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Abstract

This paper provides a practical test for strict exogeneity in linear panel data models with

fixed effects when the number of individuals  goes to infinity while the number of time

periods  is fixed. The test is based on the supremum of a sequence of Wald test statistics.

Under suitable conditions, we establish the asymptotic distribution of the test statistic and

consistency of the test. A bootstrap procedure is proposed to improve the finite sample

performance and the validity of the procedure is justified. We investigate the finite sample

performance of the test via a small set of Monte Carlo simulations. The application to a

panel data set of agricultural production rejects the strict exogeneity assumption.
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1 Introduction

With the availability of a wealth of sources of panel data, researchers usually estimate a textbook

panel data model in Baltagi (2013), Hsiao (2014) or Wooldridge (2010):

 = 0 +  +   = 1 2       = 1 2      (1.1)

where  is the dependent variable for individual  at time period ,  is a  × 1 vector of
explanatory variables,  represents an unobserved individual effect, and  is the idiosyncratic

error. Depending on whether  is correlated with  or not, it is referred to as either fixed

effects or random effects. Due to the prevailingness of correlation between  and  in empirical

works, the fixed effects approach has received more attention than the random effects approach.

For a fixed effect model, both the fixed effects (FE) estimator and the first-difference (FD)

estimator, which adopt within-group and first-difference transformation to eliminate  respec-

tively, have been employed in empirical works. One standard assumption to ensure the
√
-

consistency of these estimators in the large  and fixed  framework is the strict exogeneity

of . For some recent empirical applications to panel data sets adopting the strict exogeneity

assumption, see Boumparis et al. (2015), Earnhart (2004), and Papageorgiadis and Sharma

(2016), among others.

However, strict exogeneity of  may not hold in many applications due to the possible

existence of feedback effects or economic periodicity. Wooldridge (2010, p.324) has showed

that the FE estimator is generally biased and inconsistent, and its’ probability limit is different

from the FD estimator when  is not strictly exogenous. Due to the important role of this

assumption, it is necessary to develop a formal test to detect its violation. The only available test

in the literature of linear panel data models is constructed by Wooldridge (2010), who introduces

a simple test based on an augmented regression, where a subset (+1) of the first order leading

term +1 is included in the level equation as additional regressors. Under the null hypothesis

of strict exogeneity, the coefficient of +1 should be equal to zero. Then one can construct a

Wald test that is robust to arbitrary serial correlation and heteroskedasticity of unknown form.

Nevertheless, the test only includes a subset of the first leading explanatory variables, which

implies that the test may have power only when +1 is correlated with . Clearly, it may not

detect a potentially more general structure of intertemporal correlation between {} and {}.
To fill the gap, we propose a practical test for strict exogeneity of regressors in this paper, which

generalizes the test by Wooldridge to detect all orders of intertemporal correlation between {}
and {}. Because the limiting distribution of our test statistic is nonstandard, we will propose
a bootstrap method to obtain the -values and justify its asymptotic validity.

The rest of this paper is organized as follows. We formalize the hypotheses in Section 2.
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We introduce the test statistic in Section 3, and study its asymptotic properties in Section 4.

We evaluate the finite sample performance of our proposed test in Section 5. Section 6 gives an

empirical application of the test. Section 7 concludes.

Notation. Let  be an  × 1 vector of ones, 0× be an ×  matrix of zeros and  be an

×  identity matrix. We use kk = [tr (0)]12 to denote the Euclidean norm of matrix 

Denote ∆ =  − −1 and ̇ =  − ̄ where ̄ = −1
P

=1  The symbols → and →

denote convergence in probability and in distribution, respectively.

2 The hypothesis

The strict exogeneity used in the linear panel data model with fixed effects can be stated as

E (| ) = 0; (2.1)

see (10.14) in Wooldridge (2010, p.288). A direct implication of this assumption is that the

explanatory variables at a given time period are uncorrelated with the idiosyncratic errors at

any given time period:

E () = 0 for all  and  (2.2)

Then we have E (∆∆) = 0 and E (̇̇) = 0 for all  ensuring the consistency of the FD

and FE estimators for , respectively.

Since the conditions in (2.2) are essential for consistency and the fixed effects are wiped

out through transformation, we can consider a test for (2.1) based on the implication of (2.1).

Wooldridge (2010) proposes a simple test for strict exogeneity by testing whether  = 0 in the

following augmented regression:

 = 0 +0+1 +  + 

where +1 is a subset of +1 Clearly, under the null hypothesis of strict exogeneity,  = 0

and we can carry out the test using FE estimation. However, since Wooldridge’s test only

includes a subset of +1 the test may not be able to detect general intertemporal correlation

between  and  when |− | ≥ 2. To improve the power, we propose to check all possible
intertemporal correlations between  and  for |− | ≥ 1

Following the idea of Wooldridge (2010), we consider a sequence of augmented linear panel

regressions

 = 0 + 0+ +  + ,  ∈ S (2.3)
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where S ≡ {−2−3    −1 1     3 2}.1 Here  =  −  for any positive integer  such

that  ≤  − 1. When   0 all observations with  = 1   −  are used in the estimation

of  and  in (2.3); similarly, when   0, all observations with  = 1−    are used in the

estimation. Under the assumption of strict exogeneity,  = 0 for all  ∈ S . Consequently, we
can test the strict exogeneity assumption by testing the null hypothesis

H0 :  = 0 for all  ∈ S

against the alternative

H1 :  6= 0 for some  ∈ S 

Under H0,  = 0 implies that the idiosyncratic error  does not include any further information

about +, and thus there is no need to include + as regressors in model (1.1).

3 The test statistic

We construct our test statistic based on a sequence of estimators ̂,  ∈ S . One way to check
whether all ’s being equal to zero simultaneously or not is to consider the following sup-Wald

test statistic

 = sup
∈S

n
̂

0
̂
−1
 ̂

o
where ̂ is a data-dependent normalizing matrix, often taken as the estimator of the asymptotic

variance of
√
̂, i.e., ̂ = [Avar(

√
̂). Under some assumptions to be specified in the next

section, we can establish the consistency and asymptotic distribution for  .

To state how to obtain ̂ and ̂, we define 
+
 = (  +)

0 for   0, where  = 

, or  Define a series of || × 1 vectors or || ×  matrices as follows,


()
 =

⎧⎨⎩−1    0

1−   0

()
 =

⎧⎨⎩−1    0

1−   0

()
=

⎧⎨⎩1+   0

+1    0
and 

()
 =

⎧⎨⎩−1    0

1−   0

Then the model can be rewritten as


()
 = 

()
  +

()
  + || + 

()
   ∈ S (3.1)

1First, if we are certain about that E () = 0 for    then we can set S = {1     3 2}. This is
relevant when we believe that  affects  in the future but not in the past, i.e.,  is sequentially exogenous.

When  = {−2−3 −1}, we test the sequential exogeneity of  given  being weak exogenous. In

general,  can be any subset of {−2 −1 1  2}  Second, as in Wooldridge (2010), we can also replace
+ by a subset +
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or in a vector form⎛⎜⎜⎜⎜⎜⎝

()
1


()
2

...


()


⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝


()
1


()
2

...


()


⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝

()
1


()
2

...


()


⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
|| 0||×1 · · · 0||×1
0||×1 || · · · 0||×1
...

...
. . .

...

0||×1 0||×1 · · · ||

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

2
...



⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝


()
1


()
2

...


()


⎞⎟⎟⎟⎟⎟⎠ 

(3.2)

Let denote a ||×|| or ||+1×|| transformation matrix such that|| = 0 depending on

whether the within-group transformation ( = ||− ||0||||) or the first difference trans-
formation ( = [0||+1×1 ||+1 ]− [||+1  0||+1×1]) is used. Denote  = Diag ( ),

an || ×|| or ||+1 ×|| block diagonal matrix. Pre-multiplying  on both sides

of (3.2) leads to


() =

() +
()
  +

()

where  () = (
()0
1   

()0
 )0, () = (0

1  
0
 )

0
 

()
 and () are defined similarly. Denote

the OLS estimators for  and  as ̂() and ̂, respectively. By the formula of partitioned

regression, we have

̂ =
³
()0
  ()()



´−1
()0
  () () for  ∈ S 

where () = 0

 , = ∗−

()
¡
()0 0




()
¢−1

()0 0

, and ∗ is the

row number of . Let ̂
() =  ()−()̂()−()

 ̂−(⊗||)̂, where ⊗ is the Kronecker
product, ̂ = (̂1  ̂ ) and ̂ = ̄ − ̄0̂(). Then we can estimate the asymptotic variance

of
√
̂ by ̂ = (

()0
  ()

()
 )−1()0

  ()̂()̂()0 ()
()
 (

()0
  ()

()
 )−1. Note that

this estimate allows both conditional (or unconditional) serial correlation and heteroskedasticity

of unknown form.

4 The asymptotic properties of the test statistic

To state the main assumptions, we introduce some notation. Denote

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω−2−2 · · · Ω−2−1 Ω−21 · · · Ω−22
...

. . .
...

...
. . .

...

Ω−1−2 · · · Ω−1−1 Ω−11 · · · Ω−12
Ω1−2 · · · Ω1−1 Ω11 · · · Ω12
...

. . .
...

...
. . .

...

Ω2−2 · · · Ω2−1 Ω21 · · · Ω22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

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where Ω = E[(
()
−()

 )
00


()
 

()0
 0

(
()
−()

 )] where  = [E(
()0
 0


()
 )]−1

×E(()0
 0


()
 ) Define Σ = E[(

()
 −

()
 )

00
(

()
 −

()
 )]

To establish the asymptotic properties of our test statistic, we need the following assump-

tions.

Assumption 1. (i) (  ) are independent and identically distributed (IID) across ;

(ii) E () = 0 for all 

Assumption 2. (i) E(
()0
 0


()
 ) is nonsingular for any  ∈ S ;

(ii) Σ is positive definite (p.d.) for any  ∈ S 
(iii) Ω is p.d..

Remark 1. Assumption 1(i) is commonly used in the literature on panel data models with

fixed  which rules out the cross-sectional dependence; Assumption 1(ii) assumes contemporary

uncorrelation between  and , which means that we test intertemporal correlation between

{} and {} given  being contemporarily exogenous. Testing of contemporaneous exogene-
ity requires existence of instrumental variables for , and is beyond the scope of this paper.

Assumption 2 imposes moment conditions on  and . Assumption 2(i) ensures that we can

project 
()
 on 

() and then  is well-defined; Assumption 2(ii) implies that the

matrix of augmented regressors, 
()
 , after removing its linear projection on 

()
 , is still

of full column rank; Assumption 2(iii) is a regular second moment condition which is used in

the central limit theorem for the IID sequence.

Denote ̂ = (̂
0
−2  ̂

0
−3   ̂

0
−1 ̂

0
1  ̂

0
3
 ̂
0
2
)0 Let  be a ×1 random vector for  ∈ S and

 =
¡
0−2  

0
−3   

0
−1 

0
1  

0
3
 02

¢0 ∼  (0V)  where V = Σ0ΩΣ Σ = Diag(Σ−1−2 Σ
−1
−3  

Σ−1−1Σ
−1
1  Σ−13 Σ

−1
2
)0. Clearly, we have Cov ( ) = V = Σ

−10
 ΩΣ

−1
 for   ∈ S 

Theorem 4.1 Suppose Assumptions 1-2 hold. Under H0, we have
√
̂

→  (0V) and


→ sup∈S

©
0V−1

ª
as  →∞.

Remark 2. The proof is straightforward and relegated to the Appendix. In principle,

we reject the null hypothesis if sup  , where  is the -level critical value from the

asymptotic distribution of sup under H0. Note that the covariance matrices V of  and

 are generally not equal to zero. So the critical values ’s depend on the joint distribution

of ’s and we cannot tabulate them. Below we will propose a bootstrap method to obtain the

-values instead.

Remark 3. When the null hypothesis is rejected, the test suggests the source for the

breakdown of strict exogeneity. Let 0 = argmax∈S {̂
0

−1
 ̂} Intuitively, 0 indicates

that the strongest correlation exists between +0 and  after controlling for  Further,
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we can execute the same testing approach over the set S\ {0} and check whether the strict
exogeneity may be violated for other leading or lagged regressors. Continuing in this fashion,

we can in principle detect all violations of strict exogeneity by implementing a sequential testing

procedure. At the end, we may sort out the set of valid moment conditions which offers basis

for consistent GMM estimation of . We leave the topic for future research.

Remark 4. It is possible to include any subset of {1  −1 +1  } in the aug-
mented regression in (2.3) to improve the power performance. However, as the dimension in-

creases, there will be size distortion especially when  is mildly large in finite samples.

Remark 5. Alternatively, we can construct the test based on either
P

∈S ̂
0

−1
 ̂ or

̂
0
 −1̂ where  is a consistent estimator for V. These tests have an advantage that they are

less sensitive to outliers. However, the tests cumulate too much estimation error and will have

good power only if many  6= 0 simultaneously. In the case of large  , we can modify these tests
to improve the power performance via the technique developed in Fan, Liao and Yao (2015).

Theorem 4.2 Suppose Assumptions 1-2 hold. Under H1, we have

Pr (  |H1)→ 1 as  →∞

where  is the critical value from the asymptotic distribution of  under H0.

To implement our test, we propose a bootstrap method to obtain the bootstrap -value. Fol-

lowing Su and Chen (2013) and Su et al. (2015), we adopted the fixed-regressor wild bootstrap:

1. Under H0, obtain ̂ by FE or FD estimation, and then obtain ̂ = ̄ − ̄0̂ and ̂ =

 − 0̂ − ̂.

2. Let ∗ = ̂
∗
 , where 

∗
 ’s are IID (0 1). Generate ∗ = ̂ + 0̂ + ∗ and obtain the

bootstrap sample {(∗ )}.

3. Obtain the estimator ̂
∗
 and[Avar(

√
̂

∗
) based on the bootstrap sample {(∗ )}  Then

calculate  ∗
 = sup∈S ̂

∗0
 [[Avar(

√
̂

∗
)]
−1̂

∗
.

4. Repeat Steps 2-3  times to obtain { ∗
}=1, and obtain the bootstrap -value:

∗ = −1
P

=1 1(
∗
  ), where 1 (·) is the usual indicator function. Reject

H0 if ∗ is less than some prescribed significance level.

It is straightforward to implement the above bootstrap procedure. Note that we impose the

null hypothesis H0 implicitly in Step 2. Due to the fact that the observations in bootstrap world

are independent but not identically distributed (INID), we add the following assumption:
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Assumption 3. (i) For some   0, E
°°°(

()
 −

()
 )

0
()


°°°2+ ∞ for any  ∈ S ;
(ii) E

°°°(
()
 −

()
 )

0
()


°°°2+ ∞ for any  ∈ S and the same  given in (i).

Remark 6. Assumptions 3(i)-(ii) are two moment conditions imposed on the transformed

regressors and errors, which are used to verify the Lyapunov condition in deriving the asymptotic

distribution of  ∗
  Note that we impose the conditions on the transformed regressors and

errors directly.

The next theorem implies the asymptotic validity of the above bootstrap procedure.

Theorem 4.3 Suppose Assumptions 1-3 hold. Then  ∗


∗→ sup∈S
©
0V−1

ª
in probabil-

ity, where
∗→ denotes weak convergence under the bootstrap probability measure conditional on

the observed data set {( )   = 1    = 1  }

5 Monte Carlo simulations

In this section, we carry out a small set of Monte Carlo simulations to examine the finite sample

performance of our test.

5.1 Data generating processes

We design the following data generating processes (DGPs) in our experiments:

 =  + + +  + 

 = −1 + 05−1 +  + 

 =

q
01 + 0252( + 03−1)

where  are IID (1 025),  are IID (0 1),  are IID (0 1), and they are mutually

independent of each other; we set the initial value of {} as 1− = 05. We fix  = 1 in

both size and power studies and let  ∈ {0 01 02}, where  = 0 and 6= 0 are used in the

size and power studies, respectively. To avoid confusion, we simply use “H0” to represent the

DGPs in size studies while “H1 ()” (where  6= 0) in power studies. Note that we allow both
conditional heteroskedasticity and serial correlation in {} 

We consider different sample size combinations:  ∈ {5 8} and  ∈ {100 200}. We compare
the performance of our sup-Wald test ( ) with that of Wooldridge’s Wald test ( ). The

test statistics are calculated based on FE and FD transformations. We use and  to

indicate the tests based on FE estimation, and  and  to represent the tests based

on FD estimation. In all scenarios we consider 500 replications and 400 bootstrap resamples.
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Table 1. Finite sample rejection frequency (%)

       

( )=(100,5) ( )=(200,5)

H0 6.4 5.4 4.6 5.6 3.4 5.2 6.4 5.4

H1−3(0.1) 5.0 17.8 6.0 16.6 4.0 26.0 5.4 26.0

H1−2(0.1) 6.8 25.2 7.2 25.4 6.4 43.2 6.2 47.8

H1−1(0.1) 9.4 35.2 8.4 36.6 8.6 63.0 9.0 65.2

H11(0.1) 51.8 34.8 55.6 35.6 82.8 63.0 82.6 67.2

H12(0.1) 6.8 21.8 10.4 23.6 3.6 39.8 13.0 43.0

H13(0.1) 9.4 14.6 6.6 16.6 8.6 26.6 6.8 27.6

H1−3(0.2) 7.6 54.6 7.2 57.4 9.0 84.0 6.2 83.6

H1−2(0.2) 10.6 71.0 8.4 78.0 11.8 95.6 8.6 98.0

H1−1(0.2) 16.4 89.4 15.4 88.4 20.4 99.4 18.4 100

H11(0.2) 96.2 91.2 97.8 91.8 100 100 100 100

H12(0.2) 5.8 77.0 25.2 81.2 6.4 97.2 34.8 98.6

H13(0.2) 15.0 58.0 13.0 57.6 21.8 84.6 12.8 83.8

( )=(100,8) ( )=(200,8)

H0 4.6 6.2 4.6 5.8 6.2 6.4 4.2 6.2

H1−5(0.1) 8.2 21.6 6.6 22.0 7.0 42.4 3.4 39.2

H1−3(0.1) 10.2 35.0 7.2 37.6 10.2 65.8 4.6 72.8

H1−1(0.1) 9.8 63.4 10.6 56.2 10.4 93.4 13.4 88.2

H11(0.1) 85.6 61.6 83.4 57.2 98.6 91.8 98.2 89.4

H13(0.1) 7.4 40.6 8.6 40.4 7.8 67.6 8.4 69.8

H15(0.1) 10.8 22.2 6.4 17.6 9.8 40.8 4.6 39.8

H1−5(0.2) 5.8 70.8 4.6 75.8 6.6 95.8 7.0 96.4

H1−3(0.2) 14.6 96.0 6.0 98.2 22.6 100 8.6 100

H1−1(0.2) 16.6 100 25.4 99.6 25.4 100 36.8 100

H11(0.2) 100 100 100 100 100 100 100 100

H13(0.2) 6.0 94.4 15.6 94.8 7.2 100 24.0 100

H15(0.2) 16.6 76.2 5.0 77.8 23.8 95.6 6.2 97.2

5.2 Simulation results

Table 1 presents the finite sample rejection frequency at the 5% nominal level. We summarize

the findings as follows. (i) As expected, Wooldridge’s test has good power against H11 (01)

and H11 (02) and it has little or no power against the other alternatives. (ii) The sup-Wald

test behaves reasonably well. When the null of strict exogeneity holds, the empirical rejection

frequencies are close to the nominal level 5%; when the null is violated, the empirical rejection

frequencies are larger than the nominal level and increase rapidly either as  changes from 0.1

to 0.2 or as the sample size  increases. (iii) Both tests  and  have similar
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performance in size and power studies.

6 An application to agricultural production

In this section, we apply our test to a cross-country panel data set of agricultural production.

We collect all the variables from the website of Food and Agriculture Organization of the United

Nations (http://faostat3.fao.org/home/E). The data set covers 109 countries (regions) over the

years from 2002 to 2007. So  = 109 and  = 6

We model the production function in a traditional Cobb-Douglas form as in Mundlak (1961)

with panel data. To be specific, we consider the following panel data model with fixed effects

log  = 1 log  + 2 log  + 3 log  +  + 

 = 1  109  = 2002  2007

where the dependent variable log  is the logarithm of output for the -th country or

region in the -th year and is measured by net production value; log  and log  are

two explanatory variables representing inputs agricultural area and totally economically active

population in agriculture in logarithm, respectively; log  is the government expenditure

in agriculture in logarithm which is used as a proxy for the investment in agricultural industry,

due to the lack of data for capital stock and machinery and the fact that agricultural industry

is usually subsidized by a country’s government.

We first report the conventional estimation results in Table 2. From this table, we can see

that all the inputs are significant, at least at the 10% level. However, the estimates based

on different methods are different from each other. First, the estimation results in the first

three columns show an inconsistency among the pooled OLS, random effects (RE) and fixed

effects (FE) estimators. The differences between the RE and FE estimators indicate the random

effects assumption is fragile. The Hausman test statistic (Hausman, 1978) for the random effects

assumption is given by 120.59 with a -value smaller than 0.001. More importantly, we can see

a clear difference between the FE and FD estimators. The FD estimator for log  is 0.504,

which is almost half of that for the FE estimator. This indicates the possible breakdown of

strict exogeneity of  because FE and FD estimators, when strict exogeneity fails, can be both

inconsistent and have different probability limits (Wooldridge, 2010).

Next, we conduct both Wooldridge’s test and our proposed test in this paper. The results

are given in Table 3. From this table, we can see that both our test and Wooldridge’s test

based on FE estimation reject the hypothesis of strict exogeneity at the 5% level and our test

has smaller -values than Wooldridge’s test. Wooldridge’s test suggests that the idiosyncratic
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Table 2. Estimation results for agricultural production function

POLS RE FE FD

log  0267∗∗∗(0054) 0533∗∗∗(0121) 0953∗∗(0461) 0504∗(0269)
log  0359∗∗∗(0050) 0195∗(0108) 0307∗∗(0125) 0369∗∗∗(0114)
log  0457∗∗∗(0029) 0176∗∗∗(0023) 0136∗∗∗(0016) 0090∗∗∗(0013)
Note: 1.The numbers in parentheses are cluster-robust standard errors.

2. ∗∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1% level, respectively.

errors may have a feedback effect on agricultural inputs in the following period. For instance, a

detrimental natural disaster in a country may cause the government to subsidize its agricultural

infrastructure more in the following year. Our FE-estimation-based sup-Wald test can pick up

such an effect successfully.

In contrast, when the FD estimation is in place, Wooldridge’s test fails to reject the null of

strict exogeneity at the 5% level while our test continues to reject it. We conjecture that this

is due to the fact that Wooldridge’s test has less power than ours in detecting intertemporal

correlation between the regressors and error terms.

Table 3. Bootstrap p-values for testing strict exogeneity

Testing statistic    

-value 0045 0033 0098 0023

Note: The number of bootstrap resamples is 4000.

7 Conclusions

In this paper, we provide a practical test for strict exogeneity in linear panel data models, which

is easy to implement and robust to unknown serial correlation and heteroskedasticity. The

asymptotic properties of the test have been established. A small set of simulations shows that

the finite sample performance of our test behaves reasonably well. An application to agricultural

production function illustrates its usefulness.

Our test can be used as a diagnostic tool to justify the use of FE or FD estimators in

traditional panel data models. Besides, when the null hypothesis is rejected, our test may reveal

the sources responsible for the violation of strict exogeneity. This may guide us towards a

consistent estimator, for example, by GMM. We leave this for a future research.
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APPENDIX

In this appendix we prove the main results in the paper.

Proof of Theorem 4.1. Let  ≡ 
()0
  ()

()
  and  ≡ 

()0
  ()()

√
 . We

have
√
̂ = −1 for  ∈ S because  = 0 under H0 By Assumptions 1(i) and 2(i)

, we can readily show that  = Σ +  (1) for all  ∈ S . For the term   we have

̂ = (
P

=1
()0
 0


()
 )−1 ×P

=1
()0
 0


()
 = + (1) under Assumptions 1(i) and

2(i) by the weak law of large numbers (WLLN). Then

 ≡ 1√

()0
  ()() =

1√


X
=1

³


()
 −

()
 ̂

´0


()


=
1√


X
=1

³


()
 −

()
 

´0


()
 + ( − ̂)

0 · 1√


X
=1


()0
 0


()


≡ 0 +  (1) 

By the Cramér-Wold device and the central limit theorem (CLT) for IID random sequences, we
can show that under Assumptions 1-2

0 =
¡
00−2  

00
−3  

00
−1  

00
1   

00
3

 002
¢0 →  (0Ω) 

It follows that  = (0−2  
0
−3  

0
−1  

0
1   

0
3

 02)
0 →  (0Ω)  In addi-

tion,  = (−2  −3   −1  1   3  2)→ (Σ−2 Σ−3   Σ−1Σ1 
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Σ3 Σ2) By Slutsky’s lemma, we have
√
̂ →  (0V)  It is straightforward to show that

̂ = V +  (1). It follows that  → sup∈S
©
0V−1

ª
by the continuous mapping

theorem. ¥

Proof of Theorem 4.2. Let S† = { :  6= 0 and  ∈ S }. Under H1 S† 6= ∅. We have
̂ =  +−1 for  ∈ S† and

√
̂ = −1 for  ∈ S\S† . Then following the proof

of Theorem 4.1, we can show that
√
(̂ − )→  (0V)  Write

 = max
n
 0

 
†


o
where  0

 = sup
∈S \S†

{̂
0
̂
−1
 ̂} and 

†
 = sup

∈S†


{̂
0
̂
−1
 ̂} Clearly,  0

 =  (1).

For 
†
 , we have

̂
0
̂
−1
 ̂ =

√

³
̂ −  + 

´0
̂ −1

√

³
̂ −  + 

´
=
√

³
̂ − 

´0
̂ −1

√

³
̂ − 

´
+ 2
√
0̂

−1


√

³
̂ − 

´
+0̂

−1
 

=  (1) + (
√
) + () =  ()

for  ∈ S† . Then we have †
 =  () as →∞ underH1 It follows that Pr (  |H1)

→ 1 as  →∞ ¥

Proof of Theorem 4.3. Let Pr∗ denote the probability measure induced by the wild bootstrap
conditional on the original sample {( ) :  = 1   ;  = 1  }. Let E∗ and Var∗ denote
the expectation and variance with respect to Pr∗. Let ∗(1) and ∗(1) denote the probability
order under Pr∗; e.g.,  = ∗(1) if for any   0, Pr∗(kk  ) =  (1). We will use the
fact that  =  (1) implies that  = ∗(1).

Observing that ∗ = ̂
0
 + ̂ + ∗ in the second step, the null hypothesis is maintained

in the bootstrap world since E∗ (∗) = E
∗ (̂∗ ) = ̂E

∗ (∗ ) = 0 for any  and , and
 = 0 for all  ∈  . Then we can rewrite the estimator in the bootstrap world as follows

√
̂

∗
 =

µ
1


()0
  ()()



¶−1
1√

()0
  () ()∗

=

µ
1


()0
  ()()



¶−1
1√

()0
  ()()∗ = −1

∗
 

where  ()∗, ()∗ and ∗ are the bootstrap version of  (), () and  , respectively. First,

we still have  = Σ +  (1)  implying that  = (Σ−2 Σ−3   Σ−1Σ1  Σ3 Σ2)
+∗ (1). Second, we make the following decomposition for 

∗
 :

∗ =
1√


X
=1

³


()
 −

()
 

´0
̂

()
 ∗ + ( − ̂)

0 · 1√


X
=1


()0
 0

̂
()
 ∗

= 0∗ +  (1) ·1∗ 

We complete the proof by showing that (i) 0∗ →∗  (0Ω) in probability, where 0∗ is the

bootstrap version of 0 ; and (ii) 
1∗
 = ∗ (1)  By straightforward moment calculations and

Chebyshev inequality, we can readily show 1∗ = ∗ (1) under Assumption 3.
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We are left to show (i). We use the Cramér-Wold device and the Lyapunov CLT for the

INID random sequence. Let ̂
()
 = (

()
 −

()
 )

0̂
()
  Let  =

¡
0−2  

0
−1 

0
1 

0
2

¢0
be any 22 × 1 real non-random vector and kk = 1, where  is  × 1 for  ∈  . Denote

00∗ =
P

=1

P
∈S 

−120̂
()
 ∗ =

P
=1

−12̂
∗
  where ̂ =

P
∈S 

0
̂

()
 . Note that

E∗(̂
∗
 ) = ̂E

∗ (∗ ) = 0 and Var
∗(̂

∗
 ) = ̂2 We can establish the CLT for 

00∗ by verifying

the Lyapunov condition. Let ̄2 = −1P
=1 ̂

2
  We have

1

̄2+

X
=1

E∗
¯̄̄̄
¯̂

∗
√



¯̄̄̄
¯
2+

=
1

2̄2+

1



X
=1

¯̄̄
̂

¯̄̄2+
· E∗ |∗ |2+ = −2 (1) =  (1)

provided that 1


P
=1

¯̄̄
̂

¯̄̄2+
=  (1) and 1̄

2+
 =  (1)  In fact,

1



P
=1

¯̄̄
̂

¯̄̄2+
=

1



X
=1

¯̄̄̄
¯̄X
∈S

0̂
()


¯̄̄̄
¯̄
2+

≤ 1



X
=1

⎛⎝X
∈S

°°°̂()

°°°2
⎞⎠1+2

≤ (22)
2

X
∈S

1



X
=1

°°°̂()

°°°2+
≤ 21+ (22)

2
X
∈S

1



X
=1

°°°(
()
 −

()
 )

0
()


°°°2+
+21+ (22)

2
X
∈S

1



X
=1

°°°(
()
 −

()
 )

0
()


°°°2+ · °°° − ̂
°°°2+

=  (1) + (1) · (1) =  (1) 

where the first inequality follows from the Cauchy-Schwarz inequality:⎛⎝X
∈S

0̂
()


⎞⎠2 ≤ X
∈S

kk2
X
∈S

°°°̂()

°°°2 = X
∈S

°°°̂()

°°°2 
the second inequality follows from the Jensen inequality, the third inequality follows from the
 inequality and the fact that kk ≤ kk kk for any two conformable matrices  and ,
and the last line follows from the WLLN and Assumptions 1 and 3. In addition, it is easy to
show that ̄2 converge to a positive number under Assumptions 1-3. Then 

0∗
 →∗  (0Ω) in

probability and
√
̂

∗ →∗  (0V) in probability. It is easy to show that  ∗ =  + ∗ (1) 

Then by the continuous mapping theorem,  ∗
 →∗ sup∈S

©
0V−1

ª
in probability. ¥
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