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Improving patient length-of-stay in emergency department
through dynamic resource allocation policies*

Kar Way Tan, Wei Hao Tan and Hoong Chuin Lau1

Abstract— In this work, we consider the problem of allocating
doctors in the ambulatory area of a hospital’s emergency
department (ED) based on a set of policies. Traditional staffing
methods are static, hence do not react well to surges in
patient demands. We study strategies that intelligently adjust
the number of doctors based on current and historical in-
formation about the patient arrival. Our main contribution
is our proposed data-driven online approach that performs
adaptive allocation by utilizing historical as well as current
arrivals by running symbiotic simulation in real-time. We build
a simulation prototype that models ED process that is close to
real-world with time-varying demand and re-entrant patients.
The experimental results show that our approach allows the
ED to better cope with demand surges and to meet a service
level desired by the hospital.

I. INTRODUCTION

The Emergency Department (ED) is often seen as a place
with long waiting time and lack of doctors to serve the pa-
tients. However, it is one of the most important departments
in a hospital that is required to efficiently serve patients with
critical medical needs. Since patients arrive at the ED without
an appointment, it is a challenge to plan the number of
resources (e.g., doctors and nurses) and effectively utilize the
resources in the ED that best meet the unpredictable demand
and satisfy a desired service quality level (e.g., length-of-stay
(LOS) in the ED).

In this paper, we consider a motivating case based on
a real-life study in a local hospital where a challenging
service quality is presented and a static planned doctor’s
schedule is used in the ED. The hospital’s ED has two
sections of operations - theresuscitation and critical care
area (also referred to as the back room in this paper) serves
critical patients of acuity levels 1 and 2; theambulatory
area (also referred to as the front room) serves less critical
patients with acuity levels 3 and 4. The hospital we are
studying has a desired service level of serving the patients
in ambulatory area within a specific time. Static doctor’s
schedules for both rooms are planned manually based on
perceived understanding about the demand at various hours
of a day, over the entire week or month. Such schedules
generally do not react well to uncertainties such as surges
in patient arrival. The hospital also reported its challenge
to meet the desired service level. The doctors between two
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rooms are at times flexibly moved between the rooms in an
ad-hoc and unplanned manner, without the ability to measure
the impact on the service level measure such as the LOS of
the patients in both rooms. If the ED experiences a surge in
demand (usually in the front room), additional doctors may
be deployed but there is lack of information about how long
the additional doctors are required.

To address the challenges, we design dynamic resource
allocation strategies with the aim to achieve the following
objectives: (1) ability to respond to uncertainties (e.g.,surges
in demand) by leveraging on real-time data and effective use
of simulation interacting directly with the physical systems
to find optimal resource requirement; (2) ability to ensure
that the quality of the related facility (such as the ED’s
back room) is fulfilled. Our proposed dynamic resource
adjustment strategies are data-driven and are to provide
invaluable real-time decision support to the ED operations.
The termstrategyis used interchangeably withpolicy in this
paper.

We model the ED process as dual time-varying
(Gb(t)/Mb/Sb(t), Gf (t)/Mf /Sf (t)) queues for the back
room (subscriptb) and front room (subscriptf ) respectively.
The front room is modeled as a queue with re-entrant
patients. The patients who arrive at the hospital is required
to first undergo a registration process and triage by a nurse
before waiting at a queue to consult the doctor. As our aim
is to study the doctor’s requirements at the consultation, we
model consultation service as our first service station (station
1 as shown in Figure 1). With a probability ofb, the patient
may be asked to do investigative tests or treatment at service
station 2 (see Figure 1). Upon completion and test results
are ready, patient re-enter the same queue at station 1 to be
reviewed by thesamedoctor. After review, patient is either
discharged or be admitted as an in-patient. More details about
the process can be found in our previous work [1].

The scope of this paper is to provide dynamic resource al-
location strategies for managing the queue to doctor (station
1). We present a model that produce heuristically-optimized
doctor’s schedule that better cope with demand surges in real-
life dynamic situation. To our best knowledge, this is the first
work to consider queue design and real-time queue control
under time-varying demand with re-entrant customers for a
dual-facility service center.

II. RELATED WORK

In this section, we review related works in three aspects.
Firstly, the work on managing queue design and queue con-
trol; secondly, work on managing staffing for time-varying



arrival with re-entrant customer (patient); and finally work on
simulation approaches for handling dynamic ED processes.

For queue design and control that manages facilities with
back and front rooms, Berman et al. [2] presents a scenario
where the front room has shoppers and check-out stations and
the back room has other indirect non-customer-facing work.
They presented a staff-switching policy, where resources
in both rooms are shared and can be switched to front
room such that customers’ wait-time in queue is within an
acceptable value. They present a heuristic solution to find
the optimal switching policy while fulfilling the back room
minimum requirement. Terekhov et al. [3] builds on [2] by
using a constraint-programming approach. They claim to be
the first work in finding proven optimality of the switching
problem. However, they remove the concept of shoppers and
restricted it to a ”two-dimensional” queueing model. None
of these works addresses the situation where the arrival is
time-varying.

To address the staffing problem under time-varying ar-
rivals, there are two major approaches. The first approach
is suitable for short service-time processes. The meth-
ods include steady-state approximations such as in PSA
(Piecewise Stationary Analysis), RCCP (Rough Cut Capac-
ity Planning)[4], Stationary Independent Period by Period
(SIPP), or lag-SIPP [5][6]. The second approach is ap-
plicable to long service-time processes. The methods are
MOL (Modified Offered Load) [6] and ISA (Infinite Server
Approximation) [7]. None of these addresses the re-entrance
property of the ED process. Yom-Tov [8] considered both
time-varying arrival and re-entrance process modeled using
Erlang-R queue model. The method provides proactive (pre-
planned) staffing plans, which is not ideal in handling un-
certain demand. Time-varying arrival is handled using MOL
approach and staffing policy is then based on square-root
staffing formula.

The staff-switching problem under time-varying arrivals
and re-entrant patients is a complex problem beyond an-
alytical models. In this work, we model this problem as
an optimization problem and solve it via a combination of
simulation and heuristics. We refer to [8] that provides a
benchmark and also an initial solution to our local search
algorithm, which we then apply an improved solution for
our problem. In addition, we propose the use of simulation in
real-time to make prediction on future demands upon which
our dynamic allocation policy is based. Using simulation to
address some problems in ED is not new, many existing
literature [9][10][11] used discrete-event simulation toenable
complex problems to be analysed. In these work, the simu-
lator is used offline as a tool to verify the proposed models
but is not used in real-time for decision support. The work in
[12] used a simulator as a tool to test which staffing method
is suitable in real-time. Another idea is use ofsymbiotic
simulation [13][14] where a simulator is used in real-time
interacting with the physical systems for decision-support.
Yet another related work is concerned with the optimization
of an objective function using simulation, generally termed
simulation optimization(For details, we refer the reader

to the comprehensive survey on simulation optimization in
[15].) In our approach, offline simulation is used to validate
and evaluate the staffing strategies and symbiotic simulation
with simulation optimizationis used in one of the strategies
to provide real-time staffing plans.

III. BACKGROUND

We will be adopting some findings from [8] in our resource
allocation strategies. In [8], the goal is to identify the
staffing required at the ED that provide stable performance
as measured by the probability of wait(P (W > 0)), i.e.,
regardless of the time of arrival of the patient, the probability
of waiting in the queue remains relatively constant. This is
the QED (Quality and Efficiency Driven) balance that it is
trying to achieve. Based on the MOL approach, the time-
varying offered loadRi at stationi [16] is given by

Ri(t) = E[λ+

i (t− Si,e)]E[Si] (1)

whereλ+

i is the aggregated-arrival-rate function to nodei,
Si represents the service time at nodei andSi,e is a random
variable representing the excess service time at nodei.

The doctor’s staffings1(t) at station 1 at time t is deter-
mined by substituting the time-varying offered load formula
into the square-root staffing formula [6][7] whereβ is chosen
according to the steady-state Halfin-Whitt formula [17]:

s1(t) = R1(t) + β
√

R1(t); ∀t > 0 (2)

Based on our data analysis using 6-months data from the
local hospital, the arrival rates function is shown in Figure 2.
We observe that the arrival rates for Sundays and Mondays
are similar and higher while arrival rates for Tuesday to
Saturday are similar and lower than the former. The arrivals
are observed to be non-homogeneous Poisson processes.
For the purpose of comparison of our proposed strategies
with existing work with an analytical model, the service
rates at stations 1 and 2 are simplified to single exponential
distributions ofµ andδ respectively. Based on [8], we are to
solve the following ordinary differential equations (O.D.E)
via numerical approximation for general rate of arrival and
exponential service rates.

d

dt
R1(t) = λt + δR2(t)− µR1(t)

d

dt
R2(t) = pµR1(t)− δR2(t)

(3)

IV. THE MODEL

Figure 1 shows the overview of our queueing model.
Our aim is to intelligently determine or forecast the optimal
number of doctors required at station 1 (in the front room
of the ED) in order to meet the front room service quality
as desired by the hospital while maintaining the back room
quality. We focus on station 1 because we learnt that it is the
bottleneck of the ED process (through an on-site survey). We
measure the performance of our strategies using the average
length-of-stay (LOS) of the patients. In our study, the LOS
of a patient is the duration that a patient spends at the ED
from registration to end of consultation or end of review



consultation if investigative tests or treatment are required.
With reference to Figure 1, we define the following notations
used in our model:

• λb(t) - The time-varying arrival rate of new patient at
the back room. Eachλb(t) is defined per hourly over a
week’s horizon.

• λf (t) - The time-varying arrival rate of new patient at
the front room as shown in Figure 2. Eachλf (t) is
defined per hourly over a week’s horizon.

• LOS(t) - The average LOS of the patients who leave
the ED within the time interval of[t, t+ 1).

• LOSmax - Hospital’s desired service quality in terms
of LOS

• µ - The service rate of the doctors at station 1. We
assume a homogeneous service rate for all doctors.

• δ - The service rate for investigative tests or treatment
at station 2.

• roommax - The physical constraint in the ED at the
front room. This corresponds to the maximum number
of consultation rooms in the real-life set up of the ED.

• Smax(t) - The maximum number of doctors that can be
deployed at ED (both front and back rooms combined)
at time t. This corresponds to the resource capacity in
the real-life.

• Sb(t) - The number of doctors required at the back room
to serve the demand the back room. The QED regime
as per equation 2 is used to ensure that most patients
(critically ill patients) do not have to wait for a doctor
at the back room.

• Sf (t) - The number of doctors to be placed at the front
room.

• b - The probability that a patient will go for treat-
ment/tests.

The following are the constraints for our problem:

Sf (t) ≤ Smax(t)− Sb(t) (4)

Sf (t) ≤ roommax (5)

LOS(t) ≤ LOSmax (soft constraint) (6)

Constraint (4) specifies the back room service level guar-
antee, (5) specifies the physical front room constraint and (6)
specifies the service level constraint.

Fig. 1. The queueing model

Fig. 2. Our Time-Varying Arrival to ED

V. RESOURCE ALLOCATION STRATEGIES

The resource allocation strategies in which doctor’s sched-
ule in the front room for station 1 can be determined either in
a proactive manner or dynamically depending on the actual
arrival conditions. The doctor’s schedule is designed to adjust
at the minimum of an hour interval. This is to prevent a
schedule that is too nervous with many changes within a
small time-interval. We also assume that the back room
requirement is fairly predictable based on historical dataand
hence back room staffing is pre-processed and is available
before allocation of doctors to the front room.

A. Strategies using Square-root Staffing Rule

1) Strategy HIST - Resource allocation using historical
trends: The HIST strategy is a proactive strategy that consid-
ers only historical trends taken from the actual data of a real-
world hospital. This method is based on findings in [8] and
is used as the benchmark for our other strategies. We apply
the Erlang-R method as presented in Section III for arrival to
both the back room and front room. We first solve the ODE
(Equation 3) and apply square-root staffing rule (Equation 2)
using numerical approximation. The results from staffing rule
for front room requirements are subjected to theback room
service level guaranteeand physical front room constraint.
Without the back room and physical constraints, this is
proven to provide stable queue wait-time (not LOS) over
time as shown in [8]. However, with the addition of the
constraints, the number of doctors that can be assigned to
the front room may be less than the output from the staffing
rule and the wait-time stability can no longer be guaranteed.
This provides the opportunity to develop better strategies.

2) Strategy DYN - Dynamic resource allocation using
real-time data: With the support of enterprise systems and
real-time monitoring devices today, it is possible to track
the time-varying arrival rates in real-time. With these arrival
rates, we can then calculate theactual time-varying offered
load for the previous time intervals. One challenge to apply
this method is that the arrival rates must be recorded in a
significantly large time frame such as hourly. However, to
approximate the offered loads, one must use a small time-
interval such as per minute time frame in order to compute
reasonably-sensible offered load for the next time period.

The DYN strategy is designed to be reactive to real-time
observation of the arrivals and perform short-term forecast
(such as hourly basis). LetR′

1(t) andR′
2(t) be the real-time

offered load based onactual real-time arrival rates at time



t. The doctors’ requirementSf (t + 1) for the next hour is
determined by square-root staffing ruleSf (t+ 1) = R1(t+
1) + β

√

R1(t+ 1), whereR1(t + 1) = R′
1(t) +

d
dt
R′

1(t).
With considerations of constraints 4 and 5,Sf (t+ 1) is set
to min[Sf(t+ 1), Smax(t+ 1)− Sb(t+ 1), roommax].

B. Strategies using Heuristic Optimization Model with Sym-
biotic Simulation

By far, both HIST and DYN strategies rely heavily on the
staffing rule. One major limitation with the use of staffing
rule is that service level quality constraint may be violated
when we conform to the back room quality constraint and
physical front room constraint as the number of doctors
deployed at the front room is limited to themin[Smax(t)−
Sb(t+1), roommax]. To remove or minimize the violations,
an intuition is that one could allocate more doctors in the
previous hour(s) before violation occurs; or to allocate more
doctors later to clear the queue. We propose our next 2
strategies (namely HIST-OPT and DYN-OPT) that will use
heuristic methods to find optimized resource allocation.

1) Strategy HIST-OPT - Optimized resource allocation
using historical trends:The idea for HIST-OPT strategy is
to provide an option for an optimized resource allocation by
using analytics data in the case that real-time is not available.
LetCl be the cost of labour of deploying a doctor for a single
unit time t andCd be the cost if the number doctors in time
t deviates fromt − 1. The deviation cost is included in the
model is for stability of the schedule as we do not wish
to have a schedule where the number of doctors changes
too frequently from hour to hour. We have the following
objective function that is subjected to constraints (4) to (6).

min Cl

∑

t

Sf (t) + Cd

∑

t

[Sf (t)− Sf (t− 1)]2 (7)

We deploy a local search algorithm to search for a schedule.
The search algorithm finds a timet where service quality
constraint is violated. In an attempt to remove the violation,
the algorithm searches for a timet1 nearest tot when
(0 ≤ t1 < t) and constraints (4) and (5) are not violated
and increase resource by 1 unit att1. Next, it finds a time
t2 nearest tot when (t ≤ t2 ≤ length of simulation) and
constraints (4) and (5) are not violated and increase resource
by 1 unit att2. The algorithm selects a schedule that meets
the constraints or one with a lower cost among the 2 solutions
and repeats the search until either there is no violation att

or no further solution for the violation att. The search then
moves on to the next violation. This search will terminate
when the first schedule without a violation is found or when
maximum number of searches has been reached. If latter, an
infeasible schedule with the least violation is returned.

2) Strategy DYN-OPT - Optimized Dynamic resource al-
location using real-time data:The design of DYN-OPT is
to attempt to address the limitations of DYN which has short
planning time (hence being too nervous to react to changes
every hour) and HIST-OPT which is not unable to react to
demand changes. The intuition behind DYN-OPT is to make
use of the known real-time information as well as the forecast

to the future based on historical information about the arrival.
The aim here is to plan a number of hours ahead such that
resources in the ED can be better informed or additional
resources can be better arranged.

We define a vector(L,H), whereL denotes the lead-time
andH denotes the time horizon. Between the current time
t and lead-timeL, there will be no change in staffing. This
is to address the fact that most ED cannot add or remove a
doctor instantaneously. The variableH defines the horizon
of re-planning, e.g., plan for the horizon of 8 hours. The
next planning period is thent+H . Our optimization model
becomes:

min Cl

t+L+H
∑

t=t+L

S(t) + Cd

t+L+H
∑

t=t+L

[S(t)− S(t− 1)]2 (8)

We deploy a local search algorithm that is similar to HIST-
OPT, with the exception that real-time arrival rates are used
and planning is short-termed. We use theactualarrival rates
to calculateR′

1(t) and R′
2(t) up to time t, then we use

historical arrival rates to compute the staffing required for the
period(t+L, t+L+H). The optimization search algorithm
to manage any violation within the planning horizonH is
the same as HIST-OPT.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We design the prototype of our model and named it as
the Dynamic Queue Management (DQM). It is capable of
receiving both the historical data and real-time data (from
the live systems). The prototype is developed as an event-
driven simulator to act as the physical systems in the actual
deployment. We termed this as theDQM simulator where
patient arrival, consultation, treatment and investigative test
events are simulated using the resources as determined by
the strategies. An optimization model is built within DQM
simulator to perform the local searches. We also include
a symbiotic simulation systemin the DQM simulator to
evaluate the performance of schedules produced by the opti-
mization model. Both the DQM simulator and the symbiotic
simulation system are implemented in JavaTM. In terms of
implementation, HIST requires only historical data, DYN re-
quires real-time data. HIST-OPT requires historical data and
the optimization model, while DYN-OPT requires historical,
real-time data and the symbiotic simulation system.

Each experiment is run over100 replications and the result
is an average over the replications. In each optimization for
HIST-OPT and DYN-OPT, 50 replications are used and av-
erage is taken to evaluate the solution. The maximum search
iteration is set to 300. Evaluation of DYN-OPT candidate
solutions is done in the symbiotic simulation system. In
DYN-OPT, the lead-time is set to 0 (plan for next hour)
and the planning horizon is set to 8 hours. We derive the
parametersλb(t), λf (t), µ, δ andb from historical data using
a commercial business analytics software, SASR©. The time-
varying arrival rates (λb(t), λf (t)) are recorded over a week,
each day has its own time-varying arrival rates that change



every hour, we refer to this as thehistorical arrival rates
(see Figure 2). The probability of re-entranceb is found
to be 0.4. The average service rates of doctorsµ is 4 per
hour. The registration and triage service time is assumed to
be exponentially distributed with the mean of14.2 minutes.
The hospital’s desired service quality,LOSmax is set to 60
minutes.

To determine the hourly back room minimum requirement.
Since patients with high severity level must be attended
almost immediately, we applied the MOL and square-root
staffing under QED regime. The QED staffing will assure that
on the average, the number of patient is less than the number
of doctors and hence ensure minimal wait time. We used that
to determine the maximum number of doctors possible at the
front-room based on constraint as stated in Equation 4.

For each set of experiments (for all strategies), a simu-
lation over 9 days is taken and the first and last day are
discarded in order to remove the inaccurate results from
simulation start-up and winding down. The remaining7 days
represents the 7 days of the week with different patterns of
arrivals as observed in real-life. To simulate various real-life
scenarios, we run the experiments under three conditions:
Normal, Low and High load. The normal load condition
assumes the arrival rates to be exactly the same as historical
rates. The low load condition, the arrival rates of on the days
Thursdays, Fridays, Saturdays and Sundays are halved. In the
high load condition, the arrival rates of the same affected
days are doubled.

B. Experimental Results

The first experiment is to compare HIST and DYN (which
use the staffing rule) to illustrate the value of using real-time
information. As shown in Figure 3, we observe that DYN
is more capable of reacting to surges. The doctor staffing
schedule generated by DYN is able to keep the average LOS
stable under the conditions of low load and normal. Although
the average LOS is longer under high load conditions, we
can see the doctor’s schedule generated by DYN allows the
queue to clear. In the case of HIST, if the load is high, the
average LOS remains higher than desired service quality over
the period of demand surges (Thursday to Sunday).

Table I shows the average number of doctor’s hours
required to be deployed over a week under the given strategy
and demand conditions. Supposed if an ED, over time, has
equal probability of experiencing high load, normal load and
low load, then the average cost of using a dynamic strategy
(computed to be average of 650 doctor’s hours) is lower than
that of a static one which based on historical data (static at
681 doctor’s hours).

HIST DYN
Normal High Low Normal High Low

681 681 681 678 743 530

TABLE I

AVERAGE NUMBER OF DOCTOR’ S HOURS PER WEEK
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(a) Average LOS using HIST staffing under 3 load conditions
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(b) Average LOS using DYN staffing under 3 load conditions

Fig. 3. Results of varying demand for the strategies using staffing rule

We can see that the staffing rule does provide reasonably
good solutions. However, both HIST and DYN do not guar-
antee that the solution can satisfy the service level constraint
as in Equation 6. We provide an example of use of the
optimization model in DQM to find a solution that satisfies
the service level constraint. Figure 4 shows that ED may be
able to achieve a performance within the desired service level
with the use of an optimization model such as HIST-OPT.
This is observable under normal and low load conditions.
The HIST-OPT strategy requires additional increase of only
8 doctor’s hours per week compared to HIST. However, we
need to understand that this performance is not guaranteed
because a patient may require more time to be monitored
and be treated with quality care in the real-life situation.
The results in this figure also show that HIST-OPT is a static
method and hence is not able to react to high load conditions.

Experimental results that appear to be counter-intuitive to
us are the results of DYN-OPT. DYN-OPT, having the fea-
tures of using real-time data as well as historical intuitively
suggest that it will be one that is more flexible and react
well to surges. However, we observed that the performance
of DYN-OPT is not ideal. In particular, under the high-load
test for demand surges over 4 days (Thursday to Sunday)
as shown in Figure 5, we can see that at every x-axis ticks
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Fig. 4. Performance of HIST-OPT under 3 load conditions
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Fig. 5. Performance of DYN-OPT over the 4 days of demand surges in
the high-load test

(which is the 8-hourly DYN-OPT’s horizon), there is a drop
in the average LOS at the start of each horizon because the
method will indicate that more doctors are required to serve
the patients under unexpected high load. The entire horizonis
then planned based on historical arrival which is only half of
the actual arrival. As such, the queue builds up again during
this period when there exists no resource planning until the
next horizon. Although, DYN-OPT is able to react to demand
surges by lowering the LOS at the start of each horizon, we
see that strategy DYN is better at handling surges. This is
because DYN has the opportunity to adjust the resources
at every hour. However, one may find DYN a strategy too
reactive and hospital may not be able to find doctors within
a short notice. As such, we see more opportunity to further
improve DYN-OPT strategy or investigate how the DYN-
OPT parameters such as horizon can affect or improve the
performance. DYN-OPT is potentially a good short-term
planning strategy as we recognize through DYN and HIST-
OPT that there are benefits in using real-time information
and an optimization method.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed several strategies for resource
allocation at the ambulatory area of an ED, both proactive
and dynamic methods, while maintaining the service quality
at the back room. We found in our experiments that real-time
information can be leveraged to manage demand surges or

to release doctors to the backroom operations during low-
peak period. In today’s technology where real-time data is
easily accessible (e.g., patient real-time movements to be
tracked and data can be fed quickly into live systems),
we believe that our proposed concept of dynamic resource
allocation is implementable. Our simulation prototype with
optimization model and symbiotic simulation system allows
modeling and evaluation of intelligent staffing strategiesin
real-world complex ED process that provide results which are
helpful to healthcare decision makers. Our strategies provide
alternatives for the decision makers to select an effective
method based on each hospital’s appetite for performance,
cost and implementation complexity.
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