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ABSTRACT

Addressing issue of crowding in an Emergency Department (ED) typically takes the form of process
engineering or single-faceted queue management strategies such as demand restriction, queue prioritization
or staffing the ED. This work provides an integrated framework to manage queuedynamicallyfrom both
demand and supply perspectives. More precisely, we introduce intelligent dynamic patient prioritization
strategies to manage the demand concurrently with dynamic resource adjustment policies to manage supply.
Our framework allows decision-makers to select both the demand-side and supply-side strategies to suit
the needs of their ED. We verify through a simulation that such a framework improves the patients’
length-of-stay in the ED without restricting the demand.

1 INTRODUCTION

Experiencing long wait and hence patient’s length-of-stay(LOS) at an Emergency Department (ED) is a
common problem faced by many hospitals around the world. Managing wait times at ED is generally
challenging because ED deals with patients without appointment and with a large variety of illnesses and
large variance in the time required to diagnose and treat. Such characteristics make managing the patient
queue and planning for resources at the ED complex. Having a fixed queueing policy such as FIFO and
static resource schedule is inflexible and unable meet the varying demand or adapt to operational deviation
from expected service time of a patient (a patient requires more attention than expected).

There is a rich literature related to the problem managing wait-time or reducing patient’s LOS, but
most approaches are typically single-faceted: One either attempts to solve the problem from the de-
mand end by managing the patients arriving at the ED or from the supply of resources (e.g., through
staffing of doctors and nurses, bed allocation). Managing demand comes in the form of either restrict-
ing arrival of patients such as ambulance diversion (Pham etal. 2006) or in managing the patient flow
(King, Ben-Tovim, and Bassham 2006; Chakravarthy 1992) in the ED process. Managing the patient
flow includes use of priority queue and fast-track lane. The supply perspective focuses on staffing
problems. Some approaches use simulation to design proactive staffing policy (Cabrera et al. 2012;
Samaha, Armel, and Starks 2003); some use analytical methods with considerations of time-varying arrival
(Green, Kolesar, and Whitt 2009; Yom-Tov 2010; Feldman et al. 2008; Jennings et al. 1996). Others such
as Marmor et al. (2009) and Thorwarth and Arisha (2012) use simulation as a backend engine to provide
decisions to real-time (dynamic) staffing. Queues analysisin healthcare has also been studied extensively.
We refer our reader to comprehensive survey on queuing analysis from Green (2006). Other examples to
improve the ED via simulation can be found in Komashie and Mousavi (2005) and Gunal and Pidd. (2006).
However, to our best knowledge, there is no study that integrates queue management from both demand
and supply perspectives.
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In this work, we study the ED process as a complex system. We draw inspiration from Traffic/Civil
Engineering and Economics domains where the performance ofthe system is managed via control from
both demand and supply perspectives. A key model in Traffic Engineering is the DynaMIT system
http://mit.edu/its/dynamit.html(Ben-Akiva et al. 1998). It is a real-time model of traffic condition on roads
(supply) and driver’s travel requirements (demand) to predict and generate strategies to guide drivers towards
optimal route decisions. In Economics, an example of managing queue by adjusting demand and supply
is shown in Mendoza, Sedaghat, and Yoon (2011). The methods used in both of these domains are not
directly applicable to the context of ED. The demand for ED services is unpredictable and uncontrollable as
patients arrive without scheduled appointments. The ED resources (manpower, physical space) are limited
to cope with the surges and variations of patient arrival. Measures such as scheduling of manpower to
complement the peaks and troughs of patient volume have limited success to deal with variability. As such,
we need to manage the demand and supply in ED in a more robust manner.

To this end, we propose a framework which include two major queue management components: (i)
demand-side queue management via dynamic priority queue (Tan, Wang, and Lau 2012) and (ii) supply-
side queue management via dynamic resource adjustment strategies (Tan, Tan, and Lau 2013). Our key
contribution is the ability to seamlessly integrate strategies from both perspectives. We show in an
experimental simulation prototype that this integrated queue management framework allows the strategies
from both perspectives to work together and complement eachother.

2 SCOPE OF STUDY

A real life study is conducted in an ED of a selected hospital.This ED, based on a national guidelines,
patients are classified (during triage) into four acuity categories, namely P1, P2, P3 and P4. The physical
layout of the department segregates the patient care work into 2 areas; thecritical care areamanages P1
and P2 patients while theambulatory area(clinic rooms) manages P3 and P4 patients. P3 and P4 are minor
emergencies and non emergencies respectively, and represents 70% of this ED’s workload. While P3 and
P4 are considered lesser emergencies in comparison to P1 andP2, the relatively straight forward nature of
their conditions allows the opportunity for workflow improvement and maximising efficiency. The hospital
management has empowered the department to strive for a specified desired service level ambulatory area,
for example, to serve patients with a length-of-stay (LOS) of 60 mins.

The patient’s LOS is the time between the start of registration till the end of the case. It consists for
several time segments within, starting with registration and followed by triage, consultation, investigations,
observations and treatment till case ends, where a patient is either discharged or admitted to the hospital
(Figure 1). The investigations, observation and treatmentsteps are highly variable and differ greatly between
patients. The more consistent steps which all patients experience include registration, triage, consultation
and case end. We limit our scope of study to the consultation process in the ambulatory area, applying
demand-side queue management on the patient queue to doctors versus supply-side queue management on
scheduling the doctors for consultation.

The existing patient queue is managed as first-in-first-out (FIFO) for new patients (with the same
acuity) but ad-hoc for re-entrants. The doctor’s schedule is static. The static doctor’s schedules is planned
manually based on perceived understanding about the demandat the ED at various hour of a day, over the
entire week or month. Such an ad-hoc policy may not be optimalin minimizing the LOS for all patients. In
Tan, Wang, and Lau (2012), we showed that an intelligent patient dispatch (to doctor) policy based on one
of the dynamic priority queue strategies enables the hospital to reduce the average patients’ length-of-stay.
There are three strategies, namely, shortest-consultation-time-first (SCON), shortest-remaining-time-first
(SREM) and finally, a mixed strategy (MIXED) based on combination of SCON and SREM. The experimental
results showed that SCON has the best performance but present a challenge in implementation readiness as it
require the hospital to accurately estimate consultation time of each patient and re-entrant. SREM provides
a less significant improvement over FIFO but it is readily implementable. MIXED strategy provides an
ability to hedge the risk of inaccurate prediction of consultation time and have a reasonable improvement

http://mit.edu/its/dynamit.html
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Figure 1: The process with demand and supply perspectives inthe ambulatory area.

over FIFO. We presented the analysis for healthcare decision makers to select a strategy that is most
appropriate based on their implementation readiness.

In the supply aspect, a static doctor’s schedule generally does not react well to uncertainties such as
surges in patient arrivals. In Tan, Tan, and Lau (2013), we presented 4 staffing strategies, namely, historical
(HIST), dynamic (DYN), historical with optimization (HIST-OPT) and dynamic with optimization (DYN-
OPT). Thehistorical methods use only historical data and thedynamicmethods use both historical and
real-time data. DYN-OPT also uses symbiotic simulation (Low et al. 2007) model to generate short-termed
schedule for the next couple of hours. The DYN-OPT schedule considers both existing queue conditions as
well as make projections of future doctors’ requirements based on historical understanding about patient’s
arrival. Our results showed that the optimized strategies are the good performers but incurs higher cost of
deployment of doctors. DYN is an easy-to-implement strategy (as it does not require a symbiotic system)
with the ability to adapt to actual arrivals of patients. However, DYN can be too reactive. Static strategies
cannot react to surges. Again, we presented the analysis forhealthcare decision makers to select a strategy
that is most appropriate based on their quality improvementappetite and implementation readiness.

3 THE INTEGRATED DYNAMIC QUEUE MANAGEMENT FRAMEWORK

In this section, we present an integrated framework on how both demand and supply strategies can jointly work
together in a single framework for healthcare decision makers to make appropriate selection of strategies that
best suit their needs. There are three main components in theframework, namely System/data, Analytical
Model and Decision-Support Model. The pictorial representation and content of the three components are
shown in Figure 2.

3.1 Live Systems and Data

This consists of the various Information Technology (IT) systems and databases that support the live
operations of the ED and its supporting departments. For example, the ED processes interacts with
processes in laboratory (e.g., blood test) and X-ray departments. The processes in laboratory and X-ray
departments use Blood System and X-ray System respectively. The Blood System contains the blood test
results and X-ray System contains X-ray test results of a patient who has done both tests. These systems
are the physical systems supporting the ED process. The livesystems provide data that serve as the input
to the analytical model and the decision-support model.
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Figure 2: The framework.

3.2 Analytical Model

We build our initial process models and queueing models based on the historical data from the live systems.
The components in the Analytical Model are

• Analytics (on historical data): It is a set of activities done on the historical data using a commercial
business analytics software (such as SASR©). Historical data is a snapshot of the live data at the
point when it is taken. Output is theHistorical Process Data.

• Historical Process Data: It consists of ED process parameters such as time-varying arrival rates,
service rates of triage, service rates of doctors, service rates of treatment/tests, probability of
re-entrance.

• Process Models: It is a set of process flow that depicts the real-life process of the ED. An example
of a simplified process flow is as in Figure 1.

The Analytical Model provides a set of output that is required by the Dynamic Queue Module (DQM)
(more details in 3.3) in order to carry out decision-supportfunctions. The set of output (reflected as input
set A in Figure 2 contains:

• λ f (t) - Time-varying arrival rates of new patients at the ambulatory area. Eachλ f (t) is defined
hourly over a week’s horizon. We observe that Sundays and Mondays have a higher volume of
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patients. In each day, the time-varying pattern is fairly similar. The low peak period of a day is
between 1am to 8am daily. The peak period is between 9am to midnight. Midnight to 1am and
8am to 9am periods have moderate demand.

• µn - Service rate of the doctors if the patient is a new patient. We assume a homogeneous service
rate for all doctors.

• µr - Service rate of the doctors if the patient is a re-entrant. The review consultation time is
represented by a set of 4 exponential distributions with corresponding probability of occurrence of
each patient type. A patient with clean test results usuallytake a shorter review duration compared
to a patient with complex test results.

• δ - Service rate for investigative tests or treatment, which is assumed to be exponential.
• b - Probability of re-entrance. Patients who require test(s)and/or treatment are required to be

reviewed by a doctor, hence re-entering the queue.

3.3 Decision-Support Model

The main component of the decision-support model is the Dynamic Queue Management (DQM). It is the
engine that embeds the intelligent demand-side and supply-side strategies. In our prototype, we mimic the
real world by having the DQM contain a discrete-event simulator that generates the events such as patient
arrivals, distributions of registration, triage, consultation, treatment and investigative tests. The DQM also
generates plans on the supply of doctors based on the selected supply-side strategy and the patient queue with
selected demand-side prioritization strategy. We term this as theDQM simulator. In the DQM simulator,
there is anoptimization modeland asymbiotic simulator. The optimization model performs optimization
required for the supply-side HIST-OPT and DYN-OPT strategies. The decision-makers make decisions to
select the dynamic queue prioritization parameters and select the dynamic resource adjustment parameters.
Strategies selection, associated parameters and real-time data are fed into DQM collectively. DQM generates
output (e.g., which patient to serve next, how many doctors are required) and the information is fed back
to the live systems for real-time execution. If the supply-side strategy DYN-OPT is selected, symbiotic
simulator is used in real-time to perform optimization for the specified planning horizon during the course
of simulation. If HIST-OPT is selected, the symbiotic simulator is used as a pre-processing tool to obtain
the optimized doctor’s schedule. For the purpose of evaluating the HIST-OPT schedule, DQM is used
for the second time to obtain the performance. Details on theneed of symbiotic simulator and planning
horizon are presented in Tan, Tan, and Lau (2013).

DQM receives real-time data (as reflected as input set B in Figure 2) from the live systems to support
the demand and supply strategies. Input set B includesλ ′f (t) (the real-time time-varying arrival rates of
new patient at the ambulatory area), actual queue conditions (the patients in the queue) and the potential
re-entrants who are currently receiving treatment or tests.

3.3.1 Demand-side Dynamic Queue Prioritization

We implemented 3 dynamic queue prioritization strategies in DQM. We provide a summary of each strategies
here and details of the strategies can be found in Tan, Wang, and Lau (2012). The priorities of all patients
in the queue are calculated each time a doctor is available. Note that there is a significant difference
between our dynamic priority queue and standard priority queue. Standard priority queue gives a priority
to a patient and it stays the same throughout the patient’s life-time in the queue system. Our dynamic
priority queue changes each time the priority is calculated(i.e., when a doctor is available).

In the Shortest-Consultation-Time-First (SCON) strategyS1, we rank (give priority to) patients according
to their estimated consultation times with the doctor. The intuition for this strategy is based on our observation
that some re-entrants have very short estimated consultation time. Letck be the estimated consultation time
of patientk based onµn andµr , we use an exponential function (withρ1 as the constant parameter to set

the gradient of the exponential function) to determine the priority of a patientpk underS1, pS1
k ← e

ρ1
ck .
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In the Shortest-Remaining-Time-First (SREM) strategyS2, we rank patients according to their remaining
times. This is based on the intuition to meet the hospital’s desired service quality to serve its patients within
a specified duration. When a patientk arrives at the ED, the patient has a common-to-all initial target LOS
dk and an individual elapsed timeek (initialized to zero) that he has spent in the department. Ifthe patient
requires an investigation test and/or treatment, he incursadditional timetk based on treatment service rate
δ . Theremaining timefor the patient,rk, is then defined asdk+ tk−ek. Note that we addtk so as to allow
time to be given to patients who genuinely require more time for quality treatment and/or investigation. We
assign to each patient a priority value, which tends to a large number whenrk tends to zero, and tends to
1, whenrk is sufficiently large. Whenrk is negative, priority of patient becomes linearly negative. Let ρ1
be the constant parameter to set the gradient of the exponential function when remaining time is positive.
Let c be a small value (e.g., 0.1) to ensure priority is very high (only few cases fall into such category).

We let fc = e
ρ2

c when rk = [−c,c]. Whenrk < 0, we use a negative linear function with a constant slope
m> 0. Hence the priority function for patientpk underS2 is given by the following equation:

pS2
k ←











e
ρ2
rk if rk > c,
fc if rk ∈ [−c,c],

fc−m∗ rk if rk <−c.

In the mixed (MIXED) strategyS3, we consider multiple factors in determining the priorities of the
patients. Suppose if we haven factors, each having a weight ofan contributing to the MIXED strategy,
then we have the priority of patientpk underS3 as pS3

k ←∑
n

an.p
Sn
k where∑

n
an = 1 andanε [0,1].

The decision maker must provide the following parameters (as reflected as input set C in Figure 2) to
the demand-side Dynamic Patient Queue Prioritization configuration.

• Si - Dynamic patient prioritization strategy wherei is the selected strategy type.
• LOSmax - Hospital’s desired service quality in terms of LOS.

3.3.2 Supply-side Dynamic Resource Adjustment

We implemented 4 supply strategies in DQM: 2 are static strategies (HIST, HIST-OPT) and 2 are dynamic
strategies (DYN, DYN-OPT). HIST-OPT and DYN-OPT are optimization models. We briefly describe the
strategies in this section; details can be found in Tan, Tan,and Lau (2013).

The HIST strategyX1 uses the historical trends fromHistorical Process Data. In particular, we are
referring to the historical arrival ratesλ f (t), service ratesµn, µr and δ . Using the data, we apply the
Erlang-R method (Yom-Tov 2010) to obtain the time-varying offered loadRx at each service stationx.
The indexx= 1 represents the doctor consultation service station andx= 2 represents the treatment/test
service station.

Rx(t) = E[λ+
x (t−Sx,e)]E[Sx]. (1)

λ+
x is the aggregated-arrival-rate function to nodex, Sx represents the service time at nodex andSx,e is a

random variable representing the excess service time at node x.
The doctor’s staffing at station 1 where patients await for consultation is then determined by substituting

the time-varying offered load formula into the square-rootstaffing formula. The parameterβ is chosen
according to the steady-state Halfin-Whitt formula (Halfin and Whitt 1981).

s(t) = R1(t)+β
√

R1(t), ∀t > 0. (2)

In addition, the supply-side model also ensures that the quality at critical care area is satisfied and
the number of doctors in the ambulatory area does not exceed the physical constraint of the number of
consultation rooms available in the ED. SupposedSb(t) is the time-varying doctor’s requirement in the
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critical care area,Smax(t) is the maximum number of doctors available at timet androommax is the physical
constraint in ambulatory area, we have the constraints:

Sf (t)≤ Smax(t)−Sb(t); (3)

Sf (t)≤ roommax. (4)

An optimization variant of HIST is called the HIST-OPT strategyX2. In HIST-OPT, we add an additional
soft constraint:

LOS(t)≤ LOSmax (5)

whereLOS(t) is the average LOS over the period of timet, andLOSmax is the hospital’s desired service
quality to serve the patients below this value.

The intuition behind HIST-OPT is to add a doctor before an LOSviolation occurs. LetCl be the
cost of labour of deploying a doctor for a single unit timet andCd be the cost if the number doctors in
time t deviates fromt−1. The deviation cost is included because it is not desirableto have a schedule
where the number of doctors changes too frequently from hourto hour. The resulting objective function
is min Cl ∑

t
Sf (t)+Cd ∑

t
[Sf (t)−Sf (t−1)]2, subject to constraints in Equations (3) to (5) of the model.

If no feasible solution is found, the solution with the leastviolation is returned.
The DYN strategyX3 is similar to HIST, except it uses the real-time arrivals (hence real-time demand

requirements) instead. LetR′1(t) and R′2(t) be the real-time offered load based onactual arrival rates
λ ′f (t). The offered load for each service station is calculated as per Equations 1 and 2 and is subjected to
constraints in Equations 3 and 4.

The DYN-OPT strategyX4 is the optimized variant of the DYN strategy. Here, we define avector
(L,H), whereL denotes the lead-time andH denotes the time horizon. Between the current timet and
lead-timeL, there will be no change in staffing. This is to cater for the case that the ED cannot add or
remove a doctor instantaneously from the ED. The variableH defines the horizon of re-planning based on
what is known currently, e.g., plan for the horizon of 8 hours. The next planning period is thent +H. The

DYN-OPT objective function ismin Cl

t+L+H

∑
t=t+L

S(t)+Cd

t+L+H

∑
t=t+L

[S(t)−S(t−1)]2.

A symbiotic simulator is used to evaluate which doctor’s schedule is to be used for the planning horizon
such that there is either no LOS violation or with the least violation. We use the concept of a snapshot. A
snapshot contains the current queue conditions, doctors’ availabilities, patients’ statuses and the realised
arrival rates. At the start of each planning period, a snapshot is taken and is used with the historical arrival
rates for the planning horizon. A heuristic local search algorithm is then applied to find the best schedule.
When the schedule has been found, the snapshot is restored and the best schedule is used in the DQM as
the schedule for the next horizon.

The decision makers must provide the following parameters (as reflected as input set D in Figure 2)
to the supply-side Dynamic Resource Adjustment configuration.

• Xj : Resource adjustment policyj.
• LOSmax: Hospital’s desired service quality in terms of LOS. This should be consistent with the

value set in input set C.
• roommax: Physical constraint in the ED at the ambulatory area, whichcorresponds to the maximum

number of consultation rooms in the real-life set up of the ED.
• Smax(t): Maximum number of doctors that can be deployed at ED (both areas of the ED combined)

at timet.
• Cl : cost of labour of deploying a doctor for a single unit timet.
• Cd: cost if the number doctors in timet deviates fromt−1.
• L: lead-time for dynamic planning.
• H: time horizon for dynamic planning.
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4 EXPERIMENTAL EVALUATION

We developed a prototype of the DQM to evaluate its performance and vary the decision-maker’s parameters
in the data model. The DQM simulator takes in information about historical process data and generates
the simulated real-time data (actual arrival, actual treatment / investigation time, actual consultation time).
Both the DQM simulator and the symbiotic simulation system are implemented in JavaTM .

4.1 Experimental Setup

We set up our experiments using 6 months data from the studiedhospital. Each experiment is run over
100 replications and the result is an average across the replications. As for HIST-OPT and DYN-OPT
which require the symbiotic simulation system, each symbiotic simulation is run over 50 replications and
average is taken over the symbiotic simulation replications. The maximum search iteration is set to 300.
In DYN-OPT, the lead-time is set to 0 (plan for next hour) and the planning horizon is set to 8 hours.

In order to verify that our DQM simulator is sufficiently close to the real-world’s performance, we use
FIFO patient queue and static doctor’s schedule in a verification experiment using the DQM simulator. The
outcome of the experiment shows that the differences in meanand standard deviation of the actual hospital
data and the results from the DQM simulator are observed to beless than 5% and 10% respectively. The
ranges of LOS (i.e., minimum and maximum) are also consistent. Therefore, we conclude that the results
from DQM simulator is representative of the performance of the ED process.

To compute the time-varying staffing requirements for HIST and DYN, approximation methods are
used for the instance of the hospital data that we are using. Solving the Equation 1 is non-trivial. Based on
Yom-Tov (2010), if the service rate is represented by an exponential distribution, then we can use numerical
approximation to computeR1 andR2 by solving the following Ordinary Differential Equation (O.D.E):

d
dt

R1(t) = λt +δR2(t)−µR1(t);

d
dt

R2(t) = pµR1(t)−δR2(t).
(6)

As mentioned in Section 3.2, the service rate of the consultation station is represented by a set of
exponential distributions with associated probabilitiesaccording to patient review types, which yields a
hyperexponential distribution. Statistically, we know that the mean of this distribution is equal to the
weighted average of the means of the underlying set of exponential distributions. Experimentally, we
found interestingly from our dataset that with inclusion ofthe service rate of new patientµn, the resulting
hyperexponential distribution can be approximated quite closely by an exponential distribution whose mean
is equal to the mean of the hyperexponential distribution. The evidence (see Figure 3) is derived from an
experiment that simulates the service times provided by both the approximated exponential distribution
and the service rates represented by the original set of exponential distributions. As such, the staffing
requirements for HIST and DYN in our experiment can be computed by solving the O.D.E in Equation 6
using the mean of the resulting hyperexponential distribution as the single service rateµ . For each set of
experiments (for all strategies), a simulation over 9 days is taken, and the first and last day are discarded
in order to remove the inaccurate results from simulation start-up and winding down. The remaining 7
days represent the 7 days of the week with time-varying arrivals as observed in real-life. Through the
Analytical Model, the probability of re-entranceb found to be 0.4. The average service rate of doctors for
new patients,µn, is 4 per hour. The registration and triage service time is exponentially distributed with
mean of 14.2 minutes. The hospital’s desired service quality,LOSmax is set to 60 minutes. The rate of
investigation and treatment is set to 2.3 per hour.
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Figure 3: Approximation of Hyperexponential distributionwith Exponential distribution.

4.2 Experimental Results

Two sets of experiments have been set up. First, we simulate the real-life situation when each hour has a
maximum number of doctors that can be deployed. That means,Smax(t) varies hourly. This experiment
allows us to show the effects of the demand-side strategies on the supply-side strategies. We show in
Figure 4, the results for HIST and DYN as representation of static and dynamic supply-side strategies. We
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Figure 4: Results of using demand-side strategies with a selected supply-side strategy.

can see that demand-side strategies (SCON, SREM, MIXED) have similar performance as with FIFO in
both HIST and DYN supply-side strategies. Although all the strategies (including FIFO) seem to perform
well, we discover from Wilcoxon signed-rank tests that SCON, SREM and MIXED strategies still provide
significant improvements over FIFO in both experiments of HIST and DYN. We present the outcome of
Wilcoxon tests in Figure 5. In our Wilcoxon test, the null hypothesis H0 is ”Strategy S2 has no significant

Figure 5: The results of Wilcoxon signed rank test.

improvement over Strategy S1” and H1 is ”Strategy S2 has a significant improvement over S1”. We
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determine whether we reject H0 by the computation of the p-value. If the p-value is lower than 0.05, we
can conclude that the null hypothesis does not hold (i.e. S2 is better than S1). For simplicity, we use a
tick to represent values less than 0.05 and a circle otherwise.
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(b) Average LOS using SREM queueing policy
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Figure 6: Results of using supply-side strategies with a selected demand-side strategy.

Our second set of experiments aims to determine how the supply-side strategies are useful in working
together with the demand-side strategies. We now allow the ED to increase or decrease doctors to adapt
to the demand changes as long as the number of doctors at any time t is still under the physical constraint
of the ED as specified in Equation 4. To test the demand changes, we provided the simulator with three
different types of arrival rates, high, normal and low. In the case of high load, the arrival rates are doubled
for the days Thursdays, Fridays, Saturdays and Sundays. Likewise for the low load, the arrival rates are
halved for the same days of the week. Using HIST and DYN as representation of static and dynamic
strategies, Figure 6 shows how HIST and DYN perform under each demand-side strategy and with high,
normal or low load conditions.

As we can see from Figure 6(a)-(c), the dynamic method DYN is coping better with demand surges as
compared to HIST. This comes with a price of slight increase in the number of doctor’s hours to be deployed
at the ED (in a week) to handle the additional load. This is shown in Figure 6(d). The more interesting
result is that the corresponding decrease in demand in fact yields a larger decrease in the number of doctor’s
hours to be deployed, with yet the performance is similar to that of HIST which is over-staffed under a
normal and low-load conditions. Hence, we conclude that useof dynamic staffing method is effective in
its ability to cope with demand surges and also cut cost when the demand is low.
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5 CONCLUSION

In this work, we presented an integrated framework for dynamic queue management from both demand and
supply perspectives. Our experimental analysis showed that the demand-side strategies work seamlessly
with both static and dynamic strategies of the supply-side.Likewise, supply-side strategies are performing
well with each demand-side strategies. In addition, the dynamic staffing (supply of doctors) can adapt to
demand surges or cut cost when demand is reduced. The integrated framework allows healthcare decision
makers to play a role in achieving the desired service quality and select from a list of possible strategies
that suit the operation needs of the ED.
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