rate itself2.
Reinhart and Rogoff (2004, hereafter RR) developed a novel system of re-classifying
historical exchange rate regimes based upon a statistical analysis of the monthly data
on market-determined parallel exchange rates and provide a fine classification with
fourteen categories. They introduced a new category, free falling, for countries whose
twelve-month rate of inflation is above forty percent. Traditionally free falling is la-
beled as independent floating, which is misleading, since the two regimes are different
in important ways. They also offered a coarser classification that is conformable with
that of IMF (except separating the free falling regimes from other floaters). Table 13

below displays a cross tabulation of observations in the IMF and RR classifications.

Table 1: The prevalence of deviations from announcements
Sample Period: 1974− 2000

Announcement (IMF)
Peg Limited Managed Float Inconcl. Total

Actual (RR)
Peg 803 94 80 33 5 1015

Limited 257 81 226 145 2 711
Managed 54 0 110 140 0 304
Float 12 25 9 125 1 172
Free fall 484 37 251 157 2 931
Inconcl. 0 0 0 1 0 1

Total 1610 237 676 601 10 3134

From Table 1, it is clear that there are significant differences between what coun-
tries say and what they do. A noticeable pattern is that there are deviations on both
sides of the diagonals of the table, showing some countries peg more than they an-
nounced and others float more than they announced. Following Alesina and Wagner
(2005), we define fear of floating as de jure floaters who intervene in the foreign ex-
change market to smooth the fluctuations of the nominal rate, as was also discussed
in Calvo and Reinhart (2002), and fear of pegging as de jure fixers who are actually
less fixed than they announced.

We begin with a brief analysis of the choice of exchange rate regimes using a
multinomial ordered probit model4. Some recent literature argues that intermediate
regimes for countries open to international capital flows are vanishing, the so-called
“Bipolar view”5. We treat deviation regimes as intermediate regimes, and their

2Both LS and Shambaugh reclassifications are of annual frequency.
3Table 3 in Alesina and Wagner (2005).
4We could take the latent variable as the difference between costs and benefits of a fix. So the

degree of the rigidity of the exchange rates will be continuous in that and so an ordered probit is
appropriate.

5For recent discussions, please see Fischer (2001), Obstfeld and Rogoff (1995) and Summers (2000).
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prevalence indicates that actually monetary authorities prefer an “interior solution”.
To put the point graphically, exchange rate arrangements lie along a line with hard
pegs without deviation on the left and free and managed floating without deviation
on the right. In the middle are intermediate regimes including soft pegs and deviation
regimes. Thus, our dependent variable takes on three values, 0 for hard peg without
deviation, 1 for intermediate regimes, and 2 for floating without deviation6. We use
economic variables based on the exchange rate regime choice literature, especially
Edwards (1996), Levy-Yeyati, Sturzenegger and Reggio (2003, hereafter LSR), and
data availability. We use the lagged ratio of foreign denominated liabilities to money
(FDLM) to control for the balance sheet effects. Country characteristics, such as
openness (OPEN), size (SIZE) and geographical concentration of a country’s trade
(CTRADE), are included according to the traditional optimal currency area theory.
To measure the importance of shocks we include terms of trade shocks (TTS), the
volatility in the government consumption to GDP ratio (VGOV), and the volatility of
money velocity (VVEL). We include two political variables to control for the strength
of the government: the fraction of seats held in congress by the government party
or coalition (MAJ), and the periods the incumbent administration has been in office
(YRSOFF). The lagged ratio of quasi money over money (QMM) is selected as a
proxy for the degree of domestic financial depth. The lagged ratio of international
reserves relative to base money (RESBASE) is also included because a high level of
reserves is often regarded as a necessary condition for the credibility and sustainability
of a stable rate in developing countries. 50 countries in Africa, Asia, Europe, and
Western Hemisphere constitute our sample7. Data sources and definitions are shown
in Table 3.

We use quarterly data from 1975.1-2000.48. Previous literature used unbalanced
panels with annual frequency, which would suffer from an incidental parameters prob-
lem if we had fixed effects in the model. More importantly, the reclassification of
exchange rate regimes by RR offered monthly data, and we find that each quarter
IFS reports de jure exchange rate arrangement from 19749, thus it is more appro-
priate for us to use quarterly data10. The right two columns in Table 2 display the

6We also employ a different set of dependent variables, the value takes 0 for pegs (including soft
pegs) without deviation, 1 for deviation regimes, and 2 for independent floating without deviation.
The estimation results are similar.

7The countries are Argentina, Australia, Bolivia, Brazil, Burundi, Chile, Colombia, Costa Rica,
Cyprus, Denmark, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Guatemala, Haiti,
Honduras, Iceland, India, Indonesia, Israel, Jamaica, Jordan, Kenya, Korea, Madagascar, Malawi,
Malaysia, Mauritius, Mexico, Morocco, Nepal, New Zealand, Nicaragua, Nigeria, Pakistan, Paraguay,
Peru, Philippines, Sri Lanka, Swaziland, Syrian Arab Republic, Tanzania, Thailand, Togo, Turkey,
United states, Uruguay, and Venezuela.

8We exclude the monetary union countries in Europe (classified by IMF as limited flexibility)
since the data for these countries are only available for the sample period 1974-1998. The estimation
results are similar if we include the monetary union countries in our model.

9 IFS offered quarterly exchange rate arrangements data starting from 1987. Before that, they
published monthly arrangements.
10We thank Alesina and Wagner for sharing their annual dataset. We find that the estimation

results are similar using their annual data with either LS or Shambaugh classification.
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estimation results11. It is shown that the fixed rates are preferred by countries with
smaller size, more concentration in trade, and more foreign denominated liabilities.
Countries that undergo a rapid process of financial deepening favor a more flexible
exchange rate, consistent with the argument of impossible trinity12. It seems that
weak governments are prone to peg in order to gain credibility.

Next we provide an empirical analysis of fear of floating. It is not obvious why cer-
tain countries announce floating arrangements and then deviate. Recent literature,
Reinhart, Rogoff and Savastano (2003), etc., has noted that liability dollarization,
which is pervasive in emerging markets, may produce fear of floating. Hausman,
Panizza, and Stein (2001) claimed that high pass-through and foreign currency lia-
bilities tend to reduce the willingness of policymakers to let the exchange rate float
freely. Calvo and Reinhart (2002) showed that fear of floating is pervasive, even
among some of the developed countries. They pointed out that fear of floating arises
from the combination of lack of credibility (as manifested in large and frequent risk-
premia shocks), a high pass-through from exchange rates to prices, and inflation
targeting. In Lahiri and Vegh (2001), output cost associated with exchange rate fluc-
tuations gives rise to fear of floating. LSR argued that fear of floating appears to be
associated with the prevalence of balance sheet effects and nominal shocks. Alesina
and Wagner (2005) proposed a somewhat different hypothesis. In their view, deval-
uations may be perceived by the market as an indicator of turbulence and monetary
instability. Thus, even countries that have claimed to be floaters may be induced to
implement a peg in practice and fear of floating may be viewed as a signaling device
to create confidence in the country.

We assume policy makers have an underlying utility function or optimal exchange
rate regime choice rule that is not observed by econometricians

y∗it = αi0 + x0itβ0 − εit, for t = 1, ..., T, and i = 1, ...N (17)

Our dependent variable takes on two values: 1 when RR minus IMF is negative, i.e.,
when countries float less than what they say, and 0 otherwise. The choice of explana-
tory variables is driven by the analysis of the theoretical and empirical literature
mentioned above, especially Calvo and Reinhart (2002), LSR, and by data availabil-
ity. xit is a vector of explanatory variables, which may be I(0), I(d) or I(1) processes
or a mixture of these. Following LSR, we use the same exchange rate regime choice
variables as above. Furthermore, lagged inflation (INF) is included as a proxy for the
inflation targeting since monetary authorities may choose to peg in their attempts to
lower inflation13.

11Using de jure or de facto exchange rate arrangements yields similar estimation results.
12 Impossible trinity has been discussed extensively in the international finance literature. Typically

policy markers can choose at most two out of the three vortexes of the trinity: fixed exchange rates,
independent monetary policy, or capital mobility.
13The link is controversial though, since persistent high inflation may create pressures on monetary

authorities and force them to float.
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We use quarterly data from 1975.1-2000.4. The first two columns in Table 2
show our estimation results for binary choice probit model14 with and without the
inclusion of fixed effects. In line with the existing literature, fear of floating is posi-
tively associated with foreign denominated liabilities, inflation, monetary shocks, but
negatively correlated with international reserves. Openness, concentration in trade,
terms of trade shocks, and quasi money ratio are not statistically significant, maybe
because of the correlation between regressors. Political variables do not seem to play
an important role, and with fixed effects the sign of YRSOFF changes.

Finally, we exclude free falling regimes from our sample, which are about 3 times
as common as free floating regimes15. Given the distortions associated with very
high inflation, any fixed versus flexible exchange rate regime comparisons that do not
break out the free falling episodes may render meaningless results, as pointed out in
RR. It turns out that the estimation results are similar16, indicating the robustness
of our findings.

5 Conclusion

Discrete choice models for panel data have proved to be a powerful tool in microe-
conometric analysis. The development of econometric theory that accommodates
nonstationarity in nonlinear settings such as discrete choice opens up a range of
potential applications in macroeconomics, finance, and international finance. The
present paper seeks to provide such a theory for discrete choice panel regressions
with individual effects that allow for nonstationary data. In particular, we provide a
joint limit theory for the maximum likelihood estimation of such systems. The ML
estimator is shown to be consistent and asymptotically normal without an incidental
parameter problem and with faster rates of convergence for the regression coefficients
and thresholds than in the stationary case.

Our approach is applied to modeling the choice of exchange rate regime by mon-
etary authorities, and we provide an analysis of the phenomenon known as fear of
floating. We show that countries with smaller size, weaker government, more concen-
tration in trade, and more foreign denominated liabilities are more likely to peg. Also,
countries that undergo a rapid process of financial deepening would like to adopt a
more flexible exchange rate, consistent with the argument of impossible trinity. We
further show that, consistent with the existing literature, fear of floating is associated
with balance sheet effects, inflation targeting, and monetary shocks.

Hahn and Kuersteiner (2004) showed that as N/T → 0 the fixed effects bias is
removed asymptotically for dynamic nonlinear panel models with fixed effects. Of

14And again the estimation results are similar using annual data with either LS or Shambaugh
classification.

1519 countries remain in our sample. The countries are Australia, Colombia, Cyprus, Denmark,
Dominica, Egypt, El Salvador, India, Malaysia, Mauritius, Morocco, Nepal, New Zealand, Pakistan,
Sri Lanka, Swaziland, Syrian Arab Republic, Togo, and United states.
16To save space, we do not report the results here.
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course, a different proof strategy is possible for nonstationary cases. Extensions along
this line will be left for future research.
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Table 2: Estimation Results
Sample Period: 1975.1− 2000.4

Fear of Floating Regime Choice
parameters w/o fixed effects fixed effects w/o fixed effects fixed effects

FDLM
3.6675∗

(0.243)
2.8537∗

(0.447)
−3.4211∗
(0.439)

−3.9077∗
(0.643)

OPEN
3.2336
(3.321)

3.7936
(3.279)

−1.9767
(1.429)

−2.3458
(1.927)

SIZE
7.0920∗

(2.364)

CTRADE
−1.7901
(0.994)

−1.642
(1.091)

−1.7623∗
(0.209)

−1.0471∗
(0.236)

TTS
3.8796
(3.092)

4.6680
(3.293)

3.2674
(2.410)

4.2072
(3.614)

VGOV
4.7690∗

(1.357)
5.6242∗

(2.451)
−0.4671
(0.584)

−0.2312
(0.213)

VVEL
0.5476∗

(0.155)
0.6013∗

(0.200)
−0.0001
(0.001)

−0.0001
(0.001)

MAJ
−1.0662
(1.779)

−1.7846
(1.614)

1.4207∗

(0.433)
1.3096∗

(0.551)

YRSOFF
0.1221
(0.404)

−0.0856
(0.213)

0.0340∗

(0.011)
0.0731∗

(0.022)

QMM
0.1557
(0.204)

0.1876
(0.237)

0.5378∗

(0.089)
0.4480∗

(0.076)

RESBASE
−6.9746∗
(1.966)

−7.6529∗
(2.833)

−0.8766
(0.623)

−1.0413
(0.872)

INF
1.8671∗

(0.299)
1.9802∗

(0.477)
3.3457∗

(0.986)
3.1459∗

(1.452)

µ1
0.1797∗

(0.036)
0.2458∗

(0.095)
0.0176∗

(0.002)
0.01904∗

(0.002)

µ2
0.0442∗

(0.003)
0.0528∗

(0.003)
Standard errors in parentheses
∗: significant at 5%
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Table 3: Data Source (most definitions are from LSR (2002)
Variables Definition and Source
FDLM Lagged ratio of foreign liabilities to money (Source: IFS line 16C/line 34)

OPEN
Lagged openness (ratio of (exports+imports)/2 over GDP).
(Source: IFS line 70/71, WDI)

SIZE GDP in dollars over USA GDP (Source: WDI)

CTRADE
Lagged share of trade with the largest trading partner: exports to the largest trading
partner as a share of total exports (Source: IMF-Direction of Trade Statistics)

TTS
Standard deviation of the logarithm of terms of trade over the
previous 5 periods adjusted by openness (Source: WDI)

VGOV
Standard deviation of the government consumption to GDP ratio
over the previous 5 periods (Source: IMF line 82/line 99b)

VVEL
Standard deviation of money velocity over the previous 5 periods
(Source: IMF line 99b/line 34)

MAJ
Fraction of seats held by the government.
(Source: Database of Political Institutions)

YRSOFF
Periods the incumbent administration has been in office
(Source: Database of Political Institutions)

QMM
Lagged ratio of quasi money over money
(Source: IMF line 35/line 34)

RESBASE
Lagged ratio of international reserves to monetary base
(Source: IMF line 11/line 14)

INF
Lagged logarithm of one plus the percentage change in
consumer price index (Source: IMF line 64)

6 Appendix: Useful Lemmas and Proofs

The corresponding appendix of Jin (2006) contains some useful lemmas, proofs of
those lemmas, and proofs of the main results in the paper.
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7 Notation

→a.s almost sure convergence.

→p convergence in probability.

⇒,→d convergence in distribution.

op(1) tends to zero in probability.

=d distributional equivalence.

∼d asymptotically distributed as.

W,V1, V2 standard Brownian motions.

LV (t, s) local time of V at time t and spatial point s

MN(0, V ) mixed normal distribution with variance V.

k · k Euclidean norm in Rk.

FR class of regular functions.

FI class of bounded integrable functions.

F0 class of bounded functions vanishing at infinity.
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