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DriverGuard: Virtualization-Based Fine-Grained Protection
on I/O Flows

YUEQIANG CHENG, XUHUA DING, and ROBERT H. DENG,
Singapore Management University

Most commodity peripheral devices and their drivers are geared to achieve high performance with security
functions being opted out. The absence of strong security measures invites attacks on the I/O data and conse-
quently posts threats to those services feeding on them, such as fingerprint-based biometric authentication.
In this article, we present a generic solution called DriverGuard, which dynamically protects the secrecy of
I/O flows such that the I/O data are not exposed to the malicious kernel. Our design leverages a composite
of cryptographic and virtualization techniques to achieve fine-grained protection without using any extra
devices and modifications on user applications. We implement the DriverGuard prototype on Xen by adding
around 1.7K SLOC. DriverGuard is lightweight as it only needs to protect around 2% of the driver code’s
execution. We measure the performance and evaluate the security of DriverGuard with three input devices
(keyboard, fingerprint reader and camera) and three output devices (printer, graphic card, and sound card).
The experiment results show that DriverGuard induces negligible overhead to the applications.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms: Security

Additional Key Words and Phrases: Virtualization, hypervisor, I/O data protection, untrusted OS, trusted
path
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1. INTRODUCTION

Device drivers are often blamed as the main cause for system failures and security
breaches, mainly due to their enormous code size and the much higher bug rate than
other kernel code [Chou et al. 2001]. Various schemes have been proposed to improve
system reliability by isolating driver errors (e.g., Nook [Swift et al. 2003] and SafeDrive
[Zhou et al. 2006]), or to defend against device I/O misuses for illegal memory accesses
(e.g., BitVisor [Shinagawa et al. 2009] and the schemes in [Willmann et al. 2008]). In
this article, we study the other side of the coin: how to protect the I/O data, which is
motivated by attacks on sensitive I/O data, such as password keystrokes, fingerprint
templates, sensor readings and confidential printouts.
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6:2 Y. Cheng et al.

As compared to applications and other kernel components such as system call func-
tions, driver operations or I/O flows are more attractive to malwares targeted at sen-
sitive data for the following reasons. First, there exist more loopholes to exploit due
to the complexity of I/O mechanisms and the abundance of driver bugs. For instance,
IRQ number sharing allows a malicious interrupt handler to easily access another
handler’s data. Second, most drivers handle raw data generated by or for hardware. In
many applications, raw data are more favorable to attackers as compared to derived
data. For instance, a user’s fingerprint template is lifelong valid whereas a secret key
derived from the fingerprint template may remain valid only for a few hours. Further-
more, most commodity I/O devices nowadays are not encryption capable and raw data
are exposed to any code accessing them.

We aim to protect data flows between applications and devices against an untrusted
kernel throughout the entire I/O lifecycle. In particular, we focus on those devices that
render raw data, that is, sound cards and printers, or generate raw data for applica-
tions, that is, seismic sensors and fingerprint scanners. We are less concerned with
disks and network adaptors, because these devices deal with derived data from appli-
cations. Therefore, a straightforward solution to protect the disk I/O and the network
I/O is to encrypt the data before and after I/O operations.

In this work, we present DriverGuard, a holistic and compact I/O protection system
making use of a combination of cryptographic and virtualization techniques. We imple-
ment DriverGuard with slight changes on the device drivers and the Xen hypervisor.
Our experiments with several I/O devices demonstrate that DriverGuard imposes lit-
tle overhead to the system and causes unnoticeable delays to user applications. Driver-
Guard is complementary to many user space protection schemes such as Overshadow
[Chen et al. 2008], and SP3 [Yang and Shin 2008]. A composition of DriverGuard and
a user-space protection scheme can protect the whole lifecycle of data processing.

Our work is also remarkably different from secure I/O [Shinagawa et al. 2009] and
driver code security [Seshadri et al. 2007]. Secure I/O copes with those attacks mis-
using the I/O mechanism (especially DMA operations) for illegal memory accesses.
Driver code security tackles software attacks, such as return-address attacks [Check-
oway et al. 2010] and code injection attacks [Lineberry 2009], which gain the root
privilege by subverting drivers. Although these attacks do not necessarily target at
the I/O data, they are one of the threats considered in our study. Our work is similar to
the trusted path proposed by Zhou et al. [2012]. Their trusted path aims to assure the
secrecy and authenticity of data transfers through a trusted path from the new inserted
user-level driver to the device, while our work focuses on the protection of the secrecy
of the I/O data through a trusted path built upon the legacy drivers.

Organization. The next section describes some background knowledge. Then, we
define the problem as well as the threat model, security requirements and main chal-
lenges in Section 3, and explain the design rationale in Section 4. We describe the de-
sign overview, privileged code block and design details of DriverGuard in Section 5, 6
and 7, respectively. Section 8 discusses the automatical PCB identification and the full
path I/O protection, and Section 9 shows the evaluation of DriverGuard through exper-
iments and performance measurements. Finally, we give the related work in Section 10
and conclude the paper in Section 11.

2. BACKGROUND

In this section, we introduce the related background knowledge (i.e., device configu-
ration and I/O mechanisms) on x86 platforms to facilitate the understanding of our
design.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.
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DriverGuard: Virtualization-Based Fine-Grained Protection on I/O Flows 6:3

Fig. 1. A typical I/O flow.

2.1. Device Configuration Register Access

The physical addresses and the I/O ports of all devices are decided by the device con-
figuration registers. All these configuration registers are located in the northbridge
chipset [Fleming 2008]. There are two possible methods to access them. One is through
I/O ports. The I/O port CONFIG ADDRESS (i.e., 0xCF8) is used to select a dedicated
device whose configuration space is updated through the I/O port CONFIG DATA (i.e.,
0xCFC). The other method is through MMIO. Typically there is a continuous 256-MB
memory region reserved by the system for all devices. Any access to this region will
trigger the chipset to propagate the configuration throughout the whole system. In
order to avoid the configuration space conflicts (e.g., MMIO mapping attack) between
different devices, the privileged code (e.g., the hypervisor) is able to verify the update
requests by setting access control on the above I/O ports and the reserved memory
mapped region.

2.2. I/O Mechanism

The I/O subsystem is a well-known thorny component of the kernel, due to the com-
plexity and the heterogeneity of hardware and drivers. We only offer a high-level view
on the typical I/O mechanism in a Linux platform without drilling down to the details.

When a system boots up, the kernel scans all attached devices and creates an ar-
ray of device structures, each of which contains the physical address of a device and a
driver pointer among other important information. If the device supports port-mapped
I/O, the CPU can issue commands to the device through its I/O ports, which is in an
address space separated from the linear address space. If the device supports memory-
mapped I/O, its physical registers are mapped into one or more reserved physical re-
gions. A loaded driver first registers to a device by setting the driver pointer of the
corresponding device structure to itself. The driver explicitly requests the kernel to al-
locate I/O ports or memory-mapped regions in the virtual space. The driver installs a
handler on an interrupt identified by an IRQ number, which can be shared with other
device handlers.1 In that case, there exists a handler queue for this interrupt. This
completes the initialization phase and the drivers are ready to offer I/O services.

In the following, we use a user (Alice) login procedure to illustrate a typical I/O pro-
cess (see Figure 1). When Alice attempts to login to a web service with her private
credentials, such as password, face picture or fingerprint data, the browser issues a
system call to retrieve the raw data inputs from the corresponding device. There is a
device driver responding to the system call. The device driver allocates one or more
data buffers2 and choose one of them to get the raw data from the device. The data
transferring between a device and the system is through the device interface. The

1For certain buses, such as PCI, it is mandatory to share the IRQ number among devices connecting to the
bus.
2For keyboard, usually there is only one data buffer. For camera, normally there are several data buffers.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.
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6:4 Y. Cheng et al.

device interface can be MMIO or PIO or DMA. For instance, the keyboard driver han-
dles the data transferring via DMA for a USB-keyboard and PIO for a PS/2-keyboard,
respectively. After receiving the raw data from the device, the device driver may trans-
late the data into another buffer with a predefined format or just simply move the
data from one buffer to another, until the data is forwarded to the browser data buffer.
Getting needed data, the browser may do certain computations, and sends the derived
data to the remote server via the network channel.

3. PROBLEM DEFINITION

In this section, we state our goals together with the threat model, and present the
possible attacks and the main challenges we are facing.

3.1. Our Goals

There are several approaches [Chen et al. 2008; Yang and Shin 2008] proposed to pro-
tect the data in the user space. Therefore, in this article, we focus on the I/O flow pro-
tection in the kernel space. Specifically, we attempt to propose an approach to defend
against attacks that get the value of the I/O data from device interfaces and kernel-
space buffers. More specifically, we focus on the protection of the raw I/O data that is
generated from or send to devices. Disk I/O and network I/O are not in the scope of our
study, because neither disks nor network adaptors produce or render raw data. In fact,
data stored in disks or transmitted across networks are actually generated by user
applications. Therefore, they can be protected using user-level encryption techniques
(e.g., using SSL to protect the network data). Note that the devices mentioned in this
article are hardware/physical devices rather than virtual devices.

The second goal is to propose a generic solution to protect all kinds of I/O flows
on different machines and different devices. We attempt to make our system to be
compatible with commodity operating systems and legacy applications.

3.2. Threat Model and Assumptions

In our threat model, we consider the malicious software residing in the guest as
the adversary. The malware may compromise the kernel through attacks like ROP
[Buchanan et al. 2008; Checkoway et al. 2010; Shacham 2007] and code injection
[Lineberry 2009]. As a result, the adversary can take full control of the guest, for
example, launching arbitrary code and issuing any DMA requests.

We assume that malware can not subvert the hypervisor. This assumption is reason-
able since the TPM-based secure boot scheme can guarantee the load time integrity of
the hypervisor, and the virtualization technology can prevent malicious software and
illicit DMA accesses driven by the guest OSes in runtime. In addition, some proposed
hypervisor-protection schemes [Azab et al. 2010; Rafal et al. 2008; Wang and Jiang
2010; Wang et al. 2010] can be applied to ensure the hypervisor’s security.

We trust the end user, and assume that the adversary can not physically control the
system. We assume that the hardware devices always behave according to their speci-
fications. We also assume the system firmware is trusted as in Intel [2008], Kun et al.
[2012], Phoenix Technologies [2006], and Vasudevan et al. [2012]. The modern BIOS
has a built-in hardware lock mechanism to set itself as read-only and only accepts
signed updates, so that the OS cannot tamper with it. Due to the complexity of the
x86 platform (e.g., optional ROM), this assumption may not always be true. Nonethe-
less, it is still possible to validate the system firmware by the proposed attestation
approach [Li et al. 2011] or by a trusted system integrator. Furthermore, for the com-
puters in an organization, the security-savvy system administrator can simplify the
system boot settings, such as disabling unnecessary option ROMs.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.
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DriverGuard: Virtualization-Based Fine-Grained Protection on I/O Flows 6:5

In this work, we only focus on uniprocessor platforms. Attacks from multi-core or
multi-processor are out of scope of our discussion. Note that it is not our interest in
this paper to study how to check the trustworthiness of a device driver. We assume
that a trusted authority3 signs every device driver to be installed. The hypervisor can
validate the integrity of device drivers by verifying the signatures. Neither the denial-
of-service attacks nor the side channel attacks (e.g., Song et al. [2001]) are in the scope
of our work.

Although the security and functionality of DriverGuard are independent of user
space protection, the benefits are maximized if DriverGuard joins schemes such as
Overshadow [Chen et al. 2008] and SP3 [Yang and Shin 2008] to safeguard the entire
I/O data life cycle covering both kernel and user spaces. We will discuss this issue in
Section 8.2.

3.3. Possible Attacks

According to the characteristics of driver operations, we spell out attacks targeting at
the I/O data. From the above typical I/O flow, we can find out many possible attack
targets to get the value of the I/O data. We summarize all attack targets into three
categories: device I/O interface, the kernel space data buffer, and the user-space data
buffer.

— Attacks on Device I/O Interfaces. The device I/O interfaces include PIO, MMIO, and
DMA descriptors. For PIO and MMIO, a rootkit may launch the I/O-port or MMIO
mapping attack [Zhou et al. 2012] to intercept or manipulate the device I/O, or di-
rectly access the interface to get the I/O data. It may also attempt to modify the
DMA descriptor to induce the device sending or fetching the I/O data to or from the
memory regions controlled by the rootkit.

— Attacks on Kernel Space Data Regions. This type of regions include all driver allo-
cated memory regions. A rootkit can keep probing and reading the target I/O data,
or be triggered by some special event (e.g., external interrupt) to access the I/O data
directly from these regions. It is hard for the kernel to defend against such attacks
because the rootkit has the same privilege as the kernel. Another attack is that the
rootkit calls the driver’s legitimate routine to access the data.

— Attacks on User Space Data Regions. The user space regions are wildly open for a
kernel rootkit. Once the I/O data is in the user space, the rootkit is able to bypass
kernel- and user-level protections to directly access it. Such attacks can be defended
by serval user-space protection approaches [Chen et al. 2008; Yang and Shin 2008].

3.4. Security Requirements

Given that the locations of the I/O data can be categorized into two types: device inter-
face (including PIO, MMIO, and DMA) and main memory, we summarize all required
security properties of the I/O flow protection on each of them.

For the data in the device interface, we require that malicious code can not access or
manipulate the data. The security properties are stated as follows.

— SP0. The physical addresses and I/O ports of all device interfaces cannot be updated
once they are fixed by the BIOS during the system boots up.

— SP1. Any access on the data or to update data transfer parameters through the
device interface should be intercepted and verified.

— SP2. Only accesses from trusted code blocks are granted.

3To avoid increasing the TCB size, we suppose that the platform administrator signs every driver to be
installed in the platform. The hypervisor is pre-configured with the administrator’s public key.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.
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6:6 Y. Cheng et al.

For the data in the main memory, we require that only the trusted code blocks are
able to read the protected I/O data, and the executions of the trusted code blocks are
protected. The security properties are summarized as follows.

— SP3. If the I/O data in a memory buffer is readable (plain text), access control must
be enforced and only granted the trusted code blocks can access it.

— SP4. If the I/O data in a memory buffer is unreadable (cipher text), any code blocks
are able to access it without triggering any verification mechanism.

— SP5. If a trusted code block is interrupted to give up CPU during its execution, its
execution context must be saved and restored when it occupies CPU again.

3.5. Challenges

We now discuss the challenges in designing a system that provides the guarantee of
confidentiality of the I/O data over the lifetime of the system. The first challenge is the
complexity of the I/O sub-system. Different devices have different interfaces to com-
municate with the system. For instance, cameras use USB interface while the PS/2
keyboard is attached to the system with the PS/2 interface. Furthermore, for the same
device with the same version, different platforms (e.g., Linux or Microsoft Windows)
have different driver implementations. The diversity and complexity dramatically in-
crease the difficulties to build a generic solution to protect all I/O flows.

The second challenge is the complex and intensive interactions between drivers and
the kernel. Most driver functions are dependent on the kernel exported functionalities.
For instance, the driver memory allocation and deallocation are heavily dependent
on the kernel memory management component. The heavy dependence and intensive
interactions make it extremely hard to distinguish if an access on the protected I/O
data is driven by the benign driver or by the compromised kernel.

The third challenge comes from the power of attackers. Once attackers compromise
the kernel, they are able to gain the kernel (highest) privilege, which allows attackers’
code to freely access any memory regions and I/O ports. On the other hand, it is hard
for the buggy monolithic kernel to completely defend against software attacks due to
the large size and numerous attack surfaces.

4. DESIGN RATIONALE

A straightforward approach is that the hypervisor arbitrates whether a control flow
can access the I/O data. It requires the hypervisor to introspect driver operations,
which is difficult to implement due to the semantic gap (e.g., lack of details of driver
operations) between the hypervisor and the driver. Considering the complexity of I/O
operations, the workload on the hypervisor will inevitably expand its code size, and
may significantly downgrade the whole system performance.

Isolation is a widely used method to protect program executions. To apply isolation
on I/O data protection, one may propose location isolation or execution isolation. Loca-
tion isolation is to place device drivers and the kernel’s I/O subsystem into a separated
domain, for example, a driver domain or Dom0 in Xen, or the hypervisor’s space, for
example, VMware, so that malware in the guest kernel cannot attack them directly.
These approaches are efficient in terms of I/O performance. Nonetheless, the resulting
protection is weak because the TCB size is increased significantly due to the drivers
and the I/O subsystem.

In the execution isolation, the device drivers still reside in the untrusted guest ker-
nel while their executions are escorted in a secure environment established by the
hypervisor, similar to TrustVisor [McCune et al. 2010] and Overshadow [Chen et al.
2008]. The generic execution isolation is not applicable for I/O data protection, be-
cause I/O operations are featured with frequent hardware interrupts and intensive

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.
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driver-kernel interactions. Note that if the I/O subsystem is also enclosed in the execu-
tion isolation, it suffers from the same drawback as in the location isolation approach.

We adopt the idea of execution isolation, however, at a micro-level. It is well known
that most of the driver code is for housekeeping purposes, such as error handling, re-
source allocation and cleaning up [Ganapathy et al. 2008], with only a small portion
dealing with I/O data transferring. We further observe that among the code for data
transferring, only a few code blocks, for example, an encoding function, need to process
the I/O data, while the majority of them just move the data from one memory location
to another without necessarily knowing the content. Based on these observations, we
design DriverGuard as a fine-grained I/O protection mechanism, which enforces access
control on the device interfaces and encrypts the I/O data once it is moved into mem-
ory. To let the device driver work properly, DriverGuard distinguishes those security-
sensitive driver code (around 1% of the driver code according to our experiments) from
the rest. Only these identified code blocks are granted to access device interface, and
access decrypted I/O data. Other code blocks is only able to access encrypted I/O data.
In the meantime, DriverGuard protects the execution of security-sensitive code block
to prevent malicious code from accessing the I/O data. Different from the hypervisor
introspection technology, those access controls do not impose comprehensive semantic
logics on DriverGuard. Hence, its performance is on par with the location isolation
solution, however, the security strength is much stronger.

5. DESIGN OVERVIEW

By and large, DriverGuard is constructed using three lightweight protection tech-
niques as the building blocks: cryptography, access control and runtime protection.
We use cryptographic techniques to protect all I/O data without interfering with most
of the driver and the kernel executions. For regions holding data that cannot be pro-
tected by encryption, we resort to DriverGuard to enforce access control. The plaintext
data can only be accessed by a few designated driver code blocks, which are trusted
and whose executions are safeguarded by our runtime protection mechanism. We re-
fer to these code blocks as privileged code blocks (PCBs) in the rest of the article. By
protecting the execution of PCBs, we successfully ensure the whole I/O data security
with minimal overhead since PCBs only constitute a tiny fraction of the driver code.

5.1. Protection Mechanism Overview

A high-level view of DriverGuard’s protection mechanism is as follows. Once the hy-
pervisor boots up, it fixes all physical addresses and I/O ports of all device interfaces by
setting read-only on the configuration space registers, and rejects any update requests
from the guest OS [Zhou et al. 2012] (achieve SP0). All device interfaces related to pro-
tected I/O flow are enforced access control by the hypervisor, so that any access from
the guest must be trapped into the hypervisor (achieve SP1). If the access is from a
PCB (i.e., command-PCB or computation-PCB), the hypervisor grants the access, oth-
erwise rejects it (achieve SP2). Receiving the I/O data from device interface, a PCB
may attempt to read the content of data to do some computations, such as encoding or
decoding operations. Before the PCB is off the CPU, the PCB is designed to either re-
quire the hypervisor set access control back on the data if it is readable4 (achieve SP3)
or encrypt the data into cipher text with the key (achieve SP4, and see more in Section
5.4), which is generated by the key-PCB and only accessible by PCBs. Non-PCBs are
free to move the ciphertext to anywhere without any constrains from the hypervisor.
Figure 2(a) and Figure 2(b) illustrate the difference between a PCB’s and a non-PCB’s

4The PCB is able to get enough semantic information to know if the I/O data is readable or not.
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6:8 Y. Cheng et al.

Fig. 2. The concept of privileged code block (PCB).

I/O data accesses. Since the PCBs never actively give up the CPU until its execution
flow ends, the off-CPU event must be triggered by external interrupts or exceptions.
Based on this observation, the hypervisor enables interception mechanisms on all in-
terrupts and exceptions during the PCB execution. If the interception mechanism is
triggered, the hypervisor restores protection on the I/O data. Furthermore, the hyper-
visor also protects the PCB execution context to avoid indirect data leakage (achieve
SP5).

In Section 3.2, we assume that every driver is signed by a trusted entity such as
the platform’s administrator. To ensure the initial integrity of the PCBs in a driver,
we further assume that they have been explicitly labeled in the driver code before
being signed and installed. Therefore, the signature on the driver code also ensures
the integrity of PCBs. (We will discuss PCB identification methods in Section 6.1.)
Next, we explain the design details of three building blocks and leave the discussion of
their integration in Section 7, since it involves the details of I/O operations.

5.2. Access Control Over Critical Regions

Since we do not rely on encryption-capable devices, encryption is not applicable for
data used by the hardware. To cordon off illicit accesses to the data, we utilize the
hypervisor’s access control mechanism. In general, the data regions are classified into
memory regions and I/O ports, for which we apply different access control methods by
leveraging the hardware features and the virtualization techniques available in the
platform.

To intercept accesses to a protected memory region, DriverGuard sets the attribute
bits in the corresponding Page Table Entries (PTEs), clears the corresponding IOPL
bits, and sets up the I/O bitmap to intercept accesses to an I/O port. Note that the
protected memory addresses are machine addresses not guest physical addresses (or
named pseudo physical addresses). We use checkpoints5 in the rest of the article to
refer to both the IOPL bits and the PTEs marked by the hypervisor for the purpose
of access interception. Although the aforementioned protection techniques are used in
many existing schemes, for example, Chen et al. [2008] and Payne et al. [2008], we are
confronted with two new problems. First, given a memory buffer, the hypervisor must
make sure that the kernel cannot bypass the checkpoint to access the region, which is
challenging for memory regions allocated by the kernel. Second, the hypervisor must
ensure that the sensitive I/O data is indeed placed in the region with a checkpoint. The

5Our definition of checkpoint has no relation with the checkpoint for rollback in distributed systems.
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Fig. 3. An illustration of runtime protection, where 0x1234 is an exemplary memory address with a PTE
checkpoint.

first problem demands a careful page table walk checking while the second demands
the I/O control integrity checking.

5.3. Cryptographic Components

We introduce to the device driver a symmetric-key encryption function and a decryp-
tion function, both of which can be called by any code. However, any write access to the
function code is denied by the hypervisor. We also add a key generation function to the
driver as a PCB. The security of the I/O data relies on the secrecy of the driver’s key,
rather than the secrecy of the decryption function, which complies with the famous
Kerckhoff ’s principle. The driver’s secret key is securely generated based on a secret
random seed supplied by the hypervisor. The secret key is securely stored in a kernel
space buffer priorly appointed by the driver and can only be accessed by the driver’s
PCBs. This prevents any unauthorized code from decrypting the driver’s data, even
though the decryption function can be called arbitrarily.

5.4. PCB Execution Escorting

The third building block in DriverGuard is the runtime protection mechanism that
prevents a PCB’s execution from deviating its expected behaviors. The protection is
requested at the PCB’s entry and is relinquished at the exit via hypercalls. The hyper-
visor agrees to admit a control flow into the escorting only when the request is issued
from the driver’s PCB, and agrees to discharge a flow from escorting only when the
request is issued from the PCB presently under escorting. The PCB is registered to
DriverGuard during the kernel boot up process (details in Section 7).

The PCB under the escorting is granted by the hypervisor to access the critical data
such as the driver’s secret key and the I/O data, or to issue I/O commands. In our de-
sign, the hypervisor temporarily restores the access on those regions for the PCB, and
withdraws the access right at the exit of escorting. Therefore, no duplicated exceptions
or page faults will be raised despite that the PCB may access the same region multiple
times within one escorted execution. An escorted PCB can be scheduled off from the
CPU for various reasons. In that case, the hypervisor intercepts these events and re-
stores all checkpoints. Meanwhile, it also securely saves the driver’s runtime stack and
sets up a breakpoint for the PCB’s upcoming CPU occupation. As a result, other code’s
accesses to the protected regions are denied. Figure 3 depicts a scenario of escorting.

6. PRIVILEGED CODE BLOCK

We consider three types of PCBs in a driver. One is computation-PCBs, which refers to
the driver code blocks making computation on the I/O data, for example, an encoding
function. The second is command-PCBs, which refers to the driver code blocks issuing
data transfer parameters to the device. This type of code is security sensitive because
their executions determine the locations of plaintext I/O data. The third is key-PCBs
which refers to the driver code blocks initializing the driver’s encryption key. Each
driver generates its own key in the driver initialization step, such as in module init.

There are several properties of PCB summarized as follows: (1) It is self-contained
in the sense that there is no extra function calls to kernel functions; (2) It does not
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Fig. 4. The two types of PCB format. (a) A PCB ending with encryption. Thus, the hypervisor does not
need to enforce access control on the data; (b) A PCB ending with protection requirement. Therefore, the
hypervisor must enforce access control on the data to restrict the access.

contain indirect call or indirect jump (e.g., no call using function pointer), meaning
that the control flow is static; and (3) It does not have any dynamic data dependence
except for the parameters. These properties call for driver developers’ prudence in
driver coding such that the driver code is friendly to PCB identification.

6.1. Identifying PCB

Given that the key-PCB is added by the DriverGuard scheme, we only illustrate how
to identify the other two types of PCB from the driver code. Following the I/O data
flow, the sophisticated driver developers are able to identify all functions that operate
on the I/O data, and thereby label all PCB candidates in these functions. If some PCB
candidates are not naturally satisfy the above listed PCB properties, there are some
guidelines for the driver developers to modify them into PCBs.

Obviously, it is easy to achieve the second property by carefully programming. To
achieve the first property, the developer can replace external function calls with its
own code if they are simple (like inline functions). If they are hard to be replaced, the
developer may either move these function calls out of the PCB candidate if they do
not effect the behavior of the driver, or divide the PCB candidate into two PCBs with
the function call as the separator. In order to achieve the third property, the developer
could assign the dynamic dependence data to the static or global data variables. To
facilitate the protection on these variables, developers are able to put them in a par-
ticular region (e.g., a pre-reserved page) with compiling flags. Note that the labeled
driver can be distributed after the PCB-labeling work is done.

6.2. PCB Format

A PCB is always capsulated by a pair of hypercalls for escorting. The entry hypercall
is a start escort hypercall that requires DriverGuard to start to protect the execution
of the PCB, and the exit hypercall is a end escort hypercall that informs DriverGuard
to end the PCB execution protection. There are two possible formats for a PCB. One
format of the PCB is ended with encryption on the protection data. Such PCBs are
usually in the intermediate parts of a driver, where the driver does some process op-
erations on the I/O data whose output is ready for the later stage. The other is ended
with protection requirement which is to request DriverGuard to block all accesses on
the protected regions. Such PCBs usually directly work with device (e.g., updating I/O
buffer for DMA transferring) or user-level applications (e.g., copying data into user
space). We illustrate their different formats in Figure 4.

We assume that the PCB interface is trusted and well-designed/implemented, with-
out malicious intention to leak I/O data to outside. In fact, it is true in almost all cases
especially for the ones in the driver interfaces since they are usually well defined in
the specification.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.



�

�

�

�

�

�

�

�

DriverGuard: Virtualization-Based Fine-Grained Protection on I/O Flows 6:11

Fig. 5. An illustration of five types of regions with same numbering in the description.

7. DESIGN DETAILS

We build DriverGuard on top of the Xen hypervisor to protect the drivers running in a
Linux guest domain. We systematically examine every step in I/O operations, from the
device discovery to the application’s (or device’s) data fetching. In order to adaptively
protect the driver operations, the hypervisor needs to store certain context information
about the driver. We start with driver context initialization since it is performed by the
hypervisor during the guest domain bootstrapping.

7.1. Driver Context Initialization

The context information of drivers are securely stored in three types of tables in the hy-
pervisor space. A device table specifies the management relation between a driver and
a device by paring their identifiers. For every protected driver, the hypervisor main-
tains a PCB table and a region table. The former stores the entry and exit addresses of
all PCBs of the driver while the latter specifies the memory regions and the I/O ports
to protect. There are five types of regions in the region table: (1) the application buffer;
(2) the memory buffer allocated by the driver for data processes; (3) the I/O data buffer
such as DMA buffers; (4) the device interface, including the I/O ports or MMIO regions
and DMA descriptor queues; and (5) the buffer holding the driver’s secret key. Figure 5
depicts their locations in the system.

Device Table Initialization. When a guest kernel image is uncompressed, the hyper-
visor inserts a hook function to the kernel to inform the hypervisor about the device-
driver association via a hypercall. The hypervisor then initializes the device table ac-
cordingly. The hypervisor also sets the checkpoints for the kernel structure maintain-
ing the device-driver association. Whenever a driver takes the ownership of a device,
the hypervisor intercepts the event and updates the device table properly.

PCB Table Initialization. We assume that all PCBs in a driver have been manually
identified and delimited by a pair of hypercalls, that is, an escorting-entry hypercall
and an escorting-relinquish hypercall. The hypervisor scans the driver code to record
the addresses of escorting-entry hypercalls and of the respective escorting-relinquish
hypercalls. It puts these pairs into the PCB table. In Section 8.1, we will discuss how
to automatically identify PCBs.

Region Table Initialization. The regions used by a driver can either be the default
ones chosen by the manufacturer/the kernel or set by the driver. In the first case, the
hypervisor updates them when the driver is loaded as in the device discovery step. In
the latter case, the driver informs the hypervisor via a hypercall about the protected
regions or I/O ports.

Driver Key Initialization. Each driver has a dedicated key-PCB to initialize its own
encryption key. In the key-PCB, key initialization algorithm first issues a hypercall
to get a random seed from hypervisor, and then saves the generated key into its key
buffer. The key generation process is only run once, and escorted by hypervisor (see
escorting details in Section 7.3.2).
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7.2. Checkpoint Deployment

Given a memory region or an I/O port, the hypervisor sets up the corresponding check-
point to intercept and verify potentially malicious accesses. The detailed deployment
method is dependent on the virtualization environment.

7.2.1. Memory Region Checkpoint. For a memory page A, the hypervisor walks through
the page tables through the CR3 register to locate the corresponding PTE pointing to
it. The hypervisor sets the attribute bits on the PTE to specify different access rights.
To set a page read-only, the PAGE RW bit is cleared; and to set a page nonaccess, the
PAGE PRESENT bit is cleared. Note that all protected regions are in kernel space and

all processes share one kernel space mapping. In the paravirtualization setting, only
the hypervisor is able to update page tables. In the hardware-assisted virtualization
setting, a Shadow Page Table (SPT) or Extended/Nested Page Table (EPT/NPT) is used
to translate virtual addresses into machine addresses, and the SPT/EPT/NPT is only
updated by the hypervisor. Although the mechanism of the SPT is a little bit differ-
ent from the one of EPT/NPT, that is, the SPT requires the hypervisor to control over
the guest page table while the EPT/NPT do not need, the page-access-checking mech-
anisms are essentially the same, since the final access right to a page is determinate
by the page table, that is, SPT/EPT/NPT, handled by the hypervisor. Therefore, those
checkpoints can not be removed by the malicious kernel. Note that in the hardware-
assisted virtualization environment, the hypervisor enforces access on the machine
address, not the pseudo physical address or virtual address.

Given that the granularity of the memory protection is in the page-level, we should
carefully deal with the I/O data buffers that are not page-aligned or mixed with other
data in a single page. There are two options to solve the problem. One is to request
I/O buffer at the length of pages. In fact, to accelerate the performance, many device
drivers have such allocation feature. For example, the USB camera driver allocates a
large memory pool in page level for data caching. The other option is to let the hy-
pervisor emulate the operations that access other data. In DriverGuard, we choose the
second option to avoid changes on driver code. Although emulation incurs performance
loss, the likelihood of its occurrence is low. This is because the checkpoints are only de-
ployed on device interfaces used immediately after or before I/O, and other data are
protected by encryption.

Legitimacy of Memory Region. When the hypervisor attempts to set up a checkpoint,
it checks whether the machine memory page can be reached by another unauthorized
PTE. In other words, the kernel is not allowed to bypass the checkpoint to visit a
machine memory page. Therefore, the hypervisor must ensure that there exists no
unchecked virtual-to-machine address translation for memory pages with checkpoints.

We leverage the hypervisor’s memory management mechanism to tackle this issue.
The Xen hypervisor maintains a page info structure for every machine memory page.
The count info field in this structure records the number of usages of a machine mem-
ory pages. For a page allocated to a guest, its count info is actually 2, because the
hypervisor itself is holding it.6 Therefore, on setting up a PTE checkpoint, the hyper-
visor checks if the corresponding counter is 2. In addition, we modify the hypervisor’s
do mmu update and do update va mapping to prevent the kernel from crafting a trap-
door path for existing checkpoints. These functions are used by the guest kernel to up-
date page tables. In this way, for any page table update, the hypervisor checks whether

6Before a machine memory page is allocated to a guest OS, the hypervisor holds it first and sets the
PGC allocated bit. Therefore, the page’s count info is already 1 before being allocated to the guest.
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Fig. 6. Algorithm for PCB admission.

the requested update increases the usage counter of any machine memory page with a
checkpoint.

In the hardware-assisted virtualization environment, the hypervisor does not set
two PTEs pointing to the same machine address. To enforce this property, the
SPT/EPT/NPT update algorithm can be extended to verify it. Note that the legacy
hypervisors, such as Xen, do not export any interface for the guest to manage the
SPT/EPT/NPT.

7.2.2. I/O Port Checkpoint. I/O ports is separated from the memory address space, and
the accesses to such I/O ports need a set of special instructions, for example, inb and
outb. A successful access must go through the IOPL checking and I/O bitmap checking.
Any access will be blocked once its priority is lower than the priority specified in the
IOPL. Even if the access pass the IOPL checking, it is still blocked if the corresponding
bit is set in the I/O bitmap. To prevent the malicious guest kernel from accessing the
protected I/O ports, the hypervisor clears the IOPL bits of EFLAGS of the guest’s CPU.
Namely, it sets the I/O privilege level to 0, such that the hardware always checks the
I/O bitmap for PIO instructions because the paravirtualized kernel runs in Ring 1.
Then, the hypervisor sets the bits corresponding to the protected I/O ports such that a
PIO instruction will cause a general protection exception.

It is relatively easier to set up I/O checkpoint in hardware-assisted virtualization.
More specifically, the hardware-assisted virtualization technique supports that the hy-
pervisor itself can intercept all instructions that access a particular I/O port through
a dedicated I/O bitmap in the hypervisor space. Therefore, the hypervisor simply ac-
tivates the I/O bitmap mechanism by setting the 25th bit of the processor-based VM-
Execution control vector and then sets the bits in the bitmap corresponding to all
protected I/O ports.

7.3. PCB Execution Escorting

7.3.1. PCB Admission. A driver’s PCB starts with the hypercall which takes as the
parameter the buffer address it requests to access. To admit a PCB, the hypervisor
checks whether the hypercall is issued from the instruction whose address is registered
in the PCB table. If not, the hypervisor rejects the request.

For an admitted PCB, the hypervisor protects its stack as follows. The hypervisor
allocates a dummy stack for the PCB. Therefore, an admitted PCB has two runtime
stacks. A genuine stack is used for the PCB’s execution while the dummy stack is used
for untrusted code sharing the same execution flow due to interrupts. The usage of
dummy stacks will be explained in the next subsection. Figure 6 describes the details
of the PCB admission algorithm, where InEscorting is a flag bit indicating the current
execution state.
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Fig. 7. Interrupt handler for escorting. When there is an interrupt interrupting the execution of the execu-
tion of a PCB, the interrupt handler restores the protection on the escorted data, and saves the context of
current escorting PCB.

7.3.2. Escorting. Once a PCB is admitted by the hypervisor, its execution is escorted
and the checkpoints for the buffers are temporarily lifted. The essence of escorting is
that the hypervisor intercedes whenever the PCB is scheduled off from the CPU, which
occurs due to the hardware interrupts. This situation opens the door to the kernel
attacks, because the kernel may occupy the CPU and could access the PCB’s runtime
stack and data. To defend against such attacks, the hypervisor should be able to enforce
access control on the data and stack before the potentially malicious kernel occupy the
CPU. In the virtualization environment, the hypervisor is able to configure the system
to give priority to itself to occupy the CPU. Specifically, all hardware interrupts are
sent to the hypervisor prior to sending to the guest domain. Therefore, the hypervisor
is able to (1) restore the checkpoints and (2) replace the runtime stack with the dummy
stack allocated in PCB admission. The hypervisor also sets a breakpoint to intercept
the events that the PCB is rescheduled to the CPU.

We explain here how the hypervisor handles an interrupt through interrupt han-
dler do IRQ and a debug exception through the debug exception handler do debug in
addition to its normal process.

Interrupt. To switch to a dummy stack, the hypervisor only replaces the content of
the PTE for the present stack with the machine page number of the dummy stack
allocated during admission. This change is transparent to any guest process, since the
address in the ESP register remains the same. Hence, the guest kernel is not able to
access the true stack while the subsequent execution can use the dummy stack without
being affected. The algorithm for stack switching and checkpoint restore is shown in
Figure 7.

Debug Exception. When a debug exception occurs, the hypervisor’s do debug func-
tion is called before the event is forwarded to the guest kernel. All breakpoints used by
the hypervisor are local breakpoints. Therefore, they are triggered only for the present
process. There are two types of local breakpoints used in DriverGuard.

Setting a breakpoint at the EIP is to intercept the event of PCB resuming. For this
type of breakpoint, the hypervisor enters into escorting only when both EIP and ESP
values match the previously saved pair. The details are shown in the following algo-
rithm in Figure 8.

7.3.3. PCB Exit. To exit from the hypervisor escorting, the PCB issues another hyper-
call. The hypervisor checks if InEscorting is set. If not, it returns an error message;
otherwise, it clears InEscorting flag. The PCB should also issue a hypercall to protect
its data if the data are left in plaintext. The hypervisor sets no more breakpoints and
processes interrupts and exceptions in the normal way.
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Fig. 8. Exception handler for escorting. When a previous interrupted PCB resumes, the exception handler
restores the PCB execution context.

7.4. Data Region Access Control

A potentially malicious access to a memory region with a checkpoint causes a page
fault and an access to an I/O port with a checkpoint throws out a general protection
exception. Therefore, we modify the hypervisor’s page fault routine do page fault
and the general protection exception handler do general protection. In the former,
the hypervisor gets the address of the trapped instruction from EIP and the address
being checked from CR2, while in the latter, the I/O port number is enclosed in the
instruction.

If the access is granted by the hypervisor, the event will not be forwarded to the
guest kernel. In that case, The legitimate flow continues to execute the intercepted
instruction without being re-scheduled due to the page fault as the guest kernel does
not observe this exception. For unauthorized accesses, the page fault or exception is
passed to the guest kernel. DriverGuard is compatible with memory mapping for page
sharing because the checkpoints are deployed at the PTEs. A buffer mapped to two
addresses has two PTE checkpoints. In the following, we elaborate the details of region
access control according to all types of regions except the control region.

I/O Buffer. The addresses of I/O buffers are obtained within an escorted command-
PCB. Since the I/O buffer contains the data to/from the device, they are not protected
by encryption. The hypervisor blocks all accesses not from an escorted PCB. For an
input buffer containing the data from the device, the driver always encrypts the data
before moving them to other locations, whereas for an output buffer the driver must
decrypt the data after copying them to the output buffer.

Driver Buffer. Driver buffers temporarily hold data for processing. When the data in
those buffers are encrypted, the hypervisor does not set up checkpoints for them. Only
when the escorted PCB is temporarily scheduled off from the CPU, the hypervisor sets
up the checkpoints against all accesses as the data are in plaintext. In this case, the
PCB notifies the hypervisor about the buffer address.

Key Buffer. The key buffer holds the secret encryption key used by the driver. The
hypervisor allows the key to be read only from the instructions from the encryp-
tion/decryption functions and is currently in escorting mode. Thus, a non-PCB can
not access the encryption key.

7.5. Device Control Protection

As explained in Section 7.1, the control region’s addresses can be obtained in the ini-
tialization phase for certain devices. The hypervisor denies all write accesses to the
region not from an escorted PCB. Furthermore, it is also crucial to maintain the con-
sistency between the I/O buffer address specified in an I/O command that is sent to the
control region and the buffer addresses requested by the device driver. This is because
the kernel may manipulate the I/O command such that the device uses an unprotected
I/O buffer for transferring. To defend against such attacks, the driver’s command-PCB
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informs the hypervisor the locations of the I/O buffers in use, such as the DMA buffer
and the DMA descriptor queue. The hypervisor inserts them in the region table and
sets up the checkpoints accordingly. Therefore, it ensures that the I/O buffer in use is
always protected.

7.6. Device Configuration Space Restriction

In order to defend against I/O-port and MMIO mapping attacks, DriverGuard restricts
the updates on the physical addresses and I/O ports of device interfaces. According to
the descriptions in Section 2.1, DriverGuard sets checkpoints on the I/O ports 0xCF8
and 0xCFC, or the reserved memory region. The details of the checkpoint refers to Sec-
tion 7.2. Any update (write) operations will be rejected. This restriction does not lower
the runtime performance of the system since the configuration operation is normally
done once at the bootup phase of the system.

7.7. User-Space Device Driver Support

When a device is managed by a user-space driver, the I/O data is directly transferred
between a user space buffer and the device interface without any intermediary kernel
space buffers. According to our threat model in Section 3.2, the user space memory
regions are well protected by schemes like Overshadow. However, those schemes are
not sufficient for I/O protection because they do not protect the device interface. Thus,
we need to instrument the driver code with hypercalls to fix the protection gap. The
inserted hypercalls update the information of the device interface to DriverGuard and
request it to enforce access control on the device interface. Recall that all the user
space driver code is protected. Thus, we do not need to identify PCBs for user-space
drivers.

8. DISCUSSIONS

In this section, we discuss the automatic PCB identification process, and the whole
lifecycle of protection on the I/O flows with the cooperations of DriverGuard and other
user space approaches.

8.1. Automatically Identifying PCB

Ideally, a fully automated PCB identification algorithm can discover PCBs in a device
driver with no false positives and no misses. False positives lead to unneeded overhead
while misses result in loopholes for the adversary to attack. However, it remains as an
open problem how to design such a PCB identification algorithm for a driver’s source
code or binary code. In this article, we make analysis of the challenges and propose a
best-effort solution.

Recall that we defined three types of PCBs in Section 6. We only need to discover
computation-PCBs and command-PCBs, as the key-PCBs are new function inserted to
the driver. Labeling command-PCBs is straightforward, since they are featured with
special instructions (e.g., inb and outb) involving the device interface (e.g., I/O ports)
or special memory region (e.g., MMIO). Many existing techniques can be used to iden-
tify the related statements, for example, interprocedural points-to analysis technique
[Heintze and Tardieu 2001] and the slicing techniques [Mock et al. 2002; Sridharan
et al. 2007; Weiser 1979]. For instance, in the slicing techniques, we select the device
interface (e.g., the I/O ports) as the seed, and the slicing tool can find out all statements
that directly access the seed.

The computation-PCBs are the code blocks computing on the I/O data (e.g., mapping
the scan code into key code in the keyboard driver). Identifying the computation-PCBs
is a challenging task since it involves code and data semantics. To the best of our
knowledge, existing code analysis techniques (e.g., forward and backward slicing, and
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thin slicing) are not sufficiently intelligent to distinguish code semantics. Another chal-
lenge is the abundant usage of function pointers in drivers, which makes it infeasible
to determine execution flows through a static code analysis. This issue is aggravated
by the fact that most drivers are essentially a collection of disjointed functions, instead
of a single executable. The executions of driver functions are usually integrated with
kernel execution. It is therefore difficult to map out all possible execution flow given
existing code analysis techniques.

We propose a semi-automatic method for computation-PCB identification, with au-
tomated tools for coarse-grained scope defining on a large scale of code and human ef-
forts for fine-grained refinement on small scale code fragments. Given a driver’s source
code, which is a set of functions, the basic idea is to first pick up functions related to
I/O data, then identify PCBs within each chosen function. In a nutshell, the procedure
is divided into three steps: (1) to select functions that potentially contain PCBs; (2) to
identify PCB statements in each function selected in previous step; and (3) to form all
PCB blocks from the statements discovered in Step 2.

Step 1. Function Candidate Selection. Drivers are highly structured code to conform
to hardware interface specifications, such as providing file operation interfaces like
open, read, and close. According to hardware specifications, I/O flows must originate
at those designated interfaces. Therefore, those interface functions that do not process
I/O data, as well as functions solely called by them, are excluded from our search
scope. For instance, the interface function poll corresponding to the select system call
usually does not access the I/O data, while allows a program to monitor and wait until
one or more of driver/device states become ready for some class of I/O operations. The
interface functions like read and write usually handle I/O data for the requests of the
applications. For ease of presentation, we use F to denote the set of interface functions
with I/O flows.

We then map out the execution flows (and therefore I/O data flows) starting from
functions in F , so that all dependent functions are examined. For this purpose, we
first manually identify the I/O data used in F , because the exact locations of I/O data
in those functions are implementation specific, for example, in the function parameters
or predetermined buffers. Then, we use the I/O data as the seed to perform dynamic
taint analysis [Kemerlis et al. 2012; Newsome and Song 2005] to identify functions
involved in I/O flow.7 Since the dynamic taint analysis does not guarantee covering
all execution paths, manual efforts are needed to check missed functions. Lastly, we
extend F to enclose all functions picked up either manually or by the tool. For each
function in F , we identify computation-PCB in the next step.

Step 2. PCB Statement Identification. In each selected function, we attempt to iden-
tify from the function body the PCB-candidate statements where I/O data are involved.
Using the I/O data in Step 1 as the seed, we apply the slicing tools [Mock et al. 2002;
Sridharan et al. 2007] to label all seed-related statements in the function body. Note
that the resulting statement set contains non-PCB statements for two reasons. First,
according to Santelices et al. [2012], slicing techniques may introduce false positive in
statement discovering. Second, it is likely that some statements correctly identified by
the slicing tools are not for I/O data computation, since the slicing technique does not
take code semantics into consideration. For instance, statements that copy I/O data
between memory buffers do not satisfy the definition of computation-PCB. We suggest
to manually examine the slicing results to filter out non-PCB statements.

7Although the method for dynamic taint analysis is applicable to drivers in principle, we have not found any
existing tool suitable for this task.
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Step 3. PCB Formation. The last step is to organize the PCB statements in Step 2
into PCBs and instrument them with hypercalls. If each PCB statement is treated as
a PCB block, its performance toll will significantly rise up. For each function in F , our
algorithm scans the statements identified in Step 2 with several rounds of iterations.
In the first iteration, adjacent PCB statements are grouped into one PCB block. In the
second iteration, the algorithm attempts to merge separated PCBs in order to reduce
the total number of PCBs. If two PCBs are in the same basic block (i.e., a straight-
line sequence of code with one entry point and one exit) and the number of non-PCB
statements between the PCBs are less than a predetermined parameter κ, then these
two PCBs are merged together with the non-PCB statement in between into a new
PCB. Note that κ is used to tune the balance between the size of PCB and the num-
ber of PCBs. This iteration continues until no new PCB is generated. In the end, two
hypercalls are inserted for each formed PCB as described in Section 6.

It is better for the driver developers to do the PCB identification since (1) they know
best, and (2) it may increase the market share due to the extra security services. In
addition, the identification process is only done once, and the results can be delivered
anywhere. For a particular system, the hypervisor does not need to maintain a univer-
sal list (including all PCBs), while it manages the PCB list only for the drivers loaded
in the system. Maintaining the PCB list that are never used will lead to unnecessary
cost and may increase the TCB size, especially for the hypervisor.

8.2. Full I/O Path Protection

As illustrated in Figure 5, a full I/O path in general consists of the user-space buffers
allocated by the application, the kernel-space buffers allocated by the driver and/or
kernel, and the I/O interface buffer such as a DMA buffer. DriverGuard ensures the
security of the latter two while a user-space protection scheme (e.g., Overshadow [Chen
et al. 2008], SP3 [Yang and Shin 2008] or SecureME [Chhabra et al. 2011]) secures the
first type of buffers. To have a seamless integration, the key issue is to ensure that
the kernel segment of the I/O path correctly joins the intended application’s user space
segment, as a device is shared among multiple applications.

This issue has twofold implications. One is that the location of the user space buffer
allocated by the target application must be securely passed to the driver, such that the
driver can deliver (fetch) I/O data to (from) the right place. The other is that the data
during the user-kernel space transition must be securely handled. When the I/O data
is transferred between the application’s buffer and a kernel buffer, it should be ensured
that no security gap exists during the transition. In other words, both buffers should
be protected either by encryption or hypervisor-based access control while allowing
data flow between them.

We propose here a design integrating DriverGuard with Overshadow as illustrated
in Figure 9. Note that Overshadow makes use of a cloaked shim that is introduced as
a trusted component in user space. The shim code in Overshadow plays the role of pro-
tecting data exchange between the application and the kernel using system calls. We
propose to add a new function named as shimguard in the cloaked shim. Shimguard
in the cloaked shim handles inbound and outbound data before and after system calls
and correctly locates the application buffer for I/O data.

Before an application issues a system call to activate an I/O operation, the shim-
guard is involved by the cloaked shim. The shimguard first updates the identity of
the application, the identity of the buffer and the identity of the target driver to
the hypervisor. The identity of the application is the unique address space identifier
(ASID) maintained by the hypervisor as proposed in Overshadow. If current ASID is
the trusted application, the hypervisor accepts the hypercall; otherwise, it will reject
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Fig. 9. The shimguard helps Overshadow and DriverGuard to protect the whole life cycle of the I/O data.
Note that the I/O data denoted as D in the shaded regions are encrypted either by driver PCBs or by
shimguard.

the hypercall. The identity of the buffer is its memory region represented in machine
address. The start and end virtual addresses of the buffer are provided by the shim-
guard using the hypercall, and the corresponding machine addresses are collected by
the hypervisor. Note that the virtual addresses alone can not used as the identity of the
buffer since they may represent a different buffer in another virtual pace. The iden-
tity of the device driver can be got by using the name of the device provided through
the hypercall since the device and driver mapping relationship is maintained by the
hypervisor. The hypervisor generates a unique AES encryption key for the received
3-tuple of identities. Both the 3-tuple and the corresponding key are inserted into a
table in the hypervisor space. For clarity purpose, we use shim-key to denote the AES
key save in couple with the 3-tuple identifiers.

We use a read operation as an example to illustrate how to protect the I/O path
starting from the device interface to the application buffer. The protection over the
kernel space segment is the same as described in previous sections. When the PCB of
the driver moves the I/O data into a user space buffer denoted as Addr, it requests the
shim-key for Addr from the hypervisor. The hypervisor releases the shim-key on the
condition that there exists an entry in the previous table containing both the request-
ing driver’s identity and the machine address of Addr. If successful, the driver PCB
encrypts the I/O data and transfer the cipher text to Addr. When the cloaked shim
is trigger to fetch the data from Addr, the shimguard function requests the shim-key
from the hypervisor. The hypervisor releases it on the condition that there exists an
entry in the previous table containing both the requesting application’s ASID and the
machine address of Addr. If successful, the shim deciphers the encrypted I/O data and
passes it to the application.

The operations for outbound data flow is similar to this description. Note that the
shim-key in different from the the encryption key used by the driver described in pre-
vious sections. The shim-key is application specific and is the same as that used in
Overshadow, whereas the driver has its own encryption key.

9. EVALUATION

We implement DriverGuard and run experiments on six peripheral devices to evalu-
ate its security and performance. The devices are a USB keyboard, a web camera, a
fingerprint reader, a sound card, a printer and a graphic card.

9.1. Security Analysis

9.1.1. Driver Security. As we know drivers are usually buggy. Attackers are able to com-
promise the driver through these vulnerabilities to hijack the control flow or data flow

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.



�

�

�

�

�

�

�

�

6:20 Y. Cheng et al.

of the driver to attempt to get the I/O data. Fortunately, attackers can not get the
I/O data as long as the integrity of driver’s PCBs are kept under the protection of the
DriverGuard. Even if attackers completely control other parts of the driver, they are
only able to access encrypted I/O data or are directly rejected since all these accesses
are not from PCBs. Smart attackers may attempt to call a PCB to get I/O data. How-
ever, this attempt would fail because (1) the control flow of the PCB is static and (2)
I/O data is either encrypted or set protection by the hypervisor according to the design
of the PCB (Section 5.4) when the control flow is out of PCB . The confidentiality of the
I/O data is dependent on the trustworthiness of PCBs, not other parts of the driver or
kernel. Therefore, attackers cannot get any benefits from buggy device drivers.

9.1.2. ROP Attack. The Return-Oriented Programming (ROP) attack is a very powerful
attack since it does not need to inject malicious code but drives legitimate code to do
malicious behaviors. However, the ROP attack cannot get the protected I/O data in our
system due to the design of the PCB and the DriverGuard protection. More specifically,
in our design, the executions of PCBs are protected by the hypervisor and the control
flows of PCBs are static. Therefore, attackers cannot hijack any PCB control flows.
Furthermore, only the execution flows that start from recorded start escort hypercalls
are able to access decrypted I/O data. Any other execution flows that have no escorting
request or with unrecorded requests are rejected.

9.1.3. DMA Attack. Our scheme relies on IOMMU to defend against DMA-based at-
tacks, whereby a rootkit instructs a DMA device to read/write a memory region.
IOMMU can defend against this type of attacks if the checkpoints are set on I/O page
tables as well. If IOMMU is not available, an alternative approach is to intercept DMA
request with shadow DMA descriptor mentioned in BitVisor [Shinagawa et al. 2009].
Nonetheless due to its high runtime cost, the shadow DMA descriptor is more amiable
to slow devices with infrequent usage, for example, a fingerprint reader.

9.1.4. Interrupt Spoofing Attack. The interrupt spoofing attack are proposed in Zhou et al.
[2012], which attempts to induce the device driver operating on incomplete or incon-
sistent data by processing spoofed interrupts. Obviously, the interrupt spoofing attack
may lead to the device driver’s misbehavior. However, it can not help attackers to ac-
cess the I/O data, since it is only readable for trusted PCBs.

9.1.5. Side Channel Attacks. Side channel attacks (e.g., White et al. [2011] and Song
et al. [2001]) can be used by the adversary to infer secret data. Since the adversary
in our model refers to malwares residing in the guest OS, the hardware-based side-
channels such as power consumption are not feasible for the adversary. The adversary
can launch other attacks by observing the timing difference between two I/O events
(e.g., keystrokes) or the contents in a CPU cache, which is weak than the adversary
considered in chip-card security. In addition, existing side channel attacks mainly tar-
get cryptographic data, such as a decryption key or a password. It is unknown whether
generic I/O data is subject to these attacks as well.

Our current design does not take side-channel attacks into consideration. To counter
these attacks, DriverGuard should deploy a special AES implementation resisting
side-channel attacks. The hypervisor should clean up the CPU caches whenever a PCB
is scheduled off from the CPU. It can also generate random I/O events to defeat timing
analysis. The main challenge is how to deal with side-channel attacks without increas-
ing the hypervisor’s complexity and incurring more overhead.

9.1.6. Attacks on Multicore Platform. On a multicore platform, it is possible that while a
PCB runs in one core accessing the I/O data, the subverted guest kernel on another

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.



�

�

�

�

�

�

�

�

DriverGuard: Virtualization-Based Fine-Grained Protection on I/O Flows 6:21

core can also access them using the same page table used by the PCB. This attack can
be countered using hardware-assisted virtualization supporting EPT or NPT.

The hypervisor prepares a dedicated EPTs for PCBs so that they have access permis-
sions to those protected checkpoints. The non-PCB code such as the untrusted guest
kernel use the normal EPT/NPT, in which the checkpoint regions are set as inaccessi-
ble. Whenever a PCB starts to occupy a CPU core, the hypervisor installs the dedicated
EPTs (e.g., triggered by the start escort hypercall) for the corresponding core. When it
gives up the CPU core, the normal EPTs are restored (e.g., triggered by the end escort
hypercall). Since instructions on other cores do not have the dedicated EPTs, they can-
not access the protected region when the PCB is in execution. Note that the EPTs are
solely managed by the hypervisor. The guest kernel does not the privilege to manipu-
late the EPTs.

9.2. Security Evaluation

To validate the design of DriverGuard, we evaluate its effectiveness in several
experiments.

9.2.1. Known Attacks. To the best of our knowledge, the only publicly known kernel-
level attacks on I/O devices are keyloggers. We have downloaded and tested three
kernel-level keyloggers and none of them can successfully acquire the keystrokes. The
first keylogger8 directly reads the keyboard I/O ports 0x0060 and 0x0064 using a fake
interrupt handler. It fails because the fake interrupt handler does not belong to the
authorized keyboard driver PCBs. Thus, it cannot access the I/O port or get the de-
cryption key. The second keylogger9 modifies the keyboard driver’s data structure and
installs a malicious function handler. Since the malicious function handler is not ad-
mitted by the hypervisor as a PCB, it can only access encrypted keystrokes without
being allowed to use the secret key. The third keylogger10 modifies the system call
table to replace read function with a malicious one. The malicious read function first
calls the original read, and then steals data from the user space buffer that is passed
as parameter. This rootkit fails because the read function only copies the encrypted
keystroke. After the driver places the ciphertext in the application buffer and opens it
for the application, the hypervisor denies all kernel level accesses.

9.2.2. Synthetic Experiments. We introduce three synthetic attacks to read protected
I/O data, and the results show that the DriverGuard successfully prevents all of them.
More specifically, in the first experiment, we attempt to modify one byte in the pro-
tected MMIO region. DriverGuard catches the write operation through a page-fault
exception. DriverGuard rejects the operation once it verifies the caught operation is
not from an identified PCB. In the second experiment, we try to read the protected I/O
data in a driver buffer, where the data is encrypted. We are only able to get the cipher
text since the newly introduced code is not able to get the encryption key to decrypt it.
In the third attack, we introduce a piece of code to call a PCB to get the protected I/O
data. The attack fails as the data is encrypted when the execution flow is out of the
PCB.

9.3. Usage of PCB

In our experiments, we manually identify all PCBs on the source code of device drivers
and the drivers in the kernel’s I/O subsystems, for example, a host controller driver. It

8http://www.phrack.org/issues.html?issue=59&id=14
9http://goo.gl/DpOBc
10http://packetstormsecurity.org/files/view/25677/kernel.keylogger.txt
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Table I. Privilege Code Blocks

Driver Size (LOC) # of PCBs Avg. PCB Size (LOC) Device
keyboard driver 4964 11 17 keyboard
HID∗ 12771 13 10 keyboard
UVC driver 7838 7 11 camera
EHCI∗ 10011 6 15 camera
HDA-Intel 47825 8 6 sound card
Sound-core∗ 18722 5 4 sound card
devio 1628 7 12 printer, fingerprint reader
UHCI∗ 7600 5 14 printer, fingerprint reader

The number of PCBs and the average size for each driver used in our experiments. The drivers labeled
with stars are those within the kernel’s I/O subsystem. The PCB size includes the hypercalls and the
calls to the encryption and decryption functions.

is straightforward to identify command-PCBs and key-PCBs, because key-PCBs are in-
troduced by DriverGuard while command-PCBs are the code accessing port I/O, MMIO
or structures used by devices (e.g., frame list of UHCI). Identifying computation-PCB
requires the semantic knowledge of the code. We trace the I/O data to spot code seg-
ments computing on the I/O data. Note that code segments for copying or moving data
are not PCBs.

Table I lists all the involved drivers (except for the graphic driver since it uses user-
level driver) used in our experiments and the number of PCBs in each of them. We find
that a driver typically has only around ten PCBs and each PCB has approximately
15 lines of code without making function calls (except the encryption and decryption
functions). The total PCB code only account for 1�3% of the driver code. The tiny size
of PCB and its simple logic allow for high security assurance, as compared to protecting
the execution of thousands of lines of driver code.

9.4. Performance Evaluation

We experiment with DriverGaurd on a PC with Intel(R) Core(TM)2 Duo CPU E7200
@2.53GHz, 4GB main memory, running Xen 4.0.0 and a PV guest domain with Linux
kernel 2.6.31.13. DriverGuard adds around 1.7K SLOC to the Xen hypervisor. Our per-
formance evaluation includes a cost measurement of DriverGuard’s component func-
tions and a set of application tests with six devices. We remark that the I/O character-
istic is favorable to our scheme as peripheral devices are usually much slower than the
CPU. Therefore, DriverGuard does not affect the driver performance since the device
speed is the performance bottleneck.

We choose 128-bit RC4 as the encryption cipher in our implementation rather than
AES encryption, because RC4’s compact code is easier to protect and does not signifi-
cantly expand the PCB size.

9.4.1. Component Cost Evaluation. We instrument the DriverGuard code to measure
the CPU cycles consumed by its main components including the escort hypercalls,
the interrupt handler do IRQ, the debug handler do debug, the page fault handler
do page fault and the general protection exception handler do general protection
The results are shown in Table II. Note that the encryption cost within a PCB com-
prises the overhead of the secret key access that incurs one page fault and the hyper-
visor’s checkpoint removal.

We also test the time cost induced by DriverGuard to data movements in the guest
domain, including I/O port data and memory buffer transferring. The cost is due to the
interceptions triggered by the checkpoints. We choose two commonly used functions:
inb and memcpy. inb reads one byte from a serial port while we run memcpy to copy
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Table II. Component Performance Results

Components do IRQ do debug do page fault do general protection Encryption 1KB
CPU cycles 844 739 961 1813 23355

The extra cost of the DriverGuard components.

Table III. Data Access Results

memcpy inb
without DriverGuard (in CPU cycles) 1884 2738
with DriverGuard (in CPU cycles) 3026 2939
overhead (%) 1142 (60.62%) 201 (7.3%)

The time cost induced on the guest domain data access.

Table IV. Input Device Results

W/O DriverGuard With DriverGuard Overhead (%)
Keyboard key code transfer 0.053ms 0.138ms 0.085ms (160.40%)

Camera
Interrupt Handler 0.023ms 0.259ms 0.236ms (1026.09%)

Waiting Time 33.24ms 33.38ms 0.14ms (0.42%)
Fingerprint-Reader fingerprint collection 2.61s 2.63s 0.02s (0.77%)

The overhead of the protection on the keyboard, camera and fingerprint-reader I/O.

12K bytes from one buffer to another. Both the port and the memory buffer are pro-
tected by DriverGuard checkpoints and the functions are allowed to access. The test
results are shown in Table III.

As shown in Table III, the overhead for protecting memory data flow is rather high
(about 60%). Therefore, a severe performance drop will be seen in I/O flows involving
frequent memory data movement. In fact, most device drivers are optimized to reduce
the number of memory copying. A widely used practice is for the driver to maintain a
large cache buffer and memory copying is invoked only when the cache is full.

9.4.2. Driver Performance Measurement. We test three input devices (keyboard, camera
and fingerprint reader) and three output devices (printer, sound card, and the graphic
card). For each device, we evaluate the performance overhead and latency for the de-
vice drivers and user applications.

Keyboard. When a user presses a key on the keyboard, an interrupt is generated
by the hardware. The interrupt handler of the HID driver is invoked to get the key
code and to send it into a tty buffer through the keyboard driver. Following that, an
event is raised to trigger sys read, which has been sleeping on the event. When being
waked up, sys read transfers the key value from the keyboard driver’s buffer to a user
space memory address. In our experiment, we measure the time cost of the interrupt
handler that moves the data from the keyboard to the tty buffer. The results are shown
in Table IV. Although the protected keyboard I/O is slower than the unprotected one,
it does not affect the application because the overhead (i.e., 0.085ms) is still negligible
as compared the speed of human keystrokes.

Camera. The web camera in our experiment is managed by the default Linux UVC
driver. When the camera is opened by an application, it continuously collects video
data and sends them to the application. The UVC driver’s interrupt handler moves
and decodes the captured data from the camera into a video frame, which resides in
the driver’s buffer mapped to the user space. The user application can directly use
the frame data like normal user-space data without any kernel-to-user-space data
movement.
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Table V. Output Device Results

Without DriverGuard With DriverGuard Overhead (%)

Printer

1 page 15.74s 16.19s 0.45s (2.86%)
2 pages 27.36s 27.73s 0.37s (1.35%)
4 pages 56.65s 58.15s 1.50s (2.65%)
8 pages 120.75s 122.40s 1.65s (1.37%)

Sound Card sound card open 7.8μs 12.3μs 4.5μs (57.7%)

Graphic Card
10subs 45.6 μs 45.8 μs 0.2 μs (0.44%)

100subs 55.5 μs 55.5 μs ≈ 0

The overhead of the protection on the printer, sound card and graphic card I/O.

We run a command line program called capture-example11 that reads the camera
data continuously. We measure the time overhead of the UVC interrupt handler and
the application’s waiting time for getting new data, which is a key factor to the quality
of the generated video stream. The results are shown in Table IV.

The interrupt handler’s cost grows 10 times when under the protection of Driver-
Guard. The main overhead is due to the encryption on the camera data, which are 4
pages long. Nonetheless, the drivers spends much more time in waiting for the cam-
era’s data generation. Thus the cost of the interrupt handler does not cause the overall
performance degradation. We test video chatting using Empathy 2.30.2, which is an
graphic instant messenger. The experiment results do not show noticeable delays to
the human users.

Fingerprint-Reader. Our fingerprint reader is the Upek Touchchip fingerprint sen-
sor. In our evaluation experiment, we choose Fingerprint GUI12 as the application
which uses the default Linux driver devio to communicate with the fingerprint reader.
When the fingerprint reader is active, the driver’s interrupt handler continuously loads
the collected fingerprint data into its buffers, which are then fetched by Fingerprint
GUI by calling the ioctl function. In our experiments, we measure the whole I/O ses-
sion of fingerprint collection. The results are shown in Table IV.

Printer. The printer in our experiments is HP Officejet 7210 and the device driver in
use is devio. We use OpenOffice to print documents via a print-process running in the
background. The print process opens the printer and issues ioctl to send data to the
printer. After sending out the data, the print-process waits for a signal sent back by
the printer to close the printer. In our experiments, we measure the turnaround time
between the printer open and the printer close. The results are shown in Table V.

Sound Card. The sound card in our test is Intel Corporation 82801I (ICH9 Family)
HD Audio and the driver in use is HDA Intel. We run the application Totem which plays
MP3 files. Totem places its sound data into a user space buffer, which is mapped into
the DMA buffer specified by the driver. When the music is in playing, Totem directly
sends data into mapped DMA region in user space, and issues ioctl to synchronize and
update information. The hardware fetches the data from the DMA buffer directly with-
out the driver’s involvement. Hence, DriverGuard is only involved in protecting the
control region so that the kernel can not change the location of the DMA buffer in use.

Specifically, DriverGuard sets the sound card MMIO, the status and control region
read-only after the probing stage. It rejects any update on the DMA descriptor base

11It can be downloaded from http://v4l2spec.bytesex.org/spec/capture-example.html.
12http://www.n-view.net/Appliance/fingerprint/index.php
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address. DriverGuard also denies any access to the DMA buffer from the kernel.
Therefore, there is no cost for DriverGuard during music playing, though the cost in
opening the sound card is high, which is shown in Table V.

Graphic Card. We test DriverGuard with the graphic card. Since Xen 4.0.0 in our
testing platform does not support Direct Rendering Manager (DRM), we have to run
a guest Linux without DRM where the X Window sever directly manages all display
outputs. The X Window server runs in the user space and does not use any kernel-level
drivers. In a nutshell, it simply copies the display data to a designated memory buffer
reserved by BIOS for the graphic card.

According to the design, we implement a loadable kernel module as the Trusted
Loadable Module, which collects the reserved physical region, the user-space mapping
region and the page table base address of the X Window server during the system
booting. To defend the kernel’s data stealing, DriverGuard grants the X Window server
to access these protected regions and denies all accesses from the kernel or other user
processes.

We test the display performance with x11perf, which is a graphic card performance
measurement tool. We run the command x11perf -repeat 100 -reps 10 -subs 10 100
-circulate to measure the graphic card performance with and without DriverGuard
protection. The results in Table V show the performance overhead is rather small.
The reason is that when the X Window server accesses the protection region, there is
only one page fault exception that is for the first access. After lifting the checkpoints,
further access will not trigger any exception until it is switched off.

10. RELATED WORK

We first present and compare relevant trusted path schemes, and then we describe the
user space protection approaches that are complementary with our work to protect the
whole lifecycle of the I/O data. Finally, we describe the hypervisor security to illustrate
the rationale of choosing the hypervisor as the root of trust.

10.1. Trusted Path

We attempt to categorize these relevant trusted path schemes according to the differ-
ences of their root of trust.

10.1.1. Virtualization-Based Trusted Path. The trusted path proposed by Zhou et al. [2012]
aims to assure the secrecy and authenticity of I/O data transferred between a periphery
device and an application. To build an exclusive trusted path between the device and
the expected application, the hypervisor fixes the device configuration space which is
achieved using Virtual Machine Control Structure/Block, Nested/Extended Page tables
and IOMMU to prevent unauthorized software and DMA access, and interrupt deliv-
ery path which is achieved using Interrupt Remapping features and LAPIC x2APIC
mode to make sure that the interrupt is delivered to expected handler. The expected
applications are extended to support user-level drivers, which directly issue command
to devices through the built trusted path. Obviously, it suffers compatibility issues
since applications are numerous and any new application will need to be modified to
satisfy the trusted path requirements. In comparison, DriverGuard requires modifi-
cations on driver code only. Moreover, DriverGuard does not need to defend against
interrupt spoofing attack since it focuses on the secrecy of the I/O data between devices
and applications, and only authorized PCB is able to access the decrypted I/O data.
Even if the unauthorized codes are involved by unintended interrupt, they still can
not access the protected I/O data.

The virtualization-based trusted path schemes are closely related to our work.
BitVisor [Shinagawa et al. 2009] is a dedicated hypervisor to I/O management. It uses
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a parapass-through mechanism whereby access operations on the monitored devices
are intercepted and the operations on the other devices pass through without any
checking. The interception allows the hypervisor to protect itself and to perform se-
curity functions on the device I/O. However, this approach does not protect the I/O
data in the kernel space. BitVisor does not claim that they protect the MMIO mapping
attacks.

Hypervisors with privileged root domains (e.g., the Dom0 in Xen) are able to assign
different device drivers to separate virtual machines (e.g., driver domains in Xen) and
securely associate them with application virtual machines (e.g., guest domains in Xen)
[Barham et al. 2003; Borders and Prakash 2007; Colp et al. 2011; Saroiu and Wolman
2010; Willmann et al. 2008]. These hypervisors isolate the device resources (i.e., I/O
ports and the memory address-space, including MMIO regions) belonging to a device
driver domain from other domains. Note that all these schemes do not consider the
MMIO mapping attacks. Moreover, their TCBs enclose the whole operating system,
which dramatically increases their trusted code bases.

10.1.2. Hardware-Based Trusted Path. The Zone Trusted Information Channel (ZTIC)
[IBM Zurich Research Lab 2008] is a dedicated hardware, which provides a trusted
path for users to confirm online transactions. The ZTIC-based trusted path completely
bypasses the legacy channel in the users’ computers. Bumpy [McCune et al. 2009]
system proposes to protect user keyboard inputs by building a trust environment. It
requires an encryption-capable keyboard and therefore is not applicable to generic
devices.

The special-device-based schemes usually combine with cryptographic technology to
protect the secrets in user and kernel space, such as Bumpy, which usually requires
many mediations on the system. Such medications not only consiquently affect the
compatibility of the scheme, but also often significantly reduce the usability, and even
make the scheme impractical sometimes.

The UTP system [Filyanov et al. 2011] proposes an isolated kernel module to tempo-
rally manage user-centric I/O devices (e.g., keyboard and display) and enables a remote
server to verify that a transaction summary is confirmed by a local keyboard input.
BIND [Shi et al. 2005] binds data and code and uses cryptographic techniques to guar-
antee the integrity of data. However BIND is limited to derived data and cannot help
on the confidentiality of the I/O data. Both of them require a hardware supported se-
cure execution environment (e.g., secure kernel based on the AMD’s Secure Execution
Mode chip), which often occurs high latency and significant performance overhead.

10.1.3. OS-Based Trusted Path. Langweg [2004] propose a COTS-based scheme to solve
the confidentiality, integrity, and authenticity of input and the output data.13 Authors
focus on the windows platform, where the Windows message mechanism is able be
exploited by a malicious program to access the input and output messages (data) that
are originally intended for other applications. By leveraging the advantages of the the
DirextX, authors build a secure user interface to directly fetch input data and access
the display hardware in exclusive mode. Trusted paths for browsers [Ye et al. 2005] fo-
cus on providing a trusted GUI to user, protecting user inputs to the intended browser.
These two schemes only address security issues at the driver-applications interface,
whereas the battlefield of DriverGuard is the entire I/O path. BitE [McCune et al.
2006] is an approach for preventing user-space malicious applications from accessing
sensitive user input via a dedicated trusted path between input devices and the target
application, and providing visual verification feedback to the user to prove that the
input is really caught by the expected application.

13The confidentiality of the input data is not done.
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All of them suffers from a large TCB since they are built atop large operating sys-
tems, and some of them even contains the Window Manager [McCune et al. 2006].

10.2. User-Space Protection

Terra [Garfinkel et al. 2003] protects the user applications by isolating them into sepa-
rated secure domains, where the malicious applications and OSes are forbidden to ac-
cess the secure domains. However TERRA systems occurs large computing base since
it includes the whole secure domain into TCB. OverShadow [Chen et al. 2008] and
SP3 [Yang and Shin 2008] aim to protect the whole application execution against ma-
licious application and OSes. However, both of them focus on the protection of the user
space applications, instead of kernel space device drivers. Note that both of them can
cooperate with DriverGuard to protect the whole life cycle of I/O data.

Flicker [McCune et al. 2008] system built on the TPM-based Dynamic Root Of Trust
(DROT) technology can build an isolation environment to protect code and data. Due
to the limitation of the TPM, the latency of the Flicker system is quite high. To mini-
mize the latency, TrustVisor [McCune et al. 2010] scheme are proposed. By leveraging
virtualization technology, TrustVisor virtualizes the physical TPM into Virtual TPM
(VTPMs) and migrate them into hypervisor space. Note that both of them focus on the
protection of a small piece of code and data. The increasing of the protection scope,
such as protecting the whole application or device drivers, may lead both schemes to
failure. In a word, both of them are not suitable for the I/O flow protection.

Lacuna [Dunn et al. 2012] aims to execute applications within private session and
erase all execution traces once the session is over by leveraging the ephemeral channel.
Specifically, the ephemeral channel connects the VM (applications inside) to hardware
or software proxies to ensure that the sensitive data in the host OS is encrypted and
only the endpoints can access the (plain text) data from private sessions.

10.3. Hypervisor Security

Comparing with legacy monolithic Operating Systems, the hypervisor is more secure
since its size is relatively small and the exported attack surfaces for guest domains
are considerably less. Although there have been several attacks discovered to compro-
mise some versions of hypervisors [The Blue Pill; CVE-2008-0923 2008; King et al.
2006; Rafal et al. 2008], the security of the hypervisor can be enhanced through some
existing mechanisms. The TPM-based authenticated boot can verify the integrity of
the hypervisor when being launched, and the hardware-assisted virtualization tech-
nology, that is, Intel VT-x and AMD V, is able to significantly reduces the code size
of the hypervisor, thereby the attack surface is reduced. Furthermore, there are some
sophisticated framework systems [Azab et al. 2010; Rafal et al. 2008; Wang and Jiang
2010; Wang et al. 2010] proposed to enhance the security of the hypervisor. Hyper-
Guard [Rafal et al. 2008], HyperCheck [Wang et al. 2010] and HyperSentry [Azab
et al. 2010] are three System Management Mode (SMM)-based frameworks to mea-
sure and verify the integrity of hypervisors. The code for the SMM mode are protected
by hardware chipset. HyperSafe [Wang and Jiang 2010] is a lightweight approach that
protects existing bare-metal hypervisors with a unique self-protection capability to
provide lifetime control flow integrity. In order to eliminate the programming bugs in
the hypervisor, the rigorous formal verification mechanism [Heitmeyer et al. 2006] is
able to be used to prove the correctness of the hypervisor.

11. CONCLUSION

We have proposed DriverGuard which is a hypervisor-based system protecting I/O
flows between devices and applications, especially for devices generating data or ren-
dering data. DriverGuard protects I/O device control, I/O data transfer and a driver’s
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data processing, against attacks from the untrusted guest kernel. It is featured with
fine granularity protection, strong security assurance and low overhead. It only adds
around 1.7K SLOC to the Xen hypervisor and a few lines to the driver code. Driver-
Guard can work jointly with user-space data protection schemes to safeguard the en-
tire data lifecycle.

ACKNOWLEDGMENTS

We are grateful to Virgil Gligor and Adrian Perrig for their constructive suggestions during this work. We
also thank anonymous reviewers for their valuable comments.

REFERENCES

Azab, A. M., Ning, P., Wang, Z., Jiang, X., Zhang, X., and Skalsky, N. C. 2010. Hypersentry: Enabling stealthy
in-context measurement of hypervisor integrity. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10). ACM, New York, 38–49.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield,
A. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03). ACM, New York, 164–177.

Borders, K. and Prakash, A. 2007. Securing network input via a trusted input proxy. In Proceedings of the
2nd USENIX Workshop on Hot Topics in Security (HOTSEC’07). USENIX Association, Berkeley, CA,
7:1–7:5.

Buchanan, E., Roemer, R., Shacham, H., and Savage, S. 2008. When good instructions go bad: Generalizing
return-oriented programming to RISC. In Proceedings of CCS’08. P. Syverson and S. Jha Eds., ACM,
27–38.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., and Winandy, M. 2010. Return-
oriented programming without returns. In Proceedings of CCS’10. A. Keromytis and V. Shmatikov Eds.,
ACM, 559–72.

Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Waldspurger, C. A., Boneh, D., Dwoskin, J., and
Ports, D. R. K. 2008. Overshadow: A virtualization-based approach to retrofitting protection in commod-
ity operating systems. In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’08).

Cheng, Y., Ding, X., and Deng, R. H. 2011. Driverguard: A fine-grained protection on I/O flows. In Proceedings
of the 16th European Conference on Research in Computer Security (ESORICS’11). Springer-Verlag,
Berlin, 227–244.

Chhabra, S., Rogers, B., Solihin, Y., and Prvulovic, M. 2011. Secureme: A hardware-software approach to
full system security. In Proceedings of the International Conference on Supercomputing (ICS’11). ACM,
New York, 108–119.

Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. 2001. An empirical study of operating systems
errors. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01). ACM,
New York, 73–88.

Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T., Loscocco, P., and Warfield, A. 2011. Breaking
up is hard to do: Security and functionality in a commodity hypervisor. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11). ACM, New York, 189–202.

CVE-2008-0923. 2008. http://cve.mitre.org/cgi-bin/cvename.cgi-?name=cve-2008-0923.
Dunn, A. M., Lee, M. Z., Jana, S., Kim, S., Silberstein, M., Xu, Y., Shmatikov, V., and Witchel, E. 2012.

Eternal sunshine of the spotless machine: Protecting privacy with ephemeral channels. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, Berkeley, CA, 61–75.

Filyanov, A., McCune, J. M., Sadeghi, A.-R., and Winandy, M. 2011. Uni-directional trusted path: Transac-
tion confirmation on just one device. In Proceedings of the IEEE/IFIP Conference on Dependable Systems
and Networks.

Fleming, S. 2008. Accessing PCI express configuration registers using intel chipsets. Tech. rep.,
Intel Corporation, http://www.intel.com/content/www/us/en/intelligent-systems/chipsets-pcie-config-
reg-paper.html.

Ganapathy, V., Renzelmann, M. J., Balakrishnan, A., Swift, M. M., and Jha, S. 2008. The design and imple-
mentation of microdrivers. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XIII). ACM, New York, 168–178.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.



�

�

�

�

�

�

�

�

DriverGuard: Virtualization-Based Fine-Grained Protection on I/O Flows 6:29

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D. 2003. Terra: A virtual machine-based plat-
form for trusted computing. In Proceedings of the 9th ACM Symposium on Operating Systems Principles.
ACM, New York, 93–206.

Heintze, N. and Tardieu, O. 2001. Ultra-fast aliasing analysis using CLA: A million lines of C code in a
second. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation (PLDI’01). ACM, New York, 254–263.

Heitmeyer, C. L., Archer, M., Leonard, E. I., and McLean, J. 2006. Formal specification and verification
of data separation in a separation kernel for an embedded system. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (CCS’06). ACM, New York, 346–355.

IBM Zurich Research Lab. 2008. Security on a stick.
Intel. 2008. Intel I/O controller hub 9 (ICH9) family datasheet.
Kemerlis, V. P., Portokalidis, G., Jee, K., and Keromytis, A. D. 2012. LIBDFT: Practical dynamic data flow

tracking for commodity systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Vir-
tual Execution Environments (VEE’12). ACM, New York, 121–132.

King, S. T., Chen, P. M., Wang, Y.-M., Verbowski, C., Wang, H. J., and Lorch, J. R. 2006. Subvirt: Implement-
ing malware with virtual machines. In Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society, Washington, DC, 314–327.

Kun, S., Jiang, W., Fengwei, Z., and Angelos, S. 2012. SecureSwitch: BIOS-assisted isolation and switch
between trusted and untrusted commodity OSes. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS).

Langweg, H. 2004. Building a trusted path for applications using cots components. In Proceedings of NATO
RTO IST Panel Symposium on Adaptive Defence in Unclassified Networks.

Li, Y., McCune, J. M., and Perrig, A. 2011. Viper: Verifying the integrity of peripherals’ firmware. In Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11). ACM,
New York, 3–16.

Lineberry, A. 2009. Malicious code injection via /dev/mem. In Black Hat.
McCune, J. M., Perrig, A., and Reiter, M. K. 2006. Bump in the ether: A framework for securing sensitive user

input. In Proceedings of the Annual Conference on USENIX’06 Annual Technical Conference. USENIX
Association, Berkeley, CA, 17–17.

McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and Isozaki, H. 2008. Flicker: An execution infrastructure
for TCB minimization. In Proceedings of the ACM European Conference in Computer Systems (EuroSys).

McCune, J. M., Perrig, A., and Reiter, M. K. 2009. Safe passage for passwords and other sensitive data. In
Proceedings of the Symposium on Network and Distributed Systems Security (NDSS).

McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., and Perrig, A. 2010. Trustvisor: Efficient TCB
reduction and attestation. In Proceedings of the IEEE Symposium on Security and Privacy (SP’10).
IEEE Computer Society, Los Alamitos, CA, 143–158.

Mock, M., Atkinson, D. C., Chambers, C., and Eggers, S. J. 2002. Improving program slicing with dynamic
points-to data. SIGSOFT Softw. Eng. Notes 27, 6, 71–80.

Newsome, J. and Song, D. 2005. Dynamic taint analysis: Automatic detection, analysis, and signature gener-
ation of exploit attacks on commodity software. In Proceedings of the Network and Distributed Systems
Security Symposium.

Payne, B. D., Carbone, M., Sharif, M., and Lee, W. 2008. Lares: An architecture for secure active monitor-
ing using virtualization. In Proceedings of the 2008 IEEE Symposium on Security and Privacy. IEEE
Computer Society, Los Alamitos, CA, 233–247.

Phoenix Technologies. 2006. TrustedCore: Foundation for secure CRTM and BIOS implementation.
https://forms.phoenix.com/whitepaperdownload-/docs/trustedcore wp.pdf.

Rafal, W., Joanna, R., and Alexander, T. 2008. Xen owning trilogy. website.
http://invisible-thingslab.com/itl/Resources.html.

Santelices, R., Zhang, Y., Jiang, S., Cai, H., and jie Zhang, Y. 2012. Quantitative program slicing: Separating
statements by relevance. Tech. rep.

Saroiu, S. and Wolman, A. 2010. I am a sensor, and I approve this message. In Proceedings of the 11th
Workshop on Mobile Computing Systems & Applications (HotMobile’10). ACM, New York, 37–42.

Seshadri, A., Luk, M., Qu, N., and Perrig, A. 2007. Secvisor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’07). ACM, New York, 335–350.

Shacham, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc without function calls
(on the x86). In Proceedings of CCS’07. S. De Capitani di Vimercati and P. Syverson Eds., ACM,
552–61.

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.



�

�

�

�

�

�

�

�

6:30 Y. Cheng et al.

Shi, E., Perrig, A., and Doorn, L. V. 2005. BIND: A fine-grained attestation service for secure distributed
systems. In Proceedings of the IEEE Symposium on Security and Privacy. 154–168.

Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T., Hirano, M., Kourai, K., Oyama,
Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., and Kato, K. 2009. Bitvisor: A thin hypervisor for enforcing
I/O device security. In Proceedings of the ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE’09). ACM, New York, 121–130.

Song, D. X., Wagner, D., and Tian, X. 2001. Timing analysis of keystrokes and timing attacks on ssh. In
Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10 (SSYM’01). USENIX
Association, Berkeley, CA, 25–25.

Sridharan, M., Fink, S. J., and Bodik, R. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07). ACM, New York, 112–122.

Swift, M. M., Bershad, B. N., and Levy, H. M. 2003. Improving the reliability of commodity operating sys-
tems. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03). ACM,
New York, 207–222.

The Blue Pill. http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.
Vasudevan, A., Parno, B., Qu, N., Gligor, V. D., and Perrig, A. 2012. Lockdown: Towards a safe and practical

architecture for security applications on commodity platforms. In Proceedings of the 5th International
Conference on Trust and Trustworthy Computing (TRUST’12). Springer-Verlag, Berlin, 34–54.

Wang, J., Stavrou, A., and Ghosh, A. 2010. Hypercheck: A hardware-assisted integrity monitor. In Pro-
ceedings of the 13th International Conference on Recent Advances in Intrusion Detection (RAID’10).
Springer-Verlag, Berlin, 158–177.

Wang, Z. and Jiang, X. 2010. Hypersafe: A lightweight approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the IEEE Symposium on Security and Privacy (SP’10). IEEE Computer
Society, Los Alamitos, CA, 380–395.

Weiser, M. D. 1979. Program slices: Formal, psychological, and practical investigations of an automatic
program abstraction method. Ph.D. thesis, AAI8007856, Ann Arbor, MI.

White, A. M., Matthews, A. R., Snow, K. Z., and Monrose, F. 2011. Phonotactic reconstruction of encrypted
VOIP conversations: Hookt on fon-iks. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’11). IEEE Computer Society, Los Alamitos, CA, 3–18.

Willmann, P., Rixner, S., and Cox, A. L. 2008. Protection strategies for direct access to virtualized I/O devices.
In Proceedings of the USENIX Annual Technical Conference.

Yang, J. and Shin, K. G. 2008. Using hypervisor to provide data secrecy for user applications on a per-page
basis. In Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE’08). ACM, New York, 71–80.

Ye, Z. E., Smith, S., and Anthony, D. 2005. Trusted paths for browsers. ACM Trans. Inf. Syst. Secur. 8, 2,
153–186.

Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula, G., and Brewer, E. 2006.
Safedrive: Safe and recoverable extensions using language-based techniques. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation (OSDI’06). USENIX Association,
Berkeley, CA, 45–60.

Zhou, Z., Gligor, V. D., Newsome, J., and McCune, J. M. 2012. Building verifiable trusted path on commodity
x86 computers. In Proceedings of the IEEE Symposium on Security and Privacy.

Received June 2012; revised January 2013, May 2013; accepted June 2013

ACM Transactions on Information and System Security, Vol. 16, No. 2, Article 6, Publication date: September 2013.


	DriverGuard: Virtualization based fine-grained protection on I/O flows
	Citation

	TIS00246.dvi

