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IMPROVING PATIENT LENGTH-OF-STAY IN EMERGENCY DEPARTMENT THROUGH
DYNAMIC QUEUE MANAGEMENT

Kar Way Tan Francis Chun Yue Lee
Hoong Chuin Lau

Singapore Management University Khoo Teck Puat Hospital
80 Stamford Road 90 Yishun Central
Singapore 178902, SINGAPORE Singapore 768828, SINGAPORE
ABSTRACT

Addressing issue of crowding in an Emergency Department) (pically takes the form of process
engineering or single-faceted queue management strategid as demand restriction, queue prioritization
or staffing the ED. This work provides an integrated framéwtormanage queudynamicallyfrom both
demand and supply perspectives. More precisely, we int@dlotelligent dynamic patient prioritization
strategies to manage the demand concurrently with dynaseaurce adjustment policies to manage supply.
Our framework allows decision-makers to select both theatelrside and supply-side strategies to suit
the needs of their ED. We verify through a simulation thathsacframework improves the patients’
length-of-stay in the ED without restricting the demand.

1 INTRODUCTION

Experiencing long wait and hence patient’s length-of-gla®S) at an Emergency Department (ED) is a
common problem faced by many hospitals around the world. agengy wait times at ED is generally
challenging because ED deals with patients without app@nt and with a large variety of illnesses and
large variance in the time required to diagnose and treath Sharacteristics make managing the patient
gueue and planning for resources at the ED complex. Havinged fjueueing policy such as FIFO and
static resource schedule is inflexible and unable meet ttyingademand or adapt to operational deviation
from expected service time of a patient (a patient requireserattention than expected).

There is a rich literature related to the problem managing-tivae or reducing patient’s LOS, but
most approaches are typically single-faceted: One eitttemats to solve the problem from the de-
mand end by managing the patients arriving at the ED or froesiipply of resources (e.g., through
staffing of doctors and nurses, bed allocation). Managingasel comes in the form of either restrict-
ing arrival of patients such as ambulance diversion (Phaab. é2006) or in managing the patient flow
(King, Ben-Tovim, and Bassham 2006; Chakravarthy 1992)him ED process. Managing the patient
flow includes use of priority queue and fast-track lane. Thppl/ perspective focuses on staffing
problems. Some approaches use simulation to design preastaffing policy (Cabrera et al. 2012;
Samaha, Armel, and Starks 2003); some use analytical methitid considerations of time-varying arrival
(Green, Kolesar, and Whitt 2009; Yom-Tov 2010; Feldman eR@08; Jennings et al. 1996). Others such
as Marmor et al. (2009) and Thorwarth and Arisha (2012) useilsition as a backend engine to provide
decisions to real-time (dynamic) staffing. Queues analpsigealthcare has also been studied extensively.
We refer our reader to comprehensive survey on queuing sindlpm Green (2006). Other examples to
improve the ED via simulation can be found in Komashie and 84ou(2005) and Gunal and Pidd. (2006).
However, to our best knowledge, there is no study that iategrqueue management from both demand
and supply perspectives.
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In this work, we study the ED process as a complex system. g drspiration from Traffic/Civil
Engineering and Economics domains where the performantieecdystem is managed via control from
both demand and supply perspectives. A key model in Traffigitgering is the DynaMIT system
http://mit.edu/its/dynamit.htm(Ben-Akiva et al. 1998). Itis a real-time model of traffic clition on roads
(supply) and driver’s travel requirements (demand) to jotethd generate strategies to guide drivers towards
optimal route decisions. In Economics, an example of mangagiueue by adjusting demand and supply
is shown in Mendoza, Sedaghat, and Yoon (2011). The metheal$ im both of these domains are not
directly applicable to the context of ED. The demand for EBises is unpredictable and uncontrollable as
patients arrive without scheduled appointments. The EDuregs (manpower, physical space) are limited
to cope with the surges and variations of patient arrival.adees such as scheduling of manpower to
complement the peaks and troughs of patient volume haveelinsuccess to deal with variability. As such,
we need to manage the demand and supply in ED in a more robustema

To this end, we propose a framework which include two majeugumanagement components: (i)
demand-side queue management via dynamic priority queare §Vang, and Lau 2012) and (ii) supply-
side queue management via dynamic resource adjustmetegsts (Tan, Tan, and Lau 2013). Our key
contribution is the ability to seamlessly integrate sgas from both perspectives. We show in an
experimental simulation prototype that this integratedugumanagement framework allows the strategies
from both perspectives to work together and complement etwir.

2 SCOPE OF STUDY

A real life study is conducted in an ED of a selected hospitélis ED, based on a national guidelines,
patients are classified (during triage) into four acuityegaties, namely P1, P2, P3 and P4. The physical
layout of the department segregates the patient care wwkiareas; theritical care areamanages P1
and P2 patients while trembulatory aregclinic rooms) manages P3 and P4 patients. P3 and P4 are minor
emergencies and non emergencies respectively, and refg&$®6 of this ED’s workload. While P3 and
P4 are considered lesser emergencies in comparison to FR2aride relatively straight forward nature of
their conditions allows the opportunity for workflow impewent and maximising efficiency. The hospital
management has empowered the department to strive for dispetesired service level ambulatory area,
for example, to serve patients with a length-of-stay (LOS§® mins.

The patient’s LOS is the time between the start of regismatill the end of the case. It consists for
several time segments within, starting with registratiod followed by triage, consultation, investigations,
observations and treatment till case ends, where a patiezither discharged or admitted to the hospital
(Figure 1). The investigations, observation and treatretaps are highly variable and differ greatly between
patients. The more consistent steps which all patientsrexqpe include registration, triage, consultation
and case end. We limit our scope of study to the consultatroogss in the ambulatory area, applying
demand-side queue management on the patient queue togleetsus supply-side queue management on
scheduling the doctors for consultation.

The existing patient queue is managed as first-in-first-6UfE@) for new patients (with the same
acuity) but ad-hoc for re-entrants. The doctor's schedulkgatic. The static doctor’s schedules is planned
manually based on perceived understanding about the deatdahd ED at various hour of a day, over the
entire week or month. Such an ad-hoc policy may not be optinainimizing the LOS for all patients. In
Tan, Wang, and Lau (2012), we showed that an intelligenepttispatch (to doctor) policy based on one
of the dynamic priority queue strategies enables the haldpitreduce the average patients’ length-of-stay.
There are three strategies, namely, shortest-consulttitie-first (SCON), shortest-remaining-time-first
(SREM) and finally, a mixed strategy (MIXED) based on comhoraof SCON and SREM. The experimental
results showed that SCON has the best performance but peeslkeallenge in implementation readiness as it
require the hospital to accurately estimate consultatioe bf each patient and re-entrant. SREM provides
a less significant improvement over FIFO but it is readily iempentable. MIXED strategy provides an
ability to hedge the risk of inaccurate prediction of coteibn time and have a reasonable improvement
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Figure 1. The process with demand and supply perspectivégiambulatory area.

over FIFO. We presented the analysis for healthcare decisiakers to select a strategy that is most
appropriate based on their implementation readiness.

In the supply aspect, a static doctor’'s schedule generaks ahot react well to uncertainties such as
surges in patient arrivals. In Tan, Tan, and Lau (2013), vesgmted 4 staffing strategies, namely, historical
(HIST), dynamic (DYN), historical with optimization (HISDPT) and dynamic with optimization (DYN-
OPT). Thehistorical methods use only historical data and thenamicmethods use both historical and
real-time data. DYN-OPT also uses symbiotic simulationlet al. 2007) model to generate short-termed
schedule for the next couple of hours. The DYN-OPT schedufsiders both existing queue conditions as
well as make projections of future doctors’ requirementselaon historical understanding about patient’s
arrival. Our results showed that the optimized strategiestee good performers but incurs higher cost of
deployment of doctors. DYN is an easy-to-implement strai@g it does not require a symbiotic system)
with the ability to adapt to actual arrivals of patients. Hawer, DYN can be too reactive. Static strategies
cannot react to surges. Again, we presented the analysiefithcare decision makers to select a strategy
that is most appropriate based on their quality improvenappetite and implementation readiness.

3 THE INTEGRATED DYNAMIC QUEUE MANAGEMENT FRAMEWORK

Inthis section, we present an integrated framework on hdtvdemand and supply strategies can jointly work
together in a single framework for healthcare decision meakemake appropriate selection of strategies that
best suit their needs. There are three main components inatimework, namely System/data, Analytical
Model and Decision-Support Model. The pictorial repreagah and content of the three components are
shown in Figure 2.

3.1 Live Systems and Data

This consists of the various Information Technology (ITsteyns and databases that support the live
operations of the ED and its supporting departments. Fomplg the ED processes interacts with
processes in laboratory (e.g., blood test) and X-ray deyeants. The processes in laboratory and X-ray
departments use Blood System and X-ray System respectivielyBlood System contains the blood test
results and X-ray System contains X-ray test results of eiatvho has done both tests. These systems
are the physical systems supporting the ED process. Theystems provide data that serve as the input
to the analytical model and the decision-support model.
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We build our initial process models and queueing modelschasdhe historical data from the live systems.

Figure 2: The framework.

The components in the Analytical Model are

The Analytical Model provides a set of output that is requiby the Dynamic Queue Module (DQM)
(more details in 3.3) in order to carry out decision-supgonctions. The set of output (reflected as input

set A in Figure 2 contains:

Decision-maker

Analytics (on historical data): It is a set of activities @oon the historical data using a commercial
business analytics software (such as $ASHistorical data is a snapshot of the live data at the
point when it is taken. Output is theistorical Process Data
Historical Process Data: It consists of ED process parasisigch as time-varying arrival rates,
service rates of triage, service rates of doctors, senatesrof treatment/tests, probability of
re-entrance.
Process Models: It is a set of process flow that depicts tHdifeg@rocess of the ED. An example
of a simplified process flow is as in Figure 1.

At (t) - Time-varying arrival rates of new patients at the ambujatrea. Each¢(t) is defined
hourly over a week’s horizon. We observe that Sundays anddslgsihave a higher volume of
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patients. In each day, the time-varying pattern is fairlyigr. The low peak period of a day is
between lam to 8am daily. The peak period is between 9am toighid Midnight to 1am and
8am to 9am periods have moderate demand.

e L, - Service rate of the doctors if the patient is a new patierg. a8sume a homogeneous service
rate for all doctors.

e | - Service rate of the doctors if the patient is a re-entranhe Teview consultation time is
represented by a set of 4 exponential distributions witlhesmonding probability of occurrence of
each patient type. A patient with clean test results usualg a shorter review duration compared
to a patient with complex test results.

J - Service rate for investigative tests or treatment, whichdsumed to be exponential.
b - Probability of re-entrance. Patients who require testfsj/or treatment are required to be
reviewed by a doctor, hence re-entering the queue.

3.3 Decision-Support Modd

The main component of the decision-support model is the Bym&®ueue Management (DQM). It is the
engine that embeds the intelligent demand-side and sigiqidystrategies. In our prototype, we mimic the
real world by having the DQM contain a discrete-event sitmulghat generates the events such as patient
arrivals, distributions of registration, triage, conatitin, treatment and investigative tests. The DQM also
generates plans on the supply of doctors based on the skseqiply-side strategy and the patient queue with
selected demand-side prioritization strategy. We term alsi theDQM simulator In the DQM simulator,
there is aroptimization modelnd asymbiotic simulatar The optimization model performs optimization
required for the supply-side HIST-OPT and DYN-OPT straegiThe decision-makers make decisions to
select the dynamic queue prioritization parameters aratstie dynamic resource adjustment parameters.
Strategies selection, associated parameters and resatitita are fed into DQM collectively. DQM generates
output (e.g., which patient to serve next, how many docteesrequired) and the information is fed back
to the live systems for real-time execution. If the supptlesstrategy DYN-OPT is selected, symbiotic
simulator is used in real-time to perform optimization foe tspecified planning horizon during the course
of simulation. If HIST-OPT is selected, the symbiotic siaiok is used as a pre-processing tool to obtain
the optimized doctor's schedule. For the purpose of evalyghe HIST-OPT schedule, DQM is used
for the second time to obtain the performance. Details omted of symbiotic simulator and planning
horizon are presented in Tan, Tan, and Lau (2013).

DQM receives real-time data (as reflected as input set B iarEig) from the live systems to support
the demand and supply strategies. Input set B includés (the real-time time-varying arrival rates of
new patient at the ambulatory area), actual queue condifittre patients in the queue) and the potential
re-entrants who are currently receiving treatment or tests

3.3.1 Demand-side Dynamic Queue Prioritization

We implemented 3 dynamic queue prioritization strateg@id3@M. We provide a summary of each strategies
here and details of the strategies can be found in Tan, Wamglau (2012). The priorities of all patients
in the queue are calculated each time a doctor is availablete Mat there is a significant difference
between our dynamic priority queue and standard priorityugu Standard priority queue gives a priority
to a patient and it stays the same throughout the patief¢dithe in the queue system. Our dynamic
priority queue changes each time the priority is calculdted, when a doctor is available).

In the Shortest-Consultation-Time-First (SCON) strat8gwve rank (give priority to) patients according
to their estimated consultation times with the doctor. Theition for this strategy is based on our observation
that some re-entrants have very short estimated consulttitne. Letcy be the estimated consultation time
of patientk based ornu, and 1i;, we use an exponential function (with as the constant parameter to set

P1
the gradient of the exponential function) to determine therjy of a patientpx underS, pfl +—elk,
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In the Shortest-Remaining-Time-First (SREM) strat8gywe rank patients according to their remaining
times. This is based on the intuition to meet the hospita&sirgd service quality to serve its patients within
a specified duration. When a patidnarrives at the ED, the patient has a common-to-all initiedeaLOS
dk and an individual elapsed tine (initialized to zero) that he has spent in the departmerthdfpatient
requires an investigation test and/or treatment, he inaddstional timety based on treatment service rate
d. Theremaining timefor the patientyy, is then defined ady +tx — ex. Note that we addi so as to allow
time to be given to patients who genuinely require more tiorejtiality treatment and/or investigation. We
assign to each patient a priority value, which tends to eelamgmber whemy tends to zero, and tends to
1, whenry is sufficiently large. Whemy is negative, priority of patient becomes linearly negativet p;
be the constant parameter to set the gradient of the expah&miction when remaining time is positive.
Let ¢ be a small value (e.g., 0.1) to ensure priority is very highlydew cases fall into such category).

P2 - . .
We let fe=e< whenry=[—c,c]. Whenry < 0, we use a negative linear function with a constant slope
m > 0. Hence the priority function for patien underS; is given by the following equation:
P2
S elk if rg>c,
P fo if re[—cq,

fo—mxrg if re < —c.

In the mixed (MIXED) strategyss, we consider multiple factors in determining the priostief the
patients. Suppose if we havefactors, each having a weight af, contributing to the MIXED strategy,

then we have the priority of patiemi underS; as p% — Z an.pE41 Wherez an =1 anda,g[0,1].

n n
The decision maker must provide the following parametessé€flected as input set C in Figure 2) to
the demand-side Dynamic Patient Queue Prioritization gargition.

e S - Dynamic patient prioritization strategy wheirés the selected strategy type.
LOSnax - Hospital's desired service quality in terms of LOS.

3.3.2 Supply-side Dynamic Resource Adjustment

We implemented 4 supply strategies in DQM: 2 are staticegjras (HIST, HIST-OPT) and 2 are dynamic
strategies (DYN, DYN-OPT). HIST-OPT and DYN-OPT are optiation models. We briefly describe the
strategies in this section; details can be found in Tan, &ad,Lau (2013).

The HIST strategyX; uses the historical trends frohiistorical Process Dataln particular, we are
referring to the historical arrival ratek;(t), service rateq,, ¢ and 8. Using the data, we apply the
Erlang-R method (Yom-Tov 2010) to obtain the time-varyirfeied loadR; at each service station
The indexx = 1 represents the doctor consultation service stationxaa@ represents the treatment/test
service station.

Re(t) = E[A (t — Sce)[E[S.- (1)

A is the aggregated-arrival-rate function to nodé, represents the service time at nodandS,¢ is a
random variable representing the excess service time a&>od

The doctor’s staffing at station 1 where patients await foiscdtation is then determined by substituting
the time-varying offered load formula into the square-rstaffing formula. The parameté is chosen
according to the steady-state Halfin-Whitt formula (Halfird aVhitt 1981).

S(t) = Ry(t) + By/Re(t), Wt >0. @)

In addition, the supply-side model also ensures that thditgua critical care area is satisfied and
the number of doctors in the ambulatory area does not exteeghysical constraint of the number of
consultation rooms available in the ED. Suppo$g(t) is the time-varying doctor’s requirement in the
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critical care areaSnax(t) is the maximum number of doctors available at tineadroomyaxis the physical
constraint in ambulatory area, we have the constraints:

St(t) < Smax(t) — S(t); (3)
St (t) < rooMmax. (4)

An optimization variant of HIST is called the HIST-OPT segy X,. In HIST-OPT, we add an additional
soft constraint:

LOSt) < LOSnax (5)

whereLOSt) is the average LOS over the period of timeand LOSyax is the hospital’s desired service
guality to serve the patients below this value.

The intuition behind HIST-OPT is to add a doctor before an L¥&ation occurs. LelC, be the
cost of labour of deploying a doctor for a single unit timandCy be the cost if the number doctors in
time t deviates fromt — 1. The deviation cost is included because it is not desirableave a schedule
where the number of doctors changes too frequently from twtmour. The resulting objective function
ismin G ZSf(t) +Cy Z[Sf (t) — St (t — 1)]?, subject to constraints in Equations (3) to (5) of the model.

If no feasible solution is found, the solution with the leastlation is returned.

The DYN strategyXs is similar to HIST, except it uses the real-time arrivalsnte real-time demand
requirements) instead. L& (t) and R,(t) be the real-time offered load based actual arrival rates
At (t). The offered load for each service station is calculatedeasEuations 1 and 2 and is subjected to
constraints in Equations 3 and 4.

The DYN-OPT strategyX, is the optimized variant of the DYN strategy. Here, we definesetor
(L,H), whereL denotes the lead-time artd denotes the time horizon. Between the current tinaed
lead-timelL, there will be no change in staffing. This is to cater for theecthat the ED cannot add or
remove a doctor instantaneously from the ED. The varigbliefines the horizon of re-planning based on
what is known currently, e.g., plan for the horizon of 8 hourke next planning period is then-H. The

t+L+H t+L+H
DYN-OPT objective function isnin G % St)+Ca Y [St)—S(t-1)>
7L 7L

A symbiotic simulator is used to evaluate which doctor’'seztiiie is to be used for the planning horizon
such that there is either no LOS violation or with the leastation. We use the concept of a snapshot. A
shapshot contains the current queue conditions, doctoesiahilities, patients’ statuses and the realised
arrival rates. At the start of each planning period, a snaipisitaken and is used with the historical arrival
rates for the planning horizon. A heuristic local searcloathm is then applied to find the best schedule.
When the schedule has been found, the snapshot is restatatieabest schedule is used in the DQM as
the schedule for the next horizon.

The decision makers must provide the following parametassréflected as input set D in Figure 2)
to the supply-side Dynamic Resource Adjustment configomati

X;j: Resource adjustment poligy
LOSnax Hospital's desired service quality in terms of LOS. Thi®usld be consistent with the
value set in input set C.

e roomyax Physical constraint in the ED at the ambulatory area, wharhesponds to the maximum
number of consultation rooms in the real-life set up of the ED

e Snaxt): Maximum number of doctors that can be deployed at ED (bathsaof the ED combined)

at timet.

C;: cost of labour of deploying a doctor for a single unit tite

Cy: cost if the number doctors in tintedeviates from — 1.

L. lead-time for dynamic planning.

H: time horizon for dynamic planning.
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4 EXPERIMENTAL EVALUATION

We developed a prototype of the DQM to evaluate its perfomaamd vary the decision-maker's parameters
in the data model. The DQM simulator takes in information whuistorical process data and generates
the simulated real-time data (actual arrival, actual inegit / investigation time, actual consultation time).
Both the DQM simulator and the symbiotic simulation systam implemented in Jav¥ .

4.1 Experimental Setup

We set up our experiments using 6 months data from the stuuiegital. Each experiment is run over
100 replications and the result is an average across thiatphs. As for HIST-OPT and DYN-OPT
which require the symbiotic simulation system, each symb&imulation is run over 50 replications and
average is taken over the symbiotic simulation replicaiohhe maximum search iteration is set to 300.
In DYN-OPT, the lead-time is set to O (plan for next hour) ahd planning horizon is set to 8 hours.

In order to verify that our DQM simulator is sufficiently cld$o the real-world’s performance, we use
FIFO patient queue and static doctor’'s schedule in a vetidic@xperiment using the DQM simulator. The
outcome of the experiment shows that the differences in raadrstandard deviation of the actual hospital
data and the results from the DQM simulator are observed fedsethan 5% and 10% respectively. The
ranges of LOS (i.e., minimum and maximum) are also condisiEmerefore, we conclude that the results
from DQM simulator is representative of the performancehef ED process.

To compute the time-varying staffing requirements for HISI ®YN, approximation methods are
used for the instance of the hospital data that we are usiolging the Equation 1 is non-trivial. Based on
Yom-Tov (2010), if the service rate is represented by an egpbal distribution, then we can use numerical
approximation to comput®; and R, by solving the following Ordinary Differential Equation (D.E):

%Rl(t) = A+ OR(t) — puRy(t);

%Rz(t) = PUR(t) — SR (t).

(6)

As mentioned in Section 3.2, the service rate of the cornsadtsstation is represented by a set of
exponential distributions with associated probabilittesording to patient review types, which yields a
hyperexponential distribution. Statistically, we knowatlthe mean of this distribution is equal to the
weighted average of the means of the underlying set of expimhedistributions. Experimentally, we
found interestingly from our dataset that with inclusiontloé service rate of new patiept, the resulting
hyperexponential distribution can be approximated qudseaty by an exponential distribution whose mean
is equal to the mean of the hyperexponential distributione &vidence (see Figure 3) is derived from an
experiment that simulates the service times provided by bim¢ approximated exponential distribution
and the service rates represented by the original set ofnexpial distributions. As such, the staffing
requirements for HIST and DYN in our experiment can be comgdty solving the O.D.E in Equation 6
using the mean of the resulting hyperexponential distidlouss the single service rate For each set of
experiments (for all strategies), a simulation over 9 daysken, and the first and last day are discarded
in order to remove the inaccurate results from simulati@ntsip and winding down. The remaining 7
days represent the 7 days of the week with time-varying @gias observed in real-life. Through the
Analytical Model, the probability of re-entrandefound to be 04. The average service rate of doctors for
new patientsi,, is 4 per hour. The registration and triage service time Eoagntially distributed with
mean of 142 minutes. The hospital's desired service qualitdS,ax is set to 60 minutes. The rate of
investigation and treatment is set to 2.3 per hour.
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Figure 3: Approximation of Hyperexponential distributiarith Exponential distribution.

4.2 Experimental Results

Two sets of experiments have been set up. First, we simuiatectl-life situation when each hour has a
maximum number of doctors that can be deployed. That me&nsit) varies hourly. This experiment

allows us to show the effects of the demand-side strategieth® supply-side strategies. We show in
Figure 4, the results for HIST and DYN as representation atfcsand dynamic supply-side strategies. We
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Figure 4: Results of using demand-side strategies withectl supply-side strategy.

can see that demand-side strategies (SCON, SREM, MIXEDy bewilar performance as with FIFO in
both HIST and DYN supply-side strategies. Although all ttrategies (including FIFO) seem to perform
well, we discover from Wilcoxon signed-rank tests that SCGREM and MIXED strategies still provide
significant improvements over FIFO in both experiments o Hiand DYN. We present the outcome of
Wilcoxon tests in Figure 5. In our Wilcoxon test, the null logipesis HO is "Strategy S2 has no significant

S1
HIST {Cost = 524 doc hours/week) DYN (Cost = 521 doc hours/week)
FIFO SCON SREM MIXED FIFO SCON SREM MIXED
FIFO N.A o =] -] N.A o o o
s2 SCON v N.A Q [ v N.A Q v
SREM v o N.A o v v N.A v
MIXED v o Q N.A v (-] Q N.A

Figure 5: The results of Wilcoxon signed rank test.

improvement over Strategy S1” and H1 is "Strategy S2 has aif&ignt improvement over S1”. We
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determine whether we reject HO by the computation of thelpevdf the p-value is lower than 0.05, we
can conclude that the null hypothesis does not hold (i.e.sS#iter than S1). For simplicity, we use a
tick to represent values less than 0.05 and a circle otherwis
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Figure 6: Results of using supply-side strategies with actetl demand-side strategy.

Our second set of experiments aims to determine how thessj# strategies are useful in working
together with the demand-side strategies. We now allow bddEincrease or decrease doctors to adapt
to the demand changes as long as the number of doctors anaey it still under the physical constraint
of the ED as specified in Equation 4. To test the demand chamgegprovided the simulator with three
different types of arrival rates, high, normal and low. Ie ttase of high load, the arrival rates are doubled
for the days Thursdays, Fridays, Saturdays and Sundayswis& for the low load, the arrival rates are
halved for the same days of the week. Using HIST and DYN asesgmtation of static and dynamic
strategies, Figure 6 shows how HIST and DYN perform undeh emtnand-side strategy and with high,
normal or low load conditions.

As we can see from Figure 6(a)-(c), the dynamic method DYMfEg better with demand surges as
compared to HIST. This comes with a price of slight increasbde number of doctor’s hours to be deployed
at the ED (in a week) to handle the additional load. This isasho Figure 6(d). The more interesting
result is that the corresponding decrease in demand inildsya larger decrease in the number of doctor’s
hours to be deployed, with yet the performance is similathti bf HIST which is over-staffed under a
normal and low-load conditions. Hence, we conclude thataisyynamic staffing method is effective in
its ability to cope with demand surges and also cut cost wherdemand is low.
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5 CONCLUSION

In this work, we presented an integrated framework for dyicajneue management from both demand and
supply perspectives. Our experimental analysis showddthieademand-side strategies work seamlessly
with both static and dynamic strategies of the supply-sidkewise, supply-side strategies are performing

well with each demand-side strategies. In addition, theadyin staffing (supply of doctors) can adapt to

demand surges or cut cost when demand is reduced. The isgdramework allows healthcare decision

makers to play a role in achieving the desired service qualid select from a list of possible strategies

that suit the operation needs of the ED.
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