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Improving patient length-of-stay in emergency department
through dynamic resource allocation policies*

Kar Way Tan, Wei Hao Tan and Hoong Chuin Lau

Abstract— In this work, we consider the problem of allocating rooms are at times flexibly moved between the rooms in an
doctors in the ambulatory area of a hospital's emergency ad-hoc and unplanned manner, without the ability to measure
department (ED) based on a set of policies. Traditional stéing {6 jmpact on the service level measure such as the LOS of
methods are static, hence do not react well to surges in . . . .
patient demands. We study strategies that intelligently ajlist the patients in bth rooms. If the ED eXF_’e_”e”CES asurge in
the number of doctors based on current and historical in- demand (usually in the front room), additional doctors may
formation about the patient arrival. Our main contribution be deployed but there is lack of information about how long
is our proposed data-driven online approach that performs the additional doctors are required.
adaptive allocation by utilizing historical as well as curent To address the challenges, we design dynamic resource
arrivals by running symbiotic simulation in real-time. We build . . . . . .

a simulation prototype that models ED process that is closeot ~allocation strategies with the aim to achieve the following
real-world with time-varying demand and re-entrant patients. ~ Objectives: (1) ability to respond to uncertainties (esgrges
The experimental results show that our approach allows the in demand) by leveraging on real-time data and effective use

ED to better cope with demand surges and to meet a service of simulation interacting directly with the physical syste
level desired by the hospital. to find optimal resource requirement; (2) ability to ensure
| INTRODUCTION that the quallity of.the related facility (such as the ED’s
back room) is fulfilled. Our proposed dynamic resource
The Emergency Department (ED) is often seen as a plag@justment strategies are data-driven and are to provide
with long waiting time and lack of doctors to serve the painvaluable real-time decision support to the ED operations

tients. However, it is one of the most important departmentﬁhe termstrategyis used interchangeab|y W|t|;'[)||cy|n this
in a hospital that is required to efficiently serve patienhw paper.

critical medical needs. Since patients arrive atthe EDouth  \ve model the ED process as dual time-varying

an appointment, it is a challenge to plan the number qig,(t)/0,/S,(t), Gy (t)IMIS(t)) queues for the back
resources (e.g., doctors and nurses) and effectivelyetitie  oom (subscript) and front room (subscript) respectively.
resources in the ED that best meet the unpredictable demapnge front room is modeled as a queue with re-entrant
and satisfy a desired service quality level (e.g., lendtstay  patients. The patients who arrive at the hospital is require
(LOS) in the ED). to first undergo a registration process and triage by a nurse
In this paper, we consider a motivating case based Qsefore waiting at a queue to consult the doctor. As our aim
a real-life study in a local hospital where a challengings to study the doctor’s requirements at the consultatian, w
service quality is presented and a static planned doctoigodel consultation service as our first service statiorti¢sta
schedule is used in the ED. The hospital's ED has tw@ as shown in Figure 1). With a probability bf the patient
sections of operations - thesuscitation and critical care may be asked to do investigative tests or treatment at ervic
area (also referred to as the back room in this paper) serv@gtion 2 (see Figure 1). Upon completion and test results
critical patients of acuity levels 1 and 2; trembulatory are ready, patient re-enter the same queue at station 1 to be
area (also referred to as the front room) serves less driticeviewed by thesamedoctor. After review, patient is either
patients with acuity levels 3 and 4. The hospital we argischarged or be admitted as an in-patient. More detailstabo
studying has a desired service level of serving the patienfge process can be found in our previous work [1].
in ambulatory area W|th|n a SpeCifiC t|me StatIC dOCtOI”S The Scope of this paper isto provide dynamic resource al-
schedules for both rooms are planned manually based Rftation strategies for managing the queue to doctor ¢stati
perceived understanding about the demand at various hoyss \we present a model that produce heuristically-optichize
of a day, over the entire week or month. Such schedulggctor's schedule that better cope with demand surgesfin rea
generally do not react well to uncertainties such as surgfe dynamic situation. To our best knowledge, this is thstfir
in patient arrival. The hospital also reported its challengwork to consider queue design and real-time queue control
to meet the desired service level. The doctors between twpder time-varying demand with re-entrant customers for a

*This research/project is supported by the Singapore Nali®kesearch dual-faC|I|ty service center.
Foundation under its International Research Centre @ BargaFunding Il. RELATED WORK
Initiative and administered by the IDM Programme Office. )

_'KW. Tan, WH. Tan and H.C Lau are with School of Informa- | this section, we review related works in three aspects.
tion Systems, Singapore Management University, 80 Staimfepad,

Singapore 178902(kwt an, wei hao. t an. 2010, hclau} at  Firstly, the work on managing queue design and queue con-
snu. edu. sg trol; secondly, work on managing staffing for time-varying



arrival with re-entrant customer (patient); and finally on  to the comprehensive survey on simulation optimization in
simulation approaches for handling dynamic ED processe§l5].) In our approach, offline simulation is used to valelat
For queue design and control that manages facilities withnd evaluate the staffing strategies and symbiotic sinoumati
back and front rooms, Berman et al. [2] presents a scenamdth simulation optimizatioris used in one of the strategies
where the front room has shoppers and check-out stations aedprovide real-time staffing plans.
the back room has other indirect non-customer-facing work.
They presented a staff-switching policy, where resources Ill. BACKGROUND
in both rooms are shared and can be switched to front We will be adopting some findings from [8] in our resource
room such that customers’ wait-time in queue is within a@llocation strategies. In [8], the goal is to identify the
acceptable value. They present a heuristic solution to firiaffing required at the ED that provide stable performance
the optimal switching policy while fulfilling the back room as measured by the probability of wdi(W > 0)), i.e.,
minimum requirement. Terekhov et al. [3] builds on [2] byregardless of the time of arrival of the patient, the proligbi
using a constraint-programming approach. They claim to f waiting in the queue remains relatively constant. This is
the first work in finding proven optimality of the switching the QED (Quality and Efficiency Driven) balance that it is
problem. However, they remove the concept of shoppers atiing to achieve. Based on the MOL approach, the time-
restricted it to a "two-dimensional” queueing model. Nonevarying offered loadr; at stationi [16] is given by
grnt:iz? yvorks addresses the situation where the arrival is Ri(t) = ENF(t — S:.0)|E[S)] L
-varying.
To address the staffing problem under time-varying awhere \} is the aggregated-arrival-rate function to nade
rivals, there are two major approaches. The first approach represents the service time at nadend.S; . is a random
is suitable for short service-time processes. The methkariable representing the excess service time at riode
ods include steady-state approximations such as in PSAThe doctor’s staffings;(¢) at station 1 at time t is deter-
(Piecewise Stationary Analysis), RCCP (Rough Cut Capaained by substituting the time-varying offered load foreul
ity Planning)[4], Stationary Independent Period by Perioéhto the square-root staffing formula [6][7] wheBas chosen
(SIPP), or lag-SIPP [5][6]. The second approach is amccording to the steady-state Halfin-Whitt formula [17]:
plicable to long service-time processes. The methods are
MOL (Modified Offered Load) [6] and ISA (Infinite Server s1(t) = Ra(t) + BV Ri(t); VE>0 @
Approximation) [7]. None of these addresses the re-enranc Based on our data analysis using 6-months data from the
property of the ED process. Yom-Tov [8] considered bothocal hospital, the arrival rates function is shown in Fig@r
time-varying arrival and re-entrance process modeledgusiwe observe that the arrival rates for Sundays and Mondays
Erlang-R queue model. The method provides proactive (prere similar and higher while arrival rates for Tuesday to
planned) staffing plans, which is not ideal in handling unSaturday are similar and lower than the former. The arrivals
certain demand. Time-varying arrival is handled using MOlare observed to be non-homogeneous Poisson processes.
approach and staffing policy is then based on square-ropr the purpose of comparison of our proposed strategies
staffing formula. with existing work with an analytical model, the service
The staff-switching problem under time-varying arrivalsrates at stations 1 and 2 are simplified to single exponential
and re-entrant patients is a complex problem beyond agistributions ofi: andd respectively. Based on [8], we are to
alytical models. In this work, we model this problem assolve the following ordinary differential equations (OH).

an optimization problem and solve it via a combination ofja numerical approximation for general rate of arrival and
simulation and heuristics. We refer to [8] that provides @&xponential service rates.

benchmark and also an initial solution to our local search d

algorithm, which we then apply an improved solution for —Ry(t) = At + dRa(t) — Ry (t)

our problem. In addition, we propose the use of simulation in ‘flt 3)
real-time to make prediction on future demands upon which — Ry (t) = puR1(t) — dR2(t)

our dynamic allocation policy is based. Using simulation to dt

address some problems in ED is not new, many existing IV. THE MODEL

literature [9][10][11] used discrete-event simulatiorettable Figure 1 shows the overview of our queueing model.
complex problems to be analysed. In these work, the sim@ur aim is to intelligently determine or forecast the optima
lator is used offline as a tool to verify the proposed modelsumber of doctors required at station 1 (in the front room
but is not used in real-time for decision support. The work irf the ED) in order to meet the front room service quality
[12] used a simulator as a tool to test which staffing methoas desired by the hospital while maintaining the back room
is suitable in real-time. Another idea is use ®fmbiotic quality. We focus on station 1 because we learnt that it is the
simulation [13][14] where a simulator is used in real-timebottleneck of the ED process (through an on-site survey). We
interacting with the physical systems for decision-suppormeasure the performance of our strategies using the average
Yet another related work is concerned with the optimizatiofength-of-stay (LOS) of the patients. In our study, the LOS
of an objective function using simulation, generally tedne of a patient is the duration that a patient spends at the ED
simulation optimization(For details, we refer the readerfrom registration to end of consultation or end of review



consultation if investigative tests or treatment are respli °

With reference to Figure 1, we define the following notations
used in our model:

M (t) - The time-varying arrival rate of new patient at
the back room. Each,(t) is defined per hourly over a
week’s horizon. 2
A#(t) - The time-varying arrival rate of new patient at
the front room as shown in Figure 2. Eagh(t) is sun/ Mon Tues to sat
defined per hourly over a week’s horizon.

LOS(t) - The average LOS of the patients who leave
the ED within the time interval oft, ¢ + 1).

LOS,mqe - Hospital's desired service quality in terms V. RESOURCE ALLOCATION STRATEGIES

of LOS The resource allocation strategies in which doctor’s sehed
w - The service rate of the doctors at station 1. Waile in the front room for station 1 can be determined either in
assume a homogeneous service rate for all doctors. a proactive manner or dynamically depending on the actual
0 - The service rate for investigative tests or treatmerdrrival conditions. The doctor's schedule is designed fosid

at station 2. at the minimum of an hour interval. This is to prevent a
roommaz - The physical constraint in the ED at theschedule that is too nervous with many changes within a
front room. This corresponds to the maximum numbegmall time-interval. We also assume that the back room
of consultation rooms in the real-life set up of the EDrequirement is fairly predictable based on historical datd
Smaz(t) - The maximum number of doctors that can benence back room staffing is pre-processed and is available
deployed at ED (both front and back rooms combined)efore allocation of doctors to the front room.

at timet. This corresponds to the resource capacity in i i i

the real-life. A. Strategies using Square-root Staffing Rule

Sy(t) - The number of doctors required at the back room 1) Strategy HIST - Resource allocation using historical
to serve the demand the back room. The QED regimfgends: The HIST strategy is a proactive strategy that consid-
as per equation 2 is used to ensure that most patier®gs only historical trends taken from the actual data of & rea
(critically ill patients) do not have to wait for a doctor world hospital. This method is based on findings in [8] and

Arrival rate A(t)

Fig. 2.  Our Time-Varying Arrival to ED

at the back room. is used as the benchmark for our other strategies. We apply
« S(t) - The number of doctors to be placed at the fronthe Erlang-R method as presented in Section Ill for arrival t
room. both the back room and front room. We first solve the ODE
« b - The probability that a patient will go for treat- (Equation 3) and apply square-root staffing rule (Equatipn 2
ment/tests. using numerical approximation. The results from staffirlg ru
The following are the constraints for our problem: for front room requirements are subjected to ek room
service level guaranteand physical front room constraint
Sp(t) < Smaa(t) = So(t) (4)  without the back room and physical constraints, this is
St(t) < roommas (5) proven to provide stable queue wait-time (not LOS) over

LOS(t) < LOSmax  (soft constraint) (6) time as shown in [8]. However, with the addition of the
constraints, the number of doctors that can be assigned to

Constraint (4) specifies the back room service level guagne front room may be less than the output from the staffing
antee, (5) specifies the physical front room constraint &d (ryle and the wait-time stability can no longer be guaranteed

specifies the service level constraint.

Resuscitation and Critica Patient arrival
Care Area

This provides the opportunity to develop better strategies
2) Strategy DYN - Dynamic resource allocation using
f|‘~’ real-time data: With the support of enterprise systems and
— real-time monitoring devices today, it is possible to track
the time-varying arrival rates in real-time. With these\eair
rates, we can then calculate thetual time-varying offered

Number of doctors required, Sy(t)

ck) rate, Au(t)

Aoy reom e Doctor staftng | 81 & load for the previous time intervals. One challenge to apply
Number of doctors, this method is that the arrival rates must be recorded in a

batient kowith same oo om0 significantly large time frame such as hourly. However, to
o acuity is in FIFO servicerate, |l Patient discharge approximate the offered loads, one must use a small time-
e e probablity 2 %) interval such as per minute time frame in order to compute

reasonably-sensible offered load for the next time period.
treatment with service femthreatiant, b The DYN strategy is designed to be reactive to real-time
rete,f observation of the arrivals and perform short-term forecas

(such as hourly basis). L&) (t) and R (t) be the real-time
Fig. 1. The queueing model offered load based oactual real-time arrival rates at time




t. The doctors’ requirement (¢ + 1) for the next hour is to the future based on historical information about thevatri
determined by square-root staffing riige(t + 1) = R1(t+ The aim here is to plan a number of hours ahead such that
1) + By/Ri(t+1), whereRy(t + 1) = R/ (t) + £ R} (t). resources in the ED can be better informed or additional
With considerations of constraints 4 and%;(t + 1) is set resources can be better arranged.
to min[S¢(t + 1), Smaxz(t + 1) — Sp(t + 1), 700Mmag)- We define a vectofL, H), whereL denotes the lead-time
) i o o ) and H denotes the time horizon. Between the current time

B_. _Strat_egles_usmg Heuristic Optimization Model with Sym; 514 lead-timeZ_, there will be no change in staffing. This
biotic Simulation is to address the fact that most ED cannot add or remove a

By far, both HIST and DYN strategies rely heavily on thedoctor instantaneously. The variahlé defines the horizon
staffing rule. One major limitation with the use of staffingof re-planning, e.g., plan for the horizon of 8 hours. The
rule is that service level quality constraint may be viadate next planning period is theh+ H. Our optimization model
when we conform to the back room quality constraint antéecomes:

physical front room constraint as the number of doctors ‘L H L+ H
deployed at the front room is limited to thein[S,,q..(t) — min  C) Z S(t) + Cy Z [S(t) — St — 1)]2 (8)
Sp(t+1), roompmaz|. TO remove or minimize the violations, Marey Marey)

an intuition is that one could allocate more doctors in the

revious hour(s) before violation occurs; or to allocata@no . . . .
P ) QPT, with the exception that real-time arrival rates areduse

doctors later to clear the queue. We propose our next T .
strategies (namely HIST-OPT and DYN-OPT) that will useand planning is short-termed. We use #wual arrival rates

/ / 1
heuristic methods to find optimized resource allocation. to calculate 1y (t) and Ry(t) up to timet, then we use

1) Strategy HIST-OPT - Optimized resource aIIocationh'Stoncal arrival rates to compute the staffing requiradiie

using historical trends:The idea for HIST-OPT strategy is penod(t+L,t+L-+ H.)' Thg olpt|m|zat|on s_earch "’."go”.thm
. . - ' to manage any violation within the planning horizéh is
to provide an option for an optimized resource allocation the same as HIST-OPT
using analytics data in the case that real-time is not availa '
Let C; be the cost of labour of deploying a doctor for a single VI. EXPERIMENTAL EVALUATION
unit time ¢t andC,; be the cost if the number doctors in time
t deviates fromt — 1. The deviation cost is included in the
model is for stability of the schedule as we do not wish We design the prototype of our model and named it as
to have a schedule where the number of doctors changée Dynamic Queue Management (DQM). It is capable of
too frequently from hour to hour. We have the followingreceiving both the historical data and real-time data (from
objective function that is subjected to constraints (4)@p ( the live systems). The prototype is developed as an event-
driven simulator to act as the physical systems in the actual
min  Cy Zsf(t) +Ca Z[Sf(t) —Spt-1]* (@) deployment. We termed this as tiEQ)M simulator where
¢ ¢ patient arrival, consultation, treatment and investigatest
We deploy a local search algorithm to search for a schedulevents are simulated using the resources as determined by
The search algorithm finds a timewhere service quality the strategies. An optimization model is built within DQM
constraint is violated. In an attempt to remove the violatio simulator to perform the local searches. We also include
the algorithm searches for a timg nearest tot when a symbiotic simulation systerm the DQM simulator to
(0 < t; < t) and constraints (4) and (5) are not violatecevaluate the performance of schedules produced by the opti-
and increase resource by 1 unittat Next, it finds a time mization model. Both the DQM simulator and the symbiotic
to nearest tot when ¢ < t, < length of simulation) and simulation system are implemented in J&aln terms of
constraints (4) and (5) are not violated and increase resouimplementation, HIST requires only historical data, DYN re
by 1 unit att,. The algorithm selects a schedule that meetguires real-time data. HIST-OPT requires historical daié a
the constraints or one with a lower cost among the 2 solutiortke optimization model, while DYN-OPT requires historical
and repeats the search until either there is no violation atreal-time data and the symbiotic simulation system.
or no further solution for the violation @ The search then  Each experimentis run ov&f0 replications and the result
moves on to the next violation. This search will terminatés an average over the replications. In each optimization fo
when the first schedule without a violation is found or whemMIST-OPT and DYN-OPT, 50 replications are used and av-
maximum number of searches has been reached. If latter, @rage is taken to evaluate the solution. The maximum search
infeasible schedule with the least violation is returned. iteration is set to 300. Evaluation of DYN-OPT candidate
2) Strategy DYN-OPT - Optimized Dynamic resource alsolutions is done in the symbiotic simulation system. In
location using real-time dataThe design of DYN-OPT is DYN-OPT, the lead-time is set to 0 (plan for next hour)
to attempt to address the limitations of DYN which has shornd the planning horizon is set to 8 hours. We derive the
planning time (hence being too nervous to react to changparameters(t), As(t), p,  andb from historical data using
every hour) and HIST-OPT which is not unable to react t@a commercial business analytics software, SAShe time-
demand changes. The intuition behind DYN-OPT is to makearying arrival ratesX,(¢), A;(¢)) are recorded over a week,
use of the known real-time information as well as the forecagach day has its own time-varying arrival rates that change

We deploy a local search algorithm that is similar to HIST-

A. Experimental Setup



every hour, we refer to this as thestorical arrival rates 120 ]

(see Figure 2). The probability of re-entrankes found High

to be 0.4. The average service rates of doctarss 4 per ’g 1001 -
hour. The registration and triage service time is assumed t&c
be exponentially distributed with the mean 1f.2 minutes. \U‘;
The hospital's desired service quality0S,,.... is set to 60 o sof :
minutes. o

To determine the hourly back room minimum requirement. £

Since patients with high severity level must be attendedz 60
almost immediately, we applied the MOL and square-root
staffing under QED regime. The QED staffing will assure that ~ ,,| =~ " '
on the average, the number of patient is less than the number Wed Thu Fri
of doctors and hence ensure minimal wait time. We used that Time (days)
to determine the maximum nl_meer of doct_ors poss_lble at th) Average LOS using HIST staffing under 3 load conditions
front-room based on constraint as stated in Equation 4. R —
For each set of experiments (for all strategies), a simu- o
lation over9 days is taken and the first and last day are 4 100 tow ||
discarded in order to remove the inaccurate results fromg
simulation start-up and winding down. The remainihdays g
represents the 7 days of the week with different patterns ofg 80 |- g
arrivals as observed in real-life. To simulate various-tiéal -
scenarios, we run the experiments under three conditions2
Normal, Low and High load. The normal load condition
assumes the arrival rates to be exactly the same as historic
rates. The low load condition, the arrival rates of on thesday
Thursdays, Fridays, Saturdays and Sundays are halvec In th
high load condition, the arrival rates of the same affected
days are doubled.

|
Sat  Sun Mon Tue

g 60
a

| |
Wed Thu Fri Sat Sun Mon Tue

Time (days)
(b) Average LOS using DYN staffing under 3 load conditions

B. EXpe”memal Results Fig. 3. Results of varying demand for the strategies usiaffisg rule

The first experiment is to compare HIST and DYN (which
use the staffing rule) to illustrate the value of using réakt
information. As shown in Figure 3, we observe that DYN e can see that the staffing rule does provide reasonably
is more capable of reacting to surges. The doctor staffingbod solutions. However, both HIST and DYN do not guar-
schedule generated by DYN is able to keep the average LQatee that the solution can satisfy the service level caimstr
stable under the conditions of low load and normal. Althougls in Equation 6. We provide an example of use of the
the average LOS is longer under high load conditions, wgptimization model in DQM to find a solution that satisfies
can see the doctor’s schedule generated by DYN allows thige service level constraint. Figure 4 shows that ED may be
queue to clear. In the case of HIST, if the load is high, thaple to achieve a performance within the desired servia lev
average LOS remains higher than desired service quality oMgith the use of an optimization model such as HIST-OPT.
the period of demand surges (Thursday to Sunday). This is observable under normal and low load conditions.

Table | shows the average number of doctor's hourshe HIST-OPT strategy requires additional increase of only
required to be deployed over a week under the given strategydoctor’s hours per week compared to HIST. However, we
and demand conditions. Supposed if an ED, over time, haged to understand that this performance is not guaranteed
equal probability of experiencing high load, normal load anbecause a patient may require more time to be monitored
low load, then the average cost of using a dynamic strategind be treated with quality care in the real-life situation.
(computed to be average of 650 doctor’s hours) is lower tharhe results in this figure also show that HIST-OPT is a static
that of a static one which based on historical data (static iethod and hence is not able to react to high load conditions.

681 doctor's hours). Experimental results that appear to be counter-intuitive t
us are the results of DYN-OPT. DYN-OPT, having the fea-
Normal TJZE Tow T Normal E:i(g'h Tow tures of using_ regl-time data as v_veII as historical inteitv
681 681 6811 678 743 530 suggest that it will be one that is more flexible and react
well to surges. However, we observed that the performance
of DYN-OPT is not ideal. In particular, under the high-load
test for demand surges over 4 days (Thursday to Sunday)
as shown in Figure 5, we can see that at every x-axis ticks

TABLE |
AVERAGE NUMBER OF DOCTORS HOURS PER WEEK



140 —— =
Normal
High
Low

120 I

100 *

Average LOS (in mins)
s
T
|

D
(=}

40
Wed

|
Sat  Sun Mon Tue
Time (days)

| | |
Thu  Fri

to release doctors to the backroom operations during low-
peak period. In today’s technology where real-time data is
easily accessible (e.g., patient real-time movements to be
tracked and data can be fed quickly into live systems),
we believe that our proposed concept of dynamic resource
allocation is implementable. Our simulation prototypehwit
optimization model and symbiotic simulation system allows
modeling and evaluation of intelligent staffing strategies
real-world complex ED process that provide results whieh ar
helpful to healthcare decision makers. Our strategiesigeov
alternatives for the decision makers to select an effective
method based on each hospital’s appetite for performance,

Fig. 4. Performance of HIST-OPT under 3 load conditions

(1]
300 |- .
(2]

200 |- a

(3]

Average LOS (in mins)

100
(4]

(5]

Sat
Time (days)

Sun

Fig. 5. Performance of DYN-OPT over the 4 days of demand suiige

the high-load test [6]

(which is the 8-hourly DYN-OPT's horizon), there is a drop [7]
in the average LOS at the start of each horizon because the
method will indicate that more doctors are required to serveg)
the patients under unexpected high load. The entire hoirizon
then planned based on historical arrival which is only hélf o 9
the actual arrival. As such, the queue builds up again during
this period when there exists no resource planning until the
next horizon. Although, DYN-OPT is able to react to demandt¥]
surges by lowering the LOS at the start of each horizon, wey
see that strategy DYN is better at handling surges. This is
because DYN has the opportunity to adjust the resources,
at every hour. However, one may find DYN a strategy too
reactive and hospital may not be able to find doctors within
a short notice. As such, we see more opportunity to further
improve DYN-OPT strategy or investigate how the DYN-
OPT parameters such as horizon can affect or improve tfi]
performance. DYN-OPT is potentially a good short-term
planning strategy as we recognize through DYN and HIST-
OPT that there are benefits in using real-time informatiofi4]
and an optimization method.

VII. CONCLUSIONS AND FUTURE WORKS 5]

In this paper, we proposed several strategies for resource
allocation at the ambulatory area of an ED, both proacti
and dynamic methods, while maintaining the service quality
at the back room. We found in our experiments that real-timi@7]
information can be leveraged to manage demand surges or

cost and implementation complexity.
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