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Estimating Smooth Structural Change in Cointegration Models1

by

Peter C. B. Phillips2, Degui Li3 and Jiti Gao4

Abstract

This paper studies nonlinear cointegration models in which the structural coefficients may evolve

smoothly over time. These time-varying coefficient functions are well-suited to many practical

applications and can be estimated conveniently by nonparametric kernel methods. It is shown that

the usual asymptotic methods of kernel estimation completely break down in this setting when

the functional coefficients are multivariate. The reason for this breakdown is a kernel-induced

degeneracy in the weighted signal matrix associated with the nonstationary regressors, a new

phenomenon in the kernel regression literature. Some new techniques are developed to address the

degeneracy and resolve the asymptotics, using a path-dependent local coordinate transformation

to re-orient coordinates and accommodate the degeneracy. The resulting asymptotic theory is

fundamentally different from the existing kernel literature, giving two different limit distributions

with different convergence rates in the different directions (or combinations) of the (functional)

parameter space. Both rates are faster than the usual (
√
nh) rate for nonlinear models with

smoothly changing coefficients and local stationarity. Hence two types of super-consistency apply

in nonparametric kernel estimation of time-varying coefficient cointegration models. The higher

rate of convergence (n
√
h) lies in the direction of the nonstationary regressor vector at the local

coordinate point. The lower rate (nh) lies in the degenerate directions but is still super-consistent

for nonparametric estimators. In addition, local linear methods are used to reduce asymptotic bias

and a fully modified kernel regression method is proposed to deal with the general endogenous

nonstationary regressor case. Simulations are conducted to explore the finite sample properties of

the methods and a practical application is given to examine time varying empirical relationships

involving consumption, disposable income, investment and real interest rates. ‘
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1 Introduction

Cointegration models are now one of the most commonly used frameworks for applied research in

econometrics, capturing long term relationships among trending macroeconomic time series and

present value links between asset prices and fundamentals in finance. These models conveniently

combine stochastic trends in individual series with linkages between series that eliminate trending

behavior and reflect latent regularities in the data. In spite of their importance and extensive

research on their properties (e.g. Park and Phillips, 1988; Johansen, 1988; Phillips, 1991; and

Saikkonen, 1995; among many others) linear cointegration models are often rejected by the data

even when there is clear co-movement in the series.

Various nonlinear parametric cointegrating models have been suggested to overcome such de-

ficiencies. These models have been the subject of an increasing amount of econometric research

following the development of methods for handling nonlinear nonstationary process asymptotics

(Park and Phillips, 1999, 2001). Parameter instability and functional form misspecification may

also limit the performance of such nonlinear parametric cointegration models in empirical applica-

tions (Hong and Phillips, 2010; Kasparis and Phillips, 2012; Kasparis et al, 2013). Most recently,

therefore, attention has been given to flexible nonparametric and semiparametric approaches that

can cope with the unknown functional form of responses in a nonstationary time series setting

(Karlsen et al, 2007; Wang and Phillips, 2009a, 2009b; Gao and Phillips, 2013). A futher exten-

sion of the linear framework allows cointegrating relationships to evolve smoothly over time using

time-varying cointegrating coefficients (e.g. Park and Hahn, 1999; Juhl and Xiao, 2005; Cai et al,

2009; Xiao, 2009). This framework seems particularly well suited to empirical applications where

there may be structural evolution in a relationship over time, thereby tackling one of the main

limitations of fixed coefficient linear and nonlinear formulations. It is this framework that is the

subject of the present investigation.

Cai et al (2009) and Xiao (2009) proposed a nonlinear cointegrating model with functional

coefficients of the form

yt = x′tf(zt) + ut, t = 1, · · · , n, (1.1)

where f(·) is a d-dimensional function of coefficients, xt is an I (1) vector, and both zt and ut are

scalar processes. By keeping the covariate zt scalar, the model helps to circumvent the dimen-

sionality difficulties that arise when d > 1. Extensions of (1.1) to more general nonparametric and

semiparametric formulations are considered in Gao and Phillips (2012) and Li et al (2013). Kernel-

based nonparametric methods such as Nadaraya-Watson local level regression and local polynomial

regression can be used to estimate the functional coefficients in (1.1). While the generality of this

model appeals and economic theory may provide some guidance concerning the covariates, it is

often difficult in practice to select a single covariate zt for use in (1.1). When a single variable

is not suggested by theory, it will often be of interest to set the model in a different context and

explore changes in the cointegrating relationship between the variables yt and xt over time. This

perspective leads to the following cointegration model with time-varying coefficient functions

yt = x′tf

(
t

n

)
+ ut = x′tft + ut, t = 1, · · · , n. (1.2)

Here f(·) is a function of time (a weak trend function) and (1.2) captures potential drifts in the

relationship between yt and xt over time. Such a modeling structure is especially useful for time

2



series data over long horizons where economic mechanisms are likely to evolve and be subjected

to changing institutional or regulatory conditions. For example, firms may change production

processes in response to technological innovation and consumers may change consumption and

savings behavior in response to new products and new banking regulations. These changes may

be captured by temporal evolution in the coefficients through the functional dependence f
(
t
n

)
in

(1.2).

Nonparametric inference about time-varying parameters has received attention for modeling

stationary or locally stationary time series data - see, for instance, Robinson (1989), Cai (2007), Li

et al (2011), Chen and Hong (2012), and Zhang and Wu (2012). However, there is little literature

on this topic for integrated or cointegrated time series. One exception is Park and Hahn (1999),

who considered the time-varying parameter model (1.2) and used sieve methods to transform the

nonlinear cointegrating equation to a linear approximation with a sieve basis of possibly diverging

dimension. Their asymptotic theory can be seen as an extension of the work by Park and Phillips

(1988).

This paper seeks to uncover evolution in the modeling framework for nonstationary time series

over a long time horizon by using nonparametric kernel regression methods to estimate f(·). Our

treatment shows that estimation of this model by conventional kernel methods encounters a degen-

eracy problem in the weighted signal matrix, which introduces a major new challenge in developing

the limit theory. In fact, kernel degeneracy of this type can arise in many contexts where multi-

variate time-varying functions are associated with nonstationary regressors. The present literature

appears to have overlooked the problem and existing mathematical tools fail to address it. The

reason for degeneracy in the limiting weighted signal matrix is that kernel regression concentrates

attention on a particular (time) coordinate, thereby fixing attention on a particular coordinate of f

and the associated limit process of the regressor. In the multivariate case this focus on a single time

coordinate produces a limiting signal matrix of deficient rank one whose zero eigenspace depends

on the value of the limit process at that time coordinate. In other words, kernel degeneracy in the

signal matrix is random and trajectory dependent.

The problem has two relatives in existing asymptotics. First, it is well understood that coin-

tegrated (or commonly trending) regressors produce degeneracy in the limiting signal matrix of

nonstationary data (Park and Phillips, 1988; Phillips, 1989). However, the kernel-induced degen-

eracy phenomenon is quite different because the null space is determined by the limiting trajectory

of the data at the time coordinate of interest, whereas in the cointegrated regressor case the null

space is a fixed cointegrating space - a space that by its very nature reduces variability and rank.

A more closely related case of signal matrix degeneracy in econometrics occurs when nonstationary

regressors have common explosive coefficients - see Phillips and Magdalinos (2008). In that case,

the null space is the space orthogonal to the direction vector of the (limit of the standardized)

exploding process. The null space is therefore random and determined by the trajectory of the

data.

This paper introduces a novel method to accommodate the degeneracy in kernel limit theory.

The method transforms coordinates to separate the directions of degeneracy and non-degeneracy

and proceeds to establish the kernel limit theory in each of these directions. The asymptotics are

fundamentally different from those in the existing literature. As intimated, the transformation is
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path dependent and local to the coordinate of concentration. Two different convergence rates are

obtained for different directions (or combinations) of the multivariate nonparametric estimators,

and both of the two rates are faster than the usual (
√
nh) rate of stationary kernel asymptotics.

Thus, two types of super-consistency exist for the nonparametric kernel estimation of time-varying

coefficient functions, which we refer to as type I and type II super-consistency. The higher rate of

convergence (n
√
h) lies in the direction of the nonstationary regressor vector at the local coordinate

point and exceeds the usual rate by
√
n (type I). The lower rate (nh) lies in the degenerate direction

but is still super-consistent (type II) for nonparametric estimators and exceeds the usual rate by√
nh.

The above results are all obtained for the Nadaraya-Watson local level time varying coefficient

regression in a cointegrating model. Similar results are shown to apply for local linear time-varying

regression which assists in reducing asymptotic bias. The general case of endogenous cointegrating

regression is also included in our framework and a fully modified (FM; Phillips and Hansen, 1990)

kernel method is proposed to address the endogeneity of the nonstationary regressors. In the use

of this method it is interesting to discover that the kernel estimators need to be modified through

bias correction only in the degenerate direction as the limit distribution of the estimators is not

affected by the possible endogeneity in the direction of the nonstationary regressor vector at the local

coordinate point. The limit theory for FM kernel regression also requires new asymptotic results on

the consistent estimation of long run covariance matrices, which in turn involve uniform consistency

arguments because of the presence of nonparametric regression residuals in these estimates.

The remainder of the paper is organized as follows. Estimation methodology, some technical-

ities, and assumptions are given in Section 2. This section also introduces the kernel degeneracy

problem, explains the phenomenon, and provides intuition for its resolution. Asymptotic properties

of the nonparametric kernel estimator are developed in Section 3 with accompanying discussion.

A kernel weighted FM regression method is proposed with attendant limit theory in Section 4.

Section 5 reports a simulation study that explores the finite sample properties of the developed

methods and theory, and Section 6 gives a practical application of the these time varying kernel

regression methods to examine empirical relationships involving consumption, disposable income,

investment and real interest rates. Section 7 concludes the paper. Proofs of the main theoretical

results in the paper are given in Appendix A. Some supplementary technical materials are provided

in Appendix B. A nonparametric specification test complete with its asymptotic theory is given in

Appendix C.

2 Kernel estimation degeneracy

Set τ = bnδc where b·c denotes integer part and δ ∈ [0, 1] is the sample fraction corresponding to

observation t. The functional response in (1.2) allows the regression coefficient to vary over time and

kernel regression provides a convenient mechanism for fitting the function locally at a particular

(time) coordinate, say τ = bnδc. At this coordinate the coefficient is the vector f (bnδc/n) ∼ f (δ)

and the model response behaves locally around τ as f (δ)′ xbnδc. Evolution in the response mecha-

nism over time is therefore captured as δ changes through the functional dependence f (δ)′ xbnδc.
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Under certain smoothness conditions on f and for some fixed δ0 ∈ (0, 1) we have

f

(
t

n

)
= f(δ0) +O

(
t

n
− δ0

)
≈ f(δ0)

when t
n is in a small neighborhood of δ0. The Nadaraya-Watson type local level regression estimator

of f(δ0) has the usual form given by

f̂n(δ0) =

[
n∑
t=1

xtx
′
tKth(δ0)

]+ [ n∑
t=1

xtytKth(δ0)

]
, Kth(δ0) =

1

h
K

( t
n − δ0

h

)
, (2.1)

where A+ denotes the Moore-Penrose inverse of A, K(·) is some kernel function, and h is the

bandwidth. Extensions to allow for multiple (distinct) coordinates {δi : i = 1, ..., I} of concentration

are straightforward.

The weights Kth(δ0) in the linear regression (2.1) ensure that the primary contributions to the

signal matrix
∑n

t=1 xtx
′
tKth(δ0) come from observations in the immediate temporal neighborhood of

τ. In general, we can expect there to be sufficient variation in xt within this temporal neighborhood

for the signal matrix
∑n

t=1 xtx
′
tKth(δ0) to be positive definite in finite samples, i.e. for fixed n and

h > 0. In the case of stationary and independent generating mechanisms for xt, the variation in

xt is also sufficient to ensure a positive definite limit as n → ∞ and h → 0 because the second

moment matrix E (xtx
′
t) may be assumed to be positive definite. However, in the nonstationary

case where xt converges weakly to a continuous stochastic process upon standardization, localizing

the regression around a fixed point such as δ0 reduces effective variability in the regressor when

n → ∞ because of continuity in the limit process and therefore leads to rank degeneracy in the

limit of the signal matrix after standardization. The generalized inverse is employed in (2.1) for

this reason. This limiting degeneracy in the weighted signal matrix challenges the usual approach

to developing kernel asymptotics. As is apparent from the above explanation, limiting degeneracy

of this type may be anticipated whenever kernel regression is conducted to fit multivariate time-

varying functions that are associated with nonstationary regressors.

To develop the limit theory we start with some regularity conditions to characterize the non-

stationary time series xt and the (scalar) stationary error process ut. We assume xt is a unit root

process with generating mechanism xt = xt−1 +vt, initial value x0 = OP (1), and innovations jointly

determined with the equation ut error according to the linear process

wt = (v′t, ut)
′ = Φ(L)εt =

∞∑
j=0

Φjεt−j , (2.2)

where Φ(L) =
∑∞

j=0 ΦjLj , Φj is a sequence of (d+ 1)× (d+ 1) matrices, L is the lag operator, and

{εt} is a sequence of independent and identically distributed (iid) random vectors with dimension

(d+ 1). Partition Φj as Φj = [Φj,1, Φj,2]′ so that

vt =

∞∑
j=0

Φ′j,1εt−j , and ut =

∞∑
j=0

Φ′j,2εt−j .
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Assumption 1. Let εt be iid (d + 1)-dimensional random vectors with E[εt] = 0, Λ0 ≡ E[εtε
′
t] >

0, and E[‖εt‖4+γ0 ] < ∞ for γ0 > 0. The linear process coefficient matrices in (2.2) satisfy∑∞
j=0 j‖Φj‖ <∞.

By functional limit theory for a standardized linear process (Phillips and Solo, 1992), we have

for t = bnrc and 0 < r ≤ 1,

xt√
n

=
1√
n

t∑
s=1

vs +
1√
n
x0 =

1√
n

bnrc∑
s=1

vs + oP (1)⇒ Bd,r(Ωv), (2.3)

n−1/2

bnrc∑
s=1

εs ⇒ Bε,r(Λ0), n−1/2

bnrc∑
s=1

ws ⇒ Bd+1,r(Ω), n−1/2

bnrc∑
s=1

us ⇒ Br(Ωu) (2.4)

where Bd+1,r(Ω) = (Bd,r(Ωv)
′, Br(Ωu))′ is (d+1)-dimensional Brownian motion (BM) with variance

matrix Ω, Bε,r(Λ0) is (d+ 1)-dimensional BM with variance matrix Λ0, and

Ω = Φ(1)′Λ0Φ(1) =

[
Φ1(1)′Λ0Φ1(1) Φ1(1)′Λ0Φ2(1)

Φ2(1)′Λ0Φ1(1) Φ2(1)′Λ0Φ2(1)

]
≡

[
Ωv Ωvu

Ωuv Ωu

]
, (2.5)

with Φ(1) =
∑∞

j=1 Φj , Φ1(1) =
∑∞

j=1 Φj,1, and Φ2(1) =
∑∞

j=1 Φj,2. Here Ω is the partitioned long

run variance matrix of wt = (v′t, ut)
′ . The limit theory also involves the partitioned components of

the one-sided long run variance matrix

∆ww ≡

[
∆vv ∆vu

∆uv ∆uu

]
=

∞∑
j=0

E
(
w−jw

′
0

)
.

It is convenient to impose a smoothness condition on the functional coefficient f(·) and some

commonly-used conditions on the kernel function and bandwidth. Define µj =
∫ 1
−1 u

jK(u)du and

νj =
∫ 1
−1 u

jK2(u)du.

Assumption 2. f(·) is continuous with |f(δ0+z)−f(δ0)| = O(|z|γ1) as z → 0 for some 1
2 < γ1 ≤ 1.

Assumption 3. (i) The kernel function K(·) is continuous, positive, symmetric and has compact

support [−1, 1] with µ0 = 1.

(ii) The bandwidth h satisfies h→ 0 and nh→∞.

In the linear cointegration model with constant coefficients

yt = x′tβ + ut, xt = xt−1 + vt, t = 1, · · · , n, (2.6)

where vt and ut are generated by (2.2) and satisfy Assumption 1, least squares estimation of β

gives β̂n = (
∑n

t=1 xtx
′
t)
−1 (

∑n
t=1 xtyt) . Standard limit theory and super-consistency results for β̂n

involve the following behavior of the signal matrix

n−2
n∑
t=1

xtx
′
t =

1

n

n∑
t=1

xt√
n

x′t√
n
⇒
∫ 1

0
Bd,r(Ωv)Bd,r(Ωv)

′dr, (2.7)

where the limit matrix is positive definite (Phillips and Hansen, 1990). By naive analogy to (2.7)

it might be anticipated that the weighted signal matrix appearing in the denominator of the kernel
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estimator f̂n(δ0) would have similar properties. However, some simple derivations show this not to

be the case, as we now demonstrate.

Take a neighborhood Nn,δ0 (h) = [b(δ0 − h)nc, b(δ0 + h)nc] of bδ0nc and let δ(n) = b(δ0− h)nc.
The following representation of the weighted signal matrix is convenient in obtaining the limit

behavior

n∑
t=1

xtx
′
tKth(δ0) =

n∑
t=1

xδ(n)x
′
δ(n)Kth(δ0) +

n∑
t=1

(
xt − xδ(n)

)
x′δ(n)Kth(δ0)

+
n∑
t=1

xδ(n)

(
xt − xδ(n)

)′
Kth(δ0) +

n∑
t=1

(
xt − xδ(n)

) (
xt − xδ(n)

)′
Kth(δ0)

≡ Un1 + Un2 + Un3 + Un4. (2.8)

Using the BN decomposition as in Phillips and Solo (1992), we have

xt − xt−1 = vt = vt + (ṽt−1 − ṽt),

where vt =
(∑∞

j=0 Φ′j,1

)
εt, and ṽt =

∑∞
j=0 Φ̃′j,1εt−j with Φ̃j,1 =

∑∞
k=j+1 Φk,1. Then

xδ(n) =

δ(n)∑
t=1

vt + x0 =

δ(n)∑
t=1

vt + ṽ0 − ṽδ(n) + x0. (2.9)

By virtue of Assumption 1, we have

1

δ(n)

δ(n)∑
t=1

vt

δ(n)∑
t=1

vt

′ =
 ∞∑
j=0

Φ′j,1

 1

δ(n)

δ(n)∑
t=1

εt

δ(n)∑
t=1

ε′t

 ∞∑
j=0

Φj,1


⇒ Φ1(1)′Wd+1(Λ0)Φ1(1), (2.10)

where Wd+1(Λ0) = Bε,δ0(Λ0)Bε,δ0(Λ0)′ is a Wishart variate with 1 degree of freedom and mean

matrix Λ0. Note that the summability condition
∑∞

j=0 j‖Φj‖ < ∞ ensures
∑∞

j=0 ‖Φ̃j‖ < ∞
(Phillips and Solo, 1992), so that(

ṽ0 − ṽδ(n) + x0

) (
ṽ0 − ṽδ(n) + x0

)′
= OP (1), (2.11)

and then δ(n)∑
t=1

vt

(ṽ0 − ṽδ(n) + x0

)′
= OP (

√
n) = oP (n). (2.12)

On the other hand, by Assumption 3, we have n−1
∑n

t=1Kth(δ0) → µ0 = 1 for 0 < δ0 < 1 which,

together with (2.9)–(2.12), implies that

n−2Un1 =

(
xδ(n)x

′
δ(n)

n

)(
1

n

n∑
t=1

Kth(δ0)

)
⇒ δ0Φ′1(1)Wd+1(Λ0)Φ1(1). (2.13)

Next observe that for t ∈ Nn,δ0 (h) = [δ (n) , δ (n) + 2bhnc] we have xt − xδ(n) =
∑t

s=δ(n)+1 vs and

then

sup
t∈Nn,δ0 (h)

∣∣∣∣∣
∣∣∣∣∣xt − xδ(n)√

2bnhc

∣∣∣∣∣
∣∣∣∣∣ = sup

t∈Nn,δ0 (h)

∣∣∣∣∣
∣∣∣∣∣
∑t

s=δ(n)+1 vs√
2bnhc

∣∣∣∣∣
∣∣∣∣∣⇒ sup

0<r<1
‖Bd,r(Ωv)‖ , (2.14)
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where Bd,r(Ωv) is the Brownian motion with covariance matrix Ωv defined as in (2.3). Hence, for

h→ 0 as n→∞ we have

sup
t∈Nn,δ0 (h)

∣∣∣∣∣∣∣∣xt − xδ(n)√
nh

∣∣∣∣∣∣∣∣ = OP (1) .

For Un2, by Assumption 3 and the fact that K (·) has compact support, we find that

‖Un2‖ ≤
∥∥xδ(n)

∥∥ [(δ0+h)n]∑
t=[(δ0−h)n]+1

Kth(δ0)
∥∥xt − xδ(n)

∥∥
= OP

(√
n
)
×OP (n)×OP

(√
nh
)

= OP

(
n2h1/2

)
= oP

(
n2
)
, (2.15)

where ‖ · ‖ denotes the Euclidean norm. Similarly,

‖Un3‖ = OP

(
n2h1/2

)
= oP

(
n2
)
, (2.16)

and

‖Un4‖ = OP
(
n2h

)
= oP

(
n2
)
. (2.17)

In view of (2.8) and (2.13)–(2.17), we deduce that

n−2
n∑
t=1

xtx
′
tKth(δ0)⇒ δ0Φ′1(1)Wd+1(Λ0)Φ1(1), (2.18)

which is the limiting signal matrix analogue of (2.7) in the case of nonparametric kernel-weighted

least squares. On inspection, the d× d limit matrix Φ′1(1)Wd+1(Λ0)Φ1(1) in (2.18) is singular with

rank one when d > 1. The weighted signal matrix n−2
∑n

t=1 xtx
′
tKth(δ0) is therefore asymptotically

singular whenever the dimension of the regressor xt exceeds unity.

The intuition for this limiting degeneracy in the signal matrix is that kernel regression con-

centrates attention on the time coordinate δ0 and thereby the realized value of the limit process

Bd,δ0(Ωv) of the (standardized) regressor xt. When xt is multivariate, this focus on the realization

Bd,δ0(Ωv) of the limit process of n−1/2xt produces a limiting signal matrix of the outer product

form Bd,δ0(Ωv)Bd,δ0(Ωv)
′. In effect, continuity of the limit process Bd,r(Ωv) ensures that in any

shrinking neighborhood of the coordinate δ0, weighted kernel regression concentrates the signal

toward the quantity Bd,δ0(Ωv)Bd,δ0(Ωv)
′ - as if there were only a single observation of xt in the

limit. Importantly, the limiting form of the weighted signal matrix depends on the realized value

Bd,δ0(Ωv) of the limit process at the time coordinate δ0. So, the kernel degeneracy is random and

trajectory dependent.

As pointed out in the Introduction, this phenomenon has two relatives in existing asymptotic

theory but seems not before to have arisen in kernel asymptotics. The first relative is a nonstation-

ary linear regression model with many trending and/or cointegrated regressors. In such models the

limiting signal matrix of the nonstationary data is degenerate to the extent that the trends do not

have full rank - see Park and Phillips (1988) and Phillips (1989). However, in such cases the null

space of the limiting signal matrix is a fixed space determined by the parameters that define the

direction of the trends and the stochastic nonstationarity and cointegration. The second relative
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in econometrics occurs in models with nonstationary regressors that have common explosive coef-

ficients - see Phillips and Magdalinos (2008, 2013). Such models can be cointegrated systems with

co-moving explosive regressors or vector autoregressions with common explosive roots. In these

cases, the null space of the limiting signal matrix is determined by the direction vector of the (limit

of the standardized) exploding process and is therefore random and trajectory dependent, as in the

present case.

The following section shows how to transform the coordinate system to accommodate the degen-

eracy and develop limit theory for the kernel regression estimator. This limit theory is operational

for practical implementation. However, the asymptotics turn out to be fundamentally different from

those in the existing kernel regression literature. Also, unlike the asymptotic theory for linear mod-

els with degenerate limits discussed in the last paragraph where the degenerate directions typically

have stationary asymptotics with Gaussian limit distributions and conventional
√
n convergence

rates apply, in the kernel regression case both the degenerate and nondegenerate directions give

super-consistent estimation and nonstandard asymptotics. Nonstationary kernel regression limit

theory therefore has some unusual and rather unexpected properties in the degenerate case induced

by time varying coefficient functions.

3 Large sample theory

To simplify presentation define b ≡ bδ0 = Bd,δ0(Ωv) and set

q =
b

(b′b)1/2
=

b

‖b‖
.

Let q⊥ be a d× (d− 1) orthogonal complement matrix such that

Q =
[
q, q⊥

]
, Q′Q = Id, (3.1)

where Id is the d× d identity matrix. Correspondingly, we define the following sample versions of

these quantities

qn =
bn

(b′nbn)1/2
=

bn
‖bn‖

, bn ≡ bnδ0 =
1√
n
xδ(n),

let

Qn =
[
qn, q

⊥
n

]
, Q′nQn = Id, (3.2)

and introduce the standardization matrix

Dn = diag
(
n
√
h, (nh)Id−1

)
. (3.3)

The matrices Q and Qn are random, path dependent, and localized to the coordinate of concen-

tration (at δ0 and δ(n) = b(δ0 − h)nc, respectively). Write Bd+1,r(Ω) =
[
B′d,r(Ωv), Br(Ωu)

]′
and

define

∆δ0 =

[
∆δ0(1) ∆δ0(2)

∆δ0(2)′ ∆δ0(3)

]
, Γδ0 =

[
Γδ0(1)

Γδ0(2)

]
, (3.4)

9



where the components of the partition are

∆δ0(1) = b′b,

∆δ0(2) = 2
√

2
(
b′b
)1/2{∫ 1

−1
Bd, r+1

2
,∗(Ωv)K(r)dr

}
q⊥,

∆δ0(3) = 4(q⊥)′
{∫ 1

−1
Bd, r+1

2
,∗(Ωv)Bd, r+1

2
,∗(Ωv)

′K(r)dr

}
q⊥,

Γδ0(1) =
(
b′b
)1/2Z∗u,

Γδ0(2) = 2(q⊥)′
{∫ 1

−1
K(r)Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu) +

1

2
∆vu

}
,

where Z∗u is N (0, ν0Ωu) and independent of Bd,δ0(Ωv), Bd,r,∗(Ωv) is an independent copy of the

d-dimensional Brownian motion Bd,r(Ωv), and Br,∗(Ωu) is an independent copy of the Brownian

motion Br(Ωu). The limit variate Z∗u may be correlated with Bd,r,∗(Ωv) under endogeneity of the

regressor xt. The following theorem gives the asymptotic distribution of f̂n(δ0).

Theorem 3.1. Suppose Assumptions 1–3 are satisfied and n2h1+2γ1 = o(1). Then as n→∞

DnQ
′
n

{
f̂n(δ0)− f(δ0)

}
⇒ ∆+

δ0
Γδ0 , (3.5)

where δ0 is fixed 0 < δ0 < 1 such that ∆δ0 is nonsingular with probability 1.

From the definition of Dn and (3.5), different convergence rates apply for the directions qn and

q⊥n . In the direction of qn we have the faster convergence rate given by

q′n

{
f̂n(δ0)− f(δ0)

}
= OP

(
1

n
√
h

)
. (3.6)

The rate (3.6) exceeds the usual OP

(√
nh
)

rate for kernel estimators in the stationary case. The

OP

(
n
√
h
)

rate in (3.6) can be understood as OP

(√
n2h

)
so that the effective sample size for

estimating q′f(δ0) is n2h, as determined by the signal matrix behavior in this direction, rather

than nh. Note that in unstandardized form the signal matrix is
∑n

t=1 xtx
′
tK( t/n−δ0n ) which is

OP
(
n2h

)
by virtue of (2.13) and (2.18). This signal matrix is rank degenerate in the limit. But in

the direction qn we have the non-degenerate signal

q′n

{
n∑
t=1

xtx
′
tK

( t
n − δ0

h

)}
qn = OP

(
n2h

)
.

The replacement of n by n2 in determining the convergence rate in the nonstationary direction qn

is the result of the stronger signal in the data about the specific component q′f(δ0) of the unknown

function f(δ0) in the direction q. We call this result type I super-consistency. The convergence

rate OP

(√
n2h

)
was obtained by Cai et al (2009) and Xiao (2009) in certain functional-coefficient

models with multivariate nonstationary regressors and no degeneracies. Type I super-consistency in

functional coefficient kernel regression corroborates intuitive ideas from linear parametric models

about the additional information in the data about the coefficients of stochastic trends in the

direction of those trends.
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In the direction of q⊥n , (3.5) gives

(q⊥n )′
{
f̂n(δ0)− f(δ0)

}
= OP

(
1

nh

)
. (3.7)

Interestingly, this rate also exceeds the usual OP

(√
nh
)

rate for kernel estimators in stationary

models. But convergence in the direction q⊥n is slower than in direction qn. We call the result in

(3.7) type II super-consistency. This rate is new to the kernel regression literature. In a functional

coefficient cointegrating regression the result indicates that nonstationarity in the regressors in-

creases the rate of convergence in all directions, including the components (q⊥)′f(δ0) of f(δ0) in

directions that are orthogonal to those of the nonstationary regressor. The reason why the rate

exceeds the usual OP (
√
nh) rate for stationary regression is that the signal in the direction q⊥n is

still stronger than that of a stationary regressor. This feature of the signal is explained by the fact

that the signal matrix has order OP
(
n2h2

)
in this direction, viz.,

(q⊥n )′

{
n∑
t=1

xtx
′
tK

( t
n − δ0

h

)}
q⊥n = (q⊥n )′

{
n∑
t=1

(
xt − xδ(n)

) (
xt − xδ(n)

)′
K

( t
n − δ0

h

)}
q⊥n

= OP
(
n2h2

)
.

So the effective sample size in the estimation of the component (q⊥)′f(δ0) is n2h2, which is

smaller than the effective sample size n2h that applies for estimation of q′f(δ0). More specifi-

cally, under the compact support condition on the kernel function (as given in Assumption 3),

estimation of (q⊥)′f(δ0) only uses information on xt − xδ(n) over the interval of observations

Nn,δ0 (h) = [bnδ0 − nhc, bδ0 + nhc]. So, the number of observations contributing to nonparamet-

ric kernel estimation of (q⊥)′f(δ0) is only of the order of nh. However, over this interval for

t = δ(n) + b2nhpc ∈ Nn,δ0 (h) with p ∈ [0, 1] the data increments still manifest nonstationary

characteristics. In particular, we have the following weak convergence (c.f. (2.14))

xt − xδ(n)√
2bnhc

=

∑b2nhpc
s=δ(n)+1 vs√

2bnhc
⇒ Bd,p(Ωv). (3.8)

The stronger signal in these observations raises the overall signal in (q⊥n )′
{∑n

t=1 xtx
′
tK
( t
n
−δ0
h

)}
q⊥n

to OP

(
(
√
nh)2

)
× OP (nh) = OP

(
n2h2

)
, as distinct from the OP (nh) signal in conventional

stationary kernel regression case. Thus, local nonstationarity in the data around bnδ0c contributes

to greater information about (q⊥)′f(δ0) than would occur in a stationary kernel regression.

In the pure cointegration case with ∆vu = 0, the form of Γδ0(2) can be simplified. Define

Γδ0(2) = 2(q⊥)′
{∫ 1
−1Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu)

}
and Γδ0 just as Γδ0 but with Γδ0(2) replaced by

Γδ0(2). The following limit theory applies in this pure cointegration case.

Corollary 3.1. Suppose that the conditions in Theorem 3.1 are satisfied and ∆vu = 0. We then

have

DnQ
′
n

{
f̂n(δ0)− f(δ0)

}
⇒ ∆+

δ0
Γδ0 , (3.9)

for fixed 0 < δ0 < 1 such that ∆δ0 is nonsingular with probability 1.

To eliminate bias effects in these nonparametric asymptotics we have imposed the bandwidth

condition n2h1+2γ1 = o(1) on the bandwidth, which may be somewhat restrictive if γ1 is close to
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its lower boundary of 1
2 (Assumption 2). To relax the restriction in such cases, a higher order

kernel function may be considered (e.g., Wand and Jones, 1994) or local polynomial smoothing

(e.g., Fan and Gijbels, 1996) can be used. Local linear regression is the most commonly-used

local polynomial smoothing method in practical work and has certain advantages over local level

regression in stationary regression, although Wang and Phillips (2009b,2011) showed that such bias

reduction with local linear methods does not occur (and hence is not an advantage) in nonstationary

nonparametric regression.

Assume f has continuous derivatives up to the second order. Then, for fixed 0 < δ0 < 1, the

following local linear approximation holds when t
n is in a small neighborhood of δ0,

f

(
t

n

)
= f(δ0) + f (1)(δ0)

(
t

n
− δ0

)
+O

((
t

n
− δ0

)2
)
,

where f (1)(δ0) is the first-order derivative of f at δ0. Define the local loss function

Ln(a, b) =

n∑
t=1

[
yt − x′ta− x′tb

(
t

n
− δ0

)]2

Kth(δ0), (3.10)

where a = (a1, · · · , ad)′ and b = (b1, · · · , bd)′. The local linear estimator of f(δ0) is defined as

f̃n(δ0) = ã, where (ã, b̃) = arg min(a,b) Ln(a, b). Set

∆δ0∗ =

[
∆δ0∗(1) ∆δ0∗(2)

∆δ0∗(2)′ ∆δ0∗(3)

]
, Γδ0∗ =

[
Γδ0∗(1)

Γδ0∗(2)

]
,

where ∆δ0∗(1) = ∆δ0 , Γδ0∗(1) = Γδ0 , ∆δ0∗(2) and ∆δ0∗(3) are defined as in ∆δ0 but with K(r)

replaced by rK(r) and r2K(r), respectively, and Γδ0∗(2) is defined as Γδ0 with K(r) replaced by

rK(r). Let ed = (Id, Od), where Od is a d × d null matrix. The limit theory for the local linear

estimator f̃n(δ0) is given in the following theorem.

Theorem 3.2. Suppose that Assumptions 1 and 3 in Section 2 are satisfied and f(·) has continuous

derivatives up to the second order. Let δ0 be fixed 0 < δ0 < 1 such that ∆δ0∗ is nonsingular with

probability 1. Then, we have

DnQ
′
n

{
f̃n(δ0)− f(δ0) +OP (h2)

}
⇒ ed ∆+

δ0∗Γδ0∗. (3.11)

Furthermore, if n2h5 = o(1), we have

DnQ
′
n

{
f̃n(δ0)− f(δ0)

}
⇒ ed ∆+

δ0∗Γδ0∗. (3.12)

Just as in the case of Theorem 3.1, types I and II super-consistency apply to the local linear

estimator f̃n(δ0) according to the directions qn and q⊥n . The results are entirely analogous, so the

details are omitted.
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4 FM-nonparametric kernel estimation

The one sided long run covariance ∆vu which appears in the limit functionals Γδ0 and Γδ0∗ of

Theorems 3.1 and 3.2 induces a “second-order” bias effect just like the bias that appears in linear

cointegrating regression limit theory (Park and Phillips, 1988, 1989). The bias effect originates

in the correlation between the regressor innovations and the equation error. It is a second order

effect, so the two super-consistency rates of the kernel estimator of the functional coefficient shown

in Section 3 are unchanged. But, as in the linear cointegration model with constant coefficients,

the bias does influence centering of the limit distributions. So its effect can be substantial in finite

samples, as is well known in the linear constant coefficient case. This section therefore develops

a nonparametric kernel version of the FM regression technique (Phillips and Hansen, 1990) to

eliminate the bias effect in this nonstationary case. Although there has been extensive study of

this type of correction in linear cointegration models, to the best of our knowledge there is no work

on techniques of bias correction for nonparametric kernel estimation of time-varying cointegration

models.

Let ∆̂vu denote a consistent estimate of ∆vu, whose construction will be considered later in this

section. We define the “bias-corrected” FM kernel regression estimator of the functional coefficient

f (·) as

f̂n,bc(δ0) =

[
n∑
t=1

xtx
′
tKth(δ0)

]+ [ n∑
t=1

xtytKth(δ0)−QnDnΓ̂n,bc

]
(4.1)

with

Γ̂n,bc =

(
0,
[
(q⊥n )′∆̂vu

]′)′
. (4.2)

Since ∆̂vu = ∆vu + oP (1), the asymptotic distribution of f̂n,bc(δ0) is obtained in the same manner

as the proof of Theorem 3.1 and is the same as that of f̂n(δ0) in the pure cointegration case shown

in Corollary 3.1.

Proposition 4.1. Suppose that the conditions in Theorem 3.1 are satisfied. We then have

DnQ
′
n

{
f̂n,bc(δ0)− f(δ0)

}
⇒ ∆+

δ0
Γδ0 (4.3)

for fixed 0 < δ0 < 1, where Γδ0 is defined as in Corollary 3.1.

From (4.1) and (4.3), it is evident that the bias term of the nonparametric kernel estimator

needs only to be corrected in the direction q⊥n , since the limit distribution in the direction qn

remains the same irrespective of whether endogeneity is present. This bias correction technique

may similarly be applied to the local linear estimator. Since the derivations and results are the

same, the details are omitted.

Practical implementation of FM-nonparametric kernel regression requires estimation of the

one-sided long-run covariance matrix ∆vu. The usual approach may be followed here. Let ût =

yt−x′tf̂n(t/n) be the estimated residuals from applying kernel regression to (1.2). Let 0 < τ∗ < 1/2,

which can be arbitrarily small. Since vt = xt−xt−1, we may construct the estimated autocovariances

∆̂vu(j) =
1

b(1− τ∗)nc − bτ∗nc

b(1−τ∗)nc∑
t=bτ∗nc+1

vt−j ût, j = 0, 1, · · · , ln, (4.4)
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which are combined to produce the one-sided long-run covariance estimate

∆̂vu =

ln∑
j=0

k

(
j

ln

)
∆̂vu(j), (4.5)

where k(·) is a kernel function and ln < n is the lag truncation number which tends to infinity

as n → ∞. To ensure the consistency of ∆̂vu, the kernel function k(·) is assumed to be bounded

with k(0) = 1 and k(−x) = k(x) such that
∫ 1
−1 k

2(x) < ∞ and limx→0
1−k(x)
|x| < ∞ (e.g. Park and

Hahn, 1999). The choice of the truncation number ln has been discussed in detail in the existing

literature on FM regression (e.g. Phillips, 1995).

To avoid possible boundary effects from kernel estimation in the estimated autocovariogram in

(4.4), we use only information on vt−j ût from bτ∗nc + 1 to b(1 − τ∗)nc. This construction differs

from usual practice in parametric linear cointegration models where vt−j ût is summed over the full

domain (j+1, n) to estimate the covariance. However, as is evident intuitively and shown rigorously

in the proof of Proposition 4.2 in the Appendix, for τ∗ close to zero this modification does not affect

the asymptotic analysis. In the context of parametric cointegration models, the proof of consistency

of ∆̂vu is straightforward because the quantities ∆̂vu(j) rely on the estimates of residuals that are

obtained from coefficients estimated at parametric rates. In the present nonparametric case, kernel

methods are used to estimate the time-varying coefficient functions, which in turn complicates the

form of the estimated residuals and makes the proof of consistency much more difficult. A particular

difficulty in the nonparametric case is that conditions are needed to ensure the nonsingularity of

the random denominator of the local level regression estimator f̂n(δ) uniformly over δ ∈ [τ∗, 1− τ∗]
for any 0 < τ∗ < 1/2. The following proposition establishes the consistency of ∆̂vu defined in (4.5).

Proposition 4.2. Suppose that the conditions in Theorem 3.1 are satisfied, l10+2γ0+$
n =

o(n5+γ0h9+γ0) for arbitrarily small $ > 0, ln = o
(

1√
nh

)
, and the random matrix ∆δ is nonsingular

uniformly for δ ∈ [τ∗, 1− τ∗] with probability 1 for any 0 < τ∗ < 1/2. We then have

∆̂vu = ∆vu + oP (1). (4.6)

The condition l10+2γ0+$
n = o(n5+γ0h9+γ0) indicates a trade-off between the restriction on the

truncation number ln and the moment condition on the εi. In particular, for γ0 large enough, we

find that the imposed condition is close to ln = o(
√
nh), which allows the truncation number to

increase at a polynomial rate. On the other hand, the restriction ln = o
(

1√
nh

)
ensures that the

asymptotic bias of the kernel estimates does not affect the consistency of ∆̂vu.

5 Simulations

This section reports simulations designed to investigate the finite sample performance of kernel

estimation in multivariate nonstationary settings and examines the adequacy of the asymptotic

theory developed earlier in the paper. We are particularly interested in the behavior of multivari-

ate time-varying coefficient function estimators, respective convergence rates, and the effects of

endogeneity and serial dependence on these procedures.

14



Example 5.1. We consider a cointegrated system with time-varying coefficient functions

yt = x′tft + ut, t = 1, · · · , n, (5.1)

where ft = (f1t, f2t)
′ has the following two functional forms: M1 : f1t = f1

(
t
n

)
= 1 + t

n and

f2t = f2

(
t
n

)
= e−

t
n , and M2 : f1t = f1

(
t
n

)
= cos

(
2πt
n

)
and f2t = f2

(
t
n

)
= sin

(
2πt
n

)
, xt = (x1t, x2t)

′,

xi,t = xi,t−1 + vi,t for i = 1 and 2, vi,t = ρivi,t−1 + εi,t, ut = ρut−1 + εt, and (εt, ε1,t, ε2,t) follows
εt

ε1,t

ε2,t

 iid∼ N




0

0

0

 ,


1 λ1 λ2

λ1 1 λ3

λ2 λ3 1


 , (5.2)

with λi = 0 or λi = 0.5 for i = 1, 2 and 3. The simulation is conducted with sample size n = 1, 000

and N = 10, 000 replications.

The nonparametric kernel estimate of f(δ) =
[
f1(δ), f2(δ)

]′
is given by

f̂n(δ) =
[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
n∑
t=1

xtytK
( t− nδ

nh

)
≡
[
f̂1n(δ), f̂2n(δ)

]′
, (5.3)

where we use K(x) = 1
2I{−1 ≤ x ≤ 1} and choose some possible bandwidth values for h

which will be specified later. Before reporting the simulation results, we use the following no-

tation, based partly on earlier definitions. Let δ(n) = b(δ − h)nc, xδ(n) =
(
x1,δ(n), x2,δ(n)

)′
,

bn(δ) = 1√
n
xδ(n) = 1√

n

(
x1,δ(n), x2,δ(n)

)′
and qn(δ) = bn(δ)/‖bn(δ)‖ =

[ x1,δ(n)√
n‖bn(δ)‖ ,

x2,δ(n)√
n‖bn(δ)‖

]′ ≡[
q1n(δ), q2n(δ)

]′
with ‖bn(δ)‖ =

√
1
n [x2

1,δ(n) + x2
2,δ(n)]. Let q⊥n (δ) =

[
p1n(δ), p2n(δ)

]′
be chosen

such that Qn(δ) =
[
qn(δ), q⊥n (δ)

]
and Qn(δ)′Qn(δ) = I2. For this purpose we set p1n = q2n

and p2n = −q1n.

To evaluate the finite sample performance of the proposed estimators, we introduce the following

transformed quantities

g1n(δ) = q1n(δ)
[
f̂1n(δ)− f1(δ)

]
+ q2n(δ)

[
f̂2n(δ)− f2(δ)

]
, (5.4)

g2n(δ) = p1n(δ)
[
f̂1n(δ)− f1(δ)

]
+ p2n(δ)

[
f̂2n(δ)− f2(δ)

]
, (5.5)

and compute averages of g1n(δ) and g2n(δ) as follows: gin(δ) = 1
N

∑N
j=1 gin,j(δ) for i = 1, 2 and

N = 10, 000, where gin,j(δ) is the value of gin(δ) at the j-th replication.

Corresponding results are investigated for the bias-corrected FM kernel regression estimator

proposed in equation (4.1) above. Accordingly, we define

g∗1n(δ) = q1n

(
f̂1n,bc(δ)− f1(δ)

)
+ q2n

(
f̂2n,bc(δ)− f2(δ)

)
,

g∗2n(δ) = p1n

(
f̂1n,bc(δ)− f1(δ)

)
+ p2n

(
f̂2n,bc(δ)− f2(δ)

)
, (5.6)

where f̂n,bc(·) =
[
f̂1n,bc(·), f̂2n,bc(·)

]′
is as defined in (4.1), in which ∆̂vu is constructed by equations

(4.4) and (4.5) with τ∗ = 1
4 , k(x) = 1I[|x| ≤ 1] and ln =

⌊
1

(
√
nh) log(n)

⌋
. This last setting implies

that ln = o
(

1√
nh

)
and the precise expansion rate of ln depends on h and the restriction on the

bandwidth that
√
nh → 0. As shown in Theorem 3.2, one may relax the condition on h to just
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ensure that n2h5 = o(1) through using the local linear kernel method. In consequence, there is the

opportunity of a data–driven version for ln, a prospect that we leave for future exploration.

Averages of g∗1n(δ) and g∗2n(δ) are computed as follows: g∗in(δ) = N−1
∑N

j=1 g
∗
in,j(δ) for i = 1, 2

and N = 10, 000, where g∗in,j(δ) is the value of g∗in(δ) at the j-th replication. The simulation results

of point-wise kernel estimation are reported in Tables 5.1 and 5.2, which consider six different

parameter constellations for {ρ, ρi, λi, (δ, h)}:

Case 1 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
1

4
,
1

6

)
;

Case 2 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
1

2
,
1

3

)
;

Case 3 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
3

4
,
1

2

)
;

Case 4 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
1

4
,
1

6

)
;

Case 5 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
1

2
,
1

3

)
;

Case 6 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
3

4
,
1

2

)
.

Table 5.1: Absolute averages of gin(δ) and g∗in(δ) for

M1 : f1t = 1 + t
n and f2t = e−

t
n

Case 1 Case 2 Case 3

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.005279 0.007294 0.002083 0.016241 0.001607 0.005815

Case 4 Case 5 Case 6

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.000895 0.004268 0.000816 0.000458 0.000399 0.011452

|g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)|

0.000870 0.003749 0.000688 0.000185 0.000297 0.011091

Broadly speaking, |g1n(δ)| is smaller than |g2n(δ)|, which supports the asymptotic theory in

Section 3 that g1n(δ) converges to zero at a faster rate than g2n(δ). The presence of endogeneity

between xt and ut does not impose a noticeable impact on the results, corroborating similar findings

by Wang and Phillips (2009b) in the context of nonlinear cointegration models with a univariate

regressor. The bias-corrected kernel method implies a second-order bias correction for gin(·), as

shown in Proposition 4.1. We find that the corresponding values of |g∗1n(δ)| and |g∗2n(δ)| are slightly

smaller than those for |g1n(δ)| and |g2n(δ)| reported in Tables 5.1 and 5.2, providing evidence of

bias reduction and supporting the limit theory in Section 4.
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Table 5.2: Absolute averages of gin(δ) and g∗in(δ) for

M2 : f1t = cos
(

2πt
n

)
and f2t = sin

(
2πt
n

)
Case 1 Case 2 Case 3

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.000302 0.026371 0.000504 0.002895 0.042893 0.059356

Case 4 Case 5 Case 6

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.006109 0.005456 0.024125 0.049481 0.030661 0.069070

|g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)|

0.005963 0.004695 0.023760 0.049477 0.030607 0.068099
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Fig. 5.1: Plots of g1n(δ) and g2n(δ) versus δ for functional form M1

We next consider the case where ρ = 0.5, ρ1 = 0.5 and ρ2 = 0.5 and λi = 0.5 for i = 1, 2, 3. For

given h, we define the leave-one-out estimate

f̂t(δ|h) =
[ n∑
s=1, 6=t

xsx
′
sK
(s− nδ

nh

)]+
n∑

s=1,6=t
xsysK

(s− nδ
nh

)
≡
[
f̂1t(δ|h), f̂2t(δ|h)

]′
, (5.7)

and the cross-validation function

CVn(h) =
1

n

n∑
t=1

[
yt − x′tf̂t

( t
n

∣∣h)]2
, (5.8)

and find an optimal bandwidth of the form

ĥcv = arg min
h

CVn(h). (5.9)
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Fig. 5.2: Plots of g1n(δ) and g2n(δ) versus δ for functional form M2

For δ > ĥcv, define δ̂(n) = b(δ−ĥcv)nc, x
δ̂(n)

=
(
x

1,δ̂(n)
, x

2,δ̂(n)

)′
, b̂n(δ) = 1√

n
x
δ̂(n)

= 1√
n

(
x

1,δ̂(n)
, x

2,δ̂(n)

)′
and q̂n(δ) =

[ x
1,δ̂(n)√
n‖b̂n(δ)‖

,
x
2,δ̂(n)√
n‖b̂n(δ)‖

]′ ≡ [q̂1n(δ), q̂2n(δ)
]′

with ‖b̂n(δ)‖ =
√

1
n [x2

1,δ̂(n)
+ x2

2,δ̂(n)
]. Let the

transformed quantities g1n(δ) and g2n(δ) be again defined as in (5.4) and (5.5) but with qin(δ) and

pin(δ) replaced by q̂in(δ) and p̂in(δ), respectively, where p̂in(δ) is now specified.

In both M1 and M2 we construct the components of the direction vector p̂in(δ) using p̂1n(δ) =

q̂2n(δ) and p̂2n(δ) = −q̂1n(δ) (for ĥcv ≤ δ ≤ 1). The plots shown in Figs. 5.1 and 5.2 are based

on 500 replications. These plots show clearly that the window of fluctuations of g1n(δ) is much

narrower than that of g2n(δ), further corroborating the limit theory that the variance of g1n(·) is

smaller than that of g2n(·).

6 Empirics

This section applies the time varying coefficient model and estimation methodology to aggregate

US data on consumption, income, investment, and interest rates obtained from Federal Reserve

Economic Data (FRED)5. We consider two formulations using data that were studied recently in

Athanasopoulos et al (2011) using linear VAR and reduced rank regression methods.

Case (i) (Quarterly data over 1960:1–2009:3): yt is log per-capita real consumption, x1t is

log per capita disposable income, and x2t is the real interest rate expressed as a percentage and

calculated ex post by deducting the CPI inflation rate over the following quarter from the nominal

90 day Treasury bill rate.

Case (ii) (Quarterly data over 1947:1–2009:4): yt is log per-capita real consumption, x1t is

log per capita real disposable income, and x2t is log per capita real investment.

Application of the nonparametric test in Gao and King (2011) for checking unit root nonsta-

tionarity gave p–values of 0.206, 0.217 and 0.112 for yt, x1t and x2t in case (i), and corresponding

5We thank George Athanasopoulos for providing us with the data.
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p–values of 0.219, 0.226 and 0.167 for yt, x1t and x2t in case (ii). The series are plotted in Figs. 6.1

and 6.2.
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Fig. 6.1: Real consumption, real disposable income, and 90 day T bill rate 1960:1 - 2009:3
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Fig. 6.2: Real consumption, disposable income and investment 1947:1 - 2009:4

In both cases, we fit the following model allowing for a time varying coefficient vector

yt = x′tf
( t
n

)
+ ut = x′tft + ut, t = 1, · · · , n, (6.1)

where the regressors and coefficients are partitioned as xt = (x1t, x2t)
′ and ft = (f1t, f2t)

′. The

coefficient function f(·) = (f1(·), f2(·))′ is estimated by kernel weighted regression giving

f̂(δ) =
[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
n∑
t=1

xtytK
( t− nδ

nh

)
, (6.2)
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where K(x) = 1
2I{−1 ≤ x ≤ 1} as in Section 5, over δ ∈ (0, 1], and the bandwidth h is chosen

by cross-validation as described in (5.9). The nonparametric estimates of the two curves fi(·) with

their 95% confidence bands are shown in Figs. 6.3 and 6.4 for (i), and in Figs. 6.5 and 6.6 for (ii).
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Fig. 6.3: Nonparametric estimate (f̂1) with confidence bands (f̂1a, f̂1b) together with the

parametric polynomial (ĝ1) estimate of f1 for Case (i)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

������
������
�������
�������

Fig. 6.4: Nonparametric estimate (f̂2) with confidence bands (f̂2a, f̂2b) together with the

parametric polynomial (ĝ2) estimate of f2 for Case (i)

The plots of f̂1(δ) and f̂2(δ) are strongly indicative of nonlinear functional forms for the co-

efficients in both cases, but also suggest that the functions fi(δ) may be approximated by much

simpler parametric functions gi(δ; θi), for some parametric θi and pre-specified gi(·; ·). For (i), in

20



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

������
������
�������
�������

Fig. 6.5: Nonparametric estimate (f̂1) with confidence bands (f̂1a, f̂1b) together with the

parametric polynomial (ĝ1) estimate of f1 for Case (ii)
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Fig. 6.6: Nonparametric estimate (f̂2) with confidence bands (f̂2a, f̂2b) together with the

parametric polynomial (ĝ2) estimate of f2 for Case (ii)

Figs. 6.3 and 6.4, we added polynomial specifications of the form

g1(δ; θ̂1) = θ̂01 +
6∑
j=1

θ̂j1δ
j , (6.3)

g2(δ; θ̂2) = θ̂02 +

5∑
j=1

θ̂j2δ
j , (6.4)

where θ̂01 = 1.1036, θ̂11 = −4.9534, θ̂21 = 225.087, θ̂31 = −63.983, θ̂41 = 87.136, θ̂51 = −60.191,

θ̂61 = 16.547; θ̂02 = 0.4359, θ̂12 = 4.577, θ̂22 = −19.381, θ̂32 = 41.327, θ̂42 = −43.237 and θ̂52 =
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17.001. Similarly for (ii), in Figs. 6.5 and 6.6, we added the following polynomial specifications:

g1(δ; θ̂1) = θ̂01 +
3∑
j=1

θ̂j1δ
j , (6.5)

g2(δ; θ̂2) = θ̂02 +
3∑
j=1

θ̂j2δ
j , (6.6)

where θ̂01 = 1.5525, θ̂11 = −3.0978, θ̂21 = 3.7520, θ̂31 = −1.4718; θ̂02 = −6.1002, θ̂12 = −22.890,

θ̂22 = −27.873 and θ̂31 = 11.100.

Figs. 6.3 – 6.6 show that f1(δ) and f2(δ) are reasonably well captured by the parametric

forms g1(δ; θ̂1) and g2(δ; θ̂2) in both cases. Interestingly, lower order polynomial approximations

were used in case (ii) than those in case (i), even though the data cover a longer period in (ii)

than (i). In case (ii) both regressors are macro aggregates (income and investment), and slower

moving (i.e., less variable over time) functional responses might be expected. Case (i) involves

the interest rate regressor, which displays greater volatility than the macro aggregates, so the

functional responses are correspondingly more variable over the sample period and seem to require

higher order polynomial approximations to adequately capture the nonparametric fits.

Standard t–tests show that all these coefficients are significant with p–values almost zero. Con-

ventional t–tests are robust to this type of parametric regression under nonstationarity, being equiv-

alent to those from a standardised (weak trend) model of the form yt = x̃′d,tg̃
(
t
n ; θ0

)
+ ut, where

x̃d,t = xt√
n

and g̃
(
t
n ; θ0

)
=
√
ng
(
t
n ; θ0

)
giving the same p–values. A formal test of the polynomial

specifications may be mounted to test the null hypothesis H0 : yt = x′tg
(
t
n ; θ0

)
+ ut for a specific

parametric form g (·; θ0) . The test statistic used to assess this (joint) null hypothesis is Ln(h) which

is defined in (C.5) in Appendix C. This statistic measures scaled departures of parametrically fit-

ted functional elements from their nonparametric counterparts. A detailed development of the test

statistic and its limit theory is provided in Appendix C.

Allowing the equation errors ut in (C.1) to be weakly dependent, we propose using a block

bootstrap method (c.f., Hall, Horowitz and Jing, 1995) to compute p-values of Ln(h) for practical

implementation. The procedure is as follows.

Step 1: For the real data {(yt, x1t, x2t)}nt=1, compute the statistic Ln(h), where h can be chosen

based on the cross-validation method as in (5.9).

Step 2: Generate {ũt} by ũt =
∑∞

j=0 ρ̃
jηt−j , in which {ηt} is a sequence of independent observations

drawn from N(0, 1), and ρ̃ is estimated based on

yt − x′tg
( t
n

; θ̂
)

= ρ
[
yt−1 − x′t−1g

( t− 1

n
; θ̂
)]

+ εt.

Let l = bn
1
3 c and choose b such that bl = n. Generate u∗1l(j) = [ũ1(j), · · · , ũl(j)], · · · , u∗Nl(j) =[

ũ(b−1)l+1(j), · · · , ũbl(j)
]

in step j for N = n − l + 1. Replicate the resample J = 250 times and

obtain J bootstrap resamples {u∗sl(j) : 1 ≤ s ≤ N ; 1 ≤ j ≤ J} and then take the average u∗sl =
1
J

∑J
j=1 u

∗
sl(j) to obtain a block bootstrap version of ut of the form: (u∗1, · · · , u∗n) = (u∗1l, · · · , u∗Nl).

Step 3: Generate y∗t = x′tg
(
t
n ; θ̂
)

+ u∗t . Re-estimate θ by θ̂∗ and then compute the corresponding

version L∗n(h) using the new data (y∗t , x1t, x2t).
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Step 4: Repeat the above steps M = 500 times to find the bootstrap distribution of L∗n(h) and

compute the proportion of Ln(h) < L∗n(h). This proportion is an approximate p-value of Ln(h).

For cases (i) and (ii) the calculated p-values are 0.2937 and 0.3178, respectively, confirming

that there is insufficient evidence to reject the null hypothesis H0 in both cases. In other words,

a suitable polynomial function provides a reasonable parametric approximation to each coefficient

function fi(δ) for both data sets over their respective sample periods.

7 Conclusions

Nonlinear cointegrated systems are of particular empirical interest in cases where the data are

nonstationary and move together over time yet linear cointegration fails. Time varying coefficient

models provide a general mechanism for addressing and capturing such nonlinearities, allowing for

smooth structural changes to occur over the sample period. The present paper has explored a gen-

eral approach to fitting these nonlinear systems using kernel-based structural coefficient estimation

which allow the coefficients to evolve smoothly over time.

Our analysis reveals a novel feature of kernel asymptotics that has not been encountered in

any previous literature on kernel regression. When the functional coefficient is multivariate, the

usual asymptotic methods and limit theory of kernel estimation break down due to a degeneracy

in the kernel-weighted signal matrix associated with the nonstationary regressors. This degeneracy

does not affect inference but, as we have shown here, it has a major effect on the limit theory.

The asymptotics rely on path-dependent local coordinate transformations to re-orient coordinates

and accommodate the kernel degeneracy, changing the limit theory in a fundamental way from the

existing kernel literature. The degeneracy leads to two different limit distributions with different

convergence rates in two complementary directions of the function space. Unexpectedly, and in

contradistinction to the case of linear model degeneracy with cointegrated regressors (Park and

Phillips, 1988, 1989), both convergence rates are faster than the usual convergence rate for station-

ary systems – here nonlinear models with smoothly changing coefficients in the conventional setting

of local stationarity. The higher rate of convergence (n
√
h) lies in the direction of the nonstationary

regressor vector at the local coordinate point of the function and the lower rate (nh) lies in the

degenerate direction but this rate is still clearly super-consistent for nonparametric estimators.

Kernel estimation of time varying coefficient cointegration models therefore involves two types of

super-consistency and this limit theory differs significantly from other kernel asymptotics for nonlin-

ear systems as well as the limit theory for linear systems with cointegrated regressors. For practical

implementation purposes, a local linear estimation approach is developed to reduce asymptotic

bias and relax bandwidth restrictions, and a fully modified kernel regression estimator is developed

to deal with models where there are endogenous nonstationary regressors. Implementation is il-

lustrated in simulations that study finite sample performance and in an empirical application to

explore the linkages over time among aggregate consumption, disposable income, investment and

interest rates in the US.

The present paper touches on several topics that deserve further study. Included among these

are model specification tests, bandwidth selection methods for kernel smoothing, and the uniform
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convergence properties of nonparametric kernel estimates in nonstationary time varying coefficient

models. Another area of potential importance for empirical research is the case where both de-

terministic and stochastic trends arise among the regressors. This type of model raises further

complications of degeneracy that may be handled by the methods developed here.

A Proofs of the main results

To derive the limit theory for f̂n(δ0) in (2.1) we start with asymptotics for the denominator involved

in f̂n(δ0). In what follows let Gth = hKth(δ0), and C be a positive constant whose value may change

from line to line.

Proposition A.1. Suppose that Assumptions 1 and 3 are satisfied. Then, we have, for fixed

0 < δ0 < 1,

D+
nQ
′
n

( n∑
t=1

xtx
′
tGth

)
QnD

+
n ⇒ ∆δ0 , (A.1)

where ∆δ0 is defined in (3.4) of Section 3.

Proof. For notational economy, let ∆ = ∆δ0 and ∆(k) = ∆δ0(k) for k = 1, 2, 3, throughout the

proof. Observe that

D+
nQ
′
n

( n∑
t=1

xtx
′
tGth

)
QnD

+
n

=


1
nh

n∑
t=1

q′n
(
xt√
n

)(
xt√
n

)′
qnGth

1
nh3/2

n∑
t=1

q′n
(
xt√
n

)(
xt√
n

)′
q⊥nGth

1
nh3/2

n∑
t=1

(q⊥n )′
(
xt√
n

)(
xt√
n

)′
qnGth

1
(nh)2

n∑
t=1

(q⊥n )′(xtx
′
t)q
⊥
nGth


≡

[
∆n(1) ∆n(2)

∆n(2)′ ∆n(3)

]
. (A.2)

We next consider ∆n(1), ∆n(2) and ∆n(3) in turn and prove that ∆n(k)⇒ ∆(k) for k = 1, 2, 3,

where the submatrices ∆(k) are defined following (3.4) of Section 3. Let

∆∗n(1) = q′n
(xδ(n)√

n

)(xδ(n)√
n

)′
qn

( 1

nh

n∑
t=1

Gth

)
,

where δ(n) = b(δ0 − h)nc is defined as in Section 2. By (2.3) and the definition of qn, we have

∆∗n(1) = q′n
(xδ(n)√

n

)(xδ(n)√
n

)′
qn(1 + oP (1))⇒ Bd,δ0(Ωv)

′Bd,δ0(Ωv). (A.3)

Following the proof of (2.18), it is easy to show that ∆∗n(1) is the leading term of ∆n(1). It follows

that

∆n(1)⇒ Bd,δ0(Ωv)
′Bd,δ0(Ωv) ≡ ∆(1). (A.4)

24



From the BN decomposition (Phillips and Solo, 1992) we have for t ≥ δ(n)

xt =
t∑

s=1

vs + ṽ0 − ṽt + x0

=
[ δ(n)∑
s=1

vs + ṽ0 − ṽδ(n) + x0

]
+
[ t∑
s=δ(n)+1

vs
]

+
[
ṽδ(n) − ṽt

]
≡ xδ(n) + ηt + ξt, (A.5)

where ηδ(n) = 0. Note that x′δ(n)q
⊥
n = 0 with probability 1. Hence, ∆∗n(2) is asymptotically

equivalent to ∆n(2), where

∆∗n(2) =
1

nh3/2

n∑
t=1

q′n
( xt√

n

)(ηt + ξt√
n

)′
q⊥nGth.

By using (A.5) again, we have

∆∗n(2) =
1

nh3/2
q′n
(xδ(n)√

n

) n∑
t=1

(ηt + ξt√
n

)′
q⊥nGth

+
1

nh3/2

n∑
t=1

q′n
(ηt + ξt√

n

)(ηt + ξt√
n

)′
q⊥nGth

≡ ∆∗n(2, 1) + ∆∗n(2, 2). (A.6)

It is easy to show that ∥∥∥ 1

nh3/2
q′n
(xδ(n)√

n

) n∑
t=1

( ξt√
n

)′
q⊥nGth

∥∥∥
≤ 1

(nh)1/2
·
∥∥∥q′n(xδ(n)√

n

)∥∥∥ · ( 1

nh

n∑
t=1

∥∥ξ′tq⊥n ∥∥Gth)
= OP

(
(nh)−1/2

)
= oP (1). (A.7)

On the other hand, by Assumption 1, there exist two independent Brownian motions, Bd,r(Ωv) and

Bd,r,∗(Ωv), such that

( 1√
δ(n)

δ(n)∑
s=1

vs,
1√

2bnhc

δr(n)∑
s=δ(n)+1

vs

)
⇒
[
Bd,1(Ωv), Bd,r,∗(Ωv)

]
(A.8)

for δr(n) = δ(n) + b2rnhc+ 1 with 0 < r ≤ 1. By using (A.8) and the definition of ηt in (A.5), we

can show that

1

nh3/2
q′n
(xδ(n)√

n

) n∑
t=1

( ηt√
n

)′
q⊥nGth

= 2
√

2q′n
(xδ(n)√

n

)[ 1

2nh

n∑
t=1

( ηt√
2nh

)′
Gth

]
q⊥n

⇒ 2
√

2
[
Bd,δ0(Ωv)

′Bd,δ0(Ωv)
]1/2[ ∫ 1

−1
Bd, r+1

2
,∗(Ωv)K(r)dr

]
q⊥, (A.9)
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which together with (A.7), indicates that

∆∗n(2, 1)⇒ ∆(2) (A.10)

with ∆(2) = 2
√

2
[
Bd,δ0(Ωv)

′Bd,δ0(Ωv)
]1/2[ ∫ 1

−1Bd, r+1
2
,∗(Ωv)K(r)dr

]
q⊥. Note that

∆∗n(2, 2) =
1

nh3/2

n∑
t=1

q′n
( ηt√

n

)( ηt√
n

)′
q⊥nGth +

1

nh3/2

n∑
t=1

q′n
( ηt√

n

)( ξt√
n

)′
q⊥nGth +

1

nh3/2

n∑
t=1

q′n
( ξt√

n

)( ηt√
n

)′
q⊥nGth +

1

nh3/2

n∑
t=1

q′n
( ξt√

n

)( ξt√
n

)′
q⊥nGth

≡ ∆∗n(2, 2, 1) + ∆∗n(2, 2, 2) + ∆∗n(2, 2, 3) + ∆∗n(2, 2, 4). (A.11)

We next show that ∆∗n(2, 2, k) = oP (1) for k = 1, · · · , 4. To save space, we prove only that

∆∗n(2, 2, 1) = oP (1) and ∆∗n(2, 2, 4) = oP (1) as the other two cases follow similarly. By (A.8), we

can prove

∆∗n(2, 2, 1) =
1

nh3/2

n∑
t=1

q′n
( ηt√

n

)( ηt√
n

)′
q⊥nGth

=
2
√
h

nh

n∑
t=1

q′n
( ηt√

2nh

)( ηt√
2nh

)′
q⊥nGth

= OP
(√h
nh

n∑
t=1

Gth
)

= OP (
√
h) = oP (1), (A.12)

as h→ 0, and

∆∗n(2, 2, 4) =
1

nh3/2

n∑
t=1

q′n
( ξt√

n

)( ξt√
n

)′
q⊥nGth

= OP
( 1

n2h3/2

n∑
t=1

Gth
)

= OP
( 1

nh1/2

)
= oP (1), (A.13)

as nh→∞. We have thus proved ∆∗n(2, 2) = oP (1) which, together with (A.10), shows that

∆n(2)⇒ ∆(2). (A.14)

Finally, consider ∆n(3). Noting that (q⊥n )′xδ(n) = 0 with probability 1, we can argue that ∆∗n(3)

is asymptotically equivalent to ∆n(3), where

∆∗n(3) =
1

(nh)2

n∑
t=1

(q⊥n )′
(
ηt + ξt

)(
ηt + ξt

)′
q⊥nGth.

Furthermore, following the proof of ∆∗n(2, 2) as above, we can show that

∆∗n(3) =
1

(nh)2

n∑
t=1

(q⊥n )′ηtη
′
tq
⊥
nGth + oP (1) = (q⊥n )′

[ 4

2nh

n∑
t=1

( ηt√
2nh

)( ηt√
2nh

)′
Gth

]
q⊥n

⇒ 4(q⊥)′
[ ∫ 1

−1
Bd, r+1

2
,∗(Ωv)Bd, r+1

2
,∗(Ωv)

′K(r)dr
]
q⊥ ≡ ∆(3). (A.15)
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The proof of (A.1) is now complete in view of (A.4), (A.14) and (A.15). �

Next consider the derivation of the limit behavior of

Γn ≡ Γnδ0 = D+
nQ
′
n

( n∑
t=1

xtutGth

)
. (A.16)

Observe that

Γn = D+
nQ
′
n

( n∑
t=1

xtutGth

)
=

 q′n

(
1

nh1/2

n∑
t=1

xtutGth

)
(q⊥n )′

(
1
nh

n∑
t=1

xtutGth

)
 ≡

[
Γn(1)

Γn(2)

]
. (A.17)

We give asymptotic distributions for Γn(1) and Γn(2) in the following Propositions A.2 and A.3,

respectively.

Proposition A.2. Suppose that Assumptions 1 and 3 are satisfied. Then,

Γn(1)⇒
[
Bd,δ0(Ωv)

′Bd,δ0(Ωv)
]1/2Z∗u, (A.18)

where Z∗u is a normal distribution with zero mean and variance matrix ν0Ωu, and is independent

of Bd,δ0(Ωv), Ωu is defined in (2.5).

Proof. Define

utN =

ρ(n)∑
j=0

Φ′j,2εt−j , utH =
∞∑

j=ρ(n)+1

Φ′j,2εt−j ,

where ρ(n)→∞ and will be specified later. Note that

Γn(1) = q′n

( 1

nh1/2

n∑
t=1

xtutGth

)
= q′n

(xδ(n)√
n
· 1

(nh)1/2

n∑
t=1

utNGth

)
+ q′n

(xδ(n)√
n
· 1

(nh)1/2

n∑
t=1

utHGth

)
+

q′n

[ 1

nh1/2

n∑
t=1

(
xt − xδ(n)

)
utGth

]
≡ Γn(1, 1) + Γn(1, 2) + Γn(1, 3). (A.19)

By Assumptions 1 and 3 we have

∣∣Γn(1, 3)
∣∣ ≤ 1

nh1/2
· ‖qn‖ ·

∥∥∥ n∑
t=1

(
xt − xδ(n)

)
utGth

∥∥∥
=

1

nh1/2
·OP (1) ·OP (nh) = OP (

√
h) = oP (1). (A.20)

As {εt} is a sequence of iid random vectors, we have, for any t,

E
[
u2
tH

]
≤

∞∑
j=ρ(n)+1

‖Φj,2‖2 = oP (ρ−3(n))
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by Assumption 1. Hence, we have

∥∥xδ(n)

n∑
t=1

utHGth
∥∥ = oP

(√
n · nh · ρ−3/2(n)

)
= oP (n

√
h) (A.21)

by letting ρ(n) = (nh)
1
3

+ε∗ , 0 < ε∗ <
γ0

3(6+2γ0) , where γ0 is defined in Assumption 1. We therefore

have ∣∣Γn(1, 2)
∣∣ = oP (1). (A.22)

Let ςn = ρ(n)/n and δ̃(n) = b(δ0 − h− ςn)nc. Observe that

1

n
√
h
q′nxδ(n)

n∑
t=1

utNGth =
1

n
√
h
q′nxδ̃(n)

( n∑
t=1

utNGth

)
+

1

n
√
h
q′n
[
xδ(n) − xδ̃(n)

]( n∑
t=1

utNGth

)
≡ Γn(1, 1, 1) + Γn(1, 1, 2). (A.23)

As ςn → 0, it is easy to see that Γn(1, 1, 2) is dominated by Γn(1, 1, 1), which is the leading term

of Γn(1, 1). We next establish asymptotics for Γn(1, 1, 1). Note that ςnn = ρ(n) and

n∑
t=1

utNGth =

δ1(n)∑
t=δ(n)+1

utNGth,

by Assumption 3(i), where δ1(n) is defined in the proof of Proposition A.1. Thus, by Assumption

1 x
δ̃(n)

is independent of
∑n

t=1 utNGth. Similar to the proof of (A.3) we can show that

1√
n
q′nxδ̃(n)

⇒ ∆
1/2
δ0

(1). (A.24)

On the other hand, note that {zt : δ(n) ≤ t ≤ δ1(n)} is a sequence of ρ(n)-dependent random

vectors, where zt = utNGth. By Assumption 1, it is easy to see that condition (i) in Lemma B.1

(stated in Appendix B) is satisfied with % = 2 + γ0. As ρ(n) = (nh)
1
3

+ε∗ with 0 < ε∗ <
γ0

3(6+2γ0) , we

can easily show that

ρ
2+ 2

% (n) = ρ
6+2γ0
2+γ0 (n) = o(nh),

which indicates that condition (iv) in Lemma B.1 is also satisfied. We next show that condition

(iii) in Lemma B.1 holds. Observe that

E
[( δ1(n)∑

t=δ(n)+1

zt
)2]

=

δ1(n)∑
t=δ(n)+1

E[z2
t ] +

δ1(n)∑
t=δ(n)+1

∑
0<|s−t|≤ρ(n)

E[ztzs]. (A.25)
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Letting ∆s,t(K) = K
(
s−δ0n
nh

)
−K

(
t−δ0n
nh

)
, by Assumption 3(i), we can prove that

δ1(n)∑
t=δ(n)+1

∑
0<|s−t|≤ρ(n)

E[ztzs] =

δ1(n)∑
t=δ(n)+1

∑
0<|s−t|≤ρ(n)

GthGshE[utNusN]

=

δ1(n)∑
t=δ(n)+1

G2
th

∑
0<|s−t|≤ρ(n)

E[utNusN]

+

δ1(n)∑
t=δ(n)+1

Gth
∑

0<|s−t|≤ρ(n)

∆s,t(K)E[utNusN]

=

δ1(n)∑
t=δ(n)+1

G2
th

∑
0<|s−t|≤ρ(n)

E[utNusN] + o(nh). (A.26)

On the other hand, by elementary calculations we have, as n→∞,

t+ρ(n)∑
s=t−ρ(n)

E[utNusN] −→ Ωu (A.27)

for δ(n) ≤ t ≤ δ1(n). Equations (A.25)–(A.27) lead to condition (iii) in Lemma B.1 with σ2 = ν0Ωu.

Analogously, we can also prove that condition (ii) in Lemma B.1 is satisfied. Then, using (A.16)

in Lemma B.1, we can prove that

1√
nh

n∑
t=1

utNGth ⇒ Z∗u, (A.28)

where Z∗u is normal distribution with zero mean and variance matrix ν0Ωu, and is independent of

Bd,δ0(Ωv). It follows that

Γn(1, 1)⇒
[
Bd,δ0(Ωv)

′Bd,δ0(Ωv)
]1/2Z∗u. (A.29)

By using (A.19), (A.20), (A.22) and (A.29), we can establish (A.18). So the proof of Proposition

A.2 is complete. �

Proposition A.3. Suppose Assumptions 1 and 3 hold. Then

Γn(2)⇒ 2(q⊥)′
{∫ 1

−1
Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu) +

1

2
∆vu

}
, (A.30)

which is defined as Γδ0(2) in Section 3.

Proof. By the definition of q⊥n and following the proof of (A.10), we can show that the leading

term of Γn(2) asymptotically is

Γ∗n(2) = (q⊥n )′
[ 1

nh

n∑
t=1

(xt − xδ(n))utGth

]
. (A.31)

In view of the weak convergence (3.8) we have

1√
2nh

δ(n)+b2nhpc∑
t=δ(n)+1

(
xt − xδ(n)

)
=

1√
2nh

bδ0nc+b2nhpc∑
t=bδ0nc−bnhc+1

vt ⇒ Bd,p,∗(Ωv) =d Bd, r+1
2
,∗(Ωv),
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for p = r+1
2 ∈ [0, 1] with r ∈ [−1, 1] , and δ (n) = bδ0nc − bnhc. Then, using Assumption 3 and

Lemma B.2 in Appendix B we have

Γ∗n(2) = 2(q⊥n )′

(
n∑
t=1

xt − xδ(n)√
2nh

ut√
2nh

hKth(δ0)

)
= 2(q⊥n )′

(
n∑
t=1

xt − xδ(n)√
2nh

ut√
2nh

K

( t
n − δ0

h

))

= 2(q⊥n )′

(
n∑
t=1

xt − xδ(n)√
2nh

ut√
2nh

K

(
t− δ0n

nh

))

= 2(q⊥n )′


bδ0nc+bnhc∑

t=bδ0nc−bnhc+1

xt − xδ(n)√
2nh

ut√
2nh

K

(
t− δ0n

nh

)
∼ 2(q⊥n )′

 bδ0nc+bnhc∑
t=bδ0nc−bnhc+1

xt − xδ(n)√
2nh

ut√
2nh

K

(
b2nhpc − bnhc

nh

) , t = δ (n) + b2nhpc

∼ 2(q⊥n )′
{∫ 1

0
K (2p− 1)Bd,p,∗(Ωv)dBp,∗(Ωu) + ∆vu

∫ 1

0
K (2p− 1) dp

}
= 2(q⊥n )′

{∫ 1

−1
K (r)Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu) +

1

2
∆vu

∫ 1

−1
K (r) dr

}
,

giving

Γ∗n(2)⇒ 2(q⊥)′
{∫ 1

−1
K(r)Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu) +

1

2
∆vu

[ ∫ 1

−1
K(r)dr

]}
. (A.32)

Noting that
∫ 1
−1K(r)dr = 1 in Assumption 3(i), the proof of Proposition A.3 is complete. �

With Propositions A.1–A.3 in hand, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Observe that

f̂n(δ0)− f(δ0) =
[ n∑
t=1

xtx
′
tGth(δ0)

]+{ n∑
t=1

xtx
′
t

[
f
( t
n

)
− f(δ0)

]
Gth(δ0)

}
+

[ n∑
t=1

xtx
′
tGth(δ0)

]+[ n∑
t=1

xtutGth(δ0)
]
. (A.33)

By Taylor expansion of f(·), and Assumption 2, we can show that

f
( t
n

)
− f(δ0) = O(hγ1) (A.34)

when
∣∣ t
n − δ0

∣∣ ≤ Ch. By (A.34) and following the proof of Proposition A.1, we can easily prove

that [ n∑
t=1

xtx
′
tGth(δ0)

]+{ n∑
t=1

xtx
′
t

[
f
( t
n

)
− f(δ0)

]
Gth(δ0)

}
= OP (hγ1). (A.35)

Then, using Propositions A.1–A.3, (A.35) in conjunction with the condition n2h1+2γ1 = o(1), we

can prove (3.5) in Theorem 3.1. �

Proof of Theorem 3.2. Let Dn∗ = I2 ⊗Dn, Qn∗ = I2 ⊗Qn,

∆n∗ ≡ ∆nδ0∗ = D+
n∗Q

′
n∗


n∑
t=1

xtx
′
tGth

n∑
t=1

xtx
′
tGth∗

n∑
t=1

xtx
′
tGth∗

n∑
t=1

xtx
′
tGth∗∗

Qn∗D
+
n∗
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and

Γn∗ ≡ Γnδ0∗ = D+
n∗Q

′
n∗


n∑
t=1

xtutGth
n∑
t=1

xtutGth∗

 ,

where

Gth∗ =
( t− δ0n

nh

)
K
( t− δ0n

nh

)
, Gth∗∗ =

( t− δ0n

nh

)2
K
( t− δ0n

nh

)
.

Following the proofs of Propositions A.1–A.3, we can establish that

∆n∗ ⇒ ∆δ0∗, Γn∗ ⇒ Γδ0∗, (A.36)

where both ∆δ0∗ and Γδ0∗ are defined in Section 3. By some elementary calculations for the local

linear fitting, we obtain

DnQ
′
n

[
f̃n(δ0)− f(δ0)

]
= eDn∗Q

′
n∗

[ f̃n(δ0)− f(δ0)

hf̃ ′n(δ0)− hf(δ0)

]
= e∆n∗Γn∗ +OP (h2DnQn). (A.37)

Equations (A.36) and (A.37) lead to (3.11) in Theorem 3.2. Meanwhile, (3.11) and the bandwidth

condition n2h5 = o(1) together imply that (3.12) holds. The proof of Theorem 3.2 is then complete.

�

Proof of Proposition 4.1. Note that

DnQ
′
n

{
f̂n,bc(δ0)− f(δ0)

}
= DnQ

′
n

{[ n∑
t=1

xtx
′
tKth(δ0)

]+ n∑
t=1

xtytKth(δ0)− f(δ0)
}

−DnQ
′
n

[ n∑
t=1

xtx
′
tKth(δ0)

]+
QnDnΓ̂n,bc

= DnQ
′
n

{
f̂n(δ0)− f(δ0)

}
−DnQ

′
n

[ n∑
t=1

xtx
′
tKth(δ0)

]+
QnDnΓ̂n,bc.

Note that ∆̂vu is assumed to be a consistent estimate of ∆vu. By the definition of Γ̂n,bc in (4.2)

and using Theorem 3.1 and Proposition A.1, we can show that the second-order bias of f̂n(δ0) in

the direction q⊥n can be eliminated, and (4.3) can thus be proved. �

Proof of Proposition 4.2. Let f̂nt = f̂
(
t
n

)
and recall that ft = f

(
t
n

)
. Observe that

ût = yt − x′tf̂nt = ut − x′t
(
f̂nt − ft

)
,

which implies that

∆̂vu(j) =
1

τ∗n − τn

τ∗n∑
t=τn+1

vt−j ût

=
1

τ∗n − τn

τ∗n∑
t=τn+1

vt−jut −
1

τ∗n − τn

τ∗n∑
t=τn+1

vt−jx
′
t

(
f̂nt − ft

)
≡ ∆vu(j)− ∆̃vu(j), (A.38)
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for j = 1, · · · , ln, where τn = bτ∗nc and τ∗n = b(1− τ∗)nc. Using (A.38), we have

∆̂vu =

ln∑
j=0

k
( j
ln

)
∆̂vu(j) =

ln∑
j=0

k
( j
ln

)
∆vu(j)−

ln∑
j=0

k
( j
ln

)
∆̃vu(j). (A.39)

We first prove the second term on the right hand side of (A.39) is asymptotically negligible. By

the definition of f̂nt in (2.1) and letting Gsh(t/n) = hKst(t/n), we have

f̂nt − ft =

[
n∑
s=1

xsx
′
sGsh(t/n)

]+ [ n∑
s=1

xsysGsh(t/n)

]
− ft

=

[
n∑
s=1

xsx
′
sGsh(t/n)

]+ [ n∑
s=1

xsusGsh(t/n)

]
+[

n∑
s=1

xsx
′
sGsh(t/n)

]+ [ n∑
s=1

xsfsGsh(t/n)

]
− ft

≡ Θnt(u) + Θnt(f)

for t = τn + 1, · · · , τ∗n. By transforming coordinates, we can show that

Θnt(u) = QntD
+
n

[
D+
nQ
′
nt

n∑
s=1

xsx
′
sGsh(t/n)QntD

+
n

]+ [
D+
nQ
′
nt

n∑
s=1

xsusGsh(t/n)

]
≡ QntD

+
n Θ+

nt,1Θnt,2(u), (A.40)

where Qnt =
[
qnt, q

⊥
nt

]
with

qnt =
bnt

(b′ntbnt)
1/2

=
bnt
‖bnt‖

, bnt =
1√
n
xbt−nhc

and q⊥nt such that Q′ntQnt = Id.

Note that xt = xbt−nhc + xt − xbt−nhc and x′bt−nhcq
⊥
nt = 0 with probability 1. Then, using

Lemmas B.3 and B.4 in Appendix B and by Taylor expansion of f(·), we can prove that

ln∑
j=0

k
( j
ln

)
∆̃vu(j) =

1

τ∗n − τn

ln∑
j=0

k
( j
ln

) τ∗n∑
t=τn+1

vt−jx
′
t

(
f̂nt − ft

)
=

1

τ∗n − τn

ln∑
j=0

k
( j
ln

) τ∗n∑
t=τn+1

vt−jx
′
t

[
Θnt(u) + Θnt(f)

]
= oP (1) +OP (

√
nhln) = oP (1) (A.41)

as ln = o
(

1√
nh

)
.

We finally consider
∑ln

j=0 k
( j
ln

)
∆vu(j). Since τ∗n − τn → ∞ when τ∗ ∈

(
0, 1

2

)
, it follows as in

Park and Phillips (1988, 1989) that

ln∑
j=0

k
( j
ln

)
∆vu(j) =

ln∑
j=0

k
( j
ln

)( 1

τ∗n − τn

τ∗n∑
t=τn+1

vt−jut

)
= ∆vu + oP (1). (A.42)

Using (A.41) and (A.42), we can complete the proof of Proposition 4.2. �
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B Lemmas and supplemental proofs

This appendix gives some technical lemmas which play a critical role in the proofs in Appendix A,

and provides supplemental proofs of key steps in the proof of Proposition 4.2. The first result is a

central limit theorem for m-dependent random variables from Berk (1973).

Lemma B.1. Let {zi : i ≥ 1} be a sequence of mn-dependent random variables with zero mean,

where mn may tend to infinity as n tends to infinity. Suppose that

(i) For some % > 0, E[|zi|2+%] ≤ C, where C is positive and bounded, % > 0;

(ii) E[(zi + · · ·+ zj)
2] ≤ C(j − i) for any i < j and 0 < C <∞;

(iii) σ2 ≡ 1
nE[(

∑n
i=1 zi)

2] exists and is positive;

(iv) m
2+ 2

%
n = o(n). Then,

1√
n

n∑
i=1

zi ⇒ N(0, σ2). (B.1)

as n→∞.

Let g(·) be a continuous function on [0, 1]. The next result follows as in Ibragimov and Phillips

(2008, theorem 3.1) and is useful in establishing the limit distribution of Γn(2) which can been seen

from the proof of Proposition A.3 in Appendix A.

Lemma B.2. Suppose Assumption 1 holds. Then

1

n

n∑
t=1

xtutgnt ⇒
∫ 1

0
g(r)Bd,r(Ωv)dBr(Ωu) + ∆vu

[ ∫ 1

0
g(r)dr

]
, (B.2)

where gnt = g
(
t
n

)
and ∆vu is defined in Section 2.

The next two lemmas play a crucial role in the proof of Proposition 4.2. Their proofs have po-

tential application in deriving sharp uniform convergence rates of nonparametric kernel estimators

of the time-varying coefficient functions in cointegration models, a subject that will be studied in

future work.

Lemma B.3. Suppose that Assumptions 1 and 3 hold, and l10+2γ0+$
n = o(n5+γ0h9+γ0) where $ > 0

is arbitrarily small and γ0 is defined in Assumption 1. Then,∥∥Θnt,2(u)
∥∥ = oP (

√
nhl−1

n ) (B.3)

uniformly for t = τn + 1, · · · , τ∗n, where Θnt,2(u) is defined in (A.40).

Proof. For t = τn + 1, · · · , τ∗n, define

Θ∗nt,2(u, 1) = q′nt
(xb(t−nhc√

n

)[ 1√
nh

n∑
s=1

usGsh(t/n)
]
,

Θ∗nt,2(u, 2) = 2(q⊥nt)
′
[ 1

2nh

n∑
s=1

(
xs − xbt−nhc

)
usGsh(t/n)

]
,

where qnt, q
⊥
nt and Gsh(t/n) are defined as in the proof of Proposition 4.2. Following the proofs of

Propositions A.2 and A.3 in Appendix A,
[
Θ∗nt,2(u, 1),Θ∗nt,2(u, 2)′

]′
is the leading term of Θnt,2(u).
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By the continuous mapping theorem (e.g. Billingsley, 1968), it is easy to show that q′nt
(xbt−nhc√

n

)
=

‖b′ntbnt‖1/2 = OP (1) and q⊥nt = OP (1) uniformly for t = τn + 1, · · · , τ∗n. Hence, to prove (B.3), we

only need to prove
n∑
s=1

usGsh(t/n) = oP (nhl−1
n ) (B.4)

and
n∑
s=1

(
xs − xbt−nhc

)
usGsh(t/n) = oP ((nh)3/2l−1

n ) (B.5)

uniformly for t = τn + 1, · · · , τ∗n.

Proof of (B.4): Note that

us = us + (ũs−1 − ũs), (B.6)

where us =
(∑∞

j=0 Φ′j,2
)
εs and ũs =

∑∞
j=0 Φ̃′j,2εt−j with Φ̃j,2 =

∑∞
k=j+1 Φk,2. Using the BN

decomposition (B.6), we have

n∑
s=1

usK
(s− t
nh

)
=

n∑
s=1

usK
(s− t
nh

)
+

n∑
s=1

ũs−1K
(s− t
nh

)
−

n∑
s=1

ũsK
(s− t
nh

)
=

n∑
s=1

usK
(s− t
nh

)
+

n∑
s=1

ũs−1K
(s− 1− t

nh

)
−

n∑
s=1

ũsK
(s− t
nh

)
+

n∑
s=1

ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]
=

n∑
s=1

usK
(s− t
nh

)
+

n∑
s=1

ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]
+

ũ0K
(−t
nh

)
− ũnK

(n− t
nh

)
.

By virtue of Assumption 3(i), for large enough n we have

ũ0K
(−t
nh

)
= ũnK

(n− t
nh

)
= 0

with probability 1 for any t = τn + 1, · · · , τ∗n, which indicates that

n∑
s=1

usK
(s− t
nh

)
=

n∑
s=1

usK
(s− t
nh

)
+

n∑
s=1

ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]
(B.7)

with probability 1 uniformly for t = τn + 1, · · · , τ∗n.

Define Tk = {τn + (k − 1)brnnc+ 1, · · · , τn + kbrnnc} for k = 1, 2, · · · , Rn, where

Rn =
⌊τ∗n − τn

rnn

⌋
+ 1, rn =

√
nh2l−(1+$)

n ,

in which $ > 0 is arbitrarily small. Let tk be the smallest number in the set Tk (in fact tk can be

any number in Tk). By standard arguments, we have

max
τn+1≤t≤τ∗n

∣∣ n∑
s=1

usK
(s− t
nh

)∣∣ ≤ max
1≤k≤Rn

max
t∈Tk

∣∣ n∑
s=1

us
[
K
(s− t
nh

)
−K

(s− tk
nh

)]∣∣+

max
1≤k≤Rn

∣∣ n∑
s=1

usK
(s− tk
nh

)∣∣.
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By the Markov inequality, we may show that

max
1≤k≤Rn

max
t∈Tk

∣∣ n∑
s=1

us
[
K
(s− t
nh

)
−K

(s− tk
nh

)]∣∣ = OP
(√nrn

h

)
= OP

( nh
l1+$
n

)
. (B.8)

As ln →∞ and $ > 0, (B.8) implies that

max
1≤k≤Rn

max
t∈Tk

∣∣ n∑
s=1

us
[
K
(s− t
nh

)
−K

(s− tk
nh

)]∣∣ = oP (nhl−1
n ). (B.9)

On the other hand, by the Markov inequality and the Marcinkiewicz–Zygmund inequality for

independent random variables (e.g., Theorem 2 in Section 10.3 of Chow and Teicher, 2003), we

have for any ε > 0

P
{

max
1≤k≤Rn

∣∣ n∑
s=1

usK
(s− tk
nh

)∣∣ > εnhl−1
n

}
≤

Rn∑
k=1

P
{∣∣ n∑

s=1

usK
(s− tk
nh

)∣∣ > εnhl−1
n

}
≤ l4+γ0

n

Rn∑
k=1

E
∣∣∑n

s=1 usK
(
s−tk
nh

)∣∣4+γ0

(εnh)4+γ0

≤ CRnl
4+γ0
n (nh)

4+γ0
2

(nh)4+γ0
≤ Cl5+γ0+$

n

n
5+γ0

2 h
8+γ0

2

= o(1),

as l10+2γ0+$
n = o(n5+γ0h8+γ0). Thus, we have

max
1≤k≤Rn

∣∣ n∑
s=1

usK
(s− tk
nh

)∣∣ = oP (nhl−1
n ). (B.10)

By (B.9) and (B.10), we can show that

max
τn≤t≤τ∗n

∣∣ n∑
s=1

usK
(s− t
nh

)∣∣ = oP (nhl−1
n ). (B.11)

Noting that K
(
s−t
nh

)
−K

(
s−1−t
nh

)
≤ C 1

nh , by an analogous derivation we can also show that

max
τn+1≤t≤τ∗n

∣∣∣ n∑
s=1

ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]∣∣∣ = oP (nhl−1
n ). (B.12)

We can then complete the proof of (B.4) in view of (B.11) and (B.12). �

Proof of (B.5): The proof of (B.5) is more complicated than the proof of (B.4) because of

the involvement of xs − xbt−nhc. Using the BN decomposition again as in (A.5), we have, for

s ≥ bt− nhc+ 1,

xs − xbt−nhc =

s∑
k=bt−nhc+1

vk =

s∑
k=bt−nhc+1

vk + ṽbt−nhc − ṽs,

35



where the definitions of vk and ṽk are given in Section 2. Thus, to prove (B.5), we need to prove

that

n∑
s=1

( s∑
k=bt−nhc+1

vk
)
usGsh(t/n) = oP ((nh)3/2l−1

n ), (B.13)

ṽbt−nhc

n∑
s=1

usGsh(t/n) = oP ((nh)3/2l−1
n ), (B.14)

n∑
s=1

ṽsusGsh(t/n) = oP ((nh)3/2l−1
n ) (B.15)

uniformly for t = τn + 1, · · · , τ∗n.

Noting that ṽs and us are well defined stationary linear processes, by (B.4) and Assumptions

1 and 3, we can prove (B.14) and (B.15) easily. We next turn to the proof of (B.13). Define

xs(t) =
∑s

k=bt−nhc+1 vk to simplify notation, and xs(t) = 0 if s < bt − nhc + 1. Using the BN

decomposition (B.6) again, we have

n∑
s=1

xs(t)usK
(s− t
nh

)
=

n∑
s=1

xs(t)usK
(s− t
nh

)
+

n∑
s=1

xs(t)ũs−1K
(s− t
nh

)
−

n∑
s=1

xs(t)ũsK
(s− t
nh

)
=

n∑
s=1

vsusK
(s− t
nh

)
+

n∑
s=1

xs−1(t)usK
(s− t
nh

)
+

n∑
s=1

xs−1(t)ũs−1K
(s− t
nh

)
+

n∑
s=1

vsũs−1K
(s− t
nh

)
−

n∑
s=1

xs(t)ũsK
(s− t
nh

)
=

n∑
s=1

xs−1(t)usK
(s− t
nh

)
+

n∑
s=1

xs−1(t)ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]
+

n∑
s=1

vsusK
(s− t
nh

)
+

n∑
s=1

vsũs−1K
(s− t
nh

)
.

Noting that ṽs, us and ũs are stationary, by Assumptions 1 and 3, we can prove that

max
τn+1≤t≤τ∗n

∣∣∣ n∑
s=1

vsusK
(s− t
nh

)∣∣∣ = oP ((nh)3/2l−1
n ), (B.16)

max
τn+1≤t≤τ∗n

∣∣∣ n∑
s=1

vsũs−1K
(s− t
nh

)∣∣∣ = oP ((nh)3/2l−1
n ). (B.17)

Noting that K
(
s−t
nh

)
−K

(
s−1−t
nh

)
≤ C 1

nh , we may also show that

max
τn+1≤t≤τ∗n

∣∣∣ n∑
s=1

xs−1(t)ũs−1

[
K
(s− t
nh

)
−K

(s− 1− t
nh

)]∣∣∣ = oP ((nh)3/2l−1
n ). (B.18)

By (B.16)–(B.18), to complete the proof of (B.5), we need only to show that

max
τn+1≤t≤τ∗n

∣∣∣ n∑
s=1

xs−1(t)usK
(s− t
nh

)∣∣∣ = oP ((nh)3/2l−1
n ). (B.19)
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Define Tk∗ = {τn + (k − 1)brn∗nc+ 1, · · · , τn + kbrn∗nc} for k = 1, 2, · · · , Rn∗, where

Rn∗ =
⌊τ∗n − τn
rn∗n

⌋
+ 1, rn∗ =

√
nh5/2l−(1+$)

n ,

in which $ > 0 is arbitrarily small. Let tk∗ be the smallest number in the set Tk∗. By some

standard arguments, we have

max
τn+1≤t≤τ∗n

∣∣ n∑
s=1

xs−1(t)usK
(s− t
nh

)∣∣ ≤ max
1≤k≤Rn∗

max
t∈Tk∗

∣∣ n∑
s=1

xs−1(t)us
[
K
(s− t
nh

)
−K

(s− tk∗
nh

)]∣∣
+ max

1≤k≤Rn∗
max
t∈Tk∗

∣∣ n∑
s=1

[
xs−1(t)− xs−1(tk∗)

]
usK

(s− tk∗
nh

)∣∣
+ max

1≤k≤Rn∗

∣∣ n∑
s=1

xs−1(tk∗)usK
(s− tk∗

nh

)∣∣.
Similar to the proof of (B.9) we can show that

max
1≤k≤Rn∗

max
t∈Tk∗

∣∣ n∑
s=1

xs−1(t)us
[
K
(s− t
nh

)
−K

(s− tk∗
nh

)]∣∣ = oP ((nh)3/2l−1
n ), (B.20)

and

max
1≤k≤Rn∗

max
t∈Tk∗

∣∣ n∑
s=1

[
xs−1(t)− xs−1(tk∗)

]
usK

(s− tk∗
nh

)∣∣ = oP ((nh)3/2l−1
n ). (B.21)

On the other hand, note that {(xs−1(t)us,Fs) : s ≥ 1} is a sequence of martingale differences, where

Fs = σ(εs, εs−1, · · · ). Then, by the Markov inequality and Burkholder’s inequality for martingale

differences (e.g. Theorem 2.10 in Hall and Heyde, 1980), we have for any ε > 0

P
{

max
1≤k≤Rn∗

∣∣ n∑
s=1

xs−1(tk∗)usK
(s− tk∗

nh

)∣∣ > ε(nh)3/2l−1
n

}
≤

Rn∗∑
k=1

P
{∣∣ n∑

s=1

xs−1(tk∗)usK
(s− tk∗

nh

)∣∣ > ε(nh)3/2l−1
n

}
≤ l4+γ0

n

Rn∗∑
k=1

E
∣∣∑n

s=1 xs−1(tk∗)usK
(
s−tk∗
nh

)∣∣4+γ0

(εnh)3(4+γ0)/2

≤ CRnl
4+γ0
n (nh)4+γ0

(nh)3(4+γ0)/2
≤ Cl5+γ0+$

n

n
5+γ0

2 h
9+γ0

2

= o(1),

as l10+2γ0+$
n = o(n5+γ0h9+γ0). Thus, we have

max
1≤k≤Rn∗

∣∣ n∑
s=1

xs−1(tk∗)usK
(s− tk∗

nh

)∣∣ = oP ((nh)3/2l−1
n ). (B.22)

We can then complete the proof of (B.19) in view of (B.20)–(B.22). �

Lemma B.4. Suppose that Assumptions 1 and 3 hold, and ∆δ is assumed to be nonsingular uni-

formly over [τ∗, 1− τ∗] with probability 1 for any 0 < τ∗ < 1/2. Then, the random matrix Θnt,1 is

nonsingular (in probability) uniformly over t = τn + 1, · · · , τ∗n, where Θnt,1 is defined in (A.40).
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Proof. We first define

Θ∗nt,1(1) = q′nt
(xbt−nhc√

n

)(xbt−nhc√
n

)′
qnt

[ 1

nh

n∑
s=1

Gsh(t/n)
]
,

Θ∗nt,1(2) = 2
√

2q′nt
(xbt−nhc√

n

)[ 1

2nh

n∑
s=1

( ηs√
2nh

)′
Gsh(t/n)

]
q⊥nt,

Θ∗nt,1(3) = 4(q⊥nt)
′
[ 1

(2nh)2

n∑
s=1

ηsη
′
sGsh(t/n)

]
q⊥nt

for t = τn + 1, · · · , τ∗n, where ηs, s ≥ 1, are defined as in (A.5). Let ε∗t be an independent copy of

εt and satisfy Assumption 1 in Section 2, v∗t = (
∑∞

j=0 Φ′j,1)ε∗t and η∗s =
∑s

t=1 v
∗
t . Define

Θ∗n(1) =
1

nh

2nh∑
s=1

K
(s− nh

nh

)
=

1

nh

n∑
s=1

Gsh(t/n), (B.23)

Θ∗n(2) =
1

2nh

n∑
s=1

( η∗s√
2nh

)′
K
(s− nh

nh

)
=d

1

2nh

n∑
s=1

( ηs√
2nh

)′
Gsh(t/n), (B.24)

Θ∗n(3) =
1

(2nh)2

n∑
s=1

η∗s(η
∗
s)
′K
(s− nh

nh

)
=d

1

(2nh)2

n∑
s=1

ηsη
′
sGsh(t/n). (B.25)

It is easy to see that Θ∗n(k), k = 1, 2, 3, do not rely on t, and are independent of qnt and q⊥nt.

Furthermore, by Assumption 1, the BN decomposition, and the strong approximation result (e.g.

Csörgö and Révész, 1981), there exists Bd,δ(Ωv) such that sup0<δ<1

∥∥qnbnδc − qδ∥∥ = OP (n
− 2+γ0

8+2γ0 )

and q⊥nbnδc converges in probability to q⊥δ uniformly for δ ∈ (0, 1), where qδ = Bd,δ(Ωv)/‖Bd,δ(Ωv)‖
and q⊥δ is a d × (d − 1) orthogonal complement random matrix such that Qδ =

[
qδ, q

⊥
δ

]
and

Q′δQδ = Id. Hence, by (B.23)–(B.25) and following the argument in the proof of Proposition A.1,

we can show that, uniformly for δ ∈ (0, 1),

Θ∗nbnδc,1(1) =d (q′δqδ)Θ
∗
n(1),

Θ∗nbnδc,1(2) =d 2
√

2(q′δqδ)
1/2Θ∗n(2)q⊥δ ,

Θ∗nbnδc,1(3) =d 4(q⊥δ )′Θ∗n(3)q⊥δ .

Then, applying the continuous mapping theorem to Θ∗n(2) and Θ∗n(3) and noting that ∆δ is as-

sumed to be nonsingular uniformly over [τ∗, 1− τ∗] with probability 1, the random matrix Θnt,1 is

nonsingular (in probability) uniformly for t = τn + 1, · · · , τ∗n. This completes the proof of Lemma

B.4. �

C Model specification

In practical work, parametric forms of the time-varying coefficient function ft are often convenient.

We therefore consider the following parametric hypotheses

H0 : f(δ) = g(δ; θ0) versus H1 : f(δ) 6= g(δ; θ0), (C.1)
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where g(δ; θ0) is a pre-specified function indexed by a p-dimensional vector of unknown parameters

θ0 with θ0 ∈ Θ0, a compact parameter space in Rp. In what follows we develop a statistic for

testing H0. We make the following assumption.

Assumption C. Suppose that g(δ; θ) is continuous in δ ∈ [0, 1], is twice differentiable with respect

to θ, and the matrix Λ(θ0) = ∂2g(δ;θ)
∂θ∂θ′ |θ=θ0 is positive definite.

Under the null H0, the model has the explicit form

yt = x′tg
( t
n

; θ0

)
+ ut, (C.2)

and the parameter vector θ0 may be estimated by various methods such as nonlinear least squares,

giving θ̂ = arg minθ∈Θ0

{∑n
t=1 (yt − x′tg(τt; θ))

2
}

. It follows from Assumptions 1 and C that θ̂−θ0 =

OP (n−1). Recall the definition of f̂n(δ) in Section 2 and define

fn(δ) =
[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
n∑
t=1

xtx
′
tg(δ; θ̂) K

( t− nδ
nh

)
=
[
f1n(δ), f2n(δ)

]′
. (C.3)

As in Section 5, let xδ(n) =
[
x1,δ(n), x2,δ(n)

]′
, bn = 1√

n
xδ(n) = 1√

n

[
x1,δ(n), x2,δ(n)

]′
and qn =[ x1,δ(n)√

n||bn|| ,
x2,δ(n)√
n||bn||

]′ ≡ [q1n, q2n

]′
with ||bn|| =

√
1
n

[
x2

1,δ(n) + x2
2,δ(n)

]
. Define

R1n(δ) = n
√
h q1n

(
f̂1n(δ)− f1n(δ)

)
+ n
√
h q2n

(
f̂2n(δ)− f2n(δ)

)
,

R2n(δ) = nh p1n

(
f̂1n(δ)− f1n(δ)

)
+ nh p2n

(
f̂2n(δ)− f2n(δ)

)
, (C.4)

where p1n = q2n and p2n = −q1n as in Section 5.

The components Rin(δ) in (C.4) measure scaled departures of the parametrically fitted ele-

ments f̄in(δ) from the nonparametric estimates f̂in(δ). These components may be used jointly (or

individually) to test the validity of the parametric specification (C.2). We introduce a joint test

statistic of the form

Ln(h) =

∫ 1

0
(R1n, R2n) (R1n, R2n)′ dδ =

∫ 1

0

(
R2

1n (δ) +R2
2n (δ)

)
dδ, (C.5)

where h can be chosen by a suitable method such as the cross-validation method. The following

proposition gives the limit theory for the statistic Ln (h). Recall the definitions of ∆δ = ∆(δ)

and Γδ = Γ(δ) given in Section 3. Critical values for the implementation of this test statistic in

empirical work may be obtained by bootstrap methods, as discussed in Section 6.

Proposition C.1. Suppose that the conditions of Theorem 3.1 and Assumption C are satisfied.

Under the null hypothesis H0, we have as n→∞

Ln(h)⇒ L(∆,Γ), (C.6)

where L(∆,Γ) =
∫ 1

0 Γ′(δ)∆−2(δ)Γ(δ)dδ.

Proof: The proof follows directly from Theorem 3.1 in Section 3 and its proof in Appendix A. In
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fact

f̂n(δ)− fn(δ) =
[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
n∑
t=1

xt
[
yt − x′tĝ(δ; θ̂)

]
K
( t− nδ

nh

)
=

[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
n∑
t=1

xtut +
[ n∑
t=1

xtx
′
tK
( t− nδ

nh

)]+
×

n∑
t=1

xtx
′
t

[
g(δ; θ0)− g(δ; θ̂)

]
K
( t− nδ

nh

)
≡ J1n + J2n. (C.7)

Note that J1n is the same as the leading term in the first equation of the proof of Theorem 3.1.

Note also that J2n = OP
(
n−1

)
by Assumption C. The fact that n2hJ2

2n = OP (h) = oP (1), along

with the rest of the proof of Theorem 3.1, completes the proof of Proposition C.1. �
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