Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

3-2012

On the intraday periodicity duration adjustment of high-frequency
data

WU Zhengxiao
Singapore Management University, zxwu@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research

b Part of the Econometrics Commons

Citation

WU Zhengxiao. On the intraday periodicity duration adjustment of high-frequency data. (2012). Journal of
Empirical Finance. 19, (2), 282-291.

Available at: https://ink.library.smu.edu.sg/soe_research/1932

This Journal Article is brought to you for free and open access by the School of Economics at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1932&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published in Journal of Empirical Finance, 2012 March, Volume 19, Issue 2, Pages 282-291
http://doi.org./10.1016/j.jempfin.2011.12.004

On the intraday periodicity duration adjustment of high-frequency data

Zhengxiao Wu *

Department of Statistics and Applied Probability, Risk Management Institute, National University of Singapore, 117546, Singapore

ARTICLE INFO ABSTRACT

Article history: In the last decade, intensive studies on modeling high frequency financial data at the transac-
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Available online 3 January 2012 is the cubic spline procedure proposed by Engle and Russell (1998). In this article, we first

carry out a simulation study and show that the performance of the cubic spline procedure is
not entirely satisfactory. Then we define periodicity point processes rigorously and prove a
JEL classification: time change theorem. A new intraday periodic adjustment procedure is then proposed and
c22 its effectiveness is demonstrated in the simulation example. The new approach is easy to

Eg; implement and well supported by the point process theory. It provides an attractive alterna-
tive to the cubic spline procedure.
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1. Introduction

The recent development of computer, web and database technology facilitates both theoretical and empirical studies of high-
frequency/tick-by-tick data. Since the pioneer work by Engle and Russell (1998), intensive research on modeling financial data at
the transaction level has been conducted. The literature in this direction has evolved into a new area of financial research, often
referred as “high-frequency finance”.

In analyzing tick-by-tick data, one challenge that a conventional econometrician would face is that transaction data inherently
arrive in irregular time intervals and cannot be analyzed easily by standard fixed time interval methods in econometrics. Rather
than aggregating the tick-by-tick data up to fixed time intervals so that the standard econometrics applies, Engle and Russell
(1998) introduces the point process models to the econometrician community. The advantage of the point process models is
that they can extract information from the irregular time intervals between transactions (which are called “durations” in Engle
and Russell (1998)), hence knowledge and insight can be attained on the market activity. This is illustrated by Dufour and
Engle (2000), Engle (2000, 2002) and Easley et al. (2008), among others.

The original model in Engle and Russell (1998) is called the autoregressive conditional duration (ACD) model. It can be
regarded as the counterpart of the GARCH model for duration data. Since its introduction, the ACD model and its various exten-
sions have become an important tool for modeling the high-frequency data (for alternative approaches, see for example, Zeng,
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2003). Hautsch (2004) provides a thorough discussion and comparison of the ACD models. Pacurar (2008) gives a comprehensive
survey on both theoretical developments in ACD modeling and empirical studies using financial data. And as noted in Pacurar
(2008), the ACD literature is still rather young and not as rich. For example, the A-FIGARCH model (Baillie and Morana, 2009),
which accounts both long memory and structural change in the volatility, is yet to be applied to the duration data.

To implement the ACD models, people commonly follow the two-step procedure in Engle and Russell (1998), in which the
duration data are first adjusted to remove the periodicity; and then the parameters of the ACD models are estimated based on
the adjusted durations. The most common periodicity in financial markets is the intraday periodicity or sometimes referred as
the diurnality, which stems from market characteristics such as opening/closing of trading or lunch time for traders. Engle and
Russell (1998) reports higher trading activity at the beginning and close of a trading day, and slower trading activity in the middle
of the day based on an IBM stock transactions data set.

To produce the diurnally adjusted durations, Engle and Russell (1998) approximates the expected duration at each moment of
a day by a cubic spline, whose nodes are set at each hour or half an hour. The diurnally adjusted durations are obtained by dividing
the original durations by the corresponding value on the spline. This approach to removal of intraday periodicity is currently
dominant in the empirical studies of high frequency finance (Bauwens et al., 2004; Pacurar, 2008). In this article, we refer it as
the cubic spline approach.

In the literature however, there has not been any assessment of the effectiveness of the cubic spline procedure (Pacurar,
2008). An unsatisfactory periodicity adjustment procedure at the first step could lead to a bad fit of the ACD models at the second
step even if the models were adequate.

Furthermore, to the best of our knowledge, point processes with periodicity have never been formulated explicitly in the
literature. This is among the reasons why no assessment has been attempted for the cubic spine approach.

In this article, the performance of the cubic spline approach is evaluated by a simulation study. The result shows that it
performs rather poorly. This motivates us to propose a new periodicity adjustment method for duration data. Our method is
based on an explicit formulation of the periodic point processes. We call the new approach the time change procedure. Compared
with the cubic spline procedure, the time change approach eliminates the needs of setting nodes. In addition, in the cubic spline
approach, one also needs to decide which time point best represents the duration, so that the duration is adjusted by the spline
function valued at that point. The time change approach bypasses this difficulty. We demonstrate that the time change procedure
is easy to implement and it gives a better removal of the intraday periodicity in the simulation study. The data and the code used
in this article are available from the author on request.

The rest of the paper is organized as follows, Section 2 describes and assesses the cubic spline approach; Section 3 defines the
periodic point processes and develops the theoretical foundation of the time change procedure; Section 4 demonstrates the new
procedure on the same data used in Section 2 and compares its performance with the cubic spline procedure; Section 5 summa-
rizes the conclusion and discusses future work; Section 6 collects the proofs of the theorems; the Appendix presents an algorithm
to generate transaction times following a nonstationary Poisson process.

2. Effectiveness of periodicity adjustment procedures

In this section we propose a formal method to assess the effectiveness of periodicity adjustment procedures. The idea is to
simulate transaction times that follow a known nonstationary Poisson process and then carry out the periodicity adjustment.
We expect the adjusted durations to be approximately independent for an effective adjustment method.

2.1. Data

We illustrate with an IBM stock transaction data set in year 2005. The data are from the Trade and Quote (TAQ) database
supplied by New York Stock Exchange (NYSE). Following the practice in Engle and Russell (1998), three days are deleted from
the 252 trading days in this one year sample. A halt in IBM trading occurred on June 1st, 2005 and there were scheduled partial
closures on November 11th and November 25th, 2005. After deleting these three days there are a total of 2,118,217 transactions
executed in 249 trading days. The time stamps of the transactions are recorded in seconds. As IBM is traded from 9:30 EST to
16:00 EST during each trading day, the daily time stamps (in seconds) take the following values: 0, 1, 2,..., 23,399, 23,400. For
example, a trade occurs after 9:30:00 and before 9:30:01 will have a daily time stamp 1. Fig. 1 depicts the histogram of the
daily transactions times. The “U” shape confirms the time-of-day effect reported in Engle and Russell (1998). The peculiarly
frequent transactions around the open are less obvious in Fig. 1, but there is 23 s in the first minute having trading counts
above 500. These extreme high frequency transactions are caused by the opening auction (see Engle and Russell, 1998 for details).

Now we simulate transaction times for 60 days with a nonstationary Poisson process, so that the empirical distribution
of the simulated transaction times resembles the histogram plotted in Fig. 1. Specifically, we set the intensity function
A(t) to be

A(t) =¢;/249, for i—1<t<i and i=1,2,...,23400, (1)
where ¢; is the number of trades that have daily transaction time i in the 249 trading days. Similar to the real data, a simulated
event has time stamp i for an arrival time t€ (i —1,i] and hence the simulated time stamps are also whole numbers. Denote
the set of time stamps by {t;}, where the index j starts from 0. We refer the reader to the Appendix for a simple and efficient
algorithm derived for generating {t;}.
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Fig. 1. Histogram of IBM stock transaction times in 249 trading days. Time 0 is to be interpreted as 9:30:00 EST and time 23,400 is 16:00:00 EST.

2.2. Cubic spline procedure

We apply the cubic spline procedure on the simulated data. Let x;=t;— t;_ ; be the interval between two arrival times, which
is also called the raw duration. Thus the index j in the sequence {x;} starts from 1. The diurnally adjusted durations are
given by

X = xj/(p(tj,l) )

where @(t) is a cubic spline function. Engle and Russell (1998) suggest to set nodes at each hour from 10:00 to 16:00, with an
additional node at 15:30 because activity drops off quickly at the end of the day and the additional node can provide more
flexibility. The values of ¢(t) at the nodes are decided by the average duration over the 10 min prior to the node times. For
instance, the value of ¢(t) at 10:00 is the average duration of trades occurred between 9:50 to 10:00. Fig. 2 plots the function
©(t) for the simulated data. It shows shorter durations on average at the beginning and close of the trading day, and longer
durations in the middle of the day. This pattern is expected, since shorter durations indicate higher trading activity, and longer
durations are signs of slower trading activity.

The diurnally adjusted durations {X;} are calculated by Eq. (2). This series would have approximately zero intertemporal
correlations if the cubic spline procedure has removed the periodicity successfully. We employ a Ljung-Box test to formally
test the null hypothesis that the first 15 autocorrelations are 0. Under the null hypothesis, the test statistics follows asymptotically
a Chi-squared distribution with 15 degrees of freedom. The test statistics produced for this series is 383.1946 with a p-value 0.
Hence the null hypothesis is rejected and it implies that the adjusted durations cannot be uncorrelated.

Usually zero durations are removed when one applies ACD models to tick-by-tick data (Engle and Russell, 1998; Pacurar,
2008). Engle and Russell (1998) also states that “A model of the trading process would be contaminated by including opening
trades, hence transactions occurring in the first 20 min of the day (9:30-9:50) were deleted”. We clean the data by removing
the zero durations and transactions between 9:30 and 9:50, and perform another Ljung-Box test on the first 15 autocorrelations.
The test statistics is 59.2777 with a p-value 3.355e-07. The test statistics is less extreme, but there is still strong evidence that that
the cubic spline procedure does not effectively remove the intraday periodicity.

In fact, it is not surprising that the cubic spline procedure does not perform well. There are typically hundreds of transactions
each hour. A cubic spline approximation with hourly nodes is obviously too crude. Nonparametric kernel methods or a cubic
spline with finer node intervals are expected to have better performances (see Veredas et al., 2007, and references therein),
but they are computationally more expensive. Furthermore, a better estimate ¢(t) does not solve all the problems. In Eq. (2),
the raw duration x; is adjusted by ¢(tj_4), where tj_4 is the starting time of the duration x;. Imagine the scenario that in two
different trading days, two duration intervals have the same starting time but with different lengths. Then the duration-based
adjustment procedure would modify these two intervals using a same seasonal factor. This is not a good practice: consider the
extreme case when one interval is 1 s long and the other one is 1 hour long, although they share the same starting time, the
diurnality definitely should have different impact on them. In addition, if ¢(tj—4) is an acceptable adjustment factor, it seems
equally plausible to use t; the ending time of the duration, to represent the duration. In other words, one can alternatively

use ¢(t;) as the adjustment factor and let X; = x;/¢(t;). Or presumably better, one can consider X; = xj/go(%) The choice

of the time point representing the duration interval seems rather subjective. It could have a non-negligible impact in the data
analysis and modeling, especially when the trading is less active and the durations are long. This difficulty is inherent in all
the duration based adjustment procedures. However, it will be shown in Section 4 that the time change approach circumvents
this difficulty.



3. Periodic point process
3.1. Notation and definitions

To examine the periodicity adjustment procedures more rigorously, it is indispensable to work on an explicit formulation of
the periodic point processes. Point processes have been a well studied subject in the statistics literature (see, e.g., Daley and
Vere-Jones, 2004; Karr, 1991). In high frequency finance applications, it is the marked point process with a conditional intensity
that catches the most attention of the econometricians, because of the tractability in its modeling and in its statistical inferences.

Let (Q,F,P) be a probability space. Let N=}_ i 1 6(r; denote a simple point process on R, adapted to a filtration {H}, where
H; cF, {T;} is the increasing sequence of the event arrival times (transaction times, for instance) and 6r; is the Dirac measure
concentrated on the point T;. Then Ne=)_ ;1 1(1,<y defines the counting process associated with N. We assume E(N;) < for
each t to avoid the concept of local martingales in the definition of the conditional intensity.

Definition 3.1. A positive, H-predictable process A is the (H;)-conditional intensity of N (or N), if
t
N— [ Aydu
is a (H¢)-martingale.
In financial markets, tick-by-tick data include not only the transaction time, but also other variables such as price, volume, etc.

These are modeled by the marks in a marked point process. The definition of the conditional intensity of a marked point process
is more involved. Suppose that M=}_ {16,z is a marked point process adapted to a filtration {H,}, with mark space (EE).

In practice, usually {H,} is the completion of FM = o(M,(B):0<s<t,BEE), which records the internal history of M; E is often a
subset of a Euclidean space and E is its Borel o-field.

Definition 3.2. (Karr, 1991) A stochastic process (y¢(B):t>0,BEE) is the (H.)-conditional intensity of M provided that

1. For each t, B— y,(B) is a random measure on E;
2. For each B, the process y/(B) is the (H,)-conditional intensity of the counting process M(B) = =1 1(1,< ¢z 5).

We propose to define the periodic point processes by modeling their conditional intensities.

Definition 3.3. A simple point process N=}_ i 1 61y with conditional intensity A is periodic with period p if there exists a positive,
deterministic, periodic function s(t) with period p such that \; = \,/s(t) is first-order stationary, i.e. E(\;) exists and is finite and does
not depend on t.

Definition 3.4. A marked point process M= }_ {1 6(r, zy with conditional intensity (7y,(B) :t=0,BEE) is periodic with period p if there
exists a positive, deterministic, periodic function s(t) with period p such that y{(B) = y«(B)/s(t) is first-order stationary for all BE.

In the above definitions the scale of s(t) can be selected arbitrarily. A specific choice of scale will be made in Section 3.2. Here-
after attention will be focused on the simple point process. The idea extends to the marked point process parallelly.

3.2. Time change theorem

Let N=)_ i 16(r, be a periodic simple point process with period p on R, with H.-conditional intensity Ae=S(t)A;. Assume
s(-) and A" are bounded hereafter for simplicity.
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Fig. 2. Cubic spline estimate of daily pattern for transaction durations for the simulated data. Time O is to be interpreted as 9:30:00 EST and time 23,400 is
16:00:00 EST.



As \; is first order stationary, it follows that
E(Ny pe—N,) = E( Je )\udu) = E(\) [7 s(uydu.

The time change function a(t) is defined by
a(t) = [ s(u)du = E(N)/E(N,).

Since s(-) is positive and bounded, it follows that a(-) is continuous and strictly increasing. We define the time inverse of
a(-) by
a ' (t) = inf{s:a(s) > t},t>0.

It is easy to see that a~!(-) is also continuous, strictly increasing and a(a™'(t))=a~ '(a(t)) =t for t>0. Our periodicity
adjustment procedure is based on the following time change theorem.

Theorem 3.5. Define
Di(®) = Ng-1 (), forall t>0 and 0<Q,
and Gy=Hg-1(y), then D, is a simple point process with G.-conditional intensity Ag-1(p.

Note that E(D; , s— D;) does not depend on t. In fact, the theorem states that if we have constructed a clock which reads a(t)
when the actual time is ¢, then according to this clock the point process has a first-order stationary conditional intensity. Hence
the expected number of the events in every unit time is constant. In other words, the seasonal factor s(t) is removed if we time the
events by the constructed clock.

We suggest to scale s(t) so that the clock we constructed reads p when the actual time is p (recall that p is the period of s(t)).
More precisely, scale s(t) such that

p=a(p) = [{s(u)du. 3)

In this way, the clock is as fast as a normal clock in large, which can be seen from a(p) =a~ '(p) =p, a(2p) =a~ }(2p)=2p,....
With such a s(t), we denote | =E(\"). Hence one expects to observe [ events every unit time according to the clock.

3.3. Estimate

In financial applications, a(-) is always unknown. It is necessary to estimate a(-) to apply the time change theorem.
Suppose the periodic simple point process N is observed up to time np. We write

Nt = Ni_1yppe—Nqyp, for i=1,2,....n.

An estimate of a(-) is given by

:PZL ‘
np

a,(t) ,for 0<t<p. (4)

From the definition, d,(0) = 0 and a,(p) = p, hence a, has the right scale as requested in Eq. (3). Now we investigate the
asymptotic property of d,(t). Note that N in general is not stationary, however, it is plausible to assume that {N'} are stationary
and ergodic when they are considered as a sequence of counting-measure (on [0,p))-valued random variables. The following
theorem implies the strong consistency of aj.

Theorem 3.6. If the counting-measure-valued random variables {N'} are stationary and ergodic, then

sup |a,(t)—a(t)|—0 as.
t<[0.p]

asn— o,



One can also establish the asymptotic normality for a, under certain mixing conditions. Bradley (2007a, 2007b, 2007c)
provides a comprehensive and up-to-date survey of various mixing conditions. Let A and B be sub-o-fields of F. Define

(A, B) = sup{|P(ANB)—P(A)P(B)| : A€ A,B< B}.

Extend the one-sided stationary sequence {N'i=1,2,...} to the two-sided stationary sequence {N':i€Z} and let F?=o0(N':
a<i<b).Our theorem is based on a result by Ibragimov (1962). See Ibragimov and Linnik (1971) or Hall and Heyde (1980) for a proof.

Lemma 3.7. (Ibragimov, 1962) Suppose {X;,i€Z} is a stationary sequence with EXo=0, E|Xo|* " ¢<e for some ¢>0. Let cix(n) =
a(o(X;:i<—n),0(X;:i>0)) and suppose

3 )0
n=1

If Sy =X + ... + X, then S,/v/i-%> N(0,02), where 02 =EX3 +2 3_ i 1 EXpX;<<®.

Theorem 3.8. If the counting-measure-valued random variables {N'} are stationary. Let ae(n) = o(FZ I, F3) and suppose

> a(n)' "<, for some 6> 0. (5)
n=1

Then

vi(a(n—a(e) - N(0,07),

and
2 2
-2

O?ZP Oll(t)+a(t)(;§iz(t) Pa(t)Ulz(f)’ (6)
where

o (t) = Var(N°) +2 " Cov(NO, N,

0 = Var(i) +23-con(o, )

015 (t) = 09 (t) = Cov NO,N0 + Cov NO,Ni + Cov NO,Ni

() =0 (N2.05) + 3 (Cov(N?. Ny ) + Cov (8. )
and

Op(t) = Var(Ny ) +2 5 Cov(Np.Ny ).
i=1

Condition (5) is satisfied if {N'} are M-dependent, that is, if {N;i<0} and {N;i>M)} are independent. Condition (5) can be
further relaxed by using a result in Doukhan et al. (1994) in place of Lemma (7). Central limit theorems with other type of mixing
conditions such as p-mixing, ¢-mixing can also be established. We will not enter into the details of these proofs since they do not
give significant improvements for applications.

4. Time change procedure

Theorem 3.5 provides the theoretic basis for the following two-step intraday periodicity duration adjustment procedure:

1. Estimate of the time change function a(t) by using (4).
2. The diurnally adjusted durations are given by

rj) —(1(

Unlike the cubic spline procedure, the time change procedure (7) makes the adjustments at the transaction times. All the
information of the data is preserved during the adjustment in the sense that one can recover the original data (i.e. the transaction
times) by reversing the time change. In contrast, the cubic spline procedure (2) loses information because the starting time ;4
does not fully characterize the duration.

tH). 7

Xj:a<
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Fig. 3. Unscaled estimate of s(t) from the simulated transaction data. Time O is to be interpreted as 9:30:00 EST and time 23,400 is 16:00:00 EST.

We illustrate the time change procedure with the simulated 60 days transaction data described in Section 2. In this data set,
the seasonal component s(t) is proportional to the intensity function (1) of the nonstationary Poisson process and A" is a constant.
The period p is 23,400 (seconds). The adjusted transaction times {a(t;)} are approximately the event arrival times of a stationary
Poisson point process. Hence

{at)-a(t1)} (8)

are approximately ii.d. exponential random variables. Note that {a(t;) —a(tj—1)} would be exactly i.i.d. exponential random
variables, if {t;} were not rounded (to integers).
Before estimating a(-), one can estimate s(t) roughly by

fi

s<t)°c®7

for i—1<t<iand i=1,2,...,23400,

where f; is the number of trades that have daily transaction time i in the simulated 60 days. We plot the unscaled $(t) in Fig. 3. It
has a shape similar to the underlying intensity function A(t).
Let

~ t A

a(t) = [ $udu, 9
and we rescale d(-) so that a(23400) = 23400. It is easy to see that a(t) is equal to a,(t) given by (4) when t=0,1,2,...,23400.
Fig. 4 displays the function a(t). As expected, the curve is steeper near the open and close of the market. It is flatter in the middle

because of the lower trading activity around lunch time. In other words, the clock we constructed runs faster near the open and
close of the market, and it runs slower in the middle of a day.

x 10*
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0.5} R

0O 0.5 1 1.5 2
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Fig. 4. Scaled estimate of a(t) from the simulated transaction data. Time 0 is to be interpreted as 9:30:00 EST and time 23,400 is 16:00:00 EST.



Table 1
Ljung-Box test statistics for uncleaned data and cleaned data (recall that the cleaned data are obtained by removing the zero durations and transactions occur in
the first 20 min).

135 (p-value) Cubic spline approach Time change by a(-) Time change by a(-)
Uncleaned data 383.19 (0) 259.17 (0) 186.07 (0)
Cleaned data 59.28 (3.355e-07) 18.83 (0.22) 19.20 (0.20)

One can apply Theorem 3.8 to construct asymptotic confidence intervals. It is not hard to show that in this setting

o2 = WO =aO/P) 1y arefore
2 l . :

a)(1—a(t)/p)

nl

a() 2, <a(6)<a(0) + 2 [ 7P (10)
gives an asymptotic 100(1 — a)% confidence interval for a(t), where [ = Npp/(np) is an estimate of | and z, is the 1 — /2 percen-
tile of the standard normal distribution. In the simulated example, a(t) is known hence we can calculate the estimation error
a(t)—af(t). Fig. 5 depicts a(t)—a(t) and the 95% confidence interval computed from (10). It can be seen that as expected the esti-
mation error stays in the confidence interval most of the time.

Next, we calculate two sets of diurnally adjusted durations {x;} by Eqs. (7) and by (8) respectively. Again we are able to apply
(8) because the underlying a(t) is known in this simulation study. In real applications, only (7) is available to us. The same Ljung-
Box tests as in Section 2 are carried out on both the uncleaned data and cleaned data, to test the null hypothesis that the first
15 autocorrelations are 0. Table 1 summarizes the results. For both uncleaned and cleaned data, the time change approach
leads to much smaller Ljung-Box test statistics than the cubic spline procedure. In particular, the Ljung-Box test does not reject
thenull hypothesis at a 5% significance level when we adjust the cleaned data by the time change procedure. For the uncleaned
data, however, even if we apply the time change by a(t) which won't be available in practice, we are not able to eliminate the
autocorrelation and cannot accept the null hypothesis. We believe that this is caused by the rounding of the transaction times.
In fact, if the frequency of the transactions is so high that there are typically several trades within each second, then zero durations
will cluster, which introduces strong autocorrelations. This is the underlying reason why Engle and Russell (1998) suggest to
delete these “contaminated” data.

5. Discussion

Various ACD models have been proposed to model the diurnally adjusted durations. However, their diagnostic tests often
indicate that the models do not fit the data well. As reported in Pacurar (2008): “Interestingly, several authors (Engle, 2000;
Engle and Russell, 1998; Fernandes and Grammig, 2006; Zhang et al., 2001, among others) reveal substantial difficulties in
completely removing dependence in the residual series, which suggests that the question of the most appropriate model
for trade durations is far from being answered.” The lack of fitness of their models can be caused (partially) by the ineffective
periodicity adjustment procedures that they use. After all, cubic spline procedure is only an ad hoc method. Besides the location
of the nodes, one also needs to decide rather arbitrarily which time point (the starting time, the ending time, or the mid time
point) best represents the duration so that the duration is adjusted by the value of the spline function at that specific time
point. On the other hand, the time change approach is well supported by point process theory and its performance is superior

Estimation error of a(t)

0 0.5 1 1.5 2
Time (in seconds) during a day x 10*

Fig. 5. The plot of a(t)—a(t) for the simulated transaction data. Time 0 is to be interpreted as 9:30:00 EST and time 23,400 is 16:00:00 EST. Dotted lines give the
asymptotic 95% confidence interval computed from (10).



to the cubic spline procedure in our simulation study. The implementation is easy. Hence, we recommend the time change
procedure toall the practitioners of ACD models.

In an unpublished working paper, Russell (1999) proposes an autoregressive conditional intensity (ACI) model. He estimates
the seasonal intensity by linear spline with hourly nodes. Bauwens and Hautsch (2006) extends Russell's work to the so-called
stochastic conditional intensity (SCI) model, and they estimate the periodicity from the durations also by the spline method.
Similar spline procedure is found in Bowsher (2007). We believe that the time change approach is an attractive alternative to
the spline procedure in these intensity-based models as well.

Andersen and Bollerslev (1997, 1998) investigate the intraday periodicity in the return volatility in foreign exchange and
equity markets, using aggregated five minutes return data. As noted in Engle (2000), such aggregates can lead to loss of infor-
mation. It would be interesting to study the problem based on the original transaction level data. The point process and the
time change procedure would play a role here. Future work is to be done in this direction.

6. Proofs

Proof of Theorem 3.5. Fix t,s>0, then it suffices to show that

E(D;5|G;) = D; JrE( :H)\Z—l(u)du‘Gt),

Since N; is a periodic simple point process with H,-conditional intensity A,, we have

E(Dess|Gi) = E(Nor1 s |Ha 1) = N1 + E(jj:g)“) NodulHy1) = Do+ E( [ N1y d (a7 ) [y
=D, + E(_[;“ S()\L;I:;;Z"V)))dv Ha,m> =D+ E( [ N dv|Gy).

We write v=a(u) in the third equality. The fact that%a‘] (v) = s(a—lw is used to get the fourth equality. O
Proof of Theorem 3.6. Fix t, then {N!} are stationary and ergodic (real valued) random variables with E(N}) = la(t). The Birkhoff's
ergodic theorem implies n= 'Y "_;Ni—la(t) as. When t=p, n~! > N; = %—»la(p) = Ip. Therefore, a(t) = PZNL:;; =
W—»a(t) a.s. Since a, is a sequence of increasing functions that converges pointwise to a(t) which is bounded and

continuous, it follows that supc(o ,|@n(t)—a(t)| =0 as. (see, for example, Durrett, 2005, page 59).

Proof of Theorem 3.8. Fix t and note that N! is stochastically bounded by a Poisson random variable with parameter psup;
{A\ss (t)}<e (recall that we assume that A" and s(-) are both bounded). Hence E|N?|"<y, for any r> 0.

We first show that

LN
il e | (40| (o (218 24)
n

by the Cramér-Wold device. Let u,vER, Xi=u(Ni—Ila(t))+ v(N{, —Ip) and S,=X;+...+X,, it suffices to show that
Sn/V/n 4, N(0, 12041 (t) + V2O (t) + 2uvoyy(t). Clearly {X;} are stationary with mean 0 and E|Xo|" <<, for any r> 0. Furthermore,
since  o(X;)Co(N)), it follows ax(n)<a(n). Hence 2on ax(n)1’5<°<>. Let c¢= %—2, Lemma 7 implies that
Su/v/ -5 N(0, 12071 (£) + V20 (t) + 2uv0ra(8).

Next we employ the delta-method with function f(x,y) = x/y. It follows that

\/ﬁ< %Ni_a(r)) KR N<0ypzon<r>+a2<t>on<t)—2pa<t>olz<t>>
p I )

an p4 12

2 2
VA, () —a(t) _d>N<07P o () +a (t)zgiz(f)_ZPa(f)Uu(t)) O
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Appendix. Simulate transaction times with periodicity

Suppose one observes the transaction times for n trading days. Let s(1)<s(2)<... <s(m) be the order statistics of the superpo-
sition of the n days' daily time stamps. They are integer numbers taking values in {0,1,2,...,p}. Hence an empirical intensity
function is given by

A(t) =ci/n, for i—1<t<iand i=1,2,...,p, (11)

where ¢; is the number of trades that have daily transaction time i in these n days. One can see that n=249,m=2118217,
p=23400 in Section 2.1.

Now we would like to simulate transactions which follow a nonstationary Poisson process with intensity (11). The simulated
transaction has time stamp i if its arrival time ¢ satisfies i — 1<t <i. We suggest the following algorithm:

1. setj=0 and sum=0,
2. while sum<m, do
(a) generate E;~Exp(n), where Exp(n) denotes an exponential distribution with mean n,
(b) sum=sum-+E;
(c) oj=Isuml, i.e., round up sum to an integer o;.
(d) j=j+1.
Then {s,} give us the simulated time stamps. The validity of the algorithm is a consequence of Theorem 3.5.
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