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Statistics and Its Interface Volume 6 (2013) 53–64

Collusion set detection using a quasi hidden
Markov model∗

Zhengxiao Wu
†
and Xiaoyu Wu

In stock market, a collusion set is defined as a group
of individuals or organizations who act cooperatively with
an intention of manipulating security price. Collusion-based
malpractices impose large costs on the economy, but few
techniques have yet been developed for collusion set detec-
tion.

In this article, we propose a quasi hidden Markov model
(QHMM) approach. In particular, we consider the trans-
actions as a marked point process with hidden states, and
we calculate the class conditional probabilities to identify
the malicious transactions. The detection algorithms associ-
ated with the model are recursive, hence suitable for online
monitoring and detection. The QHMM approach has sev-
eral advantages over the existent methods. For example, it
incorporates the transaction times into the model naturally,
and the model parameters can be estimated from the data
systematically. We illustrate the models with examples and
the QHMM performs well in our numerical experiments.

AMS 2000 subject classifications: Primary 62M99,
60K35; secondary 62P99.
Keywords and phrases: Collusion set, Fraud detection,
Hidden Markov model, Quasi hidden Markov model.

1. INTRODUCTION

In financial industry, there are individuals and organi-
zations who exploit dishonest or deceitful means to realize
personal gains. Examples include money laundry, embez-
zlement, security fraud, to name a few (see [13] and the
references therein). Different financial crimes have different
criminal strategies and they may vary from time to time. In
some cases, individuals or organizations use modus operandi
of collusion to achieve illegal financial gains. In this study,
we focus on one particular type of collusion-based financial
crimes – circular trading.

In circular trading, unscrupulous colluders reach mutual
agreements to manipulate stock with an intention of in-
fluencing the price. They circulate large amount of shares
within a short period of time to create a false impression
of heavy demand. Other investors are often tricked by the

∗This work is supported by MOE grant R-155-000-105-112.
†Corresponding author.

fraudulent information and rush for the stock. The price
rises dramatically as a result. When the price reaches a pre-
determined level, the collusion set sells their shares and re-
alizes substantial profits. As the high price does not reflect
the true value of the stock, and due to the large-scale selling,
the price typically crashes down to its original level or even
lower, resulting in great loss to the other investors.

Circular trading damages the fairness and integrity of the
market, and imposes large costs to the economy. To facilitate
fair practices, financial regulators and authorities have en-
forced laws and guidelines to regulate participants in stock
market activities. However, it is believed that most collusion
sets remain undetected due to the large size of the trading
database, number of participants and complexity of trading
behaviors. Any individual transaction in circular trading is
often superficially legal. Malpractices can only be detected
when the relevant transactions are appropriately grouped
together, but the evidence of such activity is often hidden
deeply inside the databases and can be extremely difficult
to obtain. On the other hand, victims of the malpractice are
rarely aware of them being victimized [2]. Without obvious
victims, regulators face difficulties in obtaining information
during the investigation.

There have been only a few statistical studies on collu-
sion set detection. In 2000, Palshikar and Bahulkar [9] pro-
posed a pattern recognition based approach. They applied
fuzzy logic tools to specify and identify the trading patterns.
As trading strategies vary from time to time and trader to
trader, intensive market investigations and considerable do-
main knowledge are required to fine-tune their model con-
stantly, which imposes great limitations on the method.

Palshikar and Apte (2006) suggested another approach
– using a graph-clustering algorithm to detect the collusion
set [8]. The intuition is that malicious transactions have cer-
tain characteristics. For example, the malicious transactions
typically have large trading volumes, and their buyers and
sellers are from the same group of participants [1]. Palshikar
and Apte proposed to pre-process the data by summarizing
the transactions in a specific time window. The cumulative
trading volume between each pair of traders is recorded. Pal-
shikar and Apte then considered the graph with the traders
as the vertices. The dissimilarity between the vertices is de-
fined so that a large cumulative trading volume leads to a
small dissimilarity between each pair of traders. Clustering
algorithms are applied and the cluster found is identified as
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Table 1. Partial malicious transactions on DSQ security

Date Trade time Buying Client Selling Client Volume Price (Rs) Value (Rs)

15-Feb-00 11:14:07 Hulda Hulda 50000 1529 96.45 mil
15-Feb-00 11:14:27 Hulda Hulda 50000 1529 96.45 mil
08-Mar-00 13:46:08 Hulda DSQ H 25000 2492 62.3 mil
08-Mar-00 13:46:52 Hulda DSQ H 25000 2485 62.125 mil
08-Mar-00 13:47:22 Hulda DSQ H 10000 2486 24.86 mil
08-Mar-00 13:47:40 Hulda DSQ H 25000 2487 62.175 mil
08-Mar-00 13:48:08 Hulda DSQ H 15000 2493 37.395 mil

the collusion set. Palshikar and Apte showed that this pro-
cedure is effective when the collusion set is present in the
studied time window and the input parameters of the clus-
tering algorithms are well-chosen. However, the procedure
outputs a collusion set candidate even if there is no collu-
sion set in the investigated transactions. The procedure does
not give a probabilistic statement on the uncertainty of the
collusion set found. The method is designed to be retro-
spective, not for online monitoring and real time detection.
Furthermore, the data are not fully utilized in the proce-
dure as the input of the clustering algorithm is just a data
summary. In particular, the timestamp of the transactions
are ignored in [8].

However, since the traders in a collusion set tend to trade
intensively in a short period of time to maximize the im-
pact on the security price, it is conceivable that the trading
times also contain crucial information. From October 1999
to March 2001, three entities in India formed a collusion
set and circulated large amount shares of a security called
DSQ Industries. Table 1 is an excerpt from the court orders
[11, 12] released by the Security and Exchange Board of In-
dia (SEBI). One can see from Table 1 that several malicious
trades are temporally clustered. This temporal information
is lost when the transaction times are discarded in the de-
tection procedure.

In this article, we propose to model the raw data (i.e.,
the transactions) as a marked point process [4], hence the
information can be extracted from trading time. We do
not observe if a transaction is malicious or not, thus the
marked point process we considered have certain hidden
states. Our initial attempt of using the well-known hidden
Markov model (HMM) [10] or the nonhomogeneous hidden
Markov models (NHMM) [5] did not succeed because the
assumptions the HMM and NHMM are quite restrictive for
this problem. Hence we apply the more general quasi hidden
Markov model (QHMM) framework ([17] and [18]) and build
a QHMM for the collusion set detection problem. The de-
tection algorithms associated with the model are recursive;
hence they are suitable for online monitoring and detection.
The parameters of the model can be estimated from the
data by the maximum likelihood principle or the moment
methods; whereas many graph-clustering algorithms apply
ad hoc methods to determine the input parameters. The
QHMM approach provides a soft classifier [7] in the sense

that it explicitly estimates the class conditional probabilities
and then performs classification based on estimated proba-
bilities. On the other hand, the graph-clustering algorithm
proposed in [8] is not satisfactory for collusion set detection
because it does not make an inference on the important
question regarding whether a collusion set is present or not.

The rest of the paper is organized as follows: Section 2
introduces the QHMM framework and proposes a QHMM
for collusion set detection; we carry out numerical studies in
Section 3 with simulated data and real data; and Section 4
summarizes the conclusion and discusses extensions. Ap-
pendix A describes the forward-backward algorithm and the
Viterbi algorithms associated with a QHMM; Appendix B
defines a measure of dissimilarity used in the numerical ex-
amples.

2. QHMM APPROACH

QHMM is a broad class of models which subsume HMM
and NHMM. In a QHMM, the observation Ot at time t can
depend on not only the current hidden state qt, but also
the previous observations O1, . . . , Ot−1. Another attribute
of the QHMM is that the hidden state space could be time-
varying. The forward-backward algorithm and the Viterbi
algorithm associated with a QHMM are derived in [17]. They
provide a flexible framework for modeling partially observed
processes. In this section, we briefly review the QHMM, pro-
pose a QHMM for collusion set detection, and then finally
illustrate the QHMM approach with two examples.

2.1 Definition of QHMM

We let Ot and qt denote the observation and the
hidden state at time t respectively. The hidden state
qt takes values in a possibly time-varying finite dis-
crete space St = {S1, S2, . . . , SNt}. The observations
{Ot} and the hidden states {qt} are said to form a
QHMM if the conditional probability distributions satisfy
P (Ot+1, qt+1|O1:t, q1:t) = P (Ot+1, qt+1|O1:t, qt), where O1:t

denotes (O1, O2, . . . , Ot) and q1:t denotes (q1, q2, . . . , qt).
Note that the assumptions of the conventional HMM and
NHMM imply P (Ot+1, qt+1|O1:t, q1:t) = P (Ot+1, qt+1|qt),
hence HMM and NHMM are special cases of the QHMMs.

Several algorithms facilitate the statistical inferences on
a QHMM. The forward algorithm computes the likelihood
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function P (O1:T ) of the model. Combining with a back-
ward procedure, it leads to the forward-backward algorithm,
which calculates the probability of being in state Si at time
t given the observation sequence, i.e., P (qt = Si|O1:T ).
The Viterbi algorithm finds the most likely hidden state
sequence. We include these algorithms in Appendix A for
completeness.

In a conventional HMM, the parameters of the model typ-
ically are estimated by the maximum likelihood principle via
the EM algorithm [3]. However, in general the EM algorithm
is not applicable to a QHMM. Fortunately, since the forward
algorithm efficiently computes the likelihood function of a
QHMM, most standard optimization procedures are appli-
cable to find the Maximum Likelihood Estimators (MLE)
of the parameters. For instance, we use the Nelder-Mead
simplex method [6] in the numerical studies.

2.2 A QHMM for collusion set detection

We model the normal transactions and malicious trans-
actions as two independent marked point processes, hence
the observations are a mixture of these two processes. Let γ
be the intensity of the normal transactions, thus the wait-
ing time between two consecutive normal trades follows an
exponential distribution with mean 1/γ. On the other hand,
motivated by the malicious transaction pattern in Table 1
(we can see that there are two malicious trade clusters in
Table 1, one on 15-Feb-00 and the other one on 08-Mar-00),
we allow the malicious transactions to have two possible in-
tensities. They are with intensity ε when no malicious trade
cluster is active and the intensity increases to ε + λ when
a malicious trade cluster is active. The first malicious trade
in a cluster always activates the malicious trade cluster. We
let p be the probability of a malicious transaction deactivat-
ing the cluster, hence eventually a malicious trade cluster in
our model dies off. For simplicity we assume there is at most
one active malicious trade cluster at a time. From now on,
the statements “a collusion set is active” and “a malicious
trade cluster is active” are used interchangeably. Circular
trading often occurs in thinly traded securities because they
are easy to manipulate. Thus γ is typically small, whereas λ
is typically large because the collusion set trades frequently
when it is active.

In practice, we do not observe whether a trade is ma-
licious or not, or whether there is an active collusion set.
Hence we need to make inferences on the hidden states based
on the observed data at hand. The QHMM framework nat-
urally comes in.

The Ot and qt are defined as follows. Suppose we have a
data set containing n transactions. Transaction t (1 ≤ t ≤ n)
has the observation Ot = (τt, Rt), which represents the
transaction time and other trading information observed re-
spectively. We can consider Rt as a vector containing “spa-
tial” information such as trading volume, price, buyer infor-
mation, seller information, etc. The hidden state is defined

Table 2. The hidden states of ten trades

t Ct At Jt

1 0 0 0
2 1 1 2
3 0 1 2
4 1 0 2
5 0 0 2
6 0 0 2
7 1 1 7
8 0 1 7
9 1 1 7
10 0 1 7

to be qt = (At, Ct, Jt). Both At and Ct are indicator vari-
ables: At = 1 if there is a collusion set active at time t, and
At = 0 if otherwise; Ct = 1 if transaction t is malicious and
Ct = 0 if otherwise.

The definition of Jt is more involved. We let Jt be the
index of the first malicious transaction from the most recent
malicious trade cluster, up to transaction t; and Jt = 0 if
there is no malicious trade up to transaction t. Hence Jt can
take values in {0, 1, 2, . . . , t}.

To illustrate the meaning of (At, Ct, Jt), suppose a data
set contains ten trades and four of them, trades 2, 4, 7, 9 are
malicious; and there are two malicious trade clusters, where
2 and 4 form the first malicious trade cluster, and 7 and 9
form the second malicious trade cluster; the second cluster
is still active. Table 2 gives their hidden states. The hidden
state Ct needs no explanation. A1 = 0 because there is no
active collusion set; A2 = A3 = 1 because malicious trade
2 activates the collusion set and normal trade 3 does not
change the status ofA; andA4 = 0 because malicious trade 4
deactivates the cluster. Similarly A7 = A8 = A9 = A10 = 1
because malicious trade 7 activates the second cluster and
no trade deactivates it, so the second cluster is still active.
J1 = 0 since there is no malicious trade up to 1; J2 = 2
because the first malicious trade in the most recent malicious
cluster up to t = 2 is trade 2 itself. Then it is easy to see
that J3 = J4 = J5 = J6 = 2; and J7 = 7 since the first
malicious trade in the most recent malicious cluster up to
t = 7 is trade 7 itself.

With a given Jt �= t, one can compare the current trading
information Rt with RJt . The intuition is that if Rt is similar
to RJt , (i.e., the dissimilarity between Rt and RJt is small,
see Appendix B for a definition of dissimilarity), then it is
likely that the current trade is malicious. On the other hand,
if the dissimilarity between Rt and RJt is large, Rt is not
likely to be malicious. The role of Jt will become clearer in
the examples.

To fully determine the QHMM, it suffices to specify the
conditional distribution of P (Ot+1, qt+1|O1:t, qt), which sat-
isfies

P (Ot+1, qt+1|O1:t, qt)

= P (Ot+1|O1:t, qt+1, qt)P (qt+1|O1:t, qt).
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For simplicity we assume that

P (Ot+1|O1:t, qt+1, qt) = P (Ot+1|O1:t, qt+1)

and

P (qt+1|O1:t, qt) = P (qt+1|qt).

These conditional distributions are discussed below in
two cases and each case has several scenarios.

1. At = 0, i.e., no collusion set is active at time τt. In this
case, the next trade t+ 1 is either a normal trade (sce-
nario (a)), or a malicious trade that initiates a malicious
trade cluster (scenario (b)). As the malicious trade clus-
ter is initiated with intensity ε and the normal trade
occurs with intensity γ, it is not hard to see that the
next trade t+1 is a normal trade with probability γ

ε+γ ,
and is malicious with probability ε

ε+γ . The waiting time
τt+1 − τt follows an exponential distribution with pa-
rameter ε+ γ. Thus we can model the transition prob-
abilities in these two scenarios:

(a) Transaction t + 1 is normal, hence there is still
no active collusion set at time τt+1. And Jt+1

takes the same value as Jt, thus in this scenario,
At+1 = 0, Ct+1 = 0 and Jt+1 = Jt. There-
fore, P (qt+1|qt) = P (At+1 = 0, Ct+1 = 0, Jt+1 =
Jt|qt) = γ

ε+γ , and in this scenario we define

P (Ot+1|O1:t, qt+1) = P (τt+1, Rt+1|O1:t, At+1 =
0, Ct+1 = 0, Jt+1 = Jt) = (ε + γ) exp[−(τt+1 −
τt)(ε + γ)]f1(Rt+1), where f1(·) is the “spatial”
distribution for a normal trade.

(b) Transaction t + 1 is a malicious transaction
that starts an active malicious trade cluster, i.e.
At+1 = 1, Ct+1 = 1 and Jt+1 = t + 1. Hence
P (qt+1|qt) = P (At+1 = 1, Ct+1 = 1, Jt+1 =
t+1|qt) = ε

ε+γ , and we define P (Ot+1|O1:t, qt+1) =

P (τt+1, Rt+1|O1:t, At+1 = 1, Ct+1 = 1, Jt+1 =
t + 1) = (ε + γ) exp[−(τt+1 − τt)(ε + γ)]f2(Rt+1),
where f2(·) is the “spatial” distribution for a first
malicious trade.

2. At = 1, i.e. there is one malicious trade cluster active
when transaction t is executed. The presence of an ac-
tive collusion set introduces an extra intensity λ, hence
the waiting time τt+1 − τt follows an exponential dis-
tribution with parameter λ+ ε+ γ. Similarly, the next
trade t + 1 is a normal trade with probability γ

ε+γ+λ ,

and it is malicious with probability ε+λ
ε+γ+λ . There are

three scenarios in this case.

(a) Transaction t + 1 is normal, then it must be a
normal trade settled between malicious trades be-
cause the collusion set is still active at time τt+1.
One can see that in this scenario, At+1 = 1,
Ct+1 = 0 and Jt+1 = Jt. Hence, P (qt+1|qt) =
P (At+1 = 1, Ct+1 = 0, Jt+1 = Jt|qt) = γ

ε+γ+λ ,

and P (Ot+1|O1:t, qt+1) = P (τt+1, Rt+1|At+1 =
1, Ct+1 = 0, Jt+1 = Jt) = (ε+ γ + λ) exp[−(τt+1 −
τt)(ε + γ + λ)]f1(Rt+1), as in scenario (a) in the
first case, f1(·) is the “spatial” distribution for a
normal trade.

(b) Transaction t + 1 is malicious, and it does not
deactivate the collusion set (this occurs with
probability 1 − p). In this scenario, At+1 = 1,
Ct+1 = 1 and Jt+1 = Jt. Hence P (qt+1|qt) =
P (At+1 = 1, Ct+1 = 1, Jt+1 = Jt|qt) =
(1−p)(ε+λ)

ε+γ+λ , and we define P (Ot+1|O1:t, qt+1) =

P (τt+1, Rt+1|At+1 = 1, Ct+1 = 1, Jt+1 =
Jt) = (ε + γ + λ) exp[−(τt+1 − τt)(ε + γ +
λ)]f3(Rt+1|R1:t, Jt), where f3(Rt+1|R1:t, Jt) is the
conditional distribution of a malicious trade given
R1:t and Jt. In our examples, f3(Rt+1|R1:t, Jt)
takes a simple form of f3(Rt+1|RJt). In particu-
lar, it depends on a dissimilarity measure between
Rt+1 and RJt .

(c) Transaction t + 1 is malicious, but it de-
activates its collusion set (this occurs with
probability p). In this scenario, At+1 = 0,
Ct+1 = 1 and Jt+1 = Jt. Hence P (qt+1|qt) =

P (At+1 = 0, Ct+1 = 1, Jt+1 = Jt|qt) = p(ε+λ)
ε+γ+λ

and P (Ot+1|O1:t, qt+1) = P (τt+1, Rt+1|At+1 =
0, Ct+1 = 1, Jt+1 = Jt) = (ε+ γ + λ) exp[−(τt+1 −
τt)(ε+ γ + λ)]f3(Rt+1|R1:t, Jt)

Therefore, the above discussions give all the possible condi-
tional probability transactions P (Ot+1, qt+1|O1:t, qt). Hence
the QHMM is fully determined if we specify f1(·), f2(·) and
f3(·|·).

2.3 Examples

We illustrate the QHMM proposed in 2.2 with two exam-
ples.

2.3.1 Example 1

This toy example is to illustrate the motivation of our
QHMM approach. We imagine that the trading informa-
tion Rt is literately spatial. In particular, let Rt = (xt, yt)
be a point in a region, say, a 10 by 10 square. Hence
xt and yt can be considered as the “longtitude” and the
“latitude”. Recall that f1(·) is the “spatial” distribution
for a normal trade, f2(·) is the “spatial” distribution for
a first malicious trade and f3(Rt+1|R1:t, Jt) is the condi-
tional distribution of a malicious trade given R1:t and Jt.
We set both f1(·) and f2(·) to be the uniform distribution
in this square, and let f3(Rt+1|R1:t, Jt) = f3(Rt+1|RJt) =

1/(2πd) exp{− (xt+1−xJt )
2+(yt+1−yJt )

2

2d }.
Hence according to the QHMM described in 2.2, the nor-

mal trades form a homogeneous Poisson process in this
square with intensity γ. On the other hand, the collu-
sion set is activated by a malicious trade (this first ma-
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Figure 1. The “trades” in Example 1. The dots are the
normal trades and the circles are malicious trades.

licious trade acts like an ancestor) and the ancestor in-
tensively (with intensity ε + λ) generates malicious trades
(offspring) in its neighborhood with a bivariate Gaussian
distribution until it is killed (The ancestor’s death is trig-
gered by giving birth to its last child). A new ancestor
will appear somewhere according to the location distri-
bution f2(·) after an exponential waiting time with pa-
rameter ε. Figure 1 depicts a possible realization. The
dots are the normal trades and the circles are malicious
trades. A natural question is whether the QHMM can
identify the malicious trades in this setting. The simula-
tion studies on this example will be carried out in sec-
tion 3.1.

2.3.2 Example 2

We suggest to model f1(·), f2(·) and f3(Rt+1|RJt) for
real transaction data as follows. Based on our empirical
analysis (see also [1]), the large trading volume is an im-
portant characteristic of malicious trades. Hence we let
f1(Rt) = f1(vt) and f2(Rt) = f2(vt) be two different
Log-normal distributions, where vt is the trading volume
recorded in Rt. The idea is that when the trading volume
is large, f1(vt) should be small and f2(vt) should be large.
This setup characterizes the intuition that when a trade has
a large trading volume, it is more likely to be a malicious
trade.

We set f3(Rt+1|RJt) = 1/(2πd) exp{−D(Rt,RJt )
2

2d }, where
D(·, ·) is a dissimilarity measure between transaction
records. There is a great flexibility in defining such kind of
dissimilarity measures. Our definition involves the transac-

tion counterparty and the cumulative trading volume. The
details can be found in Appendix B.

3. NUMERICAL EXPERIMENTS

3.1 Example 1

We carry out simulation study on example 1 which is
introduced in Section 2.3.1, to illustrate how statistical in-
ferences are made based on the QHMM framework.

3.1.1 Data generation

To further illustrate the model, we outline how the data
shown in Figure 1 are simulated. We carry out the simu-
lation by generating the normal trades and the malicious
trades separately, and then merge the two sequences as the
observed trades.

Algorithm 1:

1. Simulate the normal trades. Each normal trade is inde-
pendent and uniformly distributed in the square. The
time interval between two consecutive normal trades is
exponentially distributed with parameter γ (i.e., with
mean 1/γ).

2. Simulate the malicious trades.

(i) Simulate the first malicious trade (the ancestor) in
a malicious trade cluster: its location is uniformly
distributed in the square; and the waiting time be-
fore an ancestor appears is exponential with mean
1/ε. The collusion set is activated when the ances-
tor appears.

(ii) Simulate the next malicious trade in the active ma-
licious trade cluster: the location of the next ma-
licious trade follows a bivariate Gaussian distribu-
tion, centered at its ancestor, with variance param-
eter d; the waiting time before the next malicious
trade appears is exponential with mean 1/(ε+ λ).
The occurrence of this malicious trade has a prob-
ability p to deactivate the collusion set. If the col-
lusion set is deactivated, go to (i), otherwise, re-
peat (ii).

3. Combine the two sequences and sort the sequence ac-
cording to the trading time.

We set ε = 0.1, γ = 1, λ = 20, p = 0.2 and d = 0.01
and generate 100 normal trades and 61 malicious trades.
They are plotted in Figure 1 and Figure 2. In Figure 1, the
malicious trades are depicted as circles whereas in Figure 2
all the trades are depicted as dots. So Figure 1 represents
the underlying truth and Figure 2 shows what we observe.

We intentionally set the parameters to be rather extreme,
so that the signal is strong, in the sense that the cluster
pattern is obvious. In fact, our eyes can pick out many of
the clusters in Figure 2. We would like to test how the model
and the algorithms work under this simple setting.
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Figure 2. All the “trades” in Example 1.

3.1.2 Search for MLE

Given a set of parameters, the forward algorithm can
compute the likelihood of the model P (O1:T ) efficiently.
Hence finding the parameters that maximize the likelihood
function becomes a standard optimization problem. We ap-
ply the Nelder-Mead simplex method and find the MLEs
of the model are ε̂ = 0.16, γ̂ = 1.25, λ̂ = 21.51, p̂ = 0.21
and d̂ = 0.01. They are not far away from the true param-
eters.

3.1.3 Conditional probabilities

Our goal is to compute the class conditional probabili-
ties, and classify the trades based on them. The forward-
backward algorithm suffices for this purpose. We take
the MLEs as the input parameters and run the forward-
backward algorithm, the output are the joint conditional
probabilities P (At, Ct, Jt|O1:n) for all possible combinations
of At, Ct, Jt, 1 ≤ t ≤ n. Actually, they are more than
what we need since our main interest is the marginal con-
ditional probabilities P (Ci = 1|O1:n) for all i, 1 ≤ i ≤ n
(Recall that Ct is the indicator of a trade being mali-
cious).

We calculate these marginal conditional probabilities and
plot them in Figure 3. The dots are the normal trades and
the circles are the malicious trades. One can see that the two
classes are well separated by the conditional probabilities.
In particular, the conditional probabilities are close to 0 for
all normal trades, and above 0.9 for all malicious trades.
If we set the cut-off probability to be 0.5, in other words,
we classify a trade t as malicious when P (Ci = 1|O1:n) >
0.5, and as normal when otherwise, then we would have
discovered the underlying truth precisely.

Figure 3. Output of the forward-backward algorithm in
Example 1: P (Ct = 1|O1:n) for all t, 1 ≤ t ≤ n, i.e., the

conditional probabilities of each trade being malicious. The
dots are the normal trades and the circles are malicious trades.

Figure 4. Output of the Viterbi algorithm in Example 1: trade
t has a indicator equal to 1 if it is recognized as malicious by
the Viterbi algorithm, and 0 if otherwise. The dots are the

normal trades and the circles are malicious trades.

3.1.4 The most likely sequence

The Viterbi algorithm gives us the most likely hid-
den state sequence {q∗t } (see Appendix A.2), where q∗t =
(A∗

t , C
∗
t , J

∗
t ). We are interested in the indicators of a trade

being malicious, i.e., {C∗
t }. Figure 4 plots {C∗

t } for 1 ≤ t ≤
n. The normal trades are in dots and the circles are the ma-
licious trades. Again, the output of the Viterbi algorithm
provides a perfect classification for this toy example.

The good performance of the algorithms is not too sur-
prising because we have a strong signal in the simulation
setup and the normal trades and malicious trades are gener-
ated according to our proposed model. Nevertheless, the re-
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Figure 5. The “trades” in the robustness check experiment
where the cluster not being centered at the ancestor. The dots
are the normal trades and the circles are malicious trades.

sults are encouraging as they illustrate that the QHMM ap-
proach can be very powerful. In particular, we can see from
Figure 1 that several normal trades are spatially clustered,
but they are not identified as malicious by the QHMM ap-
proach because the transaction times are taken into account.
On the other hand, a detection procedure without consider-
ing the timestamps, such as the graph-clustering approach
proposed in [8], is expected to give more false positives.

Because the programming associated with the QHMM
approach is nontrivial, this simple example also helps us
confirm that our codes are in order. One only needs to make
minor changes of the codes to perform the data analysis for
Example 2.

3.2 Robustness check

In order to test the robustness of the QHMM approach,
we generate the trades differently from our proposed model,
and then run the QHMM algorithms on the simulated data
to see how they perform.

3.2.1 Cluster not centered at the ancestor

In this experiment, the succeeding malicious trades in
a malicious trade cluster do not follow a bivariate Gaus-
sian distribution centered at their ancestor. We simulate
150 trades on the 10 by 10 square. We let the trades be
equally spaced in time. Three malicious trade clusters are
generated on three 0.2 by 0.2 small squares uniformly. The
small squares are respectively centered at (2,2), (4,8) and
(8,4). The first cluster contains trades 41, 42, 43; the second
cluster consists of trades 61, 62, 63 and 64; and the third

Figure 6. Output of the forward-backward algorithm in the
robustness check experiment where the cluster is not centered
at the ancestor: P (Ct = 1|O1:n) for 1 ≤ t ≤ 150, i.e., the
conditional probabilities of each trade being malicious. The

dots are the normal trades and the circles are malicious trades.

cluster contains trades 101, 102, 103. The simulated data are
depicted in Figure 5, where the dots are the normal trades
and the circles are the malicious trades.

We fit the same QHMM as in Example 1 on this data set.
The MLEs are ε̂ = 0.19, γ̂ = 1.07, λ̂ = 1.94, p̂ = 0.87 and
d̂ = 0.004. The MLEs are fed into the forward-backward al-
gorithm, and the conditional probabilities P (Ci = 1|O1:n),
1 ≤ i ≤ 150 are calculated. The results are shown in Fig-
ure 6. Again one can see that malicious trades and the nor-
mal trades are well separated by the conditional probabili-
ties. A cut-off probability of 0.5 would lead to a classifica-
tion that is the same as the underlying truth. The QHMM
approach works well in this simulation study. Actually, the
assumption of the cluster centering at the ancestor is ex-
pected to be quite robust, when the malicious trades are
highly clustered in space-time. This is because when the
malicious trades are near to each other, then they must be
close to the first malicious trade in the cluster, i.e., its an-
cestor.

3.2.2 When there is no malicious trades

This simulated data set consists of 150 normal trades and
no malicious trades. They are generated on the 10 by 10
square with parameter γ = 1. The QHMM as in Example 1
is fitted on this data set. The MLEs are ε̂ = 0.0001, γ̂ = 1.02,
λ̂ = 2.05, p̂ = 0.51 and d̂ = 0.59. The MLEs are used as the
input parameters for the forward-backward algorithm, and
the conditional probabilities P (Ci = 1|O1:n), 1 ≤ i ≤ 150
are calculated and depicted in Figure 7.

One can see from the Figure 7 that all the conditional
probabilities of the trade being malicious are near zero. In
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Figure 7. Output of the forward-backward algorithm when
there are no malicious trades: P (Ct = 1|O1:n) for

1 ≤ t ≤ 150, i.e., the conditional probabilities of each trade
being malicious.

fact, the largest one is only of 0.0037. Hence it strongly
indicates that there is no malicious trade in the data set.
Nevertheless, a graph-clustering approach as in [8] would
report a collusion set candidate in this scenario.

3.3 Example 2

As mentioned in Section 2.3.2, the assumptions on f1(·),
f2(·) and f(Rt+1|RJt) in this example are based on our em-
pirical studies on real transaction data. In particular, we
acquire tick-by-tick data on AsiaTiger from Singapore Ex-
change (SGX). Asia Tiger Group is a Singapore-based in-
vestment holding company mainly engaged in the manu-
facturing of office equipment. The tick-by-tick data consist
of transaction time, volume, price, value in SGD and trade
number. Partial transactions on AsiaTiger can be found in
Table 3. In this section, we first carry out numerical exper-
iments on simulated datasets, and then real data sets are
used to test our method.

In practice, when training data sets are available, the
model parameters can also be estimated based on the train-
ing data. Hence in this study, we adopt two parameter esti-
mation methods: maximum likelihood estimation and esti-
mation from a training set.

3.3.1 Simulation study

The simulation scheme in this example is similar to Ex-
ample 1. Normal and malicious trades are generated sepa-
rately and combined to form a complete testing data set.
We generate 25 testing data sets. In each data set genera-
tion, we set ε = 0.05, γ = 4, λ = 30 and p = 0.4 and every
data set contains 200 normal trades, and the number of ma-
licious trades varies. Instead of simulating the “longitude”

and “latitude” as in Example 1, we generate trading vol-
ume, buyer ID and seller ID. In particular, the information
is used to calculate the dissimilarities between trades.

1. Trader ID. We assume 150 traders are involved. For
each normal transaction, buyer and seller ID are uni-
form random numbers between 1 to 147. And three
traders {148, 149, 150} form a collusion set. Hence
buyer and seller IDs of malicious transactions are ran-
domly generated from these three.

2. Trading volume. Our empirical studies shows that the
trading volumes of AsiaTiger follow approximately a
Log-normal distribution with μ = 3.95 and σ2 =
1.2996. We use the same set of parameters to gener-
ate trading volumes for normal transactions. Trading
volumes of malicious transactions are generated using
Log-normal distribution with μ = 7 and σ2 = 0.05.

With the same setup, we also generate a training set. The
training data set consists of 2,000 normal transactions and
70 malicious transactions. We assume that we know which
trades are malicious in the train data set, hence we can
estimate the model parameters from the training set, say,
by the method of moments.

We test our model on these 25 simulated data sets. Pa-
rameters are estimated using both the training data set
and MLE method. The definition of dissimilarity measure
we used in this experiment can be found in Appendix B.
Forward-backward algorithm and Viterbi algorithm are run
to identify the malicious transactions. Table 4 shows the
results from the forward-backward algorithm (we set the
cut-off probability to be 0.75 for conservativeness), where
specificity is the percentage of normal transactions that are
correctly identified, and sensitivity is the percentage of the
malicious transactions that are correctly identified. The re-
sults on the detection errors (false positive plus false neg-
ative) of the Viterbi algorithm are shown in Table 5. Both
algorithms classify most of the trades correctly.

The training data estimations have a comparable per-
formance with the MLEs. However, we note that both es-
timation methods have their own merits and limits. The
training data estimates are robust and easy to compute,
but a training data set is not always available in practice.
Especially one rarely knows the properties of the malicious
trades. While the MLE is computational more expensive,
and most optimization procedures do not guarantee a global
maximizer.

3.3.2 An experiment with real data

We would like to perform similar experiments on real
data. However, the buyer and seller information of the trans-
actions are kept strictly confidential by the stock exchanges.
The only exception to our awareness is the DSQ security
mentioned in Section 1. SEBI provides the malicious trans-
actions information under the request of India court. We
attempted to acquire the normal transactions of DSQ secu-
rity from SEBI but did not succeed.
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Table 3. Partial transactions on AsiaTiger

Date Time Counter Name Volume Price Value Trade No.

2-Nov-09 091318 AsiaTiger 45000 0.32 14400 1004069
2-Nov-09 091318 AsiaTiger 100000 0.32 32000 1004068
2-Nov-09 091318 AsiaTiger 5000 0.32 1600 1004067
2-Nov-09 091512 AsiaTiger 5000 0.32 1600 1004451
2-Nov-09 092210 AsiaTiger 95000 0.32 30400 1005064
2-Nov-09 092210 AsiaTiger 50000 0.32 16000 1005065
2-Nov-09 092604 AsiaTiger 55000 0.32 17600 1005509
2-Nov-09 092820 AsiaTiger 5000 0.32 1600 1005734

Table 4. Sensitivity and specificity of detections using the forward-backward algorithm on 25 simulated data sets

MLE Training data
Data Set Specificity Sensitivity Specificity Sensitivity

1 100.00% 100.00% 100.00% 100.00%
2 99.00% 88.89% 100.00% 88.89%
3 99.00% 100.00% 99.00% 100.00%
4 99.00% 80.00% 99.00% 80.00%
5 100.00% 100.00% 100.00% 100.00%
6 100.00% 100.00% 100.00% 100.00%
7 99.00% 100.00% 99.00% 100.00%
8 98.50% 100.00% 99.00% 100.00%
9 100.00% 100.00% 100.00% 100.00%
10 100.00% 100.00% 100.00% 100.00%
11 99.50% 100.00% 99.50% 100.00%
12 100.00% 100.00% 100.00% 100.00%
13 100.00% 100.00% 99.50% 100.00%
14 97.50% 88.89% 98.00% 100.00%
15 100.00% 100.00% 100.00% 100.00%
16 98.50% 100.00% 100.00% 100.00%
17 100.00% 100.00% 100.00% 100.00%
18 100.00% 83.33% 100.00% 83.33%
19 99.00% 100.00% 99.00% 100.00%
20 100.00% 100.00% 100.00% 100.00%
21 100.00% 60.00% 99.50% 60.00%
22 100.00% 100.00% 100.00% 100.00%
23 100.00% 88.89% 100.00% 88.89%
24 100.00% 100.00% 100.00% 100.00%
25 100.00% 100.00% 100.00% 100.00%

Table 5. Summary of Viterbi algorithm’s performance on 25 simulated data sets

Data Set 1 2 3 4 5 6 7 8 9 10 11 12 13

Detection Err (MLE) 2 0 5 5 0 0 2 4 0 0 5 0 0
Detection Err (Training) 0 2 2 5 0 0 2 2 0 0 3 0 1

# of Transactions 209 206 209 204 204 204 210 209 205 206 206 205 204

Data Set 14 15 16 17 18 19 20 21 22 23 24 25

Detection Err (MLE) 7 1 6 0 1 2 0 2 0 1 0 0
Detection Err (Training) 7 1 0 0 1 2 0 3 0 1 0 0

# of Transactions 208 214 204 205 208 204 204 208 208 208 205 206

The data set used in this experiment is a combination of
selected transactions from AsiaTiger and malicious transac-
tions from DSQ security. For normal trades, 206 transactions
on AsiaTiger, dated from 2 Nov to 6 Nov 2009, are chosen.
We are not able to obtain the trader ID, so they are sim-

ulated as described in Section 3.3.1. For malicious trades,
eight malicious transactions on DSQ security are selected
to form two malicious trade clusters. IDs are assigned ac-
cording to information provided in the law order. As two
securities are from different countries, trading volumes are
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Figure 8. Output of the forward-backward algorithm in
Example 2: P (Ct = 1|O1:n) for all t, 1 ≤ t ≤ n, i.e., the

conditional probabilities of each trade being malicious. The
dots are the normal trades and the circles are malicious trades.

Table 6. Parameters estimated by MLE

γ λ ε p d

MLE 4.3707 34.6935 0.0432 0.4083 400.1777

adjusted according to the stock price and the currency ex-
change rate. More details can be found in [14].

We also construct a training data set consisting of 400
transactions on AsiaTiger and 20 transactions on DSQ se-
curity. The parameters of the Log-normal distributions (for
the trading volume) are estimated from training data set.
For normal transactions, μ̂ = 3.7641 and σ̂2 = 1.8217; for
malicious transactions, μ̂ = 8.4705 and σ̂2 = 0.1573.

We estimate the remaining parameters by the maximum
likelihood estimates. The results are shown in Table 6. As
expected, when the collusion set is not active, it has a small
intensity ε = 0.0432; when it is activated, the intensity in-
creases about 800 times, and it is about 8 times larger than
the intensity of the normal trades. Using these parameters as
input, the forward-backward algorithm and the Viterbi algo-
rithm separate the malicious trades and normal trades very
well. Figure 8 depicts the output of the forward-backward
algorithm. The conditional probabilities almost look like in-
dicator functions. All the malicious trades (in circles) have
conditional probabilities close to 1, and all the normal trades
(in dots) have conditional probabilities near 0. Figure 9 is
the output from the Viterbi algorithm; it is almost identi-
cal to Figure 8. So both algorithms discover the underlying
truth.

Our model performs excellently for this experiment.
A possible reason for the perfect detection is that the signal
in the data is really strong, in other words, the malicious

Figure 9. Output of the Viterbi algorithm: trade t has a
indicator equal to 1 if it is recognized as malicious by the

Viterbi algorithm, and 0 if otherwise. The dots are the normal
trades and the circles are malicious trades.

transactions on DSQ security are too evident. This might
be why this collusion set was caught while most collusion
sets are undetected.

4. DISCUSSION

In this article, we propose a QHMM approach for col-
lusion set detection. We model the security transactions as
a marked point process so that the trading times can be
naturally incorporated into the model. Then because the
stochastic process is only partially observed, to make infer-
ences on the hidden states, we set it up as a QHMM to
make use of the forward-backward algorithm and Viterbi
algorithm. These algorithms are recursive, hence our model
is suitable for online monitoring and detection.

We demonstrate the proposed QHMM model with two
examples. The first example is mainly for the purpose of
illustration. The trades are considered as points in a region,
and the normal trades and malicious trades follow their own
distributions. In particular, the malicious trades tend to be
clustered. Replacing the Euclidean distance in example 1
with a dissimilarity measure, we get our example 2 which is
designed for real transaction data. In fact, example 1 is more
than a toy example. Similar models are used for earthquake
declustering [15, 16].

The QHMM approach explicitly estimates the conditional
probabilities of each transaction being malicious, hence in-
ferences are made on the basic question whether there are
malicious trades in the transactions; whereas the graph-
clustering approach proposed in [8] ignores such a question
and always outputs a collusion set candidate, even when no
collusion set exists in the data.
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Our study is a first attempt to model the circular trading
by stochastic processes. Though our simulation results and
experiments with real data look promising, we are aware
that they are under a rather fortunate scenario because the
signal is strong. It would be interesting to see how our ap-
proach would work with real and large scale data.

APPENDIX A. ALGORITHMS ASSOCIATED
WITH QHMM

In this section, we describe the forward-backward algo-
rithm and the Viterbi algorithm associated with a QHMM.
The detailed derivation of these algorithms can be found
in [17].

A.1 Forward-backward algorithm

We define the forward variables αt(i) as,

αt(i) = P (O1:t, qt = Si), 1 ≤ i ≤ Nt.

Then it is not hard to see that, for 1 ≤ i ≤ Nt+1

αt+1(i) =

Nt∑

j=1

P (Ot+1, qt+1 = Si|O1:t, qt = Sj)αt(j).

Hence one can compute αt(i) inductively after setting
α1(i) = π(O1, q1 = Si), 1 ≤ i ≤ N1, where π(·, ·) is the
initial distribution of (O1, q1). The forward variables can
be used in the computation of the likelihood of the model:
P (O1:T ) =

∑NT

i=1 αT (i).

In a similar manner, the backward variables βt(i) are de-
fined as,

βt(i) = P (Ot+1:T |O1:t, qt = Si), 1 ≤ i ≤ Nt.

Note that the recursive relationship for 1 ≤ i ≤ St,

βt(i) =

Nt+1∑

j=1

P (Ot+1, qt+1 = Sj |O1:t, qt = Si)βt+1(j)

holds. Hence setting βT (i) = 1, 1 ≤ i ≤ ST , the remaining
βt(i) can be computed backward in time inductively.

Combining the forward procedure and the backward pro-
cedure, the probability of the hidden state is Si at time t
conditional on the observations is given by

P (qt = Si|O1:T ) =
αt(i)βt(i)∑Nt

j=1 αt(j)βt(j)
.

A.2 Viterbi algorithm

The Viterbi algorithm uses dynamic programming to
find the most likely hidden state sequence, namely,

Table 7. Cumulative trading volume matrix, M

Buyer ID
1 2 . . . 99 100

Seller ID

1 m1,1 m1,2 . . . m1,99 m1,100

2 m2,1 m2,2 . . . m2,99 m2,100

. . . . . . . . . . . . . . . . . .
99 m99,1 m99,2 . . . m99,99 m99,100

100 m100,1 m100,2 . . . m100,99 m100,100

argmaxq1,q2,...,qT P (q1, q2, . . . , qT |O1:T ). We define the quan-
tity δt(i) = maxq1,...,qt−1 P (O1:t, q1, . . . , qt−1, qt = Si) and
observe that

δt+1(i) = max
j

[P (Ot+1, qt+1 = Si|O1:t, qt = Sj)δt(j)] .

We also define ψt+1(i) = argmaxj [P (Ot+1, qt+1 =
Si|O1:t, qt = Sj)δt(j)] to keep track the index. Let q∗T =
Sargmaxj δT (j) and q∗t = Sψt+1(q∗t+1)

for t = T − 1, T −
2, . . . , 1, then one can show that {q∗1 , q∗2 , . . . , q∗T } is the most
likely hidden state sequence, i.e., P (q∗1 , q

∗
2 , . . . , q

∗
T |O1:T ) =

maxq1,q2,...,qT P (q1, q2, . . . , qT |O1:T ).

APPENDIX B. DISSIMILARITY

We let IDb
i and IDs

i denote the buyer and seller of trade
Ri respectively. The intuition is that two transactions Ri

and Rj are similar (hence suspicious) if the buyer IDb
i and

seller IDs
i of Ri have a certain relationship with the buyer

IDb
j and seller IDs

jof Rj . For example, they might be the
same person, or there have been large volume tradings oc-
cured between them.

To this end, a matrix, M , is constructed to record and
update the cumulative trading volumes (Table 7). In the
matrix M , each entry represents the cumulative trading
amount between two traders. For example, m99,1 represents
the cumulative trading amount sold from the trader with
ID = 99 to the trader with ID = 1. The diagonal entries
record the cumulative amount sold and bought by the same
trader in a single transaction, which is highly suspicious for
manipulation, and hence a penalty is imposed. In this study,
we add ten times of the security’s average trading volume to
the diagonal entries. When a new transaction is executed,
the matrix is updated by adding the trading volume to its
corresponding entry.

The dissimilarity between transaction t and trans-
action Jt, the first malicious transaction executed by
the most recent collusion set, is defined as: D(Rt, RJt) =
(
∑nt

p=1

∑nt

q=1 M [p, q])/{mIDb
t ,ID

b
Jt
+mIDb

t ,ID
s
Jt
+mIDs

t ,ID
b
Jt
+

mIDs
t ,ID

s
Jt

+ mIDb
Jt

,IDb
t

+ mIDb
Jt

,IDs
t

+ mIDs
Jt

,IDb
t

+

mIDs
Jt

,IDs
t
+ c} where M [p, q] is the entry on the pth row

and qth column in the matrix, and nt is the total number
of traders, hence the numerator

∑nt

p=1

∑nt

q=1 M [p, q] is
the summation of all entries in the cumulative trading
volume matrix. The denominator consists of two parts. The
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first part is the summation of eight entries in the matrix.
For example, mIDb

t ID
b
Jt

represents the cumulative trading

amount until time τt sold from the buyer of transaction
t to the buyer of transaction Jt. The second part of the
denominator is a small constant c, which is added to ensure
that the denominator does not equal to 0.

In this way, D(Ri, Rj) is small if there have been large
volume trading occured between IDb

i , ID
s
i , ID

b
j and IDs

j or
for example, in the extreme case, if all four counterparties
are the same.
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