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Abstract

This paper considers estimating a parameter β that defines an estimating function

U(y, x, β) for an outcome variable y and its covariate x when the outcome is missing in

some of the observations. We assume that, in addition to the outcome and the covariate, a

surrogate outcome is available in every observation. The efficiency of existing estimators for β

depend critically on correctly specifying the conditional expectation of U given the surrogate

and the covariate. When the conditional expectation is not correctly specified, which is the

most likely scenario in practice, the estimation efficiency can be severely compromised even

if the propensity function (of missingness) is correctly specified. We propose an estimator

that is robust against the choice of the conditional expectation via an empirical likelihood.

We demonstrate that the proposed estimator achieves efficiency gain whether the conditional

score is correctly specified or not. When the conditional score is correctly specified, the

estimator reaches the semiparametric variance bound within the class of estimating functions

generated by U . The practical performance of the estimator is evaluated using simulation

and a dataset based on the 1996 U.S. presidential election.
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1. Introduction

Missing data are common in empirical studies. Statistical analysis in such situations is

challenging. On one hand, every observation, whether it contains missing variables or not,

carries some information. On the other hand, observations with missing variables must be

handled delicately for valid inferences to be drawn. In this paper, we study the problem where

the outcome variable of a study is missing in a subset of the sampled data. We assume apart

from the outcome and the covariates, the study also collected information on a surrogate or

proxy variable on every observation. Data of this nature are common in many disciplines.

For example, in health sciences research, to evaluate the success of a treatment or procedure,

it is often very difficult to observe the clinical outcome (e.g., cured vs not cured) in every

study participant, therefore, a surrogate outcome (e.g., biomarkers) may be used for those

participants without the true outcome (e.g., Wittes, Lakatos and Probstfield, 1989; Begg and

Leung, 2000; Leung, 2001; Baker, Izmirlian and Kipnis, 2005; Burzykowski, Molenberghs and

Buyse, 2005; Baker, 2006) and in economics, proxy or surrogate outcomes are often used in

surveys with missing response (Chen, Hong and Tamer, 2005)

One difficulty in modeling data with missing outcome is the mechanism that leads to

the missing data is often unknown or at best can only be approximated. For example, when

there is a missing response in a survey, it is very difficult to ascertain the reason for the

non-response. The non-response may be completely random, or it may depend on some

(observed) variables, or it may be related to the (unobserved) outcome. If the non-response

is related to the unobserved outcome, then the identifiability of the solution may be called

into question.

One solution to the identifiability problem is to use a surrogate outcome. We focus

on situations with missing at random (MAR), i.e., probability of a missing outcome is

independent of the (unobserved) outcome, given the surrogate and the covariates (Little

and Rubin, 2002). Under MAR, the model is identifiable if the surrogate and the covariates
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are always observed. Situations where the outcome is missing completely at random (MCAR)

is a special case of MAR and are also covered by the methods discussed herein.

Let Y be the outcome variable, X be the covariates of interest, S be a surrogate for Y

and Z be an additional set of covariates that is not of direct interest. Suppose S, X and Z

are always observed but Y is missing in some observations. Let δ be an indicator variable

that takes the value 1 if Y is observed and 0 otherwise. The sampled data consists of two

parts; a part with (Y, S,X, Z) completely observed:

(δ1 = 1, y1, x1, s1, z1), ...., (δm = 1, ym, xm, sm, zm)

and a part with missing Y :

(δm+1 = 0, ?, xm+1, sm+1, zm+1), ...., (δm+n = 0, ?, xm+n, sm+n, zm+n).

Let N = m+ n. We assume Y is MAR in the sampled data , i.e.,

P (δ = 1|y, x, s, z) = w(s, x, z, θ),

where the form of w is known up to a parameter θ. For ease of discussion, in the next few

sections, we assume Z is null and we drop Z from the formulation of w. The results we

discuss also applies in the more general case where Z is non-null and in Section 5, we apply

the proposed method in a situation where Z is non-null.

Suppose w can be estimated by θ̂ that maximizes the binomial log-likelihood:

`B(θ) =
N
∑

i=1

[δi logw(si, xi, θ) + (1 − δi) log{1 − w(si, xi, θ)}]. (1)

The function w is a propensity score in the sense of Rosenbaum and Rubin (1983). The full

log-likelihood based on the observed data is

`full = `B(θ) +
m
∑

i=1

log{f(yi, xi, si)} +
N
∑

j=m+1

log{f(xi, si)}. (2)

If parametric models are postulated for f(y, x, s) and f(x, s), then making inferences is

straightforward by maximizing the parametric likelihood. In practice, however, parametric

models are often diffcult to specify.
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Suppose that f(y|x) = f(y|x, β) is the conditional density of Y given X without

considering S, then

U(y, x, β) =
∂ log f(y|x, β)

∂β

is the conditional score of Y given X. Here, the parameter β is of primary interest. One way

to utilize information in S is to consider the conditional density of S given X

f(s|x) =
∫

f(y|x, β)g(s|y, x)dy, (3)

However, in general, it is hard to specify the law [S|Y,X], especially when S is multivariate

(Clayton et al., 1998). When Y is MCAR, Pepe (1992) proposed an estimated likelihood

method by replacing the unknown conditional density g(s|y, x) in (3) by a kernel density

estimate based on the completely observed data. Schenker and Taylor (1996) suggested

using imputation (Rubin, 1987) for missing outcomes. Chen and Chen (2000) suggested a

method based on the regression estimate. Chen, Leung and Qin (2003) used a two-sample

empirical likelihood (EL), one based on estimating equations from the complete observations

and another based on the observations with missing outcomes. However, the methods of

Chen and Chen (2000) and Chen et al. (2003) cannot be applied to the practically important

MAR case because the structure of the likelihood is changed due to the selection bias in the

missingness under the MAR. We propose a new approach that corrects for the selection bias

by employing the biased sampling technique of Vardi (1985).

Instead of specifying g(s|y, x), Robins, Rotnitzky and Zhao (1995) and Robins and

Rotnitzky (1995) proposed using estimating equations for situations where Y can be MAR.

In the framework considered here, their estimator (denoted by β̂RRZ hereafter) solves

N
∑

i=1

{

δi

w(si, xi, θ̂)
U(yi, xi, β) − δi − w(si, xi, θ̂)

w(si, xi, θ̂)
ψ(si, xi, β)

}

= 0, (4)

for a specific function ψ and a mean zero estimating function U . If U is the score function

for f(y|x), then ψ∗ ≡ E{U(y, x, β)|s, x} corresponds to the conditional score function of Y

given S and X. For a given unbiased estimating function U(y, x, β), their estimator can

attain the semiparametric efficiency bound within the class of estimating function generated
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by U(y, x, β) (Newey, 1990) for estimating β if ψ(s, x, β) = ψ∗(s, x, β). Furthermore, β̂RRZ

is consistent if either w or ψ is correctly specified. This property is the so-called “doubly

robustness” property. However, β̂RRZ may suffer efficiency loss when ψ 6= ψ∗, as shown in

Theorem 2 of Section 3.

The estimator (4) is a special case of a larger class of semi-parametric efficient estimators

developed by Robins, Rotnitzky and Zhao (1994). However, as Chen and Chen (2000)

pointed out that the semiparametric efficient estimators suggested by Robins et al. (1994) is

practically not feasible in general since the optimal estimating functions can only be obtained

by solving a functional integral equation. The closed form optimal estimating equation (4)

exists in the case considered here, i.e., U(y, x, β) is the conditional score and S is a surrogate

outcome. Recently, Chen and Breslow (2004) and Yu and Nan (2006) also discussed two

similar situations as considered here where closed form optimal estimating equations can be

found.

Eventhough ψ∗ is rarely known precisely, an estimate of ψ∗ ≡ E[U(y, x, β)|s, x] can be

found, as follows. Let β̃ be a consistent estimate of β, U(Y,X, β̃) may be regressed on S and

X to give a model

U(y, x, β̂) = ψ(s, x, γ) + ε (5)

with unknown parameter γ, using the complete data. Therefore, ψ is a working estimate of

ψ∗. In general, ψ may be not be a perfect guess, hence E(ψ) may be non-zero. However,

the estimator obtained from equations (4) is valid, albeit inefficient, since the estimating

equation itself always has zero mean under the true parameter.

In this paper, we develop a set of weighted score equations using EL weights obtained by

leveraging the information contained in S and X. When ψ and w are correctly specified, our

method is efficient within the class of estimating functions defined by U(Y,X, β). Even when

ψ is incorrectly specified, as long as w is correctly specified, it still achieves good efficiency.

The rest of the paper is organized as the follows. In Section 2, we use EL to combine unbiased
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estimating equations. Large sample results appear in Section 3. In Section 4, we report the

results from a simulation study that compares the proposed method to existing methods. In

Section 5, the method is applied to a real dataset. Conclusions are given in Section 6. Proofs

are given in the Appendix.

2. Proposed Method

Suppose U(y, x, β) is an estimating function that captures the relationship between Y

and X through a parameter β; and ψ(s, x, β, γ) is a function of S and X. Without further

explicit notation, we assume that X, β and γ may be vector valued.

Let β̃ be a consistent estimator of β. For example, β̃ may be the Horvitz and Thompson

(1952) inversely weighted estimator, β̂W , that solves

N
∑

i=1

δiU(yi, xi, β)

w(si, xi, θ̂)
= 0 (6)

where θ̂ is the binomial likelihood estimator given earlier.

By conditioning on the missingness status, δ, the full likelihood based on the data can

be written as

N
∏

i=1

W δi(1 −W )1−δi
m
∏

i=1

P (yi, si, xi|δi = 1)
N
∏

j=m+1

P (sj, xj|δj = 0), (7)

where W = P (δ = 1). Let pi = P (yi, si, xi|δi = 1) = w(si, xi, θ)dF (yi, xi, si)/W for i =

1, 2, ...., m and qj = P (sj, xj|δj = 0) = {1 − w(sj, xj, θ)}dF (xj, sj)/(1 − W ) for j = m +

1, ...., N . As indicated in Section 1, the mean of ψ(s, x, β, γ) may not be zero. Therefore, (7)

cannot be used directly for inferences. However

E

[

ψ(s, x, β, γ) − µ

w(s, x, θ)

∣

∣

∣

∣

δ = 1

]

= 0, E

[

ψ(s, x, β, γ) − µ

1 − w(s, x, θ)

∣

∣

∣

∣

δ = 0

]

= 0,

where µ = E[ψ(s, x, β, γ)]. Therefore, with an appropriate initial estimate γ̃ to be discussed

later, approximately

m
∑

i=1

ψ(si, xi, β̃, γ̃) − µ

w(si, xi, θ̂)
= 0,

N
∑

j=m+1

ψ(sj, xj, β̃, γ̃) − µ

1 − w(sj, xj, θ̂)
= 0, (8)
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can be used for making inferences, as follows. A log-EL (Owen, 1990) for µ is

`(µ) =
m
∑

i=1

log pi +
N
∑

j=m+1

log qj,

subject to
∑m
i=1 pi = 1, pi ≥ 0,

∑N
j=m+1 qj = 1, qj ≥ 0 and,

m
∑

i=1

pi
ψ(si, xi, β̃, γ̃) − µ

w(si, xi, θ̂)
= 0,

N
∑

j=m+1

qj
ψ(sj, xj, β̃, γ̃) − µ

1 − w(sj, xj, θ̂)
= 0. (9)

To simplify notations, we write Ui(β) = U(yi, xi, β), η = (β, γ), η̃ = (β̃, γ̃), ψi(η) =

ψ(si, xi, η) and wi(θ) = w(si, xi, θ). By introducing Lagrange multipliers λ and ν and

following standard EL derivations for general estimating equations (Qin and Lawless, 1994),

the optimal values of pi and qj that maximize the above log-EL satisfy

pi =
1

m

1

1 + λT{ψi(η̃) − µ}/wi(θ̂)
, i = 1, . . . , m, (10)

qj =
1

n

1

1 + νT {ψj(η̃) − µ}/{1 − wj(θ̂)}
, j = m+ 1, . . . , N, (11)

with constraints

m
∑

i=1

{ψi(η̃) − µ}/wi(θ̂)
1 + λT{ψi(η̃) − µ}/wi(θ̂)

= 0, (12)

N
∑

j=m+1

{ψj(η̃) − µ}/{1 − wj(θ̂)}
1 + νT{ψj(η̃) − µ}/{1 − wj(θ̂)}

= 0. (13)

Substituting (10) and (11) back to the log-EL gives

`(µ) = − log
m
∑

i=1

[1 + λT{ψi(η̃) − µ}/wi(θ̂)] − log
n
∑

j=m+1

[1 + νT{ψj(η̃) − µ}/{1 − wj(θ̂)}].

Differentiating `(µ) with respect to µ and equating to zero leads to

−
m
∑

i=1

λ/wi(θ̂)

1 + λT{ψi(η̃) − µ}/wi(θ̂)
−

N
∑

j=m+1

ν/{1 − wj(θ̂)}
1 + νT {ψj(η̃) − µ}/{1 − wj(θ̂)}

= 0. (14)

Let (µ̂, λ̂, ν̂) be the solution of (12) – (14). Substitute them to (10) and (11) gives the

EL weights p̂i. These weights can be used to reweight the original estimating equation (6)

such that β̂ solves

m−1
m
∑

i=1

1

1 + λ̂T{ψi(η̃) − µ̂}/wi(θ̂)
Ui(β)

wi(θ̂)
= 0. (15)
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We will show that β̂ is more efficient than β̂W in (6).

A heuristic understanding of our method is the following. Using the Lagrange multiplier

λ̂ =





m
∑

i=1

(

ψi(η̃) − µ̂

wi(θ̂)

)T (
ψi(η̃) − µ̂

wi(θ̂)

)





−1 [
m
∑

i=1

ψi(η̃) − µ̂

wi(θ̂)

]

+ op(N
−1/2),

the EL estimating equation (15) becomes

m−1
m
∑

i=1

Ui(β)

wi(θ̂)
−m−1

m
∑

i=1

Ui(β)

wi(θ̂)

(

ψi(η̃) − µ̂

wi(θ̂)

)T

λ̂+ op(N
−1/2).

Hence, the proposed estimator is asymptotically equivalent to the solution from an estimating

equation that regresses the inversely weighted estimating equation m−1∑m
i=1 Ui(β)/wi(θ̂) on

m−1∑m
i=1{ψi(η̃)−µ}/wi(θ̂). As a result, the variance of the EL estimating equation is smaller

than that of the inversely weighted estimating equation m−1∑m
i=1 Ui(β)/wi(θ̂). This result

is similar to the case when Y and X are two random variables, then Var(Y − AX) =

Var(Y ) − AVar(X)AT ≤ Var(Y ), where A = Cov(Y,X)[Var(X)]−1. In contrast, the

estimating function of Robins et al. (1995) is a difference between the inversely weighted

estimating equation and
∑m
i=1 ψi(η̃){δi − wi(θ̂)}/wi(θ̂). It is known in survey sampling

(Cochran 1977, Cassel et al. 1976) that difference estimation is not as efficient as regression

estimation.

Using the EL formulation, the information about β is extracted using ψ(s, x, β̃, γ̃), where

β̃ and γ̃ can be interpreted as summary statistics based on {(yi, si, xi)}mi=1 and {(sj, xj)}Nj=1.

When making inferences, we must determine ψ, β̃ and γ̃. Let ψ be an estimate of ψ∗ using

(5) and γ̃ be an estimate based on that model. We will show that the method works as long

as γ̃ converges in mean square to some γ0 within the parameter space of γ, i.e., there exists

a positive constant c0 such that E(γ̃ − γ0)
2 ≤ c0n

−1.

After finding β̂, we could replace the initial estimate β̃ by β̂ and repeat the estimation

process. However, our analysis shows that the choice of the initial estimates β̃ and γ̃ have

no influence on the asymptotic efficiency.
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Our proposed estimator β̂ is consistent as long as w is correctly specified. To appreciate

this, we note that
∑m
i=1 p̂iI{(yi, si, xi) ≤ t} is a consistent estimate of F (y, s, x|D = 1) and

E{U(yi, xi, β)

w(si, xi, θ)
|D = 1} = 0.

Since β̂ solves (15) which can be regarded as a sample version of the above population

equation, θ̂ is asymptotically unbiased and its variance converges to zero as min{m,n} → ∞.

Hence, β̂ is consistent for β.

3. Main results

Let β0, γ0 and θ0 be the true parameter values of β, γ and θ, respectively. Define

η0 = (β0, γ0) and write U0
d
= Ui(β0), ψ0

d
= ψi(η0), µ0 = E(ψ0) and w0

d
= wi(θ0) where

d
=

denotes equivalence in distributions. Furthermore, let

A = E

(

U0(ψ0 − µ0)
T

w0

)

E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

w0(1 − w0)

)

, R = −E−1

(

∂U0

∂β

)

(Ip,−A,A),

ζ =

(

−U
T
0

w0
,−(ψ0 − µ0)

T

w0
,
(ψ0 − µ0)

T

1 − w0

)

, Λθ = E
(

1

w0{1 − w0}
∂w0

∂θ

∂wT0
∂θ

)

,

the last quantity defines the asymptotic variance of the maximum likelihood estimator θ̂

based on the binomial likelihood (1).

Theorem 1: Under Conditions C1-C4 given in the Appendix,

√
N(β̂ − β0)

d→ N
(

0,Σ
(0)
β − Σ

(1)
β − Σ

(2)
β

)

, (16)

where

Σ
(0)
β = E−1

(

∂U0

∂β

)

E

(

U0U
T
0

w0

)

E−1

(

∂UT
0

∂β

)

, (17)

Σ
(1)
β = RE

(

ζ
∂wT0
∂θ

)

Λ−1
θ E

(

∂w0

∂θ
ζT
)

RT , (18)

Σ
(2)
β = E−1

(

∂U0

∂β

)

E

(

U0(ψ0 − µ0)
T

w0

)

E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

w0(1 − w0)

)

E

(

(ψ0 − µ0)U
T
0

w0

)

×E−1

(

∂UT
0

∂β

)

.
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We note that (i) Σ
(0)
β is the covariance matrix of β̂W , the inverse weighted estimator by

the true propensity score w0; (ii) both Σ
(1)
β and Σ

(2)
β are non-negative definite. Hence, the

covariance matrix Σ
(0)
β can be reduced twice, once by Σ

(1)
β and once by Σ

(2)
β . Therefore, the

proposed EL estimator is more efficient than β̂W , when the true propensity score is used to

weight the estimating equation based on the complete observations, unless Σ
(1)
β and Σ

(2)
β are

zero matrices simultaneously.

The variance reduction offered by Σ
(2)
β is a result of having the second constraint in

(9) based on the observations with missing Y values. If this constraint is removed from (9),

Σ
(2)
β will be zero. Therefore, it is worthwhile to carry out both weighting by propensity score

and having an extra estimating equation based on the covariate and the surrogate from the

part of the sample with missing outcome. The variance reduction offered by Σ
(1)
β is partly

due to the use of θ̂ rather than the true parameter θ0, as can be seen by the involvement

of Λ−1
θ . This reflects a known statistical advantage with estimated over the true propensity

score (see, e.g., Wooldridge, 2004).

We note that Σ
(2)
β is essentially a weighted “correlation” between U and ψ. The higher

the value of this “correlation”, the larger the variance reduction. This observation suggests

finding a function ψ that is highly correlated with U . The optimal choice for ψ is (1 −

w)E[U(y, x, β)|s, x] = (1 − w)ψ∗. This choice can be justified by noting that

E

(

U0(ψ
∗ − µ0)

T

w0

)

E−1

(

(ψ∗ − µ0)(ψ
∗ − µ0)

T

w0(1 − w0)

)

E

(

(ψ∗ − µ0)U
T
0

w0

)

= E
{

1 − w0

w0
U0E

(

UT
0 |s, x

)

}

.

Hence

Σ
(0)
β − Σ

(2)
β = E−1

(

∂U0

∂β

)

[

E

(

U0U
T
0

w0

)

− E
{

1 − w0

w0
U0E

(

UT
0 |s, x

)

}]

E−1

(

∂UT
0

∂β

)

,(19)

which is the variance lower bound when the propensity score is known for a given U (see,

Robins et al., 1995 and Chen et al., 2007). Due to the different set-ups from previous works,

our optimal choice of ψ has an extra factor of (1 − w0).
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We now give the properties of the estimator β̂RRZ proposed by Robins et al. (1995).

Theorem 2: Under Conditions C1-C4 given in the Appendix,

√
N(β̂RRZ − β0)

d→ N
(

0,Σ
(0)
β − Σ̃

(1)
β − Σ̃

(2)
β

)

, (20)

where Σ
(0)
β is defined in Theorem 1,

Σ̃
(1)
β = E−1

(

∂U0

∂β

)

E

(

U0 − ψ0

w0

∂wT0
∂θ

)

Λ−1
θ E

(

∂w0

∂θ

(U0 − ψ0)
T

w0

)

E−1

(

∂UT
0

∂β

)

and

Σ̃
(2)
β = E−1

(

∂U0

∂β

)

E
[

(1 − w0)

(

U0ψ
T
0

w0
+
ψ0U

T
0

w0
− ψ0ψ

T
0

w0

)

]

E−1

(

∂UT
0

∂β

)

.

The estimator β̂RRZ reaches the semiparametric efficiency bound if ψ =

E[U(y, x, β)|s, x] and w is correctly specified. In this case, the asymptotic variance given

by Σ(0) − Σ(2) for the proposed estimator β̂ is the same with Σ̃(0) − Σ̃(2) of β̂RRZ , and equals

to the semiparametric efficiency bound given in (19). However, when ψ 6= E[U(y, x, β)|s, x],

which is a likely scenario in practice, the efficiency of β̂RRZ can be severely compromised,

even if the propsensity function w is correctly specified. The reason is, while Σ̃
(1)
β is always

non-negative definite (indicating an efficiency gain), there is no guarantee that Σ̃
(2)
β is non-

negative definite. Indeed, for some choices of ψ, β̂RRZ can be less efficient than the weighted

estimator β̂W that solves (6); some examples of such cases are given in the next section.

While we are not suggesting that β̂ is always better than β̂RRZ , it is true that β̂ always gains

in efficiency over β̂W , as long as Σ
(2)
β is not zero, whereas no such guarantee can be said about

β̂RRZ .

4. Numerical study

We compared the proposed estimator to three other estimators in a simulation study:

1. The maximum likelihood estimator β̂C assuming all data are observed. This estimator
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is not feasible in practice. However, it sets a benchmark on how much information is

contained in the sample if there were no missing data.

2. The weighted estimator β̂W by solving (6) using only the complete observations. This

is also the initial estimator β̃ used in obtaining the empirical likelihood weights.

3. The estimator β̂RRZ .

Throughout the simulation study, the following model was used for generating missingness:

1 − w(s, x, θ) = P (δ = 0|y, s, x) = P (δ = 0|s, x) =
1

1 + exp(θ1 + θ2s+ θ3x)
, (21)

for θ = (θ1, θ2, θ3). Two models for (Y, S,X) were studied. In Model 1, Y and S were both

normally distributed with means and variances, respectively, as

E(Y |X) = β1 + β2X and E(S|Y,X) = 1 + 2Y +X,

V ar(Y |X) = V ar(S|Y,X) = 1

where X ∼ N(0, 1). The estimating function corresponding to (Y,X) was

U(y, x) =

(

1
x

)

(y − β1 − β2x).

Estimates of E[U(y, x, β)|s, x] are required in the estimation process to obtain β̂RRZ and β̂.

For this model, we used:

ψRRZ(si, xi, β) = E[U(y, x, β)|s, x] =

(

1
x

)

(γ1 + γ2s+ γ3x− β1 − β2x)

for β̂RRZ and ψ(s, x) = {1 − w(s, x, θ)}ψRRZ(si, xi, β) for β̂. The initial estimate for γ =

(γ1, γ2, γ3) was obtained by fitting a linear regression

E(Y ) = γ1 + γ2S + γ3X. (22)

As mentioned in the Section 2, (22) does not need to be correct. The goal is to recover as

much as possible the information loss in the missing values of Y by using S and X.
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In Model 2, the outcome Y was a binary variable with

P (Y = 1|X) =
exp(β1 + β2X)

1 + exp(β1 + β2X)
,

and S, conditioned on X, Y , was normal with unit variance and mean

E(S|Y,X) = 1 + 2Y +X,

and X ∼ N(0, 1). The estimating equations were

U(y, x) =

(

1
x

)(

y − exp(β1 + β2x)

1 + exp(β1 + β2x)

)

,

ψRRZ(s, x) =

(

1
x

)(

exp(γ1 + γ2s+ γ3x)

1 + exp(γ1 + γ2s+ γ3x)
− exp(β1 + β2x)

1 + exp(β1 + β2x)

)

,

ψ(s, x) = {1 − w(s, x, θ)}ψRRZ(s, x),

where γ = (γ1, γ2, γ3) was estimated by fitting a logistic regression based on the data with

complete observations {yi, si, xi}mi=1.

For Models 1 and 2, 2000 simulations were carried out for combinations of

β = (1, 1) and (1, 2) and θ = (−1, 0, 0), (−1, 0.2, 0.2), (−1, 0.35, 0.35) and (−1, 0.5, 0.5)

in the missing probability function, with N=1000 in each simulation. The choices

θ = (−1, 0, 0), (−1, 0.2, 0.2), (−1, 0.35, 0.35) and (−1, 0.5, 0.5) induced, respectively,

approximately 75%, 60%, 47% and 45% missing outcomes in the data.

We considered two methods for variance estimation in each method: (1) the asymptotic

variance formulae in Section 3 and (2) the bootstrap method. Under MCAR (θ = (−1, 0, 0))

or weakly MAR (θ = (−1, 0.2, 0.2)), both methods give similar variance estimates. However,

under strongly MAR (θ = (−1, 0.35, 0.35), (−1, 0.5, 0.5)), the bootstrap method gives more

reliable variance estimates. The better performance of the bootstrap method is due to the fact

that the asymptotic variance formula involves the quantity
∑n
i=1(di/wi)

2ψTi ψi/n, which can

be unduly affected by values of wi close to 0 or 1, when θ = (−1, 0.35, 0.35) or (−1, 0.5, 0.5).

The simulation results are reported in Tables 1-2 for the case of β = (1, 2). The results

for β = (1, 1) follow the same pattern and hence are not reported. For each method, the
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first row is the mean and the variance based on the 2000 replications. The second row

is the observed coverage for 95% nominal confidence interval and the bootstrap variance

estimate. Table 1 shows that when the outcome is MCAR (θ = (−1, 0, 0)), β̂RRZ and the

estimator proposed in this paper, β̂, are almost equivalent. On the other hand, when θ =

(−1, 0.35, 0.35) and (−1, 0.5, 0.5), then missingness depends strongly on (S,X) and in those

cases, β̂ outperforms β̂RRZ and β̂W . For Model 2, β̂RRZ and β̂ are much better than β̂W when

the outcome is MCAR. However, their efficiency gains are reduced when the selection bias

in missingness of the outcome variable is large, i.e., θ = (−1, 0.35, 0.35) and (−1, 0.5, 0.5).

Interestingly, in those cases, comparing to the unattainable estimator β̂C based on the full

sample, missing data did not lead to much loss of information. The efficiency loss of all three

estimators when compared to β̂C is less severe in Model 2 than the corresponding cases in

Model 1. Among the three estimators, the estimator proposed in this paper is the best. In

certain cases, the relative efficiency of β̂RRZ to β̂ is less than 50%.

To further illustrate the results of Theorems 1 and 2, we compared the asymptotic

relative efficiencies between the estimators in a modest setup. Two models were used. The

first model is a linear model that is similar to Model 1 in the simulation study, except

E(S|Y,X) = 2Y if Y ≥ 0 and E(S|Y,X) = Y if Y < 0 and θ ≡ (θ1, θ2, θ3) = (−2, ζ, 0.5) in

the missing function, w, with ζ allowed to vary from 0 to 0.5. The second model is binary

with Y as in Model 2 in the simulation study and S is also binary with

P (S = 1|X) =
exp(β1 + β2(X + ζ))

1 + exp(β1 + β2(X + ζ))
,

so ζ is a disturbance that makes S an imperfect surrogate. The value of ζ varied from -

1.5 to 0 and θ = (−3, 3, 0) in w. Therefore, non-zero values of ζ in either model create

situations where it would not be possible to find a simple ψ function that is the same as

ψ0(s, x, β) ≡ E{U(y, x, β)|s, x} under MAR. In both models, we assumed (β1, β2) = (1, 2)

and we used the asymptotic formulae in Theorems 1 and 2 to calculate:

ARE(β̂, β̂W ) =
V ar(β̂W )

V ar(β̂)
, ARE(β̂, β̂RRZ) =

V ar(β̂RRZ)

V ar(β̂)
,
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for estimating β1, β2. The results are given in Figures 1a - 1d. They show that β̂ is always

as efficient as β̂W and β̂RRZ in all scenarios studied. The most noticeable features of these

results is the poor performance of RRZ under MAR, when ζ is non-zero (Figures 1b and 1d).

The poor performance of RRZ results because ψ is very different from E[U(y, x, β)|s, x] in

those cases. This is a point made at the end of Section 3 that there is no guarantee that the

RRZ estimator will always be better than the inversely weighted estimator. In both models,

the disadvantage of using β̂RRZ is less pronounced for estimating β1 than for β2. This is

because the set-ups of the models changed the distribution of X through S, and under MAR,

the changes affect β2 more because it is the coefficient associated with X.

5. Application to election data

We applied the proposed method to a set of data from the National Election Study

(Warren, Kinder and Rosenstone, 1999; Lee and Kang, 2003; Lee, 2005). The U.S.

presidential election follows an electoral college system, not the usual popular vote. However,

on two occasions (including the one between Bush and Gore in 2000), a candidate lost the

election despite winning the popular vote. We assumed the election followed a popular

vote system. As argued in Lee (2005), this approach is reasonable for illustration purposes

because of two reasons: (1) Since the election results using the two systems were very close,

the statistical conclusions should be similar using either system; (2) The sample size is not

large enough at the state level, which would be required if the electoral college system is

used.

The data came from two surveys conducted before and after the election. There were

three candidates: Clinton, Dole and Perot. We focused on the two main candidates: Clinton

and Dole. A striking feature of the dataset is the large proportion of observations (33%) with

missing outcome, as represented by those who did not vote.

We used the responses from three questions to construct the surrogate outcome, S. In
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the post-election survey, each non-voter was asked the question: “Who did you prefer (as the

president)?”. If the answer is Clinton or Dole, then it is used as the surrogate outcome. If

no answer was given, then we compared the average ratings (on a scale of 0-100) of Clinton

and Dole by the non-voter in the pre- and post-election survey and took the candidate with

the higher average rating as the surrogate outcome. If the average ratings were tied, then

we looked at the political party trait of the non-voter. By carrying out this procedure, we

arrived at N = 1486 respondents who either have a surrogate or the true outcome and with

complete covariate information.

Voting patterns for the data available for analysis (N = 1486) are: No Vote (474 or

32%), Clinton (586 or 39%) and Dole (426 or 29%). Using the method described in the

previous paragraph, out of the 1486 respondents, 929 have Clinton as the surrogate outcome

and 557 have Dole as the surrogate outcome. One way to assess the quality of this surrogate is

to compare its value to the true outcome for those who voted. The comparison is summarized

in Table 3, which shows that the association between the true outcome and the surrogate

outcome is highly significant (p < 0.001 using a Chi-squared test).

Alvarez and Nagler (1998) discussed a number of questions related to the National

Election Study that may be of interest. We focused on the question of how voter’s perception

of the economy influenced the election outcome. In the pre-election survey, every respondent

was asked whether the economy of the country had gotten better, stayed about the same or

gotten worse in the year leading up to the election. The answers from the respondents, along

with the values of the true and surrogate outcome, are summarized in Table 4. Thus, voter’s

perception represents the X variable in the model.

To model the probability of a missing outcome, we turned to previous works that studied

voter turnouts in US presidential elections (Riker and Ordshook, 1968; Filer and Kenney,

1980; Sanders, 2001). Sanders (2001) used the dataset in this paper to model the probability

of turnout (Table 1 in Sanders, 2001) with the following variables: Age, Income, Race,

Gender, Education (High school vs. College vs. others), Political Awareness and Efficacy
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(of the voter), Ideological and Character difference (between the voter and the candidate),

Ideological and Character certainty (of the candidates by the voter), whether the voter was

contacted (mobilized) by a political party before the election, and whether the voter cared

about the election. These variables are the vector of Z discussed in Section 1. In addition to

Z, we added S and X and modeled w using a logistic regression

1 − w(s, x, z, θ) =
1

1 + exp(θ1 + θ2s + θ3x + θT4 z)
. (23)

This example highlights the different roles played by Z and S. While S is surrogate for voting

preference for those who did not vote, Z is used to model the act of voting. Both variables

are necessary for combining the information from the voters and the non-voters to draw valid

inferences.

A binary logistic regression was used to model the relationship between the true outcome

(choice of the president) and a single covariate (perceived state of the economy). Let Y be

the true outcome and Y = 1 represents “Clinton is the choice” and Y = 0 represents “Dole

is the choice”; X be the covariate and X = −1, 0, 1 if the respondent thought the nation’s

economy had “gotten worse”, “stayed about the same” and “gotten better”, respectively.

The model can be written as:

P (Y = 1|X) =
exp(β1 + β2X)

1 + exp(β1 + β2X)
.

The surrogate outcome, S, is also a binary variable with S = 1 represents “Clinton is the

choice” and S = 0 represents “Dole is the choice”. We assumed

ψ(s, x) = {1 − w(s, x, z, θ̂)}
(

1
x

)(

exp(γ1 + γ2s+ γ3x)

1 + exp(γ1 + γ2s+ γ3x)
− exp(β1 + β2x)

1 + exp(β1 + β2x)

)

.

where γ = (γ1, γ2, γ3) is estimated by fitting a “working” logistic regression based on

respondents who voted and θ̂ was modeled as in (23).

The three methods considered in this paper were used to analyze the data. Table

5 gives the parameter estimates and the corresponding variances based on the bootstrap

method and the asymptotic formulae in Theorems 1 and 2. All methods show strong
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evidence (β̂2/SE(β̂2) >> 0) that voter’s perception on the economy had a significant impact

on voting behaviour. Using the weighted estimator, the odds ratio of voting Clinton is

{exp(.2989+ .8004)/[1+exp(.2989+ .8004)]}/{exp(.2989− .8004)/[1+exp(.2989− .8004)]} =

1.98 for someone who views the economy favourably against someone who views the economy

negatively. The conclusions are similar using the other two methods. Using either Robins

et al.’s (1995) method and the method proposed in this paper, there are significant gains

in efficiency over the weighted estimator. The bootstrap and the corresponding asymptotic

formulae variances estimates are similar, as will be the case in most practical situations.

6. Concluding remarks

Surrogate outcome has become a popular means to enhance estimation efficiency when

the true outcome is missing. This paper proposed a procedure that improves estimation

efficiency in the surrogate outcome problem via Owen’s (1990) empirical likelihood. Two

different decompositions of the observed likelihood were suggested. The first decomposition

uses the binomial likelihood conditional on the observations with complete information on

(Y,X, S) in (1). The parameter θ in the propensity function (w) can be easily estimated

by maximizing the binomial likelihood. The second decomposition is conditional on the

missingness status. As a result, two empirical likelihoods can be constructed by linking

the unbiased estimating equations. It is well known that the best estimating equation is

not available in general, but simpler forms exist for the missing response data; see Chen

and Breslow (2004) and Yu and Nan (2006). In practice, U(Y,X, β) can be regressed on

S and X by using a “working” nonlinear model or a general additive model. We corrected

the possible bias in the “working” model using estimating equations (8) and then combined

them using empirical likelihood. The resulting estimate has attractive theoretical properties

as well as good finite sample performance. The method is especially useful when there is

little information on the conditional density of S given (Y,X), since in that case the optimal

conditional estimating function needed in methods such as Robins et al.’s (1995) estimator
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is not available. With some modifications, the proposed method may be generalized to other

missing data situations, for example in measurement error problems.

Appendix

The conditions needed to establish Theorems 1 and 2 are the following:

C1: The propensity score wi(θ) is twice continuously differentiable with respect to θ in a

neighborhood of θ0 and is uniformly bounded away from 0 and 1; furthermore, m/N →

ρ ∈ (0, 1) as N → ∞.

C2: The initial estimator γ̃ converges in mean square to a γ0 within the parameter space Γ

such that for sufficiently large m and N , E{(γ̃−γ0)(γ̃−γ0)
T} ≤ A0 for a fixed positive

definite matrix A0.

C3: Let ξ0 = (UT
0 , (ψ0 − µ0)

T )T . It is assumed that E
(

ξ0ξT
0

w0

)

and E
(

ξ0ξT
0

1−w0

)

are positive

definite; and the rank of E
(

∂U0

∂β

)

is p, which is also the dimension of β.

C4: ∂2U(β)
∂β∂βT is continuous in a neighborhood of β0 where

∥

∥

∥

∂U(β)
∂β

∥

∥

∥ is bounded; ∂2ψ(β,γ)
∂γ∂γT is

continuous in a neighborhood of (β0, γ0), and in this neighborhood
∥

∥

∥

∂ψ(β,γ)
∂γ

∥

∥

∥ is bounded,

E(||U(β)||)2 <∞ and E(||ψ(β, γ)||)2 <∞.

Let

qN0 = N−1
N
∑

i=1

δi − wi(θ0)

wi(θ0){1 − wi(θ0)}
∂wi(θ0)

∂θ
and Λθ = E

[

1

w0{1 − w0}
∂w0

∂θ

∂wT0
∂θ

]

.

We have the following result on the MLE θ̂ for the parameter of the propensity score.

Lemma 1: Under Condition C1, θ̂ − θ0 = Λ−1
θ qn0 + op(N

−1/2).

Proof: Since θ̂ is the maximizer of the binomial likelihood (1),

∂`B(θ)

∂θ
=

N
∑

i=1

δi − wi(θ)

wi(θ){1 − wi(θ)}
∂wi(θ)

∂θ
= 0. (A.1)
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By Taylor’s expansion of (A.1) at the true value θ0,

θ̂ − θ0 = B−1
N qN0 + op(N

−1) (A.2)

where

BN = N−1
N
∑

i=1

[

δi − wi(θ0)

wi(θ0){1 − wi(θ0)}

][

∂2wi(θ)

∂θ2
− {1 − 2wi(θ0)}
wi(θ0)(1 − wi(θ0))

∂wi(θ0)

∂θ

∂wTi (θ0)

∂θ

]

+N−1
N
∑

i=1

[

1

1 − wi(θ0)

∂wi(θ0)

∂θ

∂wTi (θ0)

∂θ

]

.

As BN = Λθ + op(1) and qN0 = Op(N
−1/2), the lemma is established from (A.2).

Lemma 2: Under Conditions C1 - C4, λ̂ = Op(N
−1/2), ν̂ = Op(N

−1/2) and µ̂ − µ0 =

Op(N
−1/2).

Proof: The selection bias in the missingness of the outcome variable means that

E{δi{ψi(η0) − µ0}/wi(θ0)} = 0, i = 1, ..., n

E[(1 − δj){ψj(η0) − µ0}/{1 − wj(θ0)}] = 0, j = m + 1, ..., N.

Hence both N−1∑m
i=1{ψi(η0) − µ0}/wi(θ0) and N−1∑N

j=m+1{ψj(η0) − µ0}/{1 − wj(θ0)} are

Op(N
−1/2). Note that η̃ = η0 + Op(N

−1/2) as assumed in Condition C2. The lemma then

follows similar derivations as those in Owen (1990) and Qin and Lawless (1994).

Proof of Theorem 1: Since θ̂ = θ0 + Op(N
−1/2), then carrying out Taylor’s expansions of

(12) to (15) at (β = β0, µ = µ0, λ = 0), and ignoring terms of op(N
1/2) lead to

m
∑

i=1

µ̂− µ0

wi(θ0)
+

m
∑

i=1

{ψi(η0) − µ0}{ψi(η0) − µ0}T
w2
i (θ0)

λ̂ =
m
∑

i=1

ψi(η̃) − µ0

wi(θ̂)
, (A.3)

N
∑

j=m+1

µ̂− µ0

1 − wj(θ0)
+

N
∑

j=m+1

{ψj(η0) − µ0}{ψj(η0) − µ0}T
{1 − wj(θ0)}2

ν̂ =
N
∑

j=m+1

ψj(η̃) − µ0

1 − wj(θ̂)
, (A.4)

m
∑

i=1

λ̂

wi(θ0)
+

N
∑

j=m+1

ν̂

1 − wj(θ0)
= 0, (A.5)

−
m
∑

i=1

∂UT
i (β0)/∂β

wi(θ0)
(β̂ − β0) +

m
∑

i=1

Ui(β0)(ψ
T
i {η0) − µ0}T
w2
i (θ0)

λ =
m
∑

i=1

Ui(β0)

wi(θ̂)
. (A.6)
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Let

AN = N−1

(

0 A12

AT12 A22

)

,

where

A12 = N−1
(

0,
∑m
i=1

1
wi(θ0)

,
∑N
j=m+1

1
1−wj(θ0)

)

,

and

A22 = N−1













−∑m
i=1

∂UT
i

(β0)/∂β

wi(θ0)

∑m
i=1

Ui(β0){ψT
i

(η0)−µ0}T

w2

i
(θ0)

0

0
∑m
i=1

{ψi(η0)−µ0}{ψi(η0)−µ0)T

w2

i
(θ0)

0

0 0
∑N
j=m+1

{ψj(η0)−µ0}{ψj (η0)−µ0}T

{1−wj(θ0)}2













.

Furthermore, let

qN = N−1





m
∑

i=1

UT
i (β0)

wi(θ̂)
,
m
∑

i=1

{ψi(η0) − µ0}T
wi(θ̂)

,
N
∑

j=m+1

{ψj(η0) − µ0}T
1 − wj(θ̂)





T

. (A.7)

The four equations (A.3) to (A.6) can be written as

AN
(

(µ̂− µ0)
T , (β̂ − β0)

T , λ̂T , ν̂T
)T

= (0, qTN)T + op(N
−1/2). (A.8)

It can be shown that

AN
p→ Σ =:

(

0 Σ12

ΣT
12 Σ22

)

as N → ∞, (A.9)

where Σ12 = (0, Ip, Ip) and

Σ22 =











−E
(

∂U0

∂β

)

E
(

U0(ψ0−µ0)T

w0

)

0

0 E
(

(ψ0−µ0)(ψ0−µ0)T

w0

)

0

0 0 E
(

(ψ0−µ0)(ψ0−µ0)T

1−w0

)











.

Here Ip is a p× p identity matrix. Thus, (A.8) and (A.9) imply that

(

(µ̂− µ0)
T , (β̂ − β0)

T , λ̂T , ν̂T
)T

= Σ−1(0, qTN)T + op(N
−1/2). (A.10)

Note that,

Σ−1 =

(

−D−1 D−1Σ12Σ
−1
22

Σ−1
22 ΣT

12D
−1 Σ−1

22 − Σ−1
22 ΣT

12D
−1Σ12Σ

−1
22

)

, (A.11)
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where D = Σ12Σ
−1
22 ΣT

12 = E−1
(

(ψ0−µ0)(ψ0−µ0)T

w0

)

+ E−1
(

(ψ0−µ0)(ψ0−µ0)T

1−w0

)

. Furthermore,

D−1Σ12Σ
−1
22 = D−1

(

0, E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

w0

)

, E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

1 − w0

))

.

Let R be the second “row” of Σ−1 after deleting the first “column”. Then,

R = −E−1

(

∂U0

∂β

)[

Ip,−E
(

U0(ψ0 − µ0)
T

w0

)

E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

w0(1 − w0)

)

,

E

(

U0(ψ0 − µ0)
T

w0

)

E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

w0

)

D−1E−1

(

(ψ0 − µ0)(ψ0 − µ0)
T

1 − w0

)]

= −E−1

(

∂U0

∂β

)

(Ip,−A,A), (A.12)

where A = E
(

U0(ψ0−µ0)T

w0

)

E−1
(

(ψ0−µ0)(ψ0−µ0)T

w0(1−w0)

)

. This unique structure of R is instrumental

in delivering a neat expression for the asymptotic covariance matrix of β̂. From (A.10),

β̂ − β0 = R qN + op(N
−1/2). (A.13)

Applying Taylor’s expansion on qN ,

qN = q
(1)
N + q

(2)
N + op(N

−1/2) (A.14)

where

q
(1)
N = N−1





m
∑

i=1

Ui0
wi0

,
m
∑

i=1

ψi0 − µ0

wi0
,

N
∑

j=m+1

ψj0 − µ0

1 − wj0





+



−E




U0
∂wT

0

∂θ

w0



 ,−E




(ψ0 − µ0)
∂wT

0

∂θ

w0



 , E





(ψ0 − µ0)
∂wT

0

∂θ

1 − w0









T

Λ−1
θ qN0,

q
(2)
N = N−1(0, Ip, Ip)

TE

(

∂(ψ0 − µ0)
T

∂η

)

(η̃ − η0),

where qN0 is defined at the beginning of the Appendix. Note that q
(1)
N is a sample average of

independent and identically distributed random vectors. Applying the standard multivariate

Central Limit Theorem and Slutsky’s Theorem, it can be shown that

√
Nq

(1)
N

d→ N(0,Ω(1)) as N → ∞, (A.15)
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where

Ω(1) = Ω(11) − Ω(12), (A.16)

Ω(11) =













E
(

U0UT
0

w0

)

E
(

U0(ψ0−µ0)T

w0

)

0

E
(

U0(ψ0−µ0)T

w0

)

E
(

(ψ0−µ0)(ψ0−µ0)T

w0

)

0

0 0 E
(

(ψ0−µ0)(ψ0−µ0)T

1−w0

)













,

Ω(12) = E

(

ζ
∂wT0
∂θ

)

Λ−1
θ E

(

∂w0

∂θ
ζT
)

,

ζ =

(

−U
T
0

w0
,−(ψ0 − µ0)

T

w0
,
(ψ0 − µ0)

T

1 − w0

)

.

Let B = E
(

∂(ψ0−µ0)
∂η

)

Var(η̃)E
(

∂(ψ0−µ0)T

∂η

)

. Then,

NVar(q
(2)
N ) = Ω(2) =:







0 0 0
0 B B
0 B B





 . (A.17)

From (A.12), NVar(Rq
(2)
N ) = NRΩ(2)RT = 0. Thus, Rq

(2)
N = op(N

−1/2). Therefore, β̂ − β0 =

Rq
(1)
N + op(N

−1/2). This result and (A.15) together give

√
N(β̂ − β0)

d→ N(0,Σβ) as N → ∞, (A.18)

where Σβ = R
(

Ω(11) − Ω(12)
)

RT . After some matrix algebra, it can be shown that

RΩ(11)RT = Σ
(0)
β − Σ

(2)
β .

Clearly RΩ(12)RT = Σ
(1)
β . These results then imply the results of Theorem 1.

Proof of Theorem 2: Applying Taylor’s expansion on (4) at (β0, γ0, θ0) gives

E

(

∂UT

∂β

)

(β̂RRZ − β0) = −rn1 + rn2 + op(N
−1/2) (A.19)

where

rn1 = N−1
N
∑

i=1

δiUi0 − (δi − wi0)ψi0
wi0

and

rn2 = E

(

U0 − ψ0

w0

∂wT0
∂θ

)

(θ̂ − θ0).
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Standard derivations show that

Var(rn1) =: N−1Ω̃1 = N−1
[

E

(

U0U
T
0

w0

)

− E

{

(1 − w0)

(

U0ψ
T
0

w0

+
ψ0U

T
0

w0

− ψ0ψ
T
0

w0

)}

]

(A.20)

and

−Cov(rn1, rn2) − Cov(rn2, rn1) + Var(rn2)

=: N−1Ω̃2 = −N−1E

(

U0 − ψ0

w0

∂wT0
∂θ

)

Λ−1
θ E

(

∂w0

∂θ

(U0 − ψ0)
T

w0

)

. (A.21)

The Central Limit Theorem and (A.20) and (A.21) together imply that

√
N(−rn1 + rn2)

d→ N(0, Ω̃1 + Ω̃2). (A.22)

Theorem 2 is readily implied by (A.19) and (A.22).
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Table 1. Mean (Variance) of different estimators based on 2000 simulations with sample size
N = 1000 each and bootstrap resample size 200. The second row is the observed coverage
for a 95% nominal confidence interval and bootstrap estimation of variance. The missing
probability function is P (δ = 1|S = s,X = x) = exp(θ1 +θ2s+θ3x)/{1+exp(θ1 +θ2s+θ3x)};
Y ∼ N(β1 + β2X, 1), where (β1, β2) = (1, 2); S ∼ N(1 + 2Y +X, 1).

Method θ = (−1, 0, 0) θ = (−1, 0.2, 0.2) θ = (−1, 0.35, 0.35) θ = (−1, 0.5, 0.5)

β̂C1 0.99880 (0.00095) 1.00085 (0.00099) 1.00104 (0.00100) 0.99962 (0.00104)
94.75% (0.00099) 94.55% (0.00100) 94.50% (0.00100) 94.55% (0.00100)

β̂C2 1.99870 (0.00097) 1.99954 (0.00095) 1.99997 (0.00097) 2.00120 (0.00106)
94.65% (0.00100) 94.85% (0.00100) 94.15% (0.00100) 93.70% (0.00099)

β̂W1 0.99934 (0.00160) 1.00114 (0.00318) 1.01477 (0.00642) 1.02475 (0.01338)
94.15% (0.00159) 92.90% (0.00289) 89.75% (0.00522) 82.85% (0.00828)

β̂W2 1.99736 (0.00372) 1.99422 (0.00746) 1.97474 (0.01444) 1.96273 (0.02547)
94.75% (0.00382) 90.45% (0.00626) 84.95% (0.01009) 78.65% (0.01378)

β̂RRZ1 0.99936 (0.00158) 1.00114 (0.00175) 1.00173 (0.00309) 0.99905 (0.04684)
94.15% (0.00154) 93.95% (0.00168) 93.60% (0.00312) 94.10% (0.04397)

β̂RRZ2 1.99758 (0.00154) 1.99981 (0.00272) 1.99867 (0.00955) 2.00236 (0.35024)
94.35% (0.00156) 92.20% (0.00263) 92.80% (0.01004) 93.00% (0.32538)

β̂1 0.99931 (0.00158) 1.00217 (0.00180) 1.00487 (0.00293) 1.00077 (0.00567)
94.35% (0.00155) 93.95% (0.00175) 94.85% (0.00291) 94.65% (0.00474)

β̂2 1.99747 (0.00156) 1.99872 (0.00267) 1.99235 (0.00536) 1.99500 (0.00961)
94.25% (0.00159) 93.70% (0.00252) 94.65% (0.00494) 95.00% (0.00725)
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Table 2. Mean (Variance) of different estimators based on 2000 simulations with sample size
N = 1000 each and bootstrap resample size 200. The second row is the observed coverage
for a 95% nominal confidence interval and bootstrap estimation of variance. The missing
probability function is P (δ = 1|S = s,X = x) = exp(θ1 + θ2s + θ3x)/{1 + exp(θ1 + θ2s +
θ3x)}; P (Y = 1|X) = {exp(β1 + β2X)}/{1 + exp(β1 + β2X)}, where (β1, β2) = (1, 2);
S ∼ N(1 + 2Y +X, 1).

Method θ = (−1, 0, 0) θ = (−1, 0.2, 0.2) θ = (−1, 0.35, 0.35) θ = (−1, 0.5, 0.5)

β̂C1 1.00334 (0.00934) 1.00075 (0.00898) 1.00315 (0.00843) 0.99887 (0.00877)
93.60% (0.00893) 94.65% (0.00889) 94.95% (0.00888) 94.40% (0.00882)

β̂C2 2.00818 (0.01943) 2.01027 (0.00181) 2.08768 (0.01727) 2.00296 (0.01758)
93.70% (0.01812) 94.0% (0.01816) 94.40% (0.01808) 94.05% (0.01803)

β̂W1 1.01157 (0.02583) 1.01425 (0.02112) 1.01159 (0.01893) 1.00393 (0.01757)
94.90% (0.02852) 95.10% (0.02275) 94.75% (0.01990) 93.90% (0.01757)

β̂W2 2.02609 (0.07416) 2.03483 (0.06081) 2.02950 (0.05938) 2.02701 (0.05529)
94.0% (0.07602) 93.35% (0.06384) 93.50% (0.05907) 93.40% (0.05714)

β̂RRZ1 1.00794 (0.02167) 1.00726 (0.01730) 1.00667 (0.01554) 1.00177 (0.01458)
94.40% (0.02308) 4.85% (0.01823) 94.70% (0.01601) 93.10% (0.01446)

β̂RRZ2 2.02529 (0.05019) 2.02167 (0.04314) 2.02264 (0.04278) 2.02543 (0.03918)
93.60% (0.05160) 93.25% (0.04399) 92.40% (0.04063) 92.20% (0.03891)

β̂1 1.00795 (0.02184) 1.00796 (0.01729) 1.00694 (0.01560) 1.00297 (0.01470)
94.70% (0.02334) 94.60% (0.01838) 94.80% (0.01612) 93.30% (0.01463)

β̂2 2.02466 (0.05050) 2.02238 (0.04350) 2.02247 (0.04327) 2.02487 (0.04010)
93.10% (0.05243) 93.50% (0.04468) 92.70% (0.04121) 92.40% (0.03977)
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Table 3. Cross-tabulation of surrogate outcome (predicted voting choice) and true outcome
(actual voting choice) for those who voted for Clinton or Bob Dole

True outcome
Clinton Dole Total

Surrogate Clinton 574 17 591
outcome Dole 23 404 427

Total 597 421 1018

Table 4. Cross-tabulation of surrogate outcome (predicted voting choice), true outcome
(actual voting choice), and the covariate (perception on the economy) for all respondents,
N= 1486 (Excluding those who did not indicate perception on the economy)

Perception on the economy
True outcome Surrogate outcome Better Same Worse

No Vote Clinton 117 168 52
Dole 34 57 46

Clinton Clinton 338 187 44
Dole 6 9 2

Dole Clinton 11 10 2
Dole 94 222 87

Table 5. National Election Study data using three methods of analysis

Parameter estimate
(Variance1, Variance2)

Method β1 β2

Weighted estimator 0.2989 0.8004
(0.00839, 0.00642) (0.01682, 0.01578)

RRZ 0.2223 0.8792
(0.00386, 0.00485) (0.00818, 0.01006)

Proposed estimator 0.2950 0.7867
(0.00399, 0.00442) (0.00786, 0.00825)

1Variance estimate using asymptotic formulae in Theorems 1 and 2
2Variance estimate using 1000 bootstrap samples
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Figure 1: Asymptotic relative efficiency (ARE) between three estimators. The missing
probability function is P (δ = 1|S = s,X = x) = exp(θ1 +θ2s+θ3x)/{1+exp(θ1 +θ2s+θ3x)}.
(a) and (b): Y ∼ N(β1 + β2X, 1), S ∼ N(2Y, 1) if Y ≥ 0 and S ∼ N(Y, 1) if Y < 0 and
θ ≡ (θ1, θ2, θ3) = (−2, ζ, 0.5). (c) and (d): P (Y = 1|X) = exp(β1 +β2X)/[1+exp(β1 +β2X)],
P (S = 1|X) = exp(β1 + β2(X + ζ))/[1 + exp(β1 + β2(X + ζ))], θ = (−3, 3, 0).
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