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Abstract

This paper considers stationary regression models with near-collinear
regressors. Limit theory is developed for regression estimates and test
statistics in cases where the signal matrix is nearly singular in finite sam-
ples and is asymptotically degenerate. Examples include models that in-
volve evaporating trends in the regressors that arise in conditions such as
growth convergence. Structural equation models are also considered and
limit theory is derived for the corresponding instrumental variable esti-
mator, Wald test statistic, and overidentification test when the regressors
are endogenous.

Keywords: Endogeneity, Instrumental variable, Overidentification test,
Regression, Singular Signal Matrix, Structural equation.

JEL classification: C23

1 Introduction

Near-collinear regressors arise frequently in empirical work in both time series
and cross section data. The case of co-moving regressors is particularly well
known and and has been extensively studied (Park and Philllips, 1988, 1989;
Phillips, 1988, 1989; Sims, Stock and Watson, 1990; Toda and Phillips, 1993;
Phillips, 1995) in the context of time series regression with some unit roots
and possibly cointegrated regressors. Related problems of partial identification
and weak instrumentation in structural model estimation have also proved to
be relevant in applications and have been studied in a large literature following
initial research on the asymptotic theory of these models by Phillips (1989)
and Staiger and Stock (1997). Earlier important work by Sargan (1958, 1983)
also considered some aspects of the impact of nearly unidentified models on
estimation and inference. More recent work on common explosive roots has

*This paper was written during a cross-Canada rail journey during June 2015. It originated
in a Yale Take Home Examination given in the Fall, 2014. The author acknowledges support
of the NSF under Grant SES 12-58258.



shown that near collinearity can produce inconsistencies even in the presence of
extremely strong regressor signals (Phillips and Magdalinos, 2013).

While this research primarily involves parametric models and linear systems
of equations, nonlinear regressions are also affected by near collinearity in the
regressors, weak identification (Stock and Wright, 2000), and singularities in the
limit theory that can produce inconsistencies and differing rates of convergence
(Park and Phillips, 2000). It has recently been discovered that nonparametric
kernel regression, an area of econometrics to which Aman Ullah has made many
lasting contributions including a foundational text (Pagan and Ullah, 1999), is
also affected by singularities and differing convergence rates when the regressors
are nonstationary (Phillips et al, 2014; Li et al, 2015).

The present work considers analogous problems associated with near-collinear
regressors that arise in stationary regression. To illustrate, we study the case
of a near-singular signal matrix where there is degeneracy in the limit. Such
cases occur in practical econometric work when there are evaporating trends or
decay effects in the data that produce asymptotic co-movement, as in growth
convergence modeling (Phillips and Sul, 2007 and 2009), or when power law
time trends need to be estimated (Phillips, 2007; Robinson, 2012).

We develop stationary asymptotics for estimates and tests in regressions
where signal matrix singularities that arise in the limit produce inconsistencies
in estimation and failures in central limit theory. We also provide limit theory
for instrumental variable (IV) regression and the associated Wald test statistic
and overidentification test when the regressor is endogenous. The limit theory
is developed for stationary regressions with martingale difference errors.

The remainder of the paper is organized as follows. Section 2 examines a
prototypical stationary linear regression model with asymptotically collinear re-
gressors and develops limit theory for the coefficient estimates and block Wald
test. Although the coefficient estimates are generally inconsistent, some linear
functions as well as the equation error variance are shown to be consistently
estimable. Section 3 develops similar limit theory for instrumental variable
estimates and test statistics in the structural model case with endogenous re-
gressors. Section 4 concludes and discusses extensions. Proofs are given in the
Appendix.

2 Singular Regression Models and Limit Theory

2.1 A Prototypical Model
We study the linear model

Yt = x:ﬁﬁ + Uot, t= 1a sy T (1)

where 3 is an unknown k x 1 vector of parameters and the errors ug; are martin-
gale differences with respect to the filtration F; = o {uot, Uot—1, -} Te41, Tty . }
and with conditional variance E {u,|F;_1} = o¢o a.s.. The regressor z; in (1)
is assumed to have components with differing asymptotic characteristics that



lead to a limiting singular system. In particular, upon transformation by some
(unknown) nonsingular matrix G’ =[Gy, Gy]’, we have the partitioned system

Yt = Z’éGGilﬂ + uogt = w;taa + ’LU;,tOéb + U0t (2)

with

| Wat | e | Ghme el _[GBT _ 4
wt—[wbt}.—Gxt—[ngt},a.—[ab}.—{Gb,ﬁ}_.G R

involving a k.- vector of stationary, ergodic variates wq; and a kp- vector wpy;
which satifies Z?:l WpWy, —a.s. pp. Sample moments of the components
wgy and vector wy; therefore have different orders of magnitude. Let X' =
(€1, ) s W= [wr,..,w,] s uo = [tor, ..., uon], and 3 = [y1,...,yn]. In
observation matrix form, (2) then takes the form

y=XpB+uy=Wa+u. (3)

Upon standardization with the matrix D,, = diag [v/nlk,, Ii,] the sample mo-
ment matrix X'X = >"}' | z,x; satisfies, as shown in (9) below,

D'G'X'XGD,t —,, ¥ = { Egﬂ E(Zb } >0, (4)

leading to

723:1 WatWay — Yaa and 72?:1 Wt Wy =0 (nfl)
n a.s. b) n - a.s .
D1 U(2)t 000 D=1 ugt

So signal to noise ratios differ by an order of magnitude in the directions wg;
and wpg.
To fix ideas, we henceforth assume that the regressors x; in (2) have the

partitioned form
0
| Tat | _ Lt
mt|:l‘bt:||:H$?+at'Ut:|’ (5)
(1

where (a:t ,vg)/ is a k, + kp vector of stationary ergodic time series, II is an
unknown constant matrix of dimension k; X k,, and a; is a deterministic sequence
with a; — 0 as t — oo. The regressors x,; and xp; may then be interpreted as
asymptotically co-moving stationary regressors. For instance, when a; = 1/t,
we have xp; = oy + Oy (%) ~ Iz, as t — oo.

With this structure the system (1) has the partitioned form

Yt = x:ztﬁa + mgtﬂb + U0t (6)

where 8’ = (3,, ;) is a conformable partition of 3. The block triangular trans-

form matrix
[ - L[] [ae”
o=y 7 e T]=[ 6] g



leads to the transformed parametric structure & = G~ written in partitioned

form as ,
Qq _ G* ﬁ _ Ba + H/ﬂb
a | LGV ] By
and corresponding regressor structure

w=G = | v | =] ). (s)

Wyt AtV

Here, wy: = asvy involves a stationary component v; and an evaporating deter-
ministic trend factor, a; = o (1) as t — 00, of the type that arises in the study of
growth convergence (Phillips and Sul, 2007, 2009). The regression components
(Tat, zpt) in the untransformed model (6) are therefore asymptotically collinear
because wy = ayvr = 04.5. (1) as t — oo.

Let s, = (a¥, vé)l and ¢ = swuor = (o, q,:), partitioned conformably
with s;. We make the following conditions on these components to facilitate the
development of the limit theory.

Assumption A (i) wug: is @ martingale difference sequence (mds) with respect
to the filtration Fi = o {uot, Uot—1,---; St+1, St, ...} and with condi-
tional variance {u3t|.7:t_1} = 0o a.S-

(ii) 7 = (s¢,u0r) is strictly stationary and ergodic with E (||7’t||2+6) < 00

for some § > 0, and variance matriz ¥, = diag [Ess, 000] > 0.

Assumption B a; is a deterministic sequence for which either

() 302, || < 0o for some (possibly small) 1 € (0,1), or
(i) 3272 Jar] < oo

As shown in Lemma A in the Appendix, Assumptions A(i) and (ii) ensure
that a functional law applies to partial sums of the mds ¢ = (¢}, q,:), SO

that n=1/2 %ZIJ g = By (-), with limiting Brownian motion vector B, and

. . o _ ’ 1y
covariance matrix Qgq = 0goXss Where B, = (qu,qu) and

ZIZ’ EI’U

S =Blas) = | 575

>0

are conformably partitioned with ¢;. Assumption B requires absolute summa-
bility of the deterministic sequence {a;} in B(ii) or the alternate (1 +7) ab-
solute summability in B(i). These conditions imply that a; is an evaporating
sequence, so that a; — 0, and they are sufficient to ensure a.s. summability of
certain sums that appear in the limit theory such Y, afv;v; and o0 aizdv,
in the following analysis. For example, a; = t~! satisfies B(i) for any n > 0, and
a; =t~ (logt) ™'~ satisfies B(ii) for any € > 0.



Under Assumptions A and B we have the following explicit form for the limit
behavior of the standardized signal matrix in (4)
Yiaa = E (mta:t ) 0

DI'G'X'XGD! -, ¥ = o . (9
" o [ 0 Loy = Zt:l afvtvg ] ©)

Observe that the sum Y ;2 a?vv, < 00 a.s. since

oo
!
E (E afvtvt> E at vtvt Yow g at < 00,
t=1

under both B() and (ii). The off-diagonal block in (9) is a zero matrix because:
under B(ii), B (372, ||«fv;|| lac]) = E (||«2v;|]) Y52y lae| < oo, in which case
Sooc advja, converges almost surely and n=1 /230 advia; = Oy, (n7Y?);
alternatively, under B(i), we have by Holder’s inequality

S (2 ettt )

n

E th Z |a|

t=1

nTi Lin T
B (||=fvf]]) = Zlal

): (1) for all n € (0,1),

IN

Il

.
7 N
3
wlm

|

i‘:
=

and then n=Y/23"1  29va, —1, 0.

The standardized signal matrix therefore has a random limit and no invari-
ance principle applies because Y o, a?vyv) depends on the distribution of v;.
Further,

D—IW/U _ ﬁzzlzl Wattot :| _ |: ﬁzzlzl xguot :| = [ qu (1) :| (10)
n 0 — n - n )
thl Wyt Uot thl atVtUOt Qo

where Q, := Zfi 1 ¢Vsugy converges almost surely since 2111 a;VsUog 18 an Lo
martingale with Y ;% afE ||vivjud, || = 000 [[vev || Yoo af < oo. So Dy tWug
converges weakly but does not satisfy an invariance principle, the distribution
of the limit component ), depending on the distribution of the component
variates (ve, uot) -

2.2 Near-Singular Least Squares Regression

The parameter vector 8 in (1) is estimated by ordinary least squares regres-
sion and the null hypothesis Hy : § = 0 is tested using the Wald statistic
W, = 3 X'X3/62, where 62 = n~1y/ (In —X(x'x)" X) y is the usual sam-
ple variance of the regression residuals. The limit behavior of the regression
components {B,&Q, Wn} is as follows.



Theorem 1 Under Assumptions A and B

() [ g: } = [ —Ikrf/ }fmwhere & = (Z;’ilafvtv;)‘l 5% awvstior,

(li) (} —> 000,

(iii) W, = Xk +(Cp, Where () := 21/251)/01/2 = Eb_bl/z POyt atvtuOt/a(l)(/)Q.

It follows from (i) that both estimates 3, and 3, are inconsistent and con-
verge to random quantities dependent on &,. No invariance principle applies be-
cause the distribution of £, depends on the distribution of the data through the
1nputs {vt, uOt}t 1- The limit theory also has degenerate dimension k; because
ﬂ —f, is asymptotically proportional to Bb By Thus, the asymptotic singular-
ity in the signal matrix leads to inconsistency in the regression coefficients and
degeneracy in their limit distribution. As noted above, the weak signal is in the
direction wp; for which the sample excitation matrix >, afviv; — Y o, afvv,
does not diverge as the sample size n — oo, leading to the inconsistency and
a singular limit distribution that depends on the limit regression coefficient
& =00 afvtvg)fl > ie, arvgugy in this direction.

Nonetheless, there are identifiable and estimable functions of the coefficients.
In particular, as shown in the proof of (i), the linear combination S, + I3, is
consistently estimated by Ba +1II’ Bb at a y/n rate, giving a consistently estimable
function of the original coordinates with the normal limit distribution

Vit (Ba + 0B, = B, — B, ) = N (0,00055,) (11)

The matrix II is generally unknown but it can be consistently estimated at an
O (n) rate. In particular, if the partition structure of 2, = (2/,,},)" is known,

. . A n n -1
least squares regression of xp; on x4 gives II = (3,0 xpealy) (O 1q Tat®hy)

and simple manipulations reveal that n (f[—H) —as. (Zt 1 VT ) by 1

Then 3,411’3, is consistent for 3, +1II' 3, with the same \/n rate of convergence
and asymptotic distribution as (11).

Curiously, as shown in (ii), the least squares error variance estimate 62 is
consistent even though the regression coefficients are inconsistent. The rea-
son is that asymptotic collinearity in the regressor vector x; does not prevent
consistency of the residual variance. In particular, the fitted residual is

Y — 248 = ug — (B—ﬁ) = ugr — wy (& — @)
ugs — oY (&g — ) — agvy (G — i)
= ug —w D' Dy (& — )

Uot



and, since D,, (& — ) and D,,'W'W D, ! are both O, (1) from (15) and (17) in
the proof of Theorem 1, we find that

. 1 n . 1 n 1 A B B A
52 = - > g, = - > ug, - ~(a- @) Dy, (D,*W'WD, ') Dy, (& — )
t=1 t=1

1 n
R Zu%t + 0p (1) = 000
t=1

From (iii), W, is a limiting mixture of a chi square variate and the squared
length of the vector variate (,. No invariance principle holds because ¢, de-
pends on the data distribution through {v, ug: },e, . However, when (v, ug) is
Gaussian, then ug; ~ iid N (0, 000) is independent of {v;} because E (viugr) = 0
in view of Assumption A(ii). Then ¢, =4 N (0,I,) and (¢, ~a X3, S0 that
W, = X% Thus, the usual limit theory for the test statistic W, applies when
the input variates are Gaussian.

3 Singular Structural Model and IV Estimation

3.1 Model Formulation and Limit Theory

We now consider the structural equation case where the regressor x; in (1) is
endogenous. The asymptotic characteristics of z; are assumed to be the same
as those given earlier, so that (4) and (5) continue to hold but now E (ziug) =
Y20 # 0. Let z; be a K x 1 vector of instruments with K > k 4+ 1. The IV
estimator is 3y = (X'PzX)" " (X'Pzy) and the estimation error has the form

By —B = (X'PzX) ' X'Pyug = (GHW’PZWG*)‘1 G'*W' Pyuqg
= GW'P;W) " W'Pyu,

with G and W defined as in (7 & 8) and corresponding coefficient estimates
ary = G713, with estimation error

ary —a=G (B — B) = (WP,W) " (W Pgug) .
We replace Assumption A with the following.

Assumption A’ (i) wug is a martingale difference sequence (mds) with respect
to the filtration Fy = o {uot, Uot—1, -} Zt+1, 2t, .-} and with condi-
tional variance E {u3t|.7:t71} = 0go @.S.

(ii) ry = (29, ve, 2, UOt)/ is strictly stationary and ergodic with E (||7“t||2+5) <
oo for some & > 0, and variance matrix

Z:z:x Za:v 2a:z EzO
_ va Zvv sz 2vO
rels, 2, om0 |70

z
Yoz 2ov 0 o000



with X, having full rank k, < K.

Assumption A’(i) ensures that the orthogonality condition E{zug:} = 0
holds, giving instrument validity to z;, and A’(ii) imposes the partial rele-
vance rank condition that rank (X.,) = k, < K. The full relevance condition
rank [X,,,2,,] = k with respect to x¢, or equivalently the pair (m?, vt) , is not
required in what follows as the regressor singularity dominates the asymptotics.

The parameter vector § in (1) is estimated by instrumental variables regres-
sion using the instruments z;. The null hypothesis Hy : § = 0 is block tested
using the corresponding Wald statistic W,, = 85, X' Pz X /5%, where 62 =
n~1%@'% is the usual sample variance of the regression residuals @ = y — X3/ .
We also consider the Sargan overidentification test statistic for testing the va-
lidity of the instruments. Using the IV residuals

u = y_XﬁIV:uO_X(XIPZX)_lXIPZuO
= wg— W (W' P,W) " W' Pgu,

we write the projection
Pyii = {PZ _P.X(X'PyX)"t X’PZ} up = {PZ _PW (W' PW)t W’PZ} uo.
Then the Sargan test for overidentification has the form

S, = @Pri)5* = {Pz ~ P.X(X'Pyx)"" X’PZ} o /52

ul {Pz —PW (W' P,W) ! W’PZ} o /2.

The limit behavior of the IV regression components {BIV,&Q, Wn,Sn} is

given in the following result where M N (0, V') signifies a mixed normal distrib-
ution with zero mean and mixing variance matrix V.

Theorem 2 Under Assumptions A’ and B

. _ )I0 et ) SIS S0 et 3 W B
® BGT By =8 = MN (0’000{ Ay, asiial } >

where A, = Ztoil a;z1vy, and in partitioned component form

L ﬂa,[viﬂa _H/ o 1
Vn [ 51;,1\/—51) ] = { Iy, } XMN(O’ ooH )7 (12)

where H = ALY A, — ALY, (5,.570%.,) 7 S,.8 1A,

(ii) % —p 000 {1 +w..}, where w,, = Y H Y2 (352 aZvvy) H-V/2y,
and ’LZJb ~d N(O,Ikb) .

(iif) Wo = x3/ {1 +w..}.



(iv) Sp, = X%(—k-/{l +wz}

The standardized and centred IV estimate F,,G~1 (8, — 8) = F,, (arv — @)
has a mixed normal limit, where the mixing variance matrix depends on the
matrix A, = > ,°, a;2v;, which in turn depends on the distribution of (z;,v;)
and the deterministic sequence (a;). This random matrix A, is a measure of
the importance of the near-collinearity in the system between the component
regressors Ty = o9 and xp; = Ia) + ayv; when the system is estimated using
instrumental variables z;. Importantly, the series Y ;° | a;zv] < 00 a.s., so that
A, is a well defined random matrix.

As is apparent from (12), the individual IV component vectors 3, i, and
By, rv both have divergent behavior at the \/n rate. Hence, the effects of the weak
signal arising from the near collinearity in the regressors that is evident in least
squares regression under exogeneity, is exacerbated by endogeneity, even when
the instruments are valid, satisfying both orthogonality and strong relevance
conditions. Thus, near-collinearity in the presence of endogeneity, even with
strong instruments in regression, leads to divergent behavior in the estimates.

On the other hand, as in the case of exogenous x; and as shown in the proof of
(i), there are some estimable components. In particular, the linear combination
B, +1I'3, is again consistently estimated, here by 3, 1y +1I'8; 1y, and at a \/n
rate, giving a consistently estimable function of the original coordinates with
the mixed normal limit distribution

Vi (Bav + 1By v — B, —1'B,) = MN (0, UOOHEE) ; (13)

where Hgg = |S0:370Te0 — 5 Bi0 AL (ALZZ1A) T ALSIIS,, | and with
the mixing matrix A, again influencing the asymptotics. The matrix IT is gener-
ally unknown but, as earlier in the regression model case, it can be consistently
estimated at an O (n) rate by least squares regression of zp; on xg:. In the
same way, the estimate [T = (320, apal,) (S0, Zar@ly) — —a.s 1T with limit
distribution n (ﬁ - H) —as. (Yoroq arver’) Bt So, By v + ﬁlﬁb,]v is again
consistent for 3, + I3, with the same \/n rate of convergence and asymptotic
distribution as (13).

Part (ii) shows that the usual error variance estimate is inconsistent and
asymptotically overestimates ooy by the asymptotic bias expression ogyw,, =
Y H=Y2 (300 a?vpvy) H=1/2%¢,. As shown in the proof, this asymptotic bias
arises in the residual variance estimate from the limit of the following component
involving a quadratic form in the estimation error (ary — @)

1
(ary —a) F, (nFnlw’WFn1> F, (ary — @)

- {\/15 (aprv — ab)/} (g af”t”i) {\/15 (o, 1v — Oéb)} + o, (1).



Thus, in contrast to the linear regression case, the estimation error is not negli-
gible when estimating the error variance and produces error variance estimation
bias in the limit.

It follows from Part (iii) that the limit distribution of the Wald test of the
block hypothesis Hy : § = 0 is a mixed chi-square distribution with degrees of
freedom k and scale mixing coefficient {1 + sz}il < 1a.s.. In particular, W, =
X2/ {1+ w..} < x3. Tail significance in the limit occurs when x2 /{1 4+ w,,} >
cv,, for the test critical value cv, and this inequality implies that X% > CU4 SO
that

P {Wn > cva] — P [Xi/{l +tw..}> cva] <P [Xi > cva] )

Test based on W, with the usual X3 critical value are therefore conserva-
tive asymptotically. The reason is that the IV error variance estimate 62 =
000 {1l 4+ w..} > ggo so that &2 overestimates ooy and hence the Wald statistic
W, is biased downwards, thereby favoring the null and leading to a conservative
test.

This is a curious finding that implies size-controlled tests of § = 0 exist
even when the regression coefficient 5 cannot be consistently estimated. Lack
of asymptotic identifiability means that the equation error variance estimate is
larger than the error variance in the limit, which then biases the test in favor of
the null hypothesis, thereby reducing power. The impact on test power may be
further investigated by doing an asymptotic power analysis for local and distant
alternatives in various directions, a topic that is not pursued here.

The mixed normal limit distribution given in Part (i) of Theorem 2 presumes
the invertibility of the (conditional) covariance matrix

[ D k) SNEND YD Dt U/ 8 } _ [ DI }

ATy, AXIA, o S S Al (14)

zz

This matrix is nonsingular if the matrix [X.., A,] has full column rank. By
assumption A’(ii) X, has full column rank k,. The second component in the
partition, A, = Zfil a;zvy, is a random matrix. We take a leading case for
analysis. In particular, if (z¢,v:) ~g tid N (0,diag (X.., X)), then

A, = Zatztvé ~g MN (O, 3., ® Zafvwé) ,

t=1 t=1

which is a nondegenerate mixed normal distribution since Y ;2 a?viv; > 0 a.s.,
and X,, is positive definite, by assumption. Deficient rank of (14) means that
X, A9 = X090 + Agy = 0 a.s. for some ¢ = (¢),9) # 0. That is,
A.gy = —X.294, a constant vector a.s. . Note that g, # 0, otherwise 3,,9, =0
which further implies g, = 0 because X,, has full rank by assumption. Since
A, has a full rank mixed normal distribution, it follows that for g, # 0 we have
P(A.gp = —X.294) = 0. So the conditional covariance matrix (14) almost surely
has full rank.

The final part of Theorem 2 considers the behavior of the Sargan overiden-
tification test statistic for testing the validity of the instruments, showing that

10



the Sargan statistic S,, is distributed in the limit as x%_,/{l 4 w..}, which
is proportional to a chi-squared variate with degrees of freedom K — k corre-
sponding to the degree of overidentification. This limit theory involves the error
variance estimation bias through the presence of the scale factor {1 + wzz}_l,
which leads to a mixed chi-square limit. Thus, even though the estimates of the
structural coefficients are inconsistent, the overidentification test is proportional
to chi-square with the usual degrees of freedom. In consequence, like the Wald
test, the overidentification test statistic is biased in favor of the null, leading to
a conservative test of instrument validity.

4 Conclusion and Extension

In order to explore the implications for inference of asymptotic singularity in
stationary regressors, it has been convenient to use the partitioned structure
xy = (xl,,2;,) given in (5). This structure leads to a triangular model in which
the components of z; are related according to the linear system xp; = Iz, +asv;.
In practical work, theory may sometimes suggest such a relationship in which
variables are asymptotically stationary and co-related. In general, however,
near-collinearity in stationary regressors may be suspected without knowledge
of a particular functional relation. In such cases, it will be of practical interest to
develop methods that enable inference about possible asymptotic singularities
when the form of the dependence between the components of x; is completely
unknown. This topic of investigation is now being explored.

5 Appendix
The following preliminary result is useful.

Lemma A

(a) Under Assumptions A(i), A(ii) and with s; = (x¢,v:), partial sums of
I s ; or .\ :

qt = stuor = (44, q.,) , partitioned conformably with s; = (xt 7vt) , satisfy

the functional law n’l//2 Zttzlj gt = By (+) with limiting Brownian motion

vector By = (B;I,Bgv) , conformably partitioned with q;, and covariance

matric
ZZE:E EJZ’U
Qqq:CTOOEss:UOO |: » » :| >0

(b) Under Assumptions A’(i) and A’ (ii), partial sums of zyug: satisfy the func-

tional law n=1/2 tLZlJ zttor = Boy (+) with limiting Brownian motion B,

with covariance matriz oogX .-

Proof

11



Part (a) The CLT follows from Assumptions A(i) and A(ii) sincen™1/2 3" ¢,
satisfies the stability and Lindeberg conditions. In particular, the martin-
gale conditional variance matrix n=! Y"1 | s} {u%t|,7:t_1} —a.s 000 Dss
as n — 00, ensuring stability. The Lindeberg condition

n
n 'S E [||sts;|| w21 {||s,fs;||1/2 gy | > \/ﬁe} |.7-'t_1] —, 0, for all e > 0
t=1

holds by standard manipulations since
1{lsest ' fuoe] > Ve p < 1{lsustl] 2 > nt /e /2 11 {uor| > nt/4e /2],

and

— - 1/2
n 3B syl gt {lsesp)? fuorl > vire} |7
t=1

S st U llsest )2 > 0t/ 12 B (o)

<
t=1
St [ >0} 7.
t=1
— —1 n / / 1/2 1/4 1/2
= goon Y [sesill 1] llsesp |2 > i/ e
t=1
" (nl Z ”St'sQ”) E [“311 {\U01| > n1/4el/2} ‘]:0}
t=1
—r, 0.

The functional law n~!/2 ZtLLJ gt = B, (+) then follows directly by Hall
and Heyde (1980, theorem 4.1).

Part (b) The CLT follows in the same way from Assumptions A’(i) and A’(ii):
n-1/2 >°r, ztuor has martingale conditional variance matrix n™* Y"1 | z2/E {u%t|ft,1} —a.s
00022, as n — 00, and the Lindeberg condition

nt ZE [||ztz£|| ud, 1 {||ztz£H1/2 luge| > \/ﬁe} |_7-'t,1} —, 0, foralle>0
t=1

holds by the same argument given in part (a). The functional law again
follows.

Proof of Theorem 1

Part (i) We start by considering the transformed system (3) and corresponding
least squares estimate & = (W/'W) ™" W’y. In view of (9) and (10) we have

Yoo = B (a92)) 0

D'W'WD ! —
n n a.s. 0 be — Z;’il atzvtvg )

(15)

12



and

D Whag = [ Vi Lt Wattor ] . [ B,, (1) ] )
" Z?:l WhptUot Qv = Zt=l VUt ’

so that

D,(@—a) = [D;'WWD;Y ™ Dy Wl

- 5] o

Z;;,l Zzl VLUt 3

where £, = N (0,0005,4) and &, = (3,2, a?vtvg)_l Yoo arviugs. Next
note that 3 — 8 = G (& — ) = GD;'D,, (& — ), so that

(GDY) " (B=8) = Da(a—a) = (€6) -

Now
[@a—ﬂa}GDlD {aa—aa}wﬂka H/}D {aa_%
By — By R TS 0 I, L R R—
so that
_ - Qg — Qg
e |G =G0 )= 18]
That is

|: \/ﬁlka \/ﬁH/ :| |: @a_ﬂa :| = |: ga :|
0 I, By — By ’
It follows that

By =By = &,
o)) = N

which leads to

wnl-lar]e

; - By=8y) +0p(1) = £,
Hence, both Ba and B , are inconsistent with limits that are random, depen-
dent on &, = (Zfil a?vtvg)fl o2, arvpugr, and of degenerate dimension
ky because 3 o — B, 1s asymptotically proportional to ﬁ » —Bp- No invariance

principle applies because the distribution of £, depends on the distribution
of the data.

13



Part (ii) Note that

/
_ 1 _
67 = nlu (In ~ X (X'X) 1X’> up = 0% S XG(G'X'XG) T G X g
n n
/ 1 _ / 1 _
- “0:0 — g W (WW) ™ Wy = “(’nuo — ~uWD; (D W'WD;") "D W g

— p B (uf;) = oo,

since n~'ufug —q.s B (ud;) by the ergodic theorem, D, 'W'W D1 —, .
diag {Xaa, Zpp} > 0 by (15), and D;;'W'ug = O, (1) by (16). Hence, &
is consistent for oqg.

Part (iii) Under the null Hy : 3 = 0, we have « = G~ = 0 and

W, = BX'XB/5*=FG"1¢'X'XCC B/ =& W Wa/s
= &D,D;'W'WD;'D,a/s*
= (£.8%) [ Zga 20 } [ S } Jooo = {€,5aal, + E X6y } /000
bb gb
= Cola+ o
where

N (0, 0'002;;)
—1 0o
Ebb thl At VUOt

using (17) and setting ¢, := Eéffa/aéf =4 N (0,1,,) and (, := 2%25!7/0362 =
21;1/2 Sy atvtuot/a(l)éQ. We deduce that W, = x7_+ (¢, a mixture of

a chi square distribution and the squared length of the vector variate (.

No invariance principle holds because ¢, depends on the data distribu-
tion through {vs, uo:}yo, . However, note that when (vy, uo;) is Gaussian,
then wot ~ id N (0,000) is independent of {v:} because E (viup:) = 0 in
view of Assumption A(ii). Then ¢, =q N (0, I),) and (¢, ~q Xz, so that

W, = X%-

Dn(a—a);»[gz } _{

Proof of Theorem 2

Part (i) We start the analysis by considering the behavior of the sample mo-
ment matrix of w; and the instruments z;, viz.,

Dot T2
W'Z — a=1T% |
Dot QU2

Under Assumption A’(i), A'(ii), and B(ii) Y1, a1v2; —ra.s 2 geq QU2
which is convergent a.s. because Y o, |a;| E ||vz}|| < oo. It follows that

14



—1/2 n /
n=1/ D i1 G z; —4. 0 and then

n -1 n n
—1 / —1 _ \/lﬁ Z?:l x?z{ / 1 07 /
D, W' P,WD, "~ = E 2424 —\/» E 2Ty E a1Vt 2
t=1 n t=1 t=1

n /
PRRERR A
1\ 0,/ n A n n
- " Zt:l T2t Zt:l Rt2¢ 1 o 1 /
= 1 n 1 —_— — ZtX —— AtV 2
L Z AU+ 2 t t
Ur 2ot=1 QtVtZy n n Vn —

. DI Vst SR
a.s 0 0 )

which is singular. Applying the martingale CLT (see Lemma A) we have
n~Y23 | ziugr = N (0,000%5.) , and by ergodicity n ™! [Yory 2w, Yo 20, Y 22| —as.
[ ¥.c Y X.. |, which leads to

LN 202 S\ 1 &
D 'W'Pzug = S I } (f—l : t> — zu
n Z%0 [ \/lﬁztzl atUtZ,lg n \/ﬁtzl 7ot
N(O,JOOZIZZ;ZIEZZ) :|

Yz _
= |: :| Ezzl X N(07000222) = |: 0

0

ow define F;,, = diag nly , —=1r, | and note that
Now define F, di Iu\/lﬁlb d h

1 n 0./ n /N —1 n n
_ _ = P A _q %% 1
Fn 1Hr/PZVVFn 1 — |: n Zt,1 t~t ] (Zt_l t) [nE :Ztmg)/’} :atZtU;g
t=1 t=1

Yo arvez, n
- DI Myt O DI Vst (X2 arzvy)
(T avez) B (e awvez)) B (0002 arzvy)
_ . |: Ezzzz_zlzzx ECEZEZ_ZlAZ

A/zzz_zlzzﬂi A;ZZ_ZIAz :| - M7 (18)

where A, = ;% a;zv], which is convergent almost surely because Y, | |a;| B ||zvf]| <
oo in view of B(ii) and A’(ii). Also

L5 402 S 2z I
FYW'Pou, = n;t:l Ty 2y t=1~t%t L -
! 7 [ 2o Uiz n vn tzzl o
= [ i’”,z ] Y x N(0,000%..) = MN (0,000 M) .
Note that the matrix variate A, = >, a¢zv; is independent of the limit

of (230 1 z2)) —1/2 ﬁ Sy zeuor = N (0, Ik ) , since this Gaussian limit

does not depend on {z;,v:},-, . Hence, we have the mixed normal (MN)
limit theory

Fo(ary —a) = (Ey'WP,WE,Y) ™ (F ' W Pyug)
= MN (0,000M"). (19)

15



In partitioned form, we have

1
Fp(ajy —a) = {\/E(Oéa,lv — ), 7n (o, 1v — ab)}
DIND it NS YHID viety’ TN I
= MN (OaUOO l: A/ Eilzzx A/ EflAZ :l )(20)

z zz z zz

and so aq v —p g but o 1y diverges at a \/n rate. Transforming to the
original coordinates, we have

Bry—B=Glary—a)=| T T (0 —a) (21)
v 0 I ,
and then
6aIV_ﬁa Qg 1V — Qg —1
—B= " =q| % = GF;'F, —a),
frv=F { Bo.rv — By Qp v — O " (ary —a)
giving
F.G7' (Bry — B) = Fu(ary —a) = MN (0,000M ") . (22)
/
Since G~ = [ Ién 1_11 } and F,, = diag (\/ﬁIkay%LIkJ , we have the

partitioned asymptotics

F,G7 ' (Bry — B)

- [ R L]

_ [ VI (Barv = Ba) + VoIl (B v — By) }
ﬁ (Bo.av — By)

DII0 Viutd D YN0 yjut W e
= MN (0,0’00 |: A,Z_Zfz A,Z_ZTA :| . (23)

!
Recall that « = G713 = { Pa +5H By ] =: [ g“ so that 5, ;v +11'B3, 1y
b b ’ '

is consistent for 8, +II'8, and \/n (B, ;v — Ba) + vnlIl' (B v — B,) has
a limiting mixed normal distribution, whereas 3, 1y, — 3, diverges at the
rate v/n. More specifically, we have by partitioning the limit covariance
matrix in (23) that

VI (Ba,rv + 1By — B, = T'By) = MNO,000H g5,

z zz z zz

where Hpgjs = [znggzw — L NIlAL (ALSTAL) T AL zflzw} .
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Part (ii) We next consider the IV error variance estimate 5> = 2@'@, where

i=y—XBry =y—Wayy =ug—W (W PzW) ' W’ Pgug. The estimate
can be expanded as follows

1 2 _ 1 _ _
6t = —upuo — —ugPyW (W'PZW) 1W’u0+ﬁu{)PZW(W’PZW) "WW (W P,W) T W Py

1 2 _
= uhug — —upP,WE; T (F "W P,WE ) ™ Ey W g
n n
1 - _
+—uGP,WE, (E, W P,WE, ") YFOWWE! (E,'WP,WE ") ' FOMYW Pyug.
n

Observe that n~ ufug —a.s. 000, Fy (v — ) = Zo := MN (0, 0'00M_1)
in view of (19), and

1y 0
Fn1W’u0[ /7 2t=1 Titor }

VDL arvrugy
so that

1

1 _
~up Pz W (WP WV) "Wy = ~ (v —a) FuF W

1 , lz” .%'Ouo 1
= —(aqv—a)' F,| ngt=1"t"" | —0o, [ —=.
vn S { D ie1 GtV PA\vn
Next, note that

1
—E'WWE!
n

l Zt 1xt i Z%l atg?gé _ L2 Zt 15”15 (Z %2;;:1 ‘;taggvé
n Zt 1 at”txt/ nY i aivyv; Zf 1 @tV Dt AUy
e o0

a Zt:l AV Uy

Alternatively under A’ and B(i), we have
{ﬂ Zt 1 ‘Ttx %Z?:l ath?'Ug :l — |: Op (nil) Op (’]’L71+n) :l

07 n 2,,0,,/ —1+n n 2,0,/
t 1 G0y Y oioq GFU O, (n ) 1 GV Uy

] , under A’ and B(ii).

for some small 7 > 0. Using these results we obtain
1 _ _
~up P, W, (B W PWEY) LESWWE (B W P,WE Y T E W Paug
1
= (arv—a) F, {n EWWE; } (g — @)

’ Op (n~1)  Op (n™1H7)
= (av—a) By { Op (n—1+n) Z:&L—l ayvLv; Fular —a)

S R — (Z ) [t =} 0,0
= ooy H /? (Z afwg) H™ Y2y,

t=1
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where we use the fact that % (o, 1v — ) = ﬁ (By.rv — By) = MN (0,000H ') =
ot H=1/2, with b, = N (0, I1,,) and

z zz z zz

H= [A’ SIAL - ALY, (8,.9008.,) zmz;;Az] .

It follows that

~2

6% ==ttt —p o000 {1 +wss}

S|

where w,, = P, H=Y2 (3272, a?vv)) H™ /%1, as stated.
Part (iii) The block Wald test is
W, = BryX'PzXBy /5% =BG 'G'X'P,XGG By /67 = oy W P,Wayy /62
= o F, (E'"WP,WEY) Fuoayy /67,
Under the null hypothesis Hy : 8 = a = 0 we have from (22) that F,ary =
N (0,000M 1) , and from (18) that F, ‘W' P;WF, ! = M. It follows that
(E W P,WE Y Fuagy ol = 2 ~ N (0, 1),

so that
1

= Trony? 7= e,

Wy

as stated.

Part (iv) The Sargan test for overidentification has the form
S, = @Pzi)5* =) {Pz — P,X (X'Pzx)"" X’PZ} U /52
— {PZ —PW (W PW)! W’PZ} o /5
/ 1oN—1/2 1 ’ —1 1177 1\ —1/2 ~2
= - @z P rwwew) T wz (227 ¢, 8,
where ¢, = (n'2'2)/* (n"1/2Zu¢) = ¢ = MN (0,000Ix) = N (0,0001x)

by the MGCLT in Lemma A. Note that the limit distribution and random
vector ( is independent of (z;). Use the earlier finding (18) that

Ff?lW/PZWFgl —as |: E:EZEZZ sz EEZEZZ AZ :| :

A;Ez_zlzzx A/zzz_zlAZ

where A, = Y7, atzv;, and F,, = diag (\/ﬁf,m ﬁ) . We further note

that
—1/2
(Z'z2) VP Z2wWEY = 22\~ ZW o
A AN . n _
B ( n ) [ thl Zt$g Ztlzl arzivy ] —a.s 2221/2 (.0, Az,

18



and, defining Q = 2;1/2 [ Yoo A, ] , observe that

szzz_zlzzw szzz_zlAz sz —
[ AT, ALSIA, }:[ A; }E [P A ]=00

z zz

We dedice that
S, = ¢ {IK —(Z'2) P 2w (W P,W) T Wz (Z’Z)*l/z} ¢, /5>

= Cln {IK - Q (QIQ)_l Ql + 0q.s. (1)} Cn/ {UOO [1 + wzz] + 0q.s. (1)}
= X%{—k/{l "H*Jzz}v

since Py = Ix —Q (Q'Q)fl Q' is symmetric and idempotent of rank K —k.
Hence, the Sargan overidentification test statistic is distributed in the limit
as X% 1./ {1 +w..}, as stated.
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